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Abstract

On the basis of keyword searches in newspaper articles several versions of the Recession-word In-
dex (RWI) are constructed for Germany and Switzerland. We use these indices in order to track
the business cycle dynamics in these two countries. Our main findings are the following. First,
we show that augmenting benchmark autoregressive models with the RWI generally leads to im-
provement in accuracy of one-step ahead forecasts of GDP growth compared to those obtained
by the benchmark model. Second, the accuracy of out-of-sample forecasts obtained with models
augmented with the RWI is comparable to that of models augmented with established economic
indicators in both countries, such as the Ifo Business Climate Index and the ZEW Indicator
of Economic Sentiment for Germany, and the KOF Economic Barometer and the Purchasing
Managers Index in manufacturing for Switzerland. Third, we show that the RWI-based forecasts
are more accurate than the consensus forecasts (published by Consensus Economics Inc.) for
Switzerland, whereas we reach the opposite conclusion for Germany. In fact, the accuracy of
the consensus forecasts of GDP growth for Germany appears to be superior to that of any other
indicator considered in our study. These results are robust to changes in estimation/forecast
samples, the use of rolling vs expanding estimation windows, and the inclusion of a web-based

recession indicator extracted from Google Trends into a set of the competing models.
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1 Introduction

The use of media-based data for tracking current trends in real economy as well as in financial sector
has gained popularity among both academics and practitioners in recent years. This surge of interest
of using publicly available media data for inferring economic and financial conditions can be traced
to the following reasons. First, attempts to establish a relationship between economic and financial
processes on the one hand and their reporting in the public media on the other hand are based
on the appealing idea that the intensity of media coverage of particular events generally reflects
the scope of public sentiment or concern about these events. Second, the advances in information
technology allows an immediate access and processing of the vast source of information provided
by the various media, including the internet and digitalised newspaper archives, which in turn
practically enables a real-time tracking of economic and financial developments as they unfold.

There are a number of studies that exploit news coverage for predicting financial and economic
data. Ammann et al. (2013) summarise the content of newspaper articles by means of word-count
indices and use them to predict DAX ' stock returns in and out of sample. Engelberg and Parsons
(2011) show that press coverage is significantly correlated with the daily trading volume of retail
investors. Tetlock (2007) and Doms and Morin (2004) find that news coverage is strongly associated
with response by the financial markets. Uhl (2011b) finds out that sentiment indices constructed
from Reuters news feeds are useful for predicting stock returns of the Dow Jones Industrials Index.
Similarly, Uhl (2011a) reports that TV sentiment index, constructed using broadcast news on
American TV, has predictive power for US private consumption.

As mentioned above, the World Wide Web represents another important source of information,
which likewise could be successfully exploited for forecasting purposes. Preis et al. (2013) employs
the dataset released by AOL on all search queries from its users and establish a correlation between
attention allocation of US investors and their holding of foreign assets. Kholodilin and Siliverstovs
(2012) report a strong correlation between official regional inequality measures in Germany with
web-based regional indices constructed using personal car selling advertisements. There is also a
growing literature reporting the usefulness of Google Trends, a data base which summarises web
search queries in the Google search engine, for forecasting various economic phenomena like stock
market returns (Preis et al., 2013), unemployment (Askitas and Zimmermann, 2009; D’Amuri and
Marcucci, 2009), consumption (Kholodilin et al., 2010), number of travellers (Choi and Varian,
2009), inter alia.?

This paper belongs rather to the former stream of the literature exploiting the content of
newspapers for tracking current economic conditions. To this end, we use constructed indices
counting occurrence of the word “Recession” in the articles published in Handelsblatt (HB) in
Germany and the Neue Zircher Zeitung (NZZ) in Switzerland. The respective so-called Recession-

word indices (in short, R-word index or RWT) are used for out-of-sample forecasting of GDP growth

'DAX stands for Deutscher Aktien Index, the German stock index.
2A comprehensive list of related references to the articles using Google Trends is provided in Choi and Varian
(2012).



in the corresponding countries. As a robustness check, relating our work to the latter stream of the
literature, we compare forecasting performance of the newspaper-based R-word indices with those
extracted from the web or, more precisely, from Google Trends. The web-based R-word indices are
derived from the volume of queries submitted from Germany and Switzerland through the Google
search engine that contain the word “Recession”.

The R-word index was launched in the early 1990s by the weekly Magazine The Economist. The
idea behind the indicator is astonishingly simple: The Economist counts how many stories in the
two newspapers Financial Times and the Wall Street Journal had used the word “Recession” in
each quarter. The higher the number, the worse the economy is doing. For the US, the R-word index
boasts its ability to pinpoint the start of recessions in 1981, 1990, and 2001, including the Great
Recession. In fact, in the second half of 2007 the R-word index started to rise after a prolonged
period of tranquillity. This rise prompted Economist (2008) to issue a warning that “Recession
talk is rising” in January of 2008. This was one of the early signals about the impending Great
Recession, which came out to be true. This concern was rightfully justified by the observation that
a similar pattern in dynamics of the R-word index was spotted at the beginning of the previous
three recessions.

In April 2001, the German Hypo Vereinsbank started a German version of the R-word index
counting the occurrence of the word “Recession” in the German business newspaper Handelsblatt.
The release of the German version of the RWI inevitably attracted attention of researchers (Breitung
and Jagodzinski, 2001; Bandholz and Funke, 2003; Kholodilin and Siliverstovs, 2006), who tested
practical importance of these indices for economic forecasting. These studies uniformly conclude
that the R-word index cannot be regarded as a trustworthy indicator of the business cycle dynamics
in Germany. On a more positive note, Grossarth-Maticek and Mayr (2008) argument that the poor
forecasting performance of the R-word index recorded in previous studies can be explained by the
fact that the R-word index by construction is better suited towards timely detecting recessions
rather than general tracking of the business cycle. Grossarth-Maticek and Mayr (2008) record
a favourable performance of a model augmented with the R-word index in timely detection of
the business cycle turning points as compared to the benchmark model based on the interest-rate
spread. The publication of the R-word index for Germany was abandoned in 2007, ironically,
shortly before the Great Recession started to unfold.

The mixed results on the usefulness of the RWI for economic forecasting in Germany are in sharp
contrast with the results reported in Iselin and Siliverstovs (2013). Iselin and Siliverstovs (2013)
construct the R-word index for Switzerland and show that an autoregressive model, enhanced with
the RWI, produces more accurate forecasts than the benchmark autoregressive model. As expected,
the largest gains in forecast accuracy are observed in the period around the financial crisis after
the collapse of Lehman Brothers.

