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Abstract 
Hartwig (2008) has presented empirical evidence that the difference between real wage 

growth and productivity growth at the macroeconomic level is a robust explanatory variable 

for deflated health-care expenditure growth in OECD countries. In this paper, we test whether 

this finding is robust to the inclusion of additional covariates, applying different versions of 

Extreme Bounds Analysis (EBA) to data for 33 OECD countries over the period 1970-2010. 

As far as it is statistically feasible, all macroeconomic and institutional determinants of 

health-care expenditure growth that have been suggested in the literature are included in the 

EBA. Furthermore, we analyse to what extent outliers in the data influence the results using 

an outlier-robust MM estimator. Our results confirm Hartwig’s earlier finding. A number of 

additional both covariate- and outlier-robust determinants are also identified. 
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1. Introduction 
While the number of studies on the determinants of health-care expenditure (HCE) is 

substantial (see Gerdtham and Jönsson, 2000),2 the number of determinants uncovered by this 

literature is not. Back in 2003, an OECD working paper concluded from a literature review 

that “[w]hile income (generally proxied by GDP per capita) is the main driving force in all 

studies” (Docteur and Oxley, 2003, p. 73), there was little consensus on the income elasticity 

of HCE. Neither was there any consensus on the significance of the ageing of the population, 

nor of labour market variables, life-style factors, technological change or institutional 

arrangements in national health systems for the rise in HCE. The various studies usually test 

different sets of explanatory variables, highlighting the problem of model uncertainty in this 

field of research. When the same variables are tested, they are sometimes found to be 

statistically significant, sometimes not. For certain variables, not even the sign on the 

coefficient is stable across studies.3  

Answering Gerdtham and Jönsson’s (2000) call for strengthening the theoretical basis for the 

macroeconomic analysis of health expenditure, Hartwig (2008) suggested revisiting 

Baumol’s (1967) model of unbalanced growth to this end. In a nutshell, Baumol’s model is a 

two-sectoral neoclassical growth model that has a sector with high productivity growth, 

which carries a low weight in the economy, and a sector with low productivity growth, which 

carries a high weight. Baumol assumes that the high-productivity-growth sector, which he 

calls the ‘progressive sector’, sets the rate at which nominal wages grow for both sectors: 

they grow in line with productivity in the progressive sector. Given the weights of the two 

sectors, however, the average productivity growth rate will resemble the productivity growth 

rate of the ‘non progressive’ sector. Consequently, the excess of average wage growth over 

average productivity growth in the economy approximately shows how much unit costs in the 

low-productivity-growth sector rise and how much revenues consequently have to be raised 

there. So if the health sector is representative of the low-productivity-growth sector, the 

excess of nominal wage growth over productivity growth should drive health-care 

expenditure growth. Hartwig (2008) confirms this empirically using data from a panel of 19 

OECD countries over the time period 1971-2003.  

The shift of expenditures into (services) sectors with low productivity growth like health care 

and education – also called ‘stagnant’ sectors – is known as ‘Baumol’s cost disease’. It is a 

nominal story. Prices do not (have to) rise in the progressive sector, while they (have to) rise 

in the stagnant sector in order to keep real wages in line with stagnant productivity. 

Therefore, the share of the stagnant sector in total expenditure rises over time. This is the 

                                                 
2 Hartwig (2008) offers an overview. 
3 See the annex in Docteur and Oxley (2003). 
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‘cost disease’. In Baumol’s model, the stagnant sector gains weight for purely nominal 

reasons. In ‘real’ (deflated) terms, Baumol assumes the proportion of the two sectors to stay 

constant. For this reason, Hartwig’s (2008) preferred specification for testing Baumol’s 

model was regressing nominal per-capita health-care expenditure growth on the difference 

between nominal wage growth and productivity growth. However, as basically the entire 

empirical literature on the determinants of health-care expenditure (growth) models deflated 

HCE,4 Hartwig (2008) also deflates both HCE and wages by the GDP deflator. He finds the 

difference between real wage growth and productivity growth to be a statistically and 

economically significant explanatory variable for real per-capita HCE growth – a finding that 

is robust to including per-capita GDP growth (‘the main driving force’ of HCE in earlier 

studies) as an explanatory variable. 

