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Abstract 
This paper analyzes the impact of technological diversity on innovation inputs and success 
using Swiss firm-level panel data. While we do not find any impact of diversity on R&D 
intensity, we confirm a positive impact of diversity on patent applications as suggested by the 
literature. However, since patent applications reflect an intermediate innovation input rather 
than output, we extend the analysis to the share of sales generated by new products. We find a 
significant negative effect of diversity on the sales share of new products. Hence, 
technologically more specialized firms have a lower propensity to patent and greater shares of 
new products. We find neither a direct nor indirect effect of diversity on the sales share 
generated by improved products. These results suggest that specialization pays-off through 
more drastic innovations that yield greater market success through a passing monopoly status.  
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1. Introduction 
 

Evolution means solving current problems (Nelson 1995) and the problem solving capacity of 

a society strongly depends on the innovativeness of private firms. With the paper at hand we 

will investigate whether the role of technological diversity differs for the patent success of a 

firm and for the innovation performance (output) of a firm measured through the sales share 

of innovative products.  

The existing empirical literature mainly consists of two different strands of investigations. On 

the one hand there are broad empirical studies that investigate the relationship between 

technological diversification (diversity) and the number of patent applications (innovation 

input), but they do not provide empirical evidence about how diversity relates to innovation 

performance in the product market. Such studies proclaim a positive impact of diversity on 

the number of patent applications (see, e.g., Leten et al., 2007, Garcia-Vega, 2006). 

On the other hand there are a few industry specific studies that analyse the relevance of 

diversity in various stages of the innovation process in the pharmaceutical and biotech sector. 

They find that the probability of technological success and the probability of market success 

follow different processes but provide mixed results in terms of how technological diversity 

affects the various stages (see, e.g., Danzon et al., 2005, Arora et al. 2009, Plotnikova, 2010). 

Since the first strand of literature only looks at the patent level, which can be seen as a 

measure of intermediate innovation input (see, e.g., Griliches, 1998, Brouwer and 

Kleinknecht, 1999), and the second strand of literature only looks at one very specific 

industry, we extend the existing literature in the following way. We go beyond a particular 

industry and beyond the level of patent applications. Furthermore, we  provide estimates of 

quantitative product market success rather than the probability of successful market 

introduction. This way we detect the two different faces of technological diversity in terms of 

technological success and market success, which clearly poses a great challenge for policy 

makers.  

Concretely, our study contributes to the existing literature by combining firm-level panel data 

stemming from the Swiss innovation survey (equivalent to the European “Community 

Innovation Survey”) with information about patent applications and the corresponding 

International Patent Classification (IPC) inscriptions for the panel firms. The resulting data set 

allows us to compare the impact of technological diversity on alternative measures of 

innovation performance. We contrast the traditional measures “research and development 

(R&D) intensity” and “number of patent applications” to the widely applied innovation 
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measure “share of innovative sales” (see, e.g., Miotti and Sachwald, 2003, Belderbos et al. 

2004).  

Our results confirm the established findings that technological diversification increases the 

number of patent applications. However, based on a comprehensive control vector we do not 

find any significant relationship between diversity and R&D intensity. Hence we conclude 

that diversity is (partly) positively related to innovation input. This confirms existing 

evidence.  

However, we also show that the findings at the technological level (patents) do not necessarily 

apply at the level of markets. Our analysis of innovation output, for which there exists no 

broader empirical evidence, suggests a negative impact of diversity on the sales share of new 

products. This result contradicts the findings for innovation inputs (patents). We argue that the 

different effects of diversity arise because drastic innovations reduce patent propensity but 

increase market success. Concretely, since Mansfield and Wagner (1975) we know that 

technologically more ambitious projects have a greater risk to fail in technological terms but 

promise a greater degree of novelty and market potential once they pass technological 

completeness. Hence, in this view, factors driving intermediate innovation input (patents) may 

hinder innovation output, since different levels of completion might require different skills or 

different types of strategies. That view is consistent with what we observe in terms of 

diversity. Technological diversification increases patent propensity but decreases the sales 

share of new products. We strengthen our explanation of this contradiction by showing that 

diversity has no impact on the share of improved products, implying that diversity decreases 

the propensity of more advanced (radical) innovation output but not incremental innovation 

output. However, the relationship between diversity, innovation output, degree of novelty and 

market success requires further empirical investigations. 

The results of the study at hand further point at some policy issues. Risk-averse firms and 

managers (Miller 2006) prefer technologically less ambitious projects with larger probability 

of project completion and patenting. However, such projects promise lower benefits in the 

market and smaller spillovers to the larger economy. Hence, encouraging firms to take up a 

more risky project appears to provide a promising route for policy makers to take, thereby 

improving both the market success of firms and the generated spillovers. 

The paper is organized as follows. Section 2 discusses the relationship between technological 

diversification and innovation based on the existing literature and develops our research 
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hypotheses. Section 3 presents the employed data set and econometric specification. Section 4 

discusses the results and section 5 concludes the paper. 