In this paper we capitalise on these encouraging results and expand our initial analysis along
the following dimensions. First, we conduct a comparative analysis on the usefulness of the RWI
for forecasting GDP growth in Germany and Switzerland. The fact that the publication of the
German RWI had been stopped shortly before the outburst of the global financial crisis prevents



one to evaluate how the RWI would had fared in predicting economic conditions during the Great
Recession in Germany. In order to do so, we obtained the German version of the RWI that now
extends until the second quarter of 2012. Secondly, we compare the forecasting performance of
the RWI-augmented models with models that include well-established economic indicators in the
both countries. Third, we broaden the set of alternative forecasts by including expert forecasts
as published by Consensus Economics Inc. Contrary to the model forecasts based on a single
economic indicator, experts have a holistic view of economic conditions fed by information from
different sources and more sophisticated models. As mentioned above, our fourth contribution
to the literature is that we compare predictive content not only of the newspaper-based but also
web-based R-word indices extracted from Google Trends.

Our paper is structured as follows. In Section 2 we present our data set. In Section 3 we discuss
our econometric model, followed by the discussion of our results in Section 4. In Section 5 we
verify the robustness of our results by allowing for more observations for parameter estimation and
by applying expanding rather than rolling estimation window. In this section we also report the
influence of the Box-Cox transformation of the newspaper based indices on their forecasting ability
and we analyse if data taken from Google search queries do deliver similar results as our indices.

The final section concludes.

2 Data

The data used in our paper come from different sources. First of all, we use real-time historical
vintages of real GDP. These vintages come from the online real-time database of the Bundesbank
for Germany and from the internal database of the KOF Swiss Economic Institute at ETH Zurich.
The earliest vintage of GDP data for Germany stored in the database was released on September
6, 1995, and contains the data ending in 1995Q2. In sequel, we will refer to a particular vintage
by the date of the last observation available. For Germany quarterly year-on-year GDP growth
rates are computed from vintages of real GDP in constant prices available for the period from
1995Q2 until 2004Q4? and from vintages of real GDP in chain-linked prices released since 2005Q1%.
For Switzerland the available real-time GDP vintages are from 1997Q4 until 2003Q4 reported in
constant prices and since 2004Q1 these are reported in chain-linked prices. For both countries the
latest GDP vintage used contains observations through 2012Q2. Since we work with growth rates
rather than levels changes in definitions and base years, the typically introduced shifts in levels of
the original time series are treated as any other revision (e.g., see Koenig et al., 2003). The typical
publication lag of GDP data in Germany was about eight weeks until 2003. It was reduced to six

weeks for vintages starting from 2003Q1. In Switzerland the publication lag is about eight weeks.

3Q.DE.Y.A.AG1.CA010.C.A Pfad: Volkswirtschaftliche Gesamtrechnungen [A] / Bruttoinlandsprodukt [AG1] /
Gesamtwirtschaft (Inlandskonzept) [CA010] / in konstanten Preisen [C] / absolute Angaben [A] / vierteljhrlich [Q]
/ kalender- und saisonbereinigt [Y]

‘Q.DE.Y.A.AG1.CA010.A.T Pfad: Volkswirtschaftliche Gesamtrechnungen [A] / Bruttoinlandsprodukt [AG1] /
Gesamtwirtschaft (Inlandskonzept) [CA010] / in verketteten Vorjahrespreisen [A] / Index [I] / vierteljhrlich [Q] /
kalender- und saisonbereinigt [Y]



Two versions of the R-word index for Germany were provided by the Handelsblatt newspaper.
The first version is based on the number of articles mentioning the word “Recession” (the German
word “Rezession” is used) and the second version counts the number of articles that mention both
words “Recession” and “Germany” (the German word “Deutschland” is used) in the Handelsblatt
newspaper. We refer to these versions of the R-word index as HB-RW and HB-RW-GE, respec-
tively. The R-word indices cover the period from 1986Q1 until 2012Q2. We construct the Swiss
counterparts of the R-word index using the keyword search in the Neue Ziircher Zeitung (NZZ),
stored electronically in the Swiss Media Database Schweizerischer Mediendienst (SMD). We de-
note by NZZ-RW and NZZ-RW-CH the corresponding R-word indices based on counts of articles
containing the word “Recession” and joint occurrence of words “Recession” and “Switzerland”.
The R-word indices for Switzerland cover the period 1998Q1—2012Q2. In contrast to GDP data
the nature of newspaper publishing process ensures that the time series of R-word indices are not
subject to any revisions.

The simple idea of mechanical counting of newspaper articles containing a particular keyword
without further analysis of the relevant context allows for a fast and cheap way to summarise the
prevailing sentiment about the performance of the economy. At the same time, such a mechanical
counting can be perceived as a shortcoming. For example, the keyword “Recession” can also appear
in an article featuring not only a gloomy recessionary but also a more upbeat context. This would
be the case when, for example, the German Chancellor Angela Merkel would point out something
like ” The recession is over” receiving many-fold citations in German newspapers and therefore con-
tributing positively to keyword count, even though the original meaning of the outspoken message
intends to dampen recession fears. Another example would be a popular phrase “Recession fears
are overblown” with which politicians attempt to soothe the general public typically shortly before
a recession takes its toll. The validity of such phrases can only be assessed ex post, but at the time
they are made public they reflect inherent uncertainty shared by politicians regarding the course
of the economy. Even though we cannot rule out such cases when the word recession appears out
of general context, the very fact that it has been mentioned is likely to reflect the genuine concern
about the state of the economy which our index intends to pick up.

We compare the predictive content of our newspaper-based indicator with that of the most
closely watched economic indicators in the two countries. These include the Ifo Business Climate
Indez® as well as the ZEW Indicator of Economic Sentiment® for Germany and the KOF Eco-
nomic Barometer” and the Purchasing Managers Index (PMI) in manufacturing® for Switzerland.
The first three indicators are published by the Ifo, the ZEW, and the KOF economic institutes,

5The Ifo Business Climate Index is based on around 7000 monthly survey responses from firms in manufacturing,
construction, wholesaling and retailing. The firms are asked to give their assessments of the current business situation
and their expectations for the next six months.

5The ZEW Indicator of Economic Sentiment is constructed by asking up to 350 financial experts on their expec-
tations for the economic development in Germany in six months.

"The KOF Economic Barometer is comprised of 25 individual indicators sub-divided into core-GDP, banking,
and construction modules. The core-GDP module is further split into three sub-modules capturing dynamics of
consumption, manufacturing, and exports.

8The PMI is constructed by asking 200 purchasing managers in industrial companies in Switzerland.



respectively. The last indicator is published by the Credit Suisse bank. These indicators are avail-
able at monthly frequency since 1991M1 (the Ifo Business Climate Index and the KOF Economic
Barometer), 1991M12 (the ZEW Indicator of Economic Sentiment), and 1995M1 (the Purchasing
Managers Index in manufacturing). All indicators were downloaded from Datastream. In contrast
to the R-word index, these indicators undergo some revisions caused by updates of seasonal factors
due to changes in estimation sample and updates of underlying firms’ surveys due to the incorpo-
ration of late responses, for example. These revisions, however, are of relatively minor magnitude
compared to those of GDP. Since we do not possess all historical vintages of these indicators, we are
forced to approximate the availability of these indicators in the past by appropriately truncating
them.” We refer to these indicators by the names of the corresponding economic institutes that
release them, i.e., IFO, ZEW, and KOF, with exception of the PMI Purchasing Manager Index
time series to which we refer as PMI. Since the economic indicators are available at a monthly
frequency but our target variable is quarterly, we convert them to a quarterly frequency by taking
average values of all months in a particular quarter.