This paper investigates whether this finding is robust to the inclusion of other covariates. 

More than 70 such covariates have been suggested in the literature. Here we use a statistical 

technique known as Extreme Bounds Analysis (EBA) that is specifically designed to 

investigate how robust results are to changing the set of covariates. EBA has originally been 

applied to the field of economic growth (see Levine and Renelt, 1992, Sala-i-Martin, 1997, 

Sturm and de Haan, 2005), where – much like in the field of health-care expenditure – model 

uncertainty is very high, and a large number of potential determinants has been suggested by 

the literature. EBA has since spread to fields of research other than economic growth like 

political economy (see Dreher et al., 2009a, 2009b, Gassebner et al., 2012, Moser and Sturm, 

2011 and Sturm et al., 2005) or environmental economics (see Gassebner et al., 2011). As far 

as we know, there is no application of EBA to the field of health economics so far.  

As EBA utilises the classical least squares estimator, the presence of outliers in the data can 

strongly distort the results and lead to unreliable conclusions. To take care of this problem, 

we check our OLS results against results generated by an outlier-robust MM estimator: a 

sophisticated method to estimate parameters that are insensitive to the inclusion of outliers.  

The paper is structured as follows. The next section discusses our dataset. Section 3 explains 

the methodologies of Extreme Bound Analysis and the MM estimator used, and section 4 

presents the results. Section 5 concludes.  

2. Data  
For inclusion in our Extreme Bounds Analysis, we aim at complete coverage of health-care 

expenditure determinants that have been suggested by the literature. Hartwig (2008) divides 

this literature into two stages. In the first stage, the close correlation between HCE and GDP 

                                                 
4 Recently, though, Bates and Santerre (2012) tested the robustness of the results obtained by Hartwig (2008) 
using nominal US state level data. Including five additional covariates, they confirm the significance of the ‘cost 
disease’ for explaining the rise in nominal HCE. 
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was established, the income elasticity of HCE was investigated and covariates were tested for 

their significance. Gerdtham et al. (1998) delivers a comprehensive list of potential 

determinants from this first stage. Besides GDP, socio-demographic and technological factors 

as well as a long list of institutional variables (mostly dummy variables) pertaining to 

specifics of the national health systems are included in the empirical model. For example, one 

of the institutional dummy variables takes the value of one for countries (and years) with fee-

for-services as the dominant means of remuneration in primary care and zero otherwise. We 

reproduce and update these variables to the extent possible.  

The data source for most of the non-dummy variables is the OECD Health database, which 

also contains economic, socio-demographic and even technological data (as long as they are 

health-related).5 For the institutional dummy variables, however, we rely on the information 

in Gerdtham et al. (1998) on how to construct them. Gerdtham et al.’s dataset covers 24 

OECD countries and the time period 1970-1991. We carry forward these time series with 

information from Christiansen et al. (2006). They use almost the same set of explanatory 

variables as Gerdtham et al. (1998) and give information on the institutional characteristics of 

health systems for the period 1980-2003. Christiansen et al. (2006) investigate European 

Union (EU) instead of OECD countries, however. This means that for the OECD countries 

that are also EU members, we can ideally establish time series for the institutional dummy 

variables that cover the period 1970-2003. For the non-EU OECD countries, however, the 

series end in 1991.  

Finally, we used information from Paris et al. (2010) to further update our data on the 

institutional setting. Paris et al. (2010) do not report time series data; they describe the state 

of the national health systems for 29 OECD countries in 2008/09. This gives us data points 

for the institutional dummy variables for 2008/09. Furthermore, we assume that if the value 

we derive from Paris et al. for 2008/09 – 0 or 1 – is the same as the value for 2003 we get 

from Christiansen et al. (2006) or the value for 1991 we get from Gerdtham et al. (1998) for 

the non-EU OECD countries, then there has been no change in the meantime, and we close 

the gaps in the time series with the respective values. If the values are not the same, however, 

we conclude that there has been a change in the institutional setting at some unknown point in 

time, and we take the values for the in-between years as missing. 