 

2. Literature Review and Hypothesis 
 

The paper at hand focuses on the relationship between technological diversification and the 

innovation output of a firm, where innovation output is measured in two different ways, i.e. 

sales share of essentially modified products and sales share of new products.  

 

Existing empirical investigations look at the role of technological diversification for 

innovation input (R&D intensity), intermediate innovation input (patents) and firm 

performance (profitability or financial performance of firms (e.g. Kim et al. 2009, Miller 

2006, Chiu et al. 2008). However, they disregard the meaning of technological diversification 

for innovation output. Hence, in investigating the level of innovation success, the study at 

hand fills a research gap. 

 

Benefits of technological diversification  

There is extensive evidence that technological diversification increases patent propensity. 

Garcia-Vega (2006), Gambardella and Torrisi (1998), Gemba and Kodama (2001), and Nesta 

and Saviotti (2005) found a positive relationship, while Leten et al. (2007) found an inverted-

U relationship between technological diversification and number of patent application. 

Moreover Leten et al. (2007) showed that a higher level of coherence in the technology 

portfolio increases the positive relationship between technological diversification and the 

number of patent applications. 

One reasoning for the observed relationship suggests that a diverse knowledge structure 

increases the absorptive capacity of firms (Cohen and Levinthal 1989, 1990). The absorptive 

capacity enables a firm to keep track of the technological developments outside its core 

capabilities. This way, it can lower the risk of technological lock-in effects, since it is unlikely 

that the economic potential and competence destroying character of alternative technologies 

are overseen. Furthermore, a diverse knowledge base makes it more likely to benefit from 

spillovers from other (related) technological fields (Garcia-Vega 2006) and it opens a broader 

field of potential technological opportunities, where research fields do cross-fertilize each 
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other and help to develop new technologies (Leten et al. 2007). It is also more likely that 

diverse firms are collaborating with science institutions or other firms in order to transfer 

knowledge, since links are more easily created.  

Moreover firms benefit from diversification, since it creates further investment incentives. 

Such incentives are generated at least for two reasons. Firstly, diversification reduces the risk 

of technological investments (provided that the projects are negatively correlated), since R&D 

investments are distributed over diverging projects and therefore the probability of 

technological success increases. Secondly, there is evidence that technologically diversified 

firms patent close to related fields (Breschi et al. 2003). This is true in particular for very large 

diversifiers. By filling up technological gaps in their portfolio, they increase the density of 

their knowledge and further protect the firm’s knowledge base. This way, they increase their 

number of patents.   

A further reason put forward by Leten et al. (2007) is the fixed cost nature of R&D 

capabilities implying that excess resources might be used to diversify into new technological 

fields (see e.g. Schumpeter, 1942).  

 

Costs of technological diversification 

However, technological diversification is a costly exercise (Danneels 2002). Researchers have 

to tap into new research fields with considerable uncertainty about technological possibilities 

until positive learning effects occur. Learning comes along with a sufficiently large 

knowledge stock in a single technology, which is costly to build. Costs of equipment and 

salaries of researchers might be particularly high in respect to the creation of drastic 

innovations.  

Furthermore, diversity creates additional communication requirements and coordination 

duties (Leten et al. 2007). This increases costs not only on the level of the R&D activities but 

also on value chain steps following technological development. Argyres (1996) found that 

interdivisional coordination costs are lower for more specialized R&D. However, firms accept 

to some extent increasing costs of diversification, since they want to reduce risks. 

Consequently, risk averse managers tend to diversify too much in order to lower the risk of 

technological development (Miller 2006).   

Several studies suggest that beyond a certain point, the benefits of diversity are outweighed by 

increasing coordination costs (Holmström 1989, Zenger 1994). Similarly, Leten et al. (2007) 
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combine costs and benefits arguments by suggesting that the costs of diversification increase 

more than proportionally while the benefits have a decreasing marginal return. They support 

this view by empirically showing an inverted U-shaped relationship between technological 

diversification and patent activities. Similar evidence has already been brought forward by 

Henderson and Cockburn (1996) investigating the pharmaceutical industry. They detected 

synergies in conducting two or more related, comprehensive research projects. However, a 

further increase in the number of comprehensive projects has a negative effect on patent 

applications, suggesting an inverted U-shaped relationship between the number of large scale 

research projects and patent applications. Similarly, Alonso-Borrego and Forcadell (2010) 

found an inverted U-shaped relationship between related diversity and R&D intensity. 

Given the arguments about benefits and costs of technological diversifications and the 

empirical findings so far, we suggest the following two hypotheses:  

 

Hypothesis 1: Technological diversification is positively related with patent activities/R&D 

intensity. 

 

Hypothesis 2: Technological diversification is negatively related with patent activities/R&D 

intensity if diversification goes beyond certain limits.  

 

Technological diversification at the expense of market success 

The findings at the technological level do not necessarily apply at the level of markets. It is 

plausible that factors supporting the technological development in terms of patent applications 

are hindering the market success of innovative products measured through sales share of new 

or improved products. Hence, this section argues that technological diversification is 

negatively correlated with the sales share of new products.  