We also utilise alternative information that are provided by Consensus Economic Inc. which
publishes consensus forecasts reflecting sentiment and opinion of a number of professional forecasters
on the current and future prospects of the economies in question. The consensus forecasts of our
interest are typically published in the beginning of the third month of the reference quarter, shortly
after official GDP data for the previous quarter are released. Naturally, once these forecasts are
released these are not subject to any revision. The consensus forecasts are available for the period
from 1999Q1 until 2012Q2.

Last but not least, we augment the set of alternative forecast sources by including the web-based
R-word indices for Germany and Switzerland, based on the number of search queries that contain
the word “Recession” that originated from these two countries. This information is provided by
Google Trends that summarises all search queries submitted through the Google search engine since

January 2004. Table 1 presents the summary of data definitions and sources.

9In doing so, we treat this indicators in a pseudo real-time framework similar to (Drechsel and Scheufele, 2012) and
(Marcellino and Schumacher, 2010), for example, who is even more restrictive then us by using final data vintages not
only for economic indicators but also for time series they forecast like industrial production and GDP, respectively.
We, however, chose to retain the real-time aspect of forecasting as much as data availability allows us.
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3 Econometric methodology

3.1 Forecasting models

We employ autoregressive distributed lag (ARDL) models of the form:

P q
u=a0+ Y oyt + Y BiX| e, (1)
i=1 =0

where in the most general case we allow for up to p lags of the dependent variable y; and up to ¢
lags of the explanatory variable X7. As described in Section 2 the dependent variable is quarterly
year-on-year real GDP growth for either Germany or Switzerland. The superscript ¥ indicates that
at each point of time we use the respective historical GDP vintage, that was actually available to
a forecaster at the respective forecast origin, for model estimation and forecast generation. The
explanatory variable X/ represents one variable out of the available indicators for Germany, HB —
RW HB—RW —GE,IFO,ZEW  and for Switzerland, NZZ—-RW,NZZ—RW —-CH, KOF, PM1,
that are appropriately truncated in order to reflect their availability in the past. We allow for a
contemporaneous value of the explanatory variable X}, i.e., j = 0, in order to reflect the fact that

economic indicators as well as R-word indices are available one quarter earlier than official GDP

releases.
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Figure 1: Timeline of data releases.

The release timing of the alternative indicators is shown in Figure 1, where we illustrate the
availability of GDP data as well as indicators for production of forecasts for 2012Q2. The GDP
vintages that contain data up to the previous quarter, 2012Q1, were released on 15th of May
and 31st of May 2012 for Germany and Switzerland, respectively. The [FO, ZEW, KOF, and



PMI indicators that contain data up to June 2012 were released on 26th, 15th, 30th, and 2nd
May, respectively. In order to produce a value of the respective indicators for 2012Q2 we take
the average of their values observed in April, May, and June. The R-word recession indices were
computed on the first business day of July by appropriate keyword searches in the Handelsblatt
and Neue Ziircher Zeitung newspapers. Consensus forecasts for 2012Q2 were released on 11th
of June for both countries. This release timing implies that as early as on the first business
day of July 2012 we possess all the information necessary to compute out-of-sample forecasts for
2012Q2. We produce forecasts maintaining this data release timing for every quarter in our forecast
sample (2005Q1—2012Q2). As noted above, in order to reflect the real-time information flow we
use historical GDP vintages that were available in the past in order to estimate parameters of
Equation (1) and generate forecasts. For example, in order to produce forecasts for 2005Q1 we
make use of the GDP vintage released in this quarter (on 15th of February 2005 for Germany and
3rd of March 2005 for Switzerland) that contains observations up to 2004Q4. The time series of
alternative indicators were truncated at 2005Q1 in order to reflect their availability on the first
business day of April 2005.

We assess the forecast accuracy of competing models with respect to first-released as well as last-
available estimates of GDP growth. First-releases provide timely estimates of the current state of
the economy and therefore are crucial for decisions made by the government and the private business
sector in real time. As it is well-known, initial GDP data releases undergo several revisions. Under
the assumption that revised data do more accurately reflect the true but unobserved state of the
economy it is of further interest to compare the forecasting performance of competing approaches
also with respect to revised data. Thus, for example, forecasts made for 2005Q1 are compared with
actual values for this quarter that were released in the next quarter 2005Q2 on 12th of May 2005
for Germany and 2nd of June 2005 for Switzerland. These forecasts are also compared with actual
values of GDP growth taken from the last GDP vintage in our sample released on 14th of August
and 4th of September 2012, for Germany and Switzerland, respectively.

We compare forecasts obtained with help of additional information with those generated by a

simple univariate autoregressive model:

P
v = a0+ >l + e (2)

i=1
Also in this case, models parameters were estimated and forecasts generated using historical vin-
tages of GDP data available at the forecast origin. We restrict ourselves to comparison of one-step

ahead forecasts, i.e., for the latest quarter for which values of the R-word index are available.

3.2 Tests of equal forecast accuracy

The formal assessment of statistical differences in the accuracy of forecasts is carried out within the
testing framework suggested in Diebold and Mariano (1995), when forecasts were generated from

non-nested models, and in Clark and West (2007) for forecasts from nested models.



Denote a pair of h-steps ahead competing forecasts as (f1¢, f2), such that the corresponding

forecast errors are (yr — fi+, Yyt — fa,r) = (€14, €2¢). The test for equal predictive ability is based on
El(e14)? = (e24)%] = 0,

assuming the quadratic loss function, the same is used for in-sample parameter estimation of
forecasting models. Defining the loss differential, d; = (el,t)Q — (62’75)2, the expectation operator in

the above equation is replaced by its empirical counterpart:

M:

1 P
€1t €2t ]:detv (3)
t=1

t=1

where P specifies the number of forecasts available for a given horizon h. Diebold and Mariano
(1995) prove that under appropriate regularity conditions the test for equal predictive ability is

based on the following test statistic:

d

o7 T NOD, @

where 8%3 is a heteroskedasticity- and autocorrelation-consistent (HAC) estimator of the asymptotic
variance, 0’%) = var(\/]3 d). Since our forecast evaluation sample is of a moderate size, we apply
the modified Diebold-Mariano test suggested in Harvey et al. (1997).

As pointed out in McCracken (2007), when comparing the forecasting ability of two nested
linear regression models by means of the Diebold-Mariano test statistic, reported in Equation (4),
its asymptotic distribution under the null hypothesis of equal predictive accuracy is nonstandard.
Under the null hypothesis that data are generated by a parsimonious nested model, the estimation
of a larger nesting model introduces noise into its forecasts as additional model parameters are
estimated whose population values are zero. Hence, under the null hypothesis it is expected that
the smaller model will produce more accurate forecasts than the larger model, i.e., a smaller Mean
Squared Forecast Error (MSFE). In order to circumvent this problem of inferring critical values
of a nonstandard limiting distribution we use the approach suggested in Clark and West (2007).
Their test statistic has an approximately normal distribution under the null hypothesis.