                                                 
5 We mostly used the 2011 version of the OECD Health database, which is the first version that is only available 
online. We noticed however, that the list of variables available online is not as comprehensive as the list 
available in earlier CD ROM versions of the database. So whenever we could not find necessary data online, we 
referred to the 2010 CD ROM version of the OECD Health Database. Our dataset covers the following 33 
countries: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, 
Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, 
New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, the United 
Kingdom and the United States. 
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After this digression into the construction of the institutional dummy variables, let us return 

to the determinants of health-care expenditure that have been suggested in the literature. As 

said, Hartwig (2008) identified a second stage of the literature that started in the mid-1990s. 

During this stage, the focus shifted towards the time series properties of HCE and GDP; 

(panel) unit root and cointegration tests as well as structural breaks tests were performed. To 

find new explanatory variables for HCE was not the main interest of researchers during this 

stage.6 Nevertheless, for our purpose we need an overview over the determinants of HCE that 

have been suggested during the second stage. We draw on Martín et al. (2011) for this 

purpose. They performed a systematic search for literature on the determinants of HCE in 

medical databases and principal health economics journals over the period 1998-2007. Their 

review of 20 studies yields the determinants that have been suggested in the literature since 

Gerdtham et al. (1998) and prior to Hartwig (2008). Some of the studies reviewed by Martín 

et al. (2011) are micro-level studies which focus on the question whether rising HCE with age 

is caused by aging as such or by ‘proximity to death’. These studies typically analyse micro 

datasets from health insurance companies to compare ex post the health-care costs for 

survivors with costs for those who have died. As our focus is on the macroeconomic level, we 

leave aside those studies reviewed by Martín et al. (2011) which focus on the micro-level.7 

Table 1 lists all macro-level explanatory variables for HCE that have been suggested in the 

literature we reviewed. In the top-down dimension, the table has seven sections. Section 1 

gives the dependent variable: real per-capita HCE (HCEPC). Note that, since our aim is to 

test the robustness of the results in Hartwig (2008), but also in order to avoid statistical 

problems involved in modelling non-stationary data, we convert all level variables into 

growth rates.8 This means for instance that, although HCEPC is listed in the table, we will 

model the growth rate (log difference) of HCEPC. Variables that are shares – for instance 

GDP shares or population shares – will enter our model in first differences, in other words, 

we will use the change in the shares as explanatory variables. 

<Insert Table 1> 

Section 2 in the top-down dimension of Table 1 lists the two potential determinants of per-

capita HCE growth we are mainly interested in. Per-capita GDP (growth) has long been 

                                                 
6 As a matter of fact, Potrafke (2010) argues that Hartwig (2008) has opened up a ‘third stage’ of the literature in 
which the interest in new – and hopefully theory-based – explanatory variables for HCE takes centre stage.  
7 See also Christansen et al. (2006, pp. 2-7) for the distinction between micro- and macro-level studies. 
8 Note that Gertham and Jönsson (2000, p. 48), in their contribution to the Handbook of Health Economics, 
conclude: “It may also be important to replicate Gerdtham et al. (1998) with extended data sets and also with 
respect to growth rates of health expenditure as in Barros (1998), and new methods …”. This epitomises our 
approach. 
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acknowledged to be an important driver of per-capita HCE (growth) – Docteur and Oxley 

(2003) call it “the main driving force in all studies”. The second variable is our ‘Baumol 

variable’, as will be explained shortly. We want to check whether the explanatory power of 

these two variables is robust to the inclusion of other covariates.9  

Table 1 does not list Hartwig’s (2008) ‘Baumol variable’ – the difference between real wage 

growth and productivity growth –, but another variable: the change in income distribution. 