Following Mansfield and Wagner (1975) it is reasonable to separate technological success 

(e.g. patent application) from market success (e.g. sales share of innovative products). They 

found that the rate of technological completion goes down if firms invest a larger share of 

R&D expenditures in technological advanced projects selected by the R&D department. 

Technological completion can be indicated by a prototype or a patent application. However, 

once the technological difficulties of such technologically advanced projects are solved and 

the project leads to a market product, such products are likely to exert an above average 
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market success. On the contrary, if we would observe a strong intervention of other than R&D 

departments (e.g. marketing) in R&D project decisions, it is likely that the probability of 

technological success increases, since marketing is expected to be less ambitious in terms of 

technology. However, less demanding technological goals lower the magnitude of market 

success, since the degree of novelty is lower. Similarly, Atuahene-Gima and Evangelista 

(2000) found that the influence of marketing people (as reported by R&D people) 

significantly lowers new product performance.  

Arguing that spillover effects of research projects are more important for technological 

success than for market success, a small literature studies the probability of completing the 

various stages of the innovation process in the pharmaceutical and biotech industries. They 

show that  the probability of technological success and the probability of market success 

represent different processes, but find mixed results in terms of how technological diversity 

affects the different innovation stages  (Danzon et al. 2005, Arora et al. 2009, Plotnikova 

2010).  

Furthermore, the following paragraphs develop two additional reasons, why the impact of 

diversity differs between patent applications and market success.    

First, it is plausible to assume that technological specialization is necessary for drastic 

innovations (see Woerter 2009), because a large, specialized knowledge stock is required to 

produce the desired learning effects to further the progress in scientific disciplines, and to 

develop new technologies or to file far-ranging patents. This view is supported by the 

anecdotal evidence in respect to the great technological breakthroughs during the last decades, 

in which specialized knowledge at universities broke the ground for new innovative products. 

Biotechnology clearly has its origins at very specialized university institutes and also the 

discovery of the nanoscale goes back to specialized research groups at universities. 

Subsequently, this knowledge has been transferred to the private sector and essentially 

contributed to new products (Zucker et al. 2002, Arvanitis et al. 2008). Secondly, this 

relationship between drastic innovations, their market performance and patenting activity is 

further strengthened by the fact that patents of drastic innovations enjoy broader protection 

with longer effective patent live than incremental patents, since it is more difficult for the 

patent examiner to object broader protection claims from applicants if the invention opens up 

a new field (European Patent Office 2000)1. A similar argument is that very advanced firms 

1 Usually it is left to the courts to limit patent protection (Merges and Nelson 1990). However, broader patents 
are likely to be challenged by infringement or patent validity trials induced by competitors. If such trials are 
successful, effective protection time could be shortened (Yiannaka and Fulton 2006). 
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might have a lower patent propensity because they do not want to disclose the necessary 

information for the patent application. They prefer other protection mechanisms (e.g. 

secrecy). These arguments suggest that frequency of patents and the market success of new 

products are negatively correlated. 

Given that drastic innovations are likely to be triggered by very specialized knowledge and 

that drastic innovations are granted broader patent protection that is difficult to challenge by 

competitors, we would formulate the following hypotheses:  

 

Hypotheses 3: Technological diversification decreases the sales share of new products.  

 

Since incremental innovations do not require the same degree of learning, the relevance of 

cross-fertilization and coordination costs dominate learning effects in respect to the market 

success obtained from improved products. Hence, we hypothesize that 

 

Hypotheses 4: Technological diversification increases the sales share of improved products. 

While hypotheses 1 to hypotheses 4 represent our main fields of investigation, our 

econometric setting allows for testing of less controversial hypotheses. Griliches (1998) and 

Brouwer and Kleinknecht (1999) suggest that patents are an intermediate innovation input. 

Hence, we formulate the following hypothesis:  

 

Hypothesis 5: Patent stock increases innovation output, i.e. sales share generated by new and 

improved products. 

 

3. Data and Methodology 

The employed panel data stems from 5 waves of the Swiss innovation survey2 conducted by 

the KOF in the years t={1996, 1999, 2002, 2005, and 2008}, where t denotes the time period. 

The surveys are based on a disproportionately stratified random sample of firms with more 

than 5 employees (full time equivalent) covering the most important industries of the 

2 Questionnaires of the survey, which resembles closely the “Community Innovation Survey”, are available at 
www.kof.ethz.ch in German, Italian, and French language. 
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manufacturing, construction and service sector. Stratification takes place on industry and 

within each industry on three firm size classes. Responses were received from 1748 (32.5%), 

2172 firms (33.8%), 2583 firms (39.6%), 2555 firms (38.7%), and 2141 (36.1%) for the years 

1996, 1999, 2002, 2005 and 2008 respectively. However, the investigation at hand only uses 

data from R&D active manufacturing firms. Dropping observations with missing values 

yields a highly unbalanced firm-panel with 1457 observations. 