Clark and West (2007) suggest to adjust the loss differential in Equation (3) as follows:

p
Z e10)? = [(ear)® = (fip — for)? Pzdad] (5)

where in this case f1; and f2; denote forecasts from nested and nesting models, respectively. The

test statistic has a familiar form .
Ead].

d
= —
op/VP

~2
where 6 p is a heteroskedasticity- and autocorrelation-consistent (HAC) estimator of the asymptotic

N(0,1), (6)



variance, ('7%3 = var(y/P E“dj'). Since the null hypothesis implies that MSFE; < MSFE,, Clark and
West (2007) suggest to use one-tailed tests.

4 Results

This section contains description of the empirical results according to the following plan. First, we
compare first-released with last-available estimates of GDP growth in both countries during the
forecast period. This forecast period can be subdivided into three phases: the pre-crisis period
from 2007, the period of the Great Recession, and the post-crisis period extending to the middle of
2012. Second, we compare indicators of interest for each country. Finally, we describe the results

of the out-of-sample forecasting of GDP growth using alternative information sources.

4.1 Descriptive analysis

The first- and last-available estimates of GDP growth are presented in the left and the right panels
of Figure 2 for Switzerland and Germany, respectively. There is a systematic upward revision of
GDP growth in the pre-crisis period observed for both countries. During the Great Recession the
German economy contracted at a faster rate than did the Swiss economy. According to the last-
available estimate in 2009Q2 the Swiss economy contracted at a rate of 3.7%, while for Germany
the maximum contraction rate of 6.8% was observed in 2009Q1. It is also remarkable that while for
Germany there is a very minor revision of the initially estimated depth of the trough (from -6.9%
to -6.8% in 2009Q1), for Switzerland there is a substantial downwards revision of the first estimate
(-2.4% in 2009Q1 to -3.7% in 2009Q2).

-6 [—— GDP-CH-FA -6 [— GDP-GE-FA
| |— GDP-CH-LA [ |— GDP-GE-LA

1 1
2005 2010 2005 2010

Figure 2: Quarterly year-on-year real GDP growth: first- (FA) vs last-available (LA) estimates;
Switzerland - left panel, Germany - right panel.
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Figure 3: Indicators; Switzerland - upper- and lower-left panels, Germany - upper- lower right
panels. Indicators on the lower panels (KOF and PMI) and (IFO and ZEW) were adjusted to have
the same mean and range for the sake of better comparison.

The alternative indicators are presented in Figure 3. The upper panels contain different versions
of the R-word index for Switzerland on the left and Germany on the right. In the lower panels
economic indicators for Switzerland (KOF and PMI, on the left) and Germany ([FO and ZEW, on
the right) are displayed. All these indicators were converted from the original monthly to quarterly
frequency by averaging their monthly values in each quarter. In order to facilitate a comparison,
each pair of indicators were adjusted to have the same mean and range.

Given the close geographical and cultural proximity as well as very closely interconnected
economies of both countries, it is not surprising that both NZZ- and HB-based R-word indica-
tors display very close co-movement. Both versions of the index surge in 1999 and 2000, possibly
related to the burst of the Dotcom bubble. As a first warning signal of the emanating global crisis,
both indices surge in 2008Q1 indicating presumably increasing economic worries caused by the
bankruptcy of Bear Sterns and its eventual sell to JP Morgan Chase. Both indices reach all-time
heights in 2008Q4 and 2009Q1, reflecting the meltdown of the global financial system, triggered
by the collapse of Lehman Brothers. Due to the longer time period for which the HB-based indi-
cators are available, we are able to track its response to economic news in the early 1990s. This
surely includes the economic turmoil during and after German reunification. Furthermore, the US
invasion in Iraq could have contributed to the spike in 1991Q2 (and the one in 1993Q3) due to
fears related to the oil price development. These observations conform the basic idea behind the
simple construction of the recession-word index, namely, the more acute events are the broader the
coverage they receive in press. The intensity of negative events, in the end, is summarising the

prevailing (negative) sentiments about the state of the economy. It also turns out that, apart from

11



short-run fluctuations, an R-word index based on a single key word or its more restrictive version
based on the combination of two keywords move very synchronously. Thus, the question on which
version can better track the business cycle remains to be resolved empirically.

The KOF and PMI economic indicator for Switzerland also display very high degree of co-
movement. The largest divergence occurs in the end of our sample in the year 2012, when the KOF
Economic Barometer exhibits a high upward growth, while the PMI goes slightly down. There
is though much less coherence between the Ifo and ZEW economic indicators. By examining the
turning points of both the indicators one may conclude that the ZEW indicator tend to lead the
Ifo Business Climate Index. For example, the ZEW indicator started its sharp descent already in
2006 when the Ifo indicator was at its historical height. Because of the fact that most politicians
and economists were taken by a great surprise by the Great Recession and its impact on the
worldwide economy, it is still open to speculation whether this descent can be interpreted as a
rightful anticipation of the upcoming Great Recession long before the crisis started unfolding itself

or whether it was just a spurious result.

4.2 Empirical analysis: Rolling estimation window

Based on data availability and in order to ensure comparable samples for both countries we have
chosen to use the following data sample starting from 1998Q1 and ending in 2012Q2.'° The
starting date coincides with the earliest observation of the R-word index for Switzerland. The
end date coincides with the last date for which the R-word index for Germany is available. We
split this sample into two parts of approximately equal size. The first part from 1998Q1 until
2004Q4, comprising 28 observations, is used as an initial estimation sample, striking a balance
between a reasonably long sample for precise model parameter estimation and allowing enough
data points for out-of-sample evaluation of forecast accuracy. The resulting forecast evaluation
sample is 2005Q1—2012Q2, consisting of 30 observations.

We use estimated model parameters in order to generate forecasts for 2005Q1. Then we shift
both the starting and ending points of the estimation sample by one quarter resulting in the new
estimation sample from 1998Q2 until 2005Q1 and use the estimated model parameters in order
to generate forecasts for 2005Q2. We repeat this procedure based on a rolling estimation window
until a forecast for 2012Q2 is generated using estimation sample 2005Q2—2012Q1.