Why? – In our preparatory data analysis, we calculated the correlations between all 

explanatory variables. We did this because the main weakness of the method of Extreme 

Bounds Analysis is that it cannot decently cope with multicollinearity. Two highly correlated 

variables should therefore ideally not enter both the EBA. We found a very high correlation 

(R = 0.83) between Hartwig’s (2008) ‘Baumol variable’ and the change in income 

distribution – an explanatory variable that was suggested by Karatzas (2000), who regresses 

the level of real per-capita health-care expenditure on, among other variables, the income 

distribution as expressed by the ratio of nominal wages to nominal GDP. Karatzas (2000, p. 

1087, fn. 10) claims that “the income distribution variable constitutes a key predictor since it 

affects the value of the income elasticity of the per capita real health care spending”. 

Although he does not link his income distribution variable to Baumol’s model of unbalanced 

growth in any way, it is clear that the change in income distribution as defined by Karatzas 

measures the same thing as the ‘Baumol variable’ constructed by Hartwig: Whenever real 

wages grow more (less) than productivity, the wage share in GDP rises (declines). Since we 

should not include both the ‘Baumol variable’ and the change in the income distribution in 

the EBA because of their high correlation, we need to choose one of them. We opt for the 

change in the income distribution because we have more observations for this variable than 

for the difference between real wage growth and productivity growth (924 vs. 785). Note, 

however, that this choice does not affect any of our results in a meaningful way. 

Section 3 in the top-down dimension of Table 1 lists socio-demographic factors that have 

been suggested as explanatory variables for HCE. These are dominated by population shares. 

We choose not to include all these population shares in the EBA for the following reasons. 

First, having too many population variables will put too large a weight on them in the EBA 

results. If many Z vector variables are population variables, then a large share of the 

regressions will consist of combinations of population variables. That is creating an 

imbalance. Secondly, variables that are substantially overlapping, like POP6574 and 

POP6584, are bound to be highly correlated generating multicollinearity problems and 

thereby reducing the likelihood that any of these variables will turn out to be significant. So 

                                                 
9 In the EBA jargon, variables in the ‘M vector’ are included in all regressions. All the other explanatory 
variables, which will only be used in a sub-set of regressions, are called ‘Z vector variables’ (see section 3 for 
details). 
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we decided to include only three population variables: the share of the population 4 years and 

under (covering potentially higher than average HCE for children), the share of the 

population between 65 and 79 years (covering potentially rising health-care costs after 

retirement) and the share of the population over 80 years (covering potential extra costs for 

long-term care).  

The remaining sections in the top-down dimension of Table 1 list institutional, price, and 

technological variables that have been suggested as determinants for HCE, and finally the 

variables needed to construct some of the explanatory variables. The shaded areas of Table 1 

contain variables that we either modify vis-à-vis the literature (light grey) or drop (dark grey). 

The column headed ‘Remarks’ gives some further details. Also, this column indicates 

whether the number of observations for a variable is low. We exclude variables with less than 

350 observations from our preferred model, which leaves us with 38 explanatory variables.10 

Table 2 provides descriptive statistics for all variables. 

<Insert Table 2> 

3. Methodology 
To examine the sensitivity of the individual variables on per capita HCE growth, we apply 

(variants of) extreme bounds analysis, as suggested by Leamer (1985) and Levine and Renelt 

(1992). This approach has been widely used in the economic growth literature. The central 

difficulty in this research – which also applies to the research topic of the present paper – is 

that several different models may all seem reasonable given the data but yield different 

conclusions about the parameters of interest. Equations of the following general form are 

estimated: 

(1) Y = αM + βF + γZ + u, 

where Y is the dependent variable; M is a vector of ‘standard’ explanatory variables; F is the 

variable of interest; Z is a vector of up to three possible additional explanatory variables, 

which the literature suggests may be related to the dependent variable; and u is an error term. 

The extreme bounds test for variable F states that if the lower extreme bound for β – the 

lowest value for β minus two standard deviations – is negative, and the upper extreme bound 

for β – the highest value for β plus two standard deviations – is positive, the variable F is not 

robustly related to Y. 