We enrich the innovation survey with information about patent applications from the 

European Patent Office (EPO). Patents and the corresponding technological fields have been 

collected in cooperation with a specialized firm, NetBreeze3, using the patent information 

available on “esp@cenet” (patent applications and granted patents around the world - 

www.espacenet.com). This allows us to construct the existing patent stock of a firm and the 

number of new patent applications in a period. Given the three-year periodicity of the 

innovation survey, we define the number of new patent applications (Patentsit) of firm i in 

period t as the sum of patent applications over the corresponding three years. Following the 

perpetual inventory method (Cockburn and Griliches, 1988), the patent stock (Patent Stockit) 

of firm i in period t refers to the discounted sum of patent applications in the six years before 

the period, where we follow the literature in assuming a geometric discounting process with 

depreciation rate of 15% (see, e.g., Keller 2002, Aghion et al. 2011). 

The patent data also entails information about patent section inscriptions (IPC code). 

Following Garcia-Vega (2006), we define diversity (Divit) as one minus the Herfindahl index, 

which is calculated as the sum of squared patent section inscription shares: 

( ) 







−= ∑

j
itjitit NNDiv 2/1  

3 www.netbreeze.ch  
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jitN  denotes the discounted number of patent section inscriptions of firm i’s patent stock in 

section j in period t. The discounted patent stock in period t, Nit, refers to the discounted sum 

of patent applications in the six years before the period.  

This paper employs two types of dependent variables (see Table 1). Following the existing 

literature (see, e.g., Garcia-Vega 2006, Leten et al. 2007), the first type refers to innovation 

inputs. We differentiate two innovation inputs, namely R&D intensity (R&D Intensityit) and 

the intermediate input, patent applications in the current three-year period, t (Patentsit).  

 

Insert Table 1 about here 

 

Following Leten et al. (2007) and Garcia-Vega (2006), we control for R&D intensity (R&D 

Intensityit), firm size (Sizeit) and the existing patent stock (Patent Stockit). Since our measure 

for diversity can take the value 0 either because a firm has no patents or because all patents 

fall into a single patent section, we further include a dummy variable indicating whether the 

patent stock of a firm is empty (Patdummyit). In order to capture the differences in the ability 

of patents in protecting innovations, we further include a dummy variable that indicates 

whether protection measures (e.g. patents, copyrights, secrecy) are effective (Protectionit). In 

addition, we include the share of personnel with tertiary education (Qualificationit) to account 

for the firm’s absorptive capacity. Year dummies (αt) capture unobserved heterogeneity 

across time (for the summary statistics see Table 2).  

 

Insert Table 2 about here 

 

Building the diversity index based on the lagged patent stock in (t-1) and (t-2) accounts for 

reverse causality. In order to address the problem of unobserved heterogeneity (e.g. 

management abilities), we include individual intercepts (αi), i.e. present fixed effects 

estimates. 

Hence, we write our econometric estimations for R&D intensity as 

 

ititititit

ititititit

ionQualificatSizeSizeotection
kPatentStocPatdummyDiversityDR

114
2

131211

11211111111

lnlnlnPr

lnln&ln

εδδδδ

γγβααα

+++++

+++++= −−−  (1) 
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The estimation strategy for new patent applications is essentially the same as for the R&D 

intensity. However, we use the fixed effect zero-inflated negative binomial regression 

(Hausman et al., 1984, Cameron and Trivedi, 1986) to account for both overdispersion and 

count data nature of new patent applications. 

 

In addition, we include R&D intensity in the patent application equation, i.e. assume that 

current R&D intensity serves as an input in the production process of the intermediate 

innovation input, patent applications. In order to account for the potential endogeneity of the 

R&D intensity, we use the industry average to instrument R&D intensity.4 We bootstrap the 

standard errors to account for the non-simultaneity of our instrumental variable approach. 

Hence the equation for new patent applications is given by 

 

itititit

ititit

itititit

ionQualificatSizeSize
otectionkPatentStocPatdummy

DIntensityRDiversityPatnew

224
2

2322

21122121

1112222

lnlnln

Prln
&ˆlnln

εδδδ

δγγ
δβααα

++++

+++
++++=

−−

−

   

 (2) 

 

The second type of dependent variable measures the sales share of innovative sales, a widely 

applied measure of innovation output (see, e.g., Miotti and Sachwald, 2003, Belderbos et al. 