The results of the out-of-sample forecast evaluation of the alternative indicators are summarised
in Table 2. The benchmark model is specified in Equation (2), where we fixed the lag length p =1
and p = 2. As the AR(2) produced lower RMSFE in all cases than the AR(1) model, we maintain
p = 2 for the benchmark forecasts obtained without any extraneous information. All forecasts from

the indicator-augmented models were generated by an ARDL(p,q) model specified in Equation

10Since one may argue that by restricting the starting date for the model estimation in 1998Q1 we are likely to
artificially impair the forecasting performance of the models augmented with economic indicators for which more
data points are available, we report the results of the robustness check in Section 5, where we allow for maximum
possible estimation samples.
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Table 2: Out-of-sample forecast accuracy: Rolling estimation window, 2005Q1-

2012Q2
Switzerland Germany
First-available GDP First-available GDP

RMSFE Ratio p-value?® RMSFE Ratio p-value
AR(1) 0.944 1.25 AR(1) 1.652 1.01
AR(2) 0.756 1.00 AR(2) 1.631 1.00
NZZ7Z-RW 0.650 0.86 0.023 HB-RW 1.411 0.87 0.058
NZZ-RW-CH 0.626 0.83 0.035 HB-RW-GE 1.386 0.85 0.050
KOF 0.768 1.02 0.040 IFO 1.343 0.82 0.075
PMI 0.644 0.85 0.005 ZEW 1.657 1.02 0.300
CE-CH 0.776 1.03 0.569 CE-GE 0.799 0.49 0.038

Last-available GDP Last-available GDP

RMSFE Ratio p-value RMSFE Ratio p-value
AR(1) 1.255 1.08 AR(1) 1.924 1.06
AR(2) 1166 1.00 AR(2) 1.822  1.00
NZZ7Z-RW 0.969 0.83 0.000 HB-RW 1.673 0.92 0.086
NZZ-RW-CH 0.990 0.85 0.002 HB-RW-GE 1.661 0.91 0.078
KOF 0.973 0.83 0.000 IFO 1.460 0.80 0.042
PMI 0.969 0.83 0.001 ZEW 1.868 1.02 0.510
CE-CH 1.084 0.93 0.147 CE-GE 1.147 0.63 0.035
FA-GDP-CH 0.862 0.74 FA-GDP-GE 0.670 0.37

# The column entries are the p-values of the tests of equal predictive ability between indicator-
augmented models and the benchmark AR(2) model, described in Section 3.2. The test of
Diebold and Mariano (1995) is used to compare forecasting accuracy of the consensus forecasts
with that of the benchmark model. The test of Clark and West (2007) is used to test the null
hypothesis that each of the remaining indicator-based models has equal predictive ability as
the AR(2) model.

(1), where we fixed the lag length p = 2 and ¢ = 0.!' Such a choice of fixed specification has
an advantage that it exactly fits into the testing framework of Clark and West (2007), specifically
developed for nested models. The corresponding forecasts from Consensus Economics Inc. were
taken from their bulletins. In order to compare the forecast accuracy between the consensus and
benchmark model forecasts we use the Diebold-Mariano test, as mentioned above in Section 3.
The first observation to be made is that the comparison of forecast accuracy reveals that both
AR and ARDL models are much better in forecasting first releases of GDP growth rather than

revised figures. The reason for this is that, as shown in Figure 2, in the pre-crises period estimates of

HYWe experimented with alternative criterion for model specification choice, like minimising the Schwarz Information
Criterion, and longer lags of the explanatory variables, but it did not result in any systematic improvement in forecast
accuracy.
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GDP growth in both countries were systematically revised upwards, indicating that first estimates
were too pessimistic. On the contrary, in the period of the Great Recession the first estimates
of Swiss GDP growth were mostly revised downwards, indicating too optimistic initial estimates.
Altogether, if we use the first GDP estimate as a predictor of the revised GDP data then the
resulting RMSFEs are 0.86 and 0.67, as reported in Table 2 by entries FA-GDP-CH and FA-GDP-
GE for Switzerland and Germany, respectively. This indicates a rather large discrepancy between
these two estimates of GDP growth, which apparently was rather difficult to foresee given the
information available to forecasters in the past.

The left panel of Table 2 summarises the outcome for Switzerland. Compared with the bench-
mark model, the models augmented with NZZ-RW, NZZ-RW-CH, and PMI indicators deliver a
similar forecast accuracy with the reduction in RMSFE of about 15%. For these indicators we can
reject the null hypothesis of equal predictive accuracy of univariate AR(2) and indicator-augmented
ARDL(2,0) models in favour of the latter. Observe that even though the ARDL model augmented
with the KOF indicator delivers a very similar RMSFE with that of the AR(2) model, the test of
Clark and West (2007) rejects the null hypothesis of equal forecast accuracy also in this case. This
happens because the adjustment term (f1+— f2+)? in the expression of the Clark-West loss function
in Equation (5) is sufficiently large than it is implied by the null hypothesis. An alternative expla-
nation of this, at first glance surprising test outcome, is that as noted in Clark and West (2007),
their test statistic is identical to that used in the forecast encompassing test of Harvey et al. (1998).
Hence, this outcome has the following interpretation that the null hypothesis that forecasts of the
AR(2) model encompass those of the ARDL model in question can be rejected at appropriately
chosen significance level. Finally, when comparing accuracy of the consensus forecasts (CE-CH)
with that of the benchmark model, we cannot reject the null hypothesis that these are equal.

Similar conclusions can be reached when comparing the forecast accuracy of the last-available
GDP vintage. In this case, all indicator augmented models produce reduction in the RMSFE of
a similar magnitude (about 17%). The corresponding null hypothesis can be rejected at the 1%
significance level. As before, we cannot reject the null hypothesis that the reduction in the RMSFE
brought by the consensus forecasts (CE-CH) of 7% is statistically significant.

The results of the forecast comparison for Germany are shown in the right panel of Table 2.
In this case the consensus forecasts display by far superior performance to the rest of the models.
When compared to the predictive performance of the univariate model, the reduction in the RMSFE
is about 51% and 37% for first-released and last-available GDP data. These reductions in RMSFE
are statistically significant at the 5% level. The next most informative indicator is the Ifo indicator.
Using this indicator results in reduction in RMSFE of about 20%, which is significant at 10% and
5% for first- and last-available GDP estimates, respectively. Forecasts generated with the help
of the Handelsblatt indicators result in reduction of the RMSFE of about 13-15% and 8-9% for
first- and last-available GDP estimates, which are found to be significant at the 10% level. It is
interesting to observe that we cannot reject the null hypothesis when evaluating forecasts from the
model augmented with the ZEW indicator.

The forecasting performance of the alternative models is illustrated in Figures 4—13. The upper

14



Table 3: Out-of-sample forecast accuracy during the
Great Recession: Rolling estimation window

First-available GDP  Last-available GDP
RMSFE Ratio RMSFE Ratio
Switzerland®
AR(2) 1.484 1.249
NZ7Z-RW 0.941 0.63 0.241 0.19
NZZ-RW-CH 0.761 0.51 0.468 0.37
Germany®
AR(2) 2.651 2.663
HB-RW 1.930 0.73 1.942 0.73
HB-RW-DE 1.765 0.67 1.770 0.66

® The period of the Great Recession was determined using the
business cycle chronology in Siliverstovs (2013, Table 3) for
Switzerland (2008Q4—2009Q2).

 For Germany we used the business chronology of the Economic
Cycle Research Institute (ECRI) http://www.businesscycle.
com/ (2008Q2—2009Q1).

panels display official GDP growth estimates (first releases on the left and last-available estimates
on the right) together with the benchmark model forecasts and forecasts produced with the help of
extraneous information. The lower panels report the absolute forecast error for the corresponding
models.