As argued by Temple (2000), it is rare in empirical research that we can say with certainty 

that one model dominates all other possibilities in all dimensions. In these circumstances, it 

                                                 
10 We include the variables with less than 350 observations in an alternative model for which the results are 
available on request. The main conclusions are not affected by this. 



 8

makes sense to provide information about how sensitive the findings are to alternative 

modeling choices. Extreme bounds analysis (EBA) provides a relatively simple means of 

doing exactly this. Still, the approach has been criticized in the literature. Sala-i-Martin 

(1997) argues that the test applied poses too rigid a threshold in most cases. Assuming that 

the distribution of β has at least some positive and some negative support, the estimated 

coefficient changes signs if enough different specifications are considered. We therefore 

report not just the lowest and highest coefficient estimates, but also the percentage of the 

regressions in which the coefficient of the variable F is significantly different from zero at the 

10 percent level. Moreover, instead of analyzing just the extreme bounds of the estimates of 

the coefficient of a particular variable, we follow Sala-i-Martin’s (1997) suggestion to 

analyze the entire distribution. Following this suggestion, we not only report the unweighted 

parameter estimate of β, but also the unweighted cumulative distribution function (CDF(0)), 

that is, the fraction of the cumulative distribution function lying on one side of zero.11   

Whereas EBA or any of its alternatives can deal with model uncertainty, i.e. whether results 

are robust to the selection of covariates, it does not take care of the inclusion of so-called 

outlying, or unusual, observations. Although empirically oriented economists often test the 

residuals of their regressions for heteroskedasticity and structural change, they hardly ever 

test for unusual observations. Still, it is quite likely that many of the data sets we use contain 

unusual observations. Some authors therefore suggest using so-called robust estimation 

techniques (see, for example, Temple, 1998 or Sturm and de Haan, 2005).12 Robust 

estimators can be thought of as trying to seek out the most coherent part of the data, the part 

best approximated by the model being estimated. These estimators will not be led astray by 

outliers.  

In the usual presentation of outliers it is stressed that one or more observations may be 

measured with a substantial degree of error. As Swartz and Welsch (1986, p. 171) put it: 

“OLS and many other commonly used maximum likelihood techniques have an unbounded 

influence function; any small subset of the data can have an arbitrarily large influence on 

their coefficient estimates. In a world of fat-tailed or asymmetric error distributions, data 

                                                 
11 Sala-i-Martin (1997) proposes using the (integrated) likelihood to construct a weighted CDF(0). However, the 
varying number of observations in the regressions due to missing observations in some of the variables poses a 
problem. Sturm and de Haan (2001) show that this goodness of fit measure may not be a good indicator of the 
probability that a model is the true model, and the weights constructed in this way are not equivariant to linear 
transformations in the dependent variable. Hence, changing scales result in rather different outcomes and 
conclusions. We thus restrict our attention to the unweighted version. Furthermore, for technical reasons – in 
particular our unbalanced panel setup – we are unable to use extensions of this approach, like Bayesian 
Averaging of Classical Estimates (BACE), as introduced by Sala-i-Martin et al. (2004), or Bayesian Model 
Averaging (BMA). 
12 Robustness in this case is defined in terms of the observations included in the regression. Of course, model 
uncertainty and the role of outliers may be related as outliers can have consequences for the choice of variables. 
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errors and imperfectly specified models, it is just those data in which we have the least faith 

that often exert the most influence on the OLS estimates.”  

Following Barnett and Lewis (1994, p. 316), we define an outlier as an observation ‘lying 

outside’ the typical relationship between the dependent and explanatory variables revealed by 

the remaining data. For instance, point A in Figure 1(a) is clearly an outlier. Outliers in the 

dependent variable – i.e. in the y-direction – often possess large positive or large negative 

residuals, which are easy to detect by plotting the residuals.  Observations may be outlying 

for several reasons. The most obvious one involves problems with the quality of the data. 