2004). The paper differentiates between innovative sales due to new products (New) and 

innovative sales due to improved products (Imp). Hence we can distinguish between more 

advanced (drastic) and incremental innovations. The OLS estimations for sales generated by 

new and improved products entail the same set of control variables as the equation for patent 

applications: 

itititit

ititit

itititit

ionQualificatSizeSize
otectionPatstockPatdummy

DIntensityRDiversitySalesshare

334
2

3332

31132131

3113333

lnlnln

Prln
&ˆlnlnln

εδδδ

δγγ
δβααα

++++

+++
++++=

−−

−

  (3) 

 

4. Results 

4 To ensure that our instrument is not driven by the correlation of the firms R&D intensity and the industry 
average, we calculate the average excluding the R&D intensity of the firm. 
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Table 3 presents crosscorrelations of the variables. As expected we see – on the one hand – a 

strong positive correlation between ‘diversity’, ‘patent stock’, and ‘patents’ respectively. Also 

‘patents’ and ‘size’ as well as ‘R&D intensity’ and ‘qualification’ are clearly positively 

correlated. On the other hand we see a slightly negative correlation between ‘new sales’ and 

‘diversity’. These results point already at different effects of ‘diversity’ on ‘patents’ and on 

‘new sales’, respectively.  

 

Insert Table 3 about here 

 

Table 4 displays our main results for the innovation input variables, R&D intensity and patent 

applications. The left-hand panel, i.e. the first three columns, report regressions on R&D 

intensity using alternative functional forms for diversity. Columns one and two entail simple 

linear (Diversity) and quadratic specifications (Diversity^2). In order to account for the large 

number of firms with zero diversification, column three further shows the results of a linear 

specification that additionally includes a dummy variable indicating whether diversity takes 

the value zero (Diversity=0). Thereby, we control for the large number of firms with a single 

patent. These firms necessarily have a diversity of 0 though this might not necessarily reflect 

a specialization choice. The right hand panel, i.e. columns four through six, show the same set 

of specifications for the regressions using the number of new patent applications as dependent 

variable.  

The left-hand panel of Table 4 analyzing R&D intensity supports neither hypothesis 1 nor 

hypothesis 2, as we do not find any significant impact of technological diversification on 

R&D intensity. Because we estimate a model with firm fixed effects, we do not find any 

impact of the dummy measuring past patenting, the patent stock, protection effectiveness or 

firm size on R&D intensity. However, the results provide mild evidence for a positive impact 

of the share of workers holding a tertiary education, though only at a 10% significance level. 

Moreover, we see a significant positive impact of the industry average of R&D expenditures 

(excluding the single firm) on the R&D expenditures of the firm (see Table 6). Hence, the 

technological regime under which a firm operates is very important for its R&D expenditures 

(see Peneder 2010, Peneder and Woerter 2013).  

 

Insert Table 4 about here 
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The right hand-panel of Table 4 supports hypothesis 1, stating that diversity increases 

patenting activity as proposed by Gambardella and Torrisi (1998), Gemba and Kodama 

(2001), Nesta and Saviotti (2005) and Garcia-Vega (2006).5 Concretely, the log of diversity is 

significantly positive in both models allowing for non-linearity in the impact of diversity. 

Remarkably, we also see a positive sign of the quadratic diversity term, although the 

coefficient is rather small. However, this result contradicts the findings of Leten et al. (2007) 

suggesting an inverse U-relationship between technological diversification and patent 

propensity.6  

In respect to the other control variables, we see an insignificant coefficient for the patent 

dummy. Since patenting activity is highly persistent, this might indicate that our fixed effect 

estimator has too little variation to identify the effect. If we look at the patent stock, we see 

the expected positive relationship between the knowledge base of a firm and its patent 

affinity. Rather surprisingly, we find no significant impact of protection effectiveness on new 

patent applications, though the effect has the expected positive sign. Furthermore, R&D 

intensity, size and the share of qualified workers have a negative sign, though only the 

coefficient of size is significant.7  

Table 5 displays the results of our analysis of innovation output measured as the sales share of 

new products or, alternatively as the sales share of improved products. As for innovation 

inputs, we show three models for each of the dependent variables, namely one including the 

log of diversity, one additionally including the square of it and one including a dummy 

variable indicating zero diversity. The results for the sales share of new and improved 

products appear in the left and right-hand panels, respectively. 

Hypotheses 3 suggests that diversity is negatively related with the sales share of new 

products, since technological specialization is necessary for a more drastic type of innovation 

and only drastic innovations are likely to yield considerable sales shares of new products. In 

fact, we find that diversity decreases the sales share of new products as the coefficient of the 

5 The lower number of observations arises because the number of patent applications does not differ over time in 
about 50% of the sample. 
6 Those differences might be due to the fact that Leten et al. (2007) have a relatively small sample of 187 firms 
and focus on high-tech industries, i.e. pharmaceuticals and biotechnology; chemicals; engineering and general 
machinery; information technology (IT) hardware (i.e., computers and communication equipment); and 
electronics and electrical machinery.  
7 Preliminary analysis suggests a multicollinearity problem with the patent stock. Concretely, dropping patent 
stock from the estimation renders size insignificant, though still negative. The results in respect to diversity 
remain qualitatively the same. These results are available upon request from the authors. As our model focuses 
on the impact of diversity, we have chosen to include all of the control variables in the estimation. 
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log of diversity is negative in all three models. Given the technological success, more 

specialized firms reap greater sales shares from new products compared to more diverse 

firms. Hence, our findings support hypothesis 3.  