A referee suggested to investigate the hypothesis whether during the period of the Great Re-
cession relative improvement in forecasting accuracy of the models augmented with the RWI is
especially pronounced with respect to the benchmark autoregressive model. The results of such
a comparison are presented in Table 3. The period for the Great Recession was taken from the
business cycle chronology of Siliverstovs (2013, Table 3) for Switzerland (2008Q4—2009Q2) and
from the business cycle chronology the Economic Cycle Research Institute (ECRI). Since the latter
chronology is provided at the monthly frequency (peak in 2008M04 and trough in 2009M01) we
converted it to the quarterly frequency (2008Q2—2009Q1). Even though the absolute values of
the reported RMSFEs are higher than those estimated for the whole forecast period, see Table 2,
the RMSFE ratio are lower. For example, it is a remarkable finding that the ARDL models with
NZZ-RW and NZZ-RW-CH variables yield substantial reductions in RMSFE. The corresponding
RMSFE ratios for the last-available GDP vintage are 0.19 and 0.37, respectively. This supports
the hypothesis that gains in forecast accuracy due to inclusion of the information provided by the

Recession-word indices are more pronounced during periods of economic hardship.
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Figure 4: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-NZZ-RW models
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Figure 5: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-NZZ-RW-CH models
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Figure 6: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-KOF models
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Figure 7: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-PMI models

17



5.0

iGDP H-FA ?\RZ‘ *7GDF’ H-LA — AR2
2k /
[ /
o
-2 -2.5-
2006 2010 2006 2010
2.0{——AR2 CF 2'5j —— AR? CF
i 2.0t
1.5- I
i 1.5-
1.0F i
i 1.0-
LG LD, f.
Ll QAT RS ills
2005 2010 2005 2010

Figure 8: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-CE-CH models
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Figure 9: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-HB-RW models
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Figure 10: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-HB-RW-GE models
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Figure 11: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-IFO models
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Figure 12: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-ZEW models
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Figure 13: Quarterly year-on-year real GDP growth: Forecasts and absolute forecast errors from
AR(2) and ARDL(2,0)-CE-GE models
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5 Robustness testing

In this section we verify the robustness of the results reported in Section 4. In Subsection 5.1 we
address the potential criticism that by restricting initial estimation sample to begin in 1998Q1 we
artificially may impair forecasting ability of models that use variables for which observations are
available earlier than this date. We also employ expanding rather than rolling estimation window.
In Subsection 5.2 we check whether a Box-Cox transformation of the R-word index may improve
its forecasting performance, since the simple count that we use in Section 4 may not be optimal.
In Subsection 5.3 we compare the predictive performance of our newspaper-based R-word indices

with that of the web-based R-word indices extracted from Google Trends.

5.1 Expanding estimation window

In this subsection we report the results of the forecasting exercise in a modified setting. First, we
allow for more data points for parameter estimation. In particular, we set the earliest period for
estimation sample to start in 1992Q1. This date is chosen because the vintages of German GDP
downloaded from the Bundesbank online database are available since 1991Q1. As four observations
are lost after computation of the quarterly year-on-year growth rate, we start estimation sample in
1992Q1. For Germany this initial estimation date is used for all indicators (HB-RW, HB-RW-GE,
IFO, and ZEW), because all of them are available since this date or some of them even earlier.
For Switzerland, we use 1992Q1 as a starting estimation period when generating forecasts from the
model augmented with the KOF' indicator. Due to the fact that the PMI indicator is available since
1995Q1, we use this period as a staring date for estimating parameters of the respective ARDL
model. For the NZZ-based R-word indices the starting period of the estimation sample remains
the same as in Section 4, i.e., 1998Q1.

As an additional modification to the forecasting setup, we use recursively expanding rather
than rolling window for parameter estimation. At the same time we retain the same forecast eval-
uation sample, 2005Q1—2012Q2, as in Section 4. Hence, whenever possible, model parameters are
estimated using the initial sample from 1992Q1 until 2004Q4."% The estimated model parameters
are used in order to generate a forecast for 2005Q1. Then we retain the initial estimation period
but shift the ending points of the estimation sample by one quarter resulting in the new estimation
sample from 1992Q1 until 2005Q1 and use the estimated model parameters in order to generate
forecast for 2005Q2. We repeat this procedure based on expanding estimation window until forecast
for 2012Q2 is generated using the estimation sample 1992Q1—2012Q1.

The results of this forecasting exercise are reported in Table 4. The use of the expanding rather
than recursive estimation window generally results in increased forecast accuracy not only for the
benchmark model but also for indicator augmented models. Nevertheless, the general conclusions
from results reported in Section 4 hold through. For Switzerland, the three indicators (NZZ-RW,
NZZ-RW-CH, and PMI) have similar forecast accuracy characterised by decrease in RMSFE of

12 As noted above, for the PMI and NZZ-based R-word indices the starting point is 1995Q1 and 1998Q1, respec-
tively.
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Table 4: Out-of-sample forecast accuracy: Expanding estimation window, 2005Q1—

2012Q2
Switzerland Germany
First-available GDP First-available GDP

RMSFE Ratio p-value?® RMSFE Ratio p-value
AR(1) 0.913 1.22 AR(1) 1.581 1.11
AR(2) 0.748  1.00 AR(2) 1424 1.00
NZZ-RW 0.608 0.81 0.023 HB-RW 1.324 0.93 0.085
NZZ-RW-CH 0.589 0.79 0.031 HB-RW-GE 1.264 0.89 0.103
KOF 0.665 0.89 0.017 IFO 1.332 0.94 0.002
PMI 0.581 0.78 0.002 ZEW 1.444 1.01 0.278
CE-CH 0.776 1.04 0.613 CE-GE 0.799 0.51 0.038

Last-available GDP Last-available GDP

RMSFE Ratio p-value RMSFE Ratio p-value
AR(1) 1.274 1.05 AR(1) 1.886 1.11
AR(2) 1212 1.00 AR(2) 1.701  1.00
NZZ-RW 0.971 0.80 0.000 HB-RW 1.633 0.96 0.124
NZZ-RW-CH 0.981 0.81 0.000 HB-RW-GE 1.595 0.94 0.139
KOF 1.022 0.84 0.000 IFO 1.426 0.84 0.000
PMI 0.952 0.79 0.000 ZEW 1.770 1.04 0.636
CE-CH 1.084 0.89 0.029 CE-GE 1.147 0.67 0.029

& See notes for Table 2.

about 20% compared to that of the AR(2) model. We also notice a slight increase in forecasting
performance of the ARDL model augmented with the KOF indicator.