Outliers in the explanatory variables may be more problematic than outliers in the dependent 

variable. As Figure 1(b) shows, an unusual observation in the x-direction (B) can actually tilt 

the OLS regression line. In such a case we call the outlier a (bad) leverage point. Note that 

looking at the OLS residuals cannot discover bad leverage points. If a leverage point tilts the 

regression line, deleting the points with the largest OLS residuals implies that some ‘good’ 

points would be deleted instead of the ‘bad’ leverage point. 

<Insert Figure 1> 

Basically, there are two ways to deal with outliers: regressions diagnostics and robust 

estimation. Diagnostics are certain statistics mostly computed from the OLS regression 

estimates with the purpose of pinpointing outliers and leverage points. Often the unusual 

observations are then removed or corrected after which an OLS analysis on the remaining 

observations follows. When there is only one unusual observation, some of these methods 

work quite well. However, single-case diagnostics are well known to be inadequate in the 

presence of multiple outliers or leverage points (Temple, 2000). 

Take for instance Figure 1c. Deleting either of the two outliers will have little effect on the 

regression outcome and will therefore not be spotted by the single-case diagnostics. The 

potential effect of one outlying observation is clearly masked by the presence of the other. 

Testing for groups of observations to be influential might solve this masking effect problem. 

However, a serious problem in the multiple observation case is how to determine the size of 

the subset of jointly influential observations. Suppose we are interested in detecting all 

subsets of size m=2,3,… of observations that are considered to be jointly outliers and/or high-

leverage. A sequential method might be useful, but where to stop? In the multiple observation 

case the number of possible subsets for which each diagnostic measure of interest can be 

computed is: n!/[m!(n-m)!], where n is number of observations. For m=5 and n=50 this 

already results in over 2 million diagnostics. Therefore we prefer so-called robust regression 

techniques that employ estimators that are not strongly affected by (groups of) outliers. 

Over the last few years, several robust-to-outliers methods have been proposed in the 

statistical literature. High break-down point estimators, like Least Median of Squares, Least 
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Trimmed Squares, or so-called S-estimators are able to resists a contamination of up-to 50 

percent of outliers. However, these estimators are known for their low efficiency at a 

Gaussian error distribution. To cope with this, Yohai (1987) introduced MM-estimators that 

combine high-breakdown point and a high efficiency (Verardi and Croux, 2008).  

Instead of squaring the residuals in the minimization process as done with OLS, within the 

class of S- and MM-estimators each residual undergoes a transformation dampening the 

influence of large residuals. For the MM-estimator, this normalizing scale is robustly 

determined in a first step using a so-called S-estimator that has excellent robustness 

properties. We use the algorithm as implemented by Verardi and Croux (2008). It starts by 

randomly picking N subsets of k observations, where k is the number of regression 

parameters to estimate.13 For each subset, the equation that fits all points perfectly is obtained 

yielding a trial solution of an outlier robust S-estimator (using the Tukey Biweight loss 

function). On the basis of the residuals, a scale estimate is obtained for each subset. An 

approximation for the scale estimate to be used in the final MM-estimation is then derived 

from the subset that leads to the smallest scale. Following Maronna et al. (2006), we chose a 

breakdown point of 50 percent and an efficiency relative to the Gaussian case of 70 percent, 

which requires setting the Tukey Biweight parameter to 1.547 for the first step S-estimator 

and to 2.697 in the second step.14 As far as inference is concerned, standard errors robust to 

heteroskedasticity are computed according to the formulas available in the literature (see e.g. 

Croux et al., 2008).  

4. Results 
In a first step we regress the growth rate of deflated per-capita health-care expenditure 

(dlhcepc) only on our two ‘M vector’ variables per-capita real GDP (dlgdppc) growth and the 

‘Baumol variable’ change in income distribution (did). The first four columns of Table 3 

show the results for the OLS estimations without fixed effects, with fixed country effects, 

fixed year effects and two-way fixed effects respectively. The remaining columns report 

results for the MM estimations, which identify a varying number of outliers depending on 

whether fixed effects are included or not and, if yes, which kind of fixed effects. As the table 

shows, both explanatory variables are always significant at the 1% level. The estimated 

coefficients suggest that a one percentage point increase in per-capita GDP growth raises the 

growth rate of per-capita HCE by 0.5-0.7 percentage points. Against the background of the 

old debate about whether health care is a luxury or a necessity, this finding is in line with 