Taking together the results from the patent equation in Table 4 and the results for sales share 

of new products we find a similar phenomenon like Mansfield and Wagner (1975), i.e. 

diversity is positively related with the number of patent application and negatively related 

with the sales share of new products. As suggested by hypothesis 3, this might be because 

learning processes are more important for drastic innovations. Alternatively, it might reflect 

the lower patenting propensity of firms pursuing drastic innovations due to broader patent 

protection or higher relevance of other means of protecting their intellectual property (e.g. 

secrecy).  

This reasoning is also in line with the empirical results supporting hypothesis 4, i.e. that 

diversity is unrelated with the sales share of improved products (see Table 5; last three 

columns). Improved products have a lower degree of innovativeness and they are more 

similar to already existing products. Specialized firms do not have any particular advantages 

in modifying existing products, since learning effects are less relevant. Following the results 

from Cantner and Plotnikova (2009) technologically more diversified firms have a more 

diversified product portfolio. Since product diversification quite often goes along with 

product modification, technologically diversified firms are more likely to modify products.  

 

Insert Table 5 about here 

 

Hypothesis 5 suggests that the stock of patents increases innovation output measured by the 

share of sales generated by both new and improved products. Our findings support this 

hypothesis, partly. Concretely, differentiating between the share of new and improved 

products reveals a positive influence of the patent stock on the share of new, but not of 

improved products. This finding suggests that the patent stock improves the ability of firms to 

produce drastic innovations. However, the coefficient turns negative in the estimations 

analyzing the process of improving existing products, though only marginally significant. 

This supports the idea that innovating (exploring) and exploiting the existing product base 

create conflicting interests (Arrow, 1962, March 1991). 
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Furthermore, we find that protection effectiveness has a significantly negative effect on the 

sales share of new products, but no impact on sales share of improved products. This finding 

supports the theoretical argument that if patents protect innovations ineffectively, firms are 

forced to conduct radical innovations, thereby protecting innovation rents by gaining a 

substantial head-start from competitors.  

In respect to the control variables, we find a positive impact of R&D intensity on the sales 

share of new products and a negative, though only marginally significant impact on sales 

shares of improved products. The negative sign of R&D intensity points to a clash between 

exploration of new knowledge and exploitation of existing knowledge (March 1991). Size 

remains insignificant in all models. Qualification enters the new share equation marginally 

negative and the improved share equation insignificantly positive. 

 

Insert Table 6 about here 

 

 

5. Conclusions 
Based on comprehensive firm-level panel data across 12 years we investigate, on the one 

hand, the relationship between technological diversification (diversity) and patent propensity 

of firms and on the other hand, the relationship between technological diversification and 

sales share of innovative products. Our empirical results show that the impact of diversity 

differs between intermediate innovation input and innovation output, thereby questioning the 

existing literature that collapses the innovation process into a single stage. Concretely, we do 

not find any impact of patent stock or diversity on R&D intensity, while both significantly 

increase patent applications. We also find a negative direct impact of diversity on sales share 

of new products and no effect of diversity on sales share of improved products.  

Our results confirm the results from other investigations, i.e. that diversity is positively related 

with patent application. Moreover, and most interestingly, we see that diversity is negatively 

related with the sales share of new products. This is the first evidence for such a connection in 

the related empirical literature.  

This result is somehow puzzling. However, if we think along the lines of Mansfield and 

Wagner (1975) or the step-by-step approach in the pharmaceutical industry (Danzon et al. 

2005, Plotnikova 2010, Arora et al. 2009), the results appear in a different light, namely that 
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technological success (patents) and market success (sales share of new products) are driven by 

different factors. In particular, drastic innovation projects have a lower probability of 

technologically completion and hence of resulting in a patent. However, the market potential 

of drastic innovations exceeds the market potential of incremental innovations. Hence, 

assuming that learning effects are very important for drastic innovations explains why 

diversity increases patent applications but reduces market success. 

Furthermore, we argue that technologically specialized firms have a lower patent propensity, 

since their patents receive a broader protection status. Hence there is less need to patent 

strategically in order to avoid imitation. In addition it is likely that technologically very 

advanced firms might not patent at all, since they even do not want to disclose the necessary 

information for the patent application. They prefer other protection mechanisms (e.g. 

secrecy). However, once they have successfully passed the technological step and a new 

product has been developed, the expected market competition is low and the market potential 

of the new product considerable.  