For Germany the same conclusion of superior forecasting performance of the consensus forecasts
is confirmed. Similarly as before, the Ifo indicator delivers the second-best result. For the HB-based
R-word indices we find that using recursive estimation scheme resulted in a decrease in reported
RMSFE compared with results reported in Table 2. However, due to the fact that also for the
benchmark model reported RMSFE decreased, the relative forecasting performance seems to be
less impressive than before. We record at most a 10% decrease in RMSFE when compared to that
of the AR(2) model. But still the R-word indices fare better than the model augmented with the
ZEW indicator, for which the null hypothesis cannot be rejected at the usual significance level.!?

The forecasting performance of the alternative models is illustrated in Figures 14—21. The

13n order to see whether this results is due to restrictive lag structure that we allow in the ARDL(2,0) model, we
repeated the forecasting exercise by allowing more rich dynamic structure by allowing up to four lags of the ZEW
indicator. For each estimation window the preferred model was selected by minimising the Schwarz Information
Criterion. The resulting RMSFE from this ARDL(2,4) model are 1.449 and 1.799 for first- and last-available data,
respectively.
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upper panels display official GDP growth estimates (first releases on the left and last-available
estimates on the right) together with the benchmark model forecasts and forecasts produced with
the help of extraneous information. The lower panels report the absolute forecast error for the

corresponding models.
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Figure 14: Quarterly year-on-year real GDP growth; Expanding estimation window: Forecasts and
absolute forecast errors from AR(2) and ARDL(2,0)-NZZ-RW models
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Figure 15: Quarterly year-on-year real GDP growth; Expanding estimation window: Forecasts and
absolute forecast errors from AR(2) and ARDL(2,0)-NZZ-RW-CH models
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Figure 16: Quarterly year-on-year real GDP growth; Expanding estimation window: Forecasts and
absolute forecast errors from AR(2) and ARDL(2,0)-KOF models
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Figure 17: Quarterly year-on-year real GDP growth; Expanding estimation window: Forecasts and
absolute forecast errors from AR(2) and ARDL(2,0)-PMI models

25



*7 GDPDEFA — ARZ‘ * —— GDPDEVA
SR 7 ARz HeRW
zgﬂ! ﬂﬂﬂ”nﬂﬂﬂﬂﬂﬂ lhﬂoﬂgﬂﬂﬂﬂmhh ; Zgﬂgmﬂ ” ”hnn”ﬂﬂ Whﬂoﬂﬂﬂ”ﬂﬂuhh

Figure 18: Quarterly year-on-year real GDP growth; Expanding estimation window: Forecasts and
absolute forecast errors from AR(2) and ARDL(2,0)-HB-RW models
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Figure 19: Quarterly year-on-year real GDP growth; Expanding estimation window: Forecasts and
absolute forecast errors from AR(2) and ARDL(2,0)-HB-RW-GE models
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Figure 20: Quarterly year-on-year real GDP growth; Expanding estimation window: Forecasts and
absolute forecast errors from AR(2) and ARDL(2,0)-IFO models
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Figure 21: Quarterly year-on-year real GDP growth; Expanding estimation window: Forecasts and
absolute forecast errors from AR(2) and ARDL(2,0)-ZEW models
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5.2 Box-Cox transformation

In this subsection we explore the possibility of an alternative representation of the R-word index

based on the Box-Cox transformation:*

A
Zt _1 .
f A#£0
Zt()\): A ! 7& (7)

log z; if A =0.

This Box-Cox transformation, depending on values of A, shrinks (for A < 1) or stretches (A > 1)the
original time series. For A = 1 the original time series is preserved.

We replicated the forecasting exercise in Section 4 for each of our R-word indices (NZZ-RW,
NZZ-RW-GE, HB-RW, HB-RW-GE) by varying values of A in the range [0, 3] for the Swiss and [0, 4]
for the German time series. The resulting RMSFEs, scaled by the value of RMSFE reported in Table
2, are shown in Figures 22 and 23 for Switzerland and Germany, respectively. For Switzerland we
observe very limited improvement over the results reported above in Table 2. The largest effect we
observe for NZZ-RW when comparing forecast accuracy using first-available (FA) data. However,
even in this case the improvement in RMSFE is very small — 0.645 observed for A = 1.7 against
0.650 reported in Table 2. This allows us to conclude that the Box-Cox transformation is not

necessary when predicting GDP growth in Switzerland with the R-word index.

[[—— NZZ-RW(FA) scaledk A | [—— NZZ-RW(LA) scaledx A|
1.105 1.1
1.05 1.0
1.00- 1.0
O-gtiw‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘0.95\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘
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l—— NZZ-RW-CH(FA) scaledk ] [—— NZZ-RW-CH(LA) scaledx A|
1.le 1.1
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Figure 22: Box-Cox transformation for NZZ-based R-word indices: RMSFE for A € [0,4], scaled
by the respective value of RMSFE from Table 2, corresponding to A = 1.

HSince this transformation requires positive keywords counts, we substituted zero counts with one.
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Figure 23: Box-Cox transformation for HB-based R-word indices: RMSFE for A € [0, 4], scaled by
the respective value of RMSFE from Table 2, corresponding to A = 1.
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Figure 24: Comparison of original time series HB-RW-GE and after application of the Box-Cox
transformation with A = 2.6. Both time series adjusted to have the same range.

The outcome is, however, completely different for Germany. For values of A between two and
three we observe further reduction in RMSFE up to 10%. For example, for HB-RW-GE for \ = 2.6
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the achieved RMSFE is 1.252 in comparison to 1.386 reported in Table 2, when comparing forecast
accuracy using first-available (FA) GDP estimates. Both time series (untransformed and Box-Cox
transformed with A = 2.6) are shown in Figure 24, where we, for the sake of comparison, adjusted
the time series to have the same range. In comparison to the untransformed time series the Box-
Cox transformation in question emphasises observations with relatively large values at the expense
of observations with relatively small values. The effect of this transformation can be interpreted
within a model with two regimes. In the first regime, when the economy is in the expansion phase,
the influence of variation in the R-word indicator is minimised. But in the second (recessionary)
regime, the variation of the indicator contributes significantly to regression explanatory power and,
as a result, to accuracy of out-of-sample forecasts. Based on this finding, it would be of a further
interest to fit non-linear models like Threshold Autoregressive models (see, e.g., Hansen, 2011, for
a recent review) in order to formally investigate our conjecture. But we leave it for our further

research.

5.3 Google Trends

The rise of the Internet spurred a growing body of literature which uses this rich source of infor-
mation for forecasting economic variables (see, e.g., Choi and Varian, 2012, for a recent review).
Since January 2004 aggregated results of queries using the Google search engine are made publicly
available at the following homepage http://www.google.com/trends/. These results are typically
published at weekly frequency after the number of searches for a particular keyword exceeds some
unspecified threshold. In order to control for increasing search volumes, the number of searches
including a particular keyword is divided by the total number of queries that were submitted within
past week. Then, the data are scaled by the maximum over the selected period. The query data
can be differentiated according to geographical areas from which the internet searches originated.