“recent studies using pooled time-series cross-section data and a wider range of explanatory 

                                                 
13 The number N of sub-samples to generate is chosen to guarantee that at least one subset without outliers is 
selected with high probability (see Salibian-Barrera and Yohai (2006) on how to achieve this). 
14 Increasing Gaussian efficiency would lead to a higher estimation bias making comparison between the OLS 
and MM-regression based results more difficult. 
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variables (which) suggest elasticities near or less than one” (Docteur and Oxley, 2003, p. 73). 

In other words, our results lend no support to the view that health care is a luxury.  

The coefficients on the income distribution variable suggests that a one percentage point 

increase in the wage share raises the growth rate of per-capita HCE by 1.2-1.6 percentage 

points. To allow for a comparison with the results in Hartwig (2008), we replaced the 

variable ‘did’ with the ‘Baumol variable’ used in that paper – the difference between real 

wage growth and productivity growth. The coefficients we found on that variable were also 

thoroughly significant at the 1% level with values around 0.5. This is somewhat lower than 

the coefficient values found in Hartwig (2008), which were in the range of 0.8-0.9.15 

<Insert Table 3> 

To check whether our findings are robust to the inclusion of additional explanatory variables, 

we opt for Sala-i-Martin’s version of Extreme Bounds Analysis. As before, we apply both the 

OLS and the MM estimators with and without fixed effects. By including up to three 

additional variables from the ‘Z vector’, we estimate 66’711 OLS regressions. Each ‘Z 

vector’ variable is included in 7’176 of them; the two ‘M vector’ variables are of course 

always included. The MM estimation is very time consuming. Therefore, we have restricted 

the maximum number of additional ‘Z vector’ variables to two and thereby produced 666 

combinations in which we tested the ‘M vector’ variables. 

The left-hand-side of Table 4 shows the results for the OLS estimation with both fixed 

country and year effects.16 The first column gives the average of the estimated β-coefficients 

for that particular variable. The next two columns report the lowest and highest estimated 

coefficients. Column (4) gives the percentage of the regressions in which the coefficient on 

the variable is significantly different from zero at the 10 percent level. The final column 

reports the results of the cumulative distribution function (CDF) test, in other words, it shows 

the percentage of the cumulative distribution function lying on one side of zero. CDF(0) 

indicates the larger of these areas under the density function either above or below zero, so it 

will always lie between 50% and 100%. The variables in Table 4 are ordered based on their 

CDF(0).  

                                                 
15 A coefficient of 0.6 was found for the sub-period 1982-92. There are a number of reasons why the coefficients 
could differ, for instance the different sample of countries (33 OECD countries in this study vs. 19 in Hartwig, 
2008) and the different estimation period (1970-2010 vs. 1971-2003). Also, Hartwig (2008) used random, not 
fixed effects and the growth rate of the GDP deflator as covariate. 
16 With respect to our main concern – to find out whether GDP growth and the ‘Baumol variable’ are robust 
explanatory variables for HCE growth – the estimations with fixed country effects, fixed year effects, and no 
fixed effects yield the same result as the estimation with two-way fixed effects. The two-way fixed effects 
estimation identifies a slightly larger set of robust ‘Z vector’ variables than the other three approaches. All 
results are available from the authors upon request. 
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The first thing to note from Table 4 is that our baseline model is robust to the inclusion of 

additional explanatory variables. The estimated cumulative distribution function for the 

coefficients on the ‘Baumol variable’ (change in income distribution) completely lies on the 

right-hand side of zero; for real per-capita GDP growth this is almost the case. The 

underlying estimated coefficients are statistically significant in 99.9 and 99.6 percent of the 

cases, respectively. The average coefficients are 0.72 for per-capita GDP growth and 1.37 for 

the change in the wage share. 