From a policy point of view we see that more drastic innovations based on specialized 

knowledge have greater market potential, hence, providing greater consumer benefits. Since 

specialization and very advanced technological goals involve greater risk of technological 

completion, the majority of firms would pursue more moderate technological goals. Hence, 

public innovation policy should aim at promoting more advanced technological projects.  
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Tables 

Table 1: Variable Description 
Variable Description 
R&D Intensity Research and Development (R&D) expenditures divided by sales 
Patents Number of patent applications in t* 
Innovative Sales Share of sales generated by innovative products in % 
New Sales Share of sales generated by new products in % 
Improved Sales Share of sales generated by improved products in % 
Diversity One minus the Herfindahl index based on patent section inscriptions in (t-1) and (t-2)* 
Patdummy Dummy variable that takes the value 1 if the Patent stock is nonzero and 0 otherwise 
Patent Stock Number of patent applications in (t-1) and (t-2)* 
Protection Dummy variable that takes the value 1 if the effectiveness of product innovation protection, e.g. through patents,  

copyrights, secrecy, is high (4 or 5 on a 5 point Likert scale) and 0 otherwise 
Qualification Share of personnel with tertiary education in % 
Size Number of employees (full-time equivalents) in 1000 

* t refers to a 3 year period 
 

Table 2: Summary Statistics 

Variable Obs Mean Std. Dev. Min Max 
R&D Intensity 1457 3.58 4.88 0 49.83 
Patents 1457 10.84 56.34 0 1102 
New Sales 1457 18.95 19.30 0 100 
Improved Sales 1457 21.02 18.91 0 100 
Diversity 1457 0.35 0.61 0 3.25 
Patdummy 1457 0.45 0.50 0 1 
Patent Stock 1457 11.28 37.67 0 616 
Protection 1457 0.48 0.50 0 1 
Size 1457 372.95 1055.45 1 15170 
Qualification 1457 22.41 16.75 0 100 
      
 

Table 3: Crosscorrelations 
 R&D 

Intensity 
Patents New Sales Improved 

Sales 
Diversity Patdummy Patent 

Stock 
Protection Size 

R&D Intensity 1         
Patents 0.0357 1        
New Sales 0.1674 0.0229 1       
Improved Sales 0.0704 0.0068 -0.0496 1      
Diversity 0.0966 0.3218 -0.0064 0.0223 1     
Patdummy 0.079 0.1896 0.018 0.0197 0.633 1    
Patent Stock 0.0344 0.4641 0.0442 0.0347 0.5711 0.3338 1   
Protection 0.0322 0.0327 -0.0077 -0.0215 0.0045 -0.0054 0.0305 1  
Size 0.115 0.3528 0.0386 0.0033 0.1426 0.0518 0.1751 0.0945 1 
Qualification 0.3487 0.0849 0.0808 0.0992 0.085 0.0658 0.078 -0.0071 0.1349 
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 Table 4: Estimation Results of R&D Intensity and Patent Applications 

Dep Var lnR&D Intensity lnR&D Intensity lnR&D Intensity Patents Patents Patents 

Diversity=0   0.364   1.823** 

    (0.396)   (0.796) 

lnDiversity -0.000 0.106 0.090 -0.027 0.583** 0.415** 

  (0.024) (0.169) (0.103) (0.057) (0.288) (0.194) 

lnDiversity^2  0.021   0.120**  

   (0.032)   (0.056)  

ln DR &ˆ Intensity    -1.349 -1.392 -1.438* 

    (0.869) (0.891) (0.829) 

Patdummy -0.013 -0.009 -0.009 -0.070 0.009 0.004 

 (0.077) (0.079) (0.078) (0.252) (0.257) (0.270) 

lnPatent Stock -0.025 -0.027 -0.026 0.484*** 0.474*** 0.480*** 

 (0.050) (0.050) (0.049) (0.081) (0.079) (0.084) 

Protection 0.040 0.039 0.038 0.085 0.071 0.069 

 (0.041) (0.041) (0.041) (0.109) (0.116) (0.107) 

lnSize 0.009 0.005 0.003 -0.320** -0.339** -0.344** 

 (0.121) (0.122) (0.122) (0.158) (0.165) (0.158) 

lnSize^2 0.003 0.003 0.003 -0.068 -0.073* -0.073* 

 (0.023) (0.023) (0.023) (0.043) (0.043) (0.043) 

lnQualification 0.041* 0.042* 0.042* -0.015 -0.007 -0.005 

 (0.025) (0.025) (0.025) (0.094) (0.076) (0.082) 

1999 -0.304*** -0.303*** -0.304*** -0.665** -0.650** -0.665** 

 (0.063) (0.063) (0.063) (0.316) (0.307) (0.314) 

2002 0.072 0.073 0.073 -0.197 -0.163 -0.165 

 (0.060) (0.060) (0.060) (0.190) (0.192) (0.189) 

2005 0.087 0.088 0.087 0.055 0.078 0.077 

 (0.054) (0.054) (0.054) (0.174) (0.162) (0.145) 

2008 0.050 0.050 0.049 -0.148 -0.120 -0.120 

 (0.049) (0.049) (0.049) (0.135) (0.131) (0.129) 

Constant 1.076*** 1.123*** 1.118*** 0.203 0.470 0.468 

 (0.195) (0.201) (0.194) (1.036) (1.059) (1.053) 