In this subsection we investigate whether the queries for the keyword “Recession” (in German,
“Rezession”) submitted from Germany and Switzerland are useful for tracking the business cycle
dynamics like the newspaper-based indices. The respective web-based indices are reported at a
weekly frequency for Germany and a monthly frequency for Switzerland due to the comparatively
small search volume. Both time series were aggregated to the quarterly frequency to match that of
the GDP data. These indices are displayed at Figure 25. Apart from minor short-run deviations,
both time series move very synchronously featuring two peaks in 2008Q1 and 2008Q4. There is
also a surge in the second half of 2011 reflecting growing concerns on the state of the economy and
the escalating sovereign debt crisis.

For the sake of comparison we placed both newspaper- and web-based R-word indices in Figure
26. For Switzerland the recorded peaks of the web-based index are well above those for the NZZ-
based index, indicating more intense reaction to negative news. But once the web-based index
reaches its height in 2008Q4 it also falls fast to the levels before peak whereas the NZZ-based index
succeeds much slower. For Germany the relative sizes of the peaks are very similar, but also in

this case we observe much faster return of the web-based index to its pre-crisis level. One could
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Figure 25: Google Trends indices based on the web searches of “Rezession” for Germany and

Switzerland, aggregated to the quarterly frequency.
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Figure 26: Newspaper-based and Google Trends R-word indices for Switzerland (upper panel) and

Germany (lower panel).

speculate that a such of pattern reflects the fact the quality newspapers provide more thorough and

comprehensive coverage of ongoing troubles in the economy, whereas a web search inquiry might
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only be triggered by the reported first headlines mentioning a recession.

Since the Google Trends indices are available from 2004Q1, in order to allow for a sufficient num-
ber of observations for parameter estimation, we shortened forecast evaluation sample to 2007Q1—
2012Q2. The first estimation window for ARDL model augmented with the web-based R-word
indices is 2004Q1—2006Q4. Because of the relatively short initial estimation window, we apply the
recursively expanding parameter estimation scheme, described in Subsection 5.1.

The results are reported in Table 5. Both for Switzerland and Germany, the RMSFEs of the
Google Trends indices are larger than the corresponding values of the RMSFE of the benchmark
AR(2) model. This holds for the actual values of these indices as well as for the Box-Cox trans-
formation applied to them, which brings about a slight increase in forecast accuracy. The optimal
values of the Box-Cox component A* are close to zero, when it corresponds to the logarithmic
transformation, see Equation (7). At the same time, the RMSFEs associated with the models aug-
mented with the newspaper-based R-word indices are lower than those observed for the benchmark
model, conforming with the earlier reported results in Section 4 and Subsection 5.1. Thus, our

earlier results are also robust to changes in the forecast evaluation sample.

Table 5: Out-of-sample forecast accuracy: Expanding estimation window, 2007Q1-2012Q2

Switzerland Germany

First-available GDP First-available GDP

RMSFE Ratio RMSFE Ratio
AR(2) 0.788 1.00 AR(2) 1.606 1.00
GOOGLE-RW-CH 1.077 1.37 GOOGLE-RW-GE 2.233 1.39
GOOGLE-RW-CH (\* = —0.2) 1.033 1.31 GOOGLE-RW-GE (A\* = —0.2) 2.049 1.28
NZZ-RW-CH 0.609 0.77 HB-RW-DE 1.421 0.88

Last-available GDP Last-available GDP

RMSFE Ratio RMSFE Ratio
AR(2) 1.083 1.00 AR(2) 1.762 1.00
GOOGLE-RW-CH 1.240 1.14 GOOGLE-RW-GE 2.296 1.30
GOOGLE-RW-CH (A\* =0.1) 1.145 1.06 GOOGLE-RW-GE (\* = —0.3) 2.109 1.20
NZZ-RW-CH 0.833 0.77 HB-RW-DE 1.640 0.93

6 Conclusion

In this paper we investigate the predictive power of R-word indices for forecasting real GDP growth
both in Germany and Switzerland. These R-word indices are based on a keyword search in the
newspapers Handelsblatt and Neue Zircher Zeitung, respectively. We compare their predictive
ability with that of a univariate autoregressive benchmark model as well as forecasts obtained with
help of the most popular economic indicators in both countries: the Ifo Business Climate Index

and the ZEW Indicator of Economic Sentiment for Germany, and the KOF Economic Barometer
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and the Purchasing Manager Indez in manufacturing for Switzerland. In addition, forecasts gener-
ated with models augmented with R-word indices are compared with consensus forecasts published
by Consensus Economics Inc. The forecasting performance of alternative indicators is under in-
vestigation during the sample period from 2005Q1 until 2012Q2, that includes the period of the
financial crisis of 2008/2009. We compare the forecasting ability of different indicators using both
rolling and expanding estimation windows. In addition, we verify whether the application of the
Box-Cox transformation of keyword counts brings about any boost in forecast accuracy of the
newspaper-based indicators. And we also compare our models with similar keyword searches in
Google Trends.

For Switzerland, we find that the R-word indices significantly improve upon forecasting accuracy
of the univariate model, confirming the results of Iselin and Siliverstovs (2013). More importantly,
their forecast accuracy is comparable to that provided by the traditional economic indicators.
In addition, the newspaper-based forecasts are more accurate than the consensus forecasts for
Switzerland and they also fare much better than the internet-based recession-word index obtained
from Google Trends.

For Germany, we find weaker support for the forecasting ability of the R-word indices over
that of the univariate model. Using a rolling estimation window set-up the corresponding null
hypothesis could be rejected at the 10% level. For the expanding estimation window setup we find
that the null hypothesis can be barely rejected at the 10% significance level when comparing forecast
accuracy of first-released estimates of GDP growth. When we attempt to forecast last-available
estimates of GDP growth the corresponding null hypothesis could not be rejected. An interesting
result is the fact that for Germany the consensus forecasts offer a by far superior forecasting ability
than any other model considered in this paper. The second best forecast accuracy is provided by
information contained in the Ifo Business Climate Index. To our surprise, the ZEW Indicator of
Economic Sentiment fares relatively poor in our forecasting contest. One possible explanation is
that the ZEW indicator targets rather turning points of stock market indices rather than business
cycles. Similarly, the index based on Google Trends data fares worse than newspaper-based RWI
and the traditional economic indicators.

In sum, we demonstrate that the newspaper-based recession-word indices provide an alternative
and useful source of information to that already available from traditional economic indicators. Af-
ter all, professional forecasters shape their vision of the current and future economic developments,
among other things, on the basis of stories appearing in the press. Thus, the R-word indices enrich
the palette of available indicators to forecasters and help shape a holistic view of ongoing economic
processes. As Baumohl (2013, p. 7) puts it: “[In the US] at least four key economic indicators are
released on a weekly basis, 43 every month, and nine each quarter. Do we really need so many
measures? Absolutely... No single indicator can provide a complete picture of what the economy
is up to. [...] At best, each indicator can give you a snapshot of what conditions are like within
a specific sector of the economy at a particular point in time. Ideally, when you piece all these
snapshots together, they should provide a clearer picture of how the economy is faring and offer

clues on where it is heading.”
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