N 1457 1457 1457 729 729 729 
The left-hand panel shows OLS fixed effect coefficient estimates and the right-hand panel displays marginal effects of zero-inflated negative 

binomial fixed effect regressions. Standard errors appear in parentheses, which are robust in the R&D equations and bootstrapped in 
the patent equations. *,** and *** denote significance on the levels 10%, 5% and 1%, respectively. DR &ˆ  Intensity refers to 
predicted values based on the corresponding R&D equation in table 6. 
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 Table 5: Estimation Results of Sales Share of New and Improved Products 

 Dep Var lnNew Sales lnNew Sales lnNew Sales 
lnImproved 

Sales 
lnImproved 

Sales 
lnImproved 

Sales 

Diversity=0   -1.330*   -0.377 

    (0.789)   (1.008) 

lnDiversity -0.102** -0.595* -0.433** 0.045 -0.030 -0.049 

  (0.040) (0.305) (0.202) (0.046) (0.344) (0.243) 

lnDiversity^2  -0.095   -0.014  

   (0.058)   (0.067)  

ln DR &ˆ Intensity 1.363** 1.394** 1.414** -1.354 -1.349* -1.340 

 (0.588) (0.618) (0.621) (0.853) (0.812) (0.834) 

Patdummy -0.086 -0.107 -0.100 0.085 0.082 0.081 

 (0.140) (0.149) (0.138) (0.156) (0.149) (0.168) 

lnPatent Stock 0.148* 0.156** 0.150* -0.183* -0.181* -0.182* 

 (0.076) (0.079) (0.079) (0.094) (0.098) (0.099) 

Protection -0.151** -0.149** -0.148** 0.039 0.040 0.040 

 (0.073) (0.064) (0.072) (0.081) (0.095) (0.086) 

lnSize -0.080 -0.062 -0.059 0.273 0.276 0.280 

 (0.264) (0.249) (0.265) (0.326) (0.333) (0.331) 

lnSize^2 -0.055 -0.055 -0.054 -0.003 -0.003 -0.003 

 (0.055) (0.056) (0.055) (0.077) (0.084) (0.083) 

lnQualification -0.105** -0.109** -0.110** 0.070 0.069 0.069 

 (0.052) (0.054) (0.051) (0.066) (0.073) (0.067) 

1999 0.656*** 0.663*** 0.670*** -0.275 -0.273 -0.270 

 (0.210) (0.225) (0.237) (0.269) (0.281) (0.286) 

2002 0.061 0.051 0.052 0.190 0.188 0.187 

 (0.110) (0.109) (0.104) (0.139) (0.131) (0.132) 

2005 -0.150 -0.155 -0.155 -0.034 -0.035 -0.035 

 (0.109) (0.112) (0.108) (0.144) (0.136) (0.137) 

2008 -0.208** -0.209** -0.209** -0.051 -0.051 -0.051 

 (0.095) (0.100) (0.085) (0.116) (0.109) (0.118) 

Constant 0.932 0.683 0.726 4.829*** 4.791*** 4.770*** 

  (0.729) (0.784) (0.849) (1.061) (1.048) (1.035) 

N 1457 1457 1457 1457 1457 1457 
The table shows OLS fixed effect coefficient estimates and bootstrapped standard errors in parentheses. *,** and *** denote significance 

on the levels 10%, 5% and 1%, respectively. DR &ˆ  Intensity refers to predicted values based on the corresponding R&D equation in 
table 6. 
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Table 6: Instrumental Variable Regressions for R&D intensity  

 Dep Var lnR&D Intensity lnR&D Intensity lnR&D Intensity 

Diversity=0   0.321 

    (0.389) 

lnDiversity 0.000 0.096 0.080 

  (0.024) (0.167) (0.101) 

lnDiversity^2  0.018  

   (0.031)  

lnR&D Average 0.240** 0.239** 0.237** 

 (0.105) (0.105) (0.105) 

Patdummy -0.013 -0.009 -0.010 

 (0.077) (0.079) (0.078) 

lnPatent Stock -0.031 -0.033 -0.031 

 (0.050) (0.050) (0.050) 

Protection 0.035 0.035 0.034 

 (0.041) (0.041) (0.041) 

lnSize 0.022 0.018 0.016 

 (0.120) (0.121) (0.121) 

lnSize^2 0.006 0.006 0.005 

 (0.023) (0.023) (0.023) 

lnQualification 0.044* 0.044* 0.044* 

 (0.026) (0.026) (0.026) 

1999 -0.259*** -0.259*** -0.259*** 

 (0.064) (0.064) (0.064) 

2002 0.050 0.051 0.051 

 (0.062) (0.062) (0.062) 

2005 0.069 0.070 0.069 

 (0.055) (0.055) (0.055) 

2008 0.032 0.032 0.032 

 (0.049) (0.049) (0.049) 

Constant 0.813*** 0.856*** 0.853*** 

  (0.236) (0.238) (0.233) 

N 1457 1457 1457 
The table shows OLS fixed effect coefficient estimates. Robust standard errors 

appear in parentheses. *,** and *** denote significance on the levels 
10%, 5% and 1%, respectively. The instrument, R&D Average, refers to 
the industry average of R&D Intensity excluding the individual firm. 
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