Secondly, only a few of the additional variables we have tested change their sign infrequently 

and can thus be counted as robust explanatory variables as well. If we apply the criterion that 

CDF(0) > 0.95,17 these variables are: (1) the dummy variable for countries with fee-for-

services as the dominant means of remuneration in primary care (ffsa), (2) the growth in 

acute beds per 1’000 inhabitants (dlbedsi), (3) the change in the rate of unemployment 

(dunemp), (4) the growth in the number of patients undergoing renal dialysis per 100’000 

population, (5) the change in the female participation ratio (dfpr), (6) the growth in per capita 

real expenditure on health administration (dlta) and (7) the growth in tobacco consumption in  

grams per capita 15+ (dltobc).  

While most of the average coefficient signs on these seven variables are in line with prior 

expectations, this does not hold for two of them. Growth in the number of patients 

undergoing renal dialysis should raise health care expenditure, yet the sign on this variable is 

robustly negative. Also, an increase in the female participation ratio has been theorised to 

contribute to raising HCE because it leads to replacing unpaid care at home – mostly carried 

out by women – by for-pay services. Still, we find robustly negative coefficients on this 

variable. We will discuss in an instant whether our findings for these two variables – as well 

as for the other robust variables – are due to outliers in the data.  

Before that, let us have a look at the statistical significance of the coefficients. The growth in 

acute beds per 1’000 inhabitants (dlbedsi) is a very robust explanatory variable, but it is 

significant in only 6.8% of the regressions. The other six robust variables are significant in 

between 26% (dltobc) and 60% of the regressions (dfpr, dlta). Other variables that are often 

significant, but not robust, are the change in the share of public health expenditure in total 

expenditure (dpuhes) and the change in the share of inpatient expenditure in total expenditure 

(dtexmc). Interestingly, the average coefficients on these two variables are negative. 

Finally, before turning to the outlier-robust MM estimation, let us emphasize that most of the 

variables we tested are not robust, like for instance the age-structure variables and all 

institutional variables except the dummy variable for countries with fee-for-services as the 

                                                 
17 Sala-i-Martin applies the criterion CDF(0) > 0.9, but we consider this to be too low given the one-sidedness of 
the test. 
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dominant means of remuneration in primary care (ffsa). This does not come as a surprise, 

however, since it has already been pointed out in the introduction that the literature has not 

been very successful in uncovering robust explanatory variables for HCE (growth) apart from 

GDP (growth). For a review of this literature, again see the annex in Docteur and Oxley 

(2003).   

<Insert Table 4> 

The right-hand-side of Table 4 reports the results of the outlier-robust MM estimations. 

Again, we show results for the estimation with two-way fixed effects, but the main 

conclusions are not sensitive to the choice of fixed effects. We register that even after the 

removal of outliers, per-capita GDP growth and the ‘Baumol variable’ remain robust 

explanatory variables for per-capita HCE growth. The sign on the change in income 

distribution (did) is again positive in 100 percent of the regressions, the sign on GDP growth 

in 97.2 percent. However, compared to the OLS estimation the average coefficient value on 

GDP growth drops from 0.72 to 0.41, which means that health is even less of a luxury than 

was previously thought. Also, the percentage of the regressions in which per-capita GDP 

growth is significant drops from 99.6 to 80.1 percent. This is still a high value, but the 

significance of GDP growth is clearly somewhat sensitive to the exclusion of outliers. This is 

not the case for the ‘Baumol variable’, though, which remains significant in 98.2 percent of 

the regressions. The average coefficient value remains virtually unchanged vis-à-vis the OLS 

estimates. 

On the other hand, only two of the seven ‘Z vector’ variables found to be robust in the OLS 

estimation ‘survive’ the switch to outlier-robust MM estimation. These are: (1) the dummy 

variable for countries with fee-for-services as the dominant means of remuneration in primary 

care (ffsa) and (2) the growth in per capita real expenditure on health administration (dlta). 

However, the MM estimation discloses three other robust ‘Z vector’ variables: (3) the lagged 

change in the government share (dgsh1), (4) the growth rate of the number of land traffic 

fatalities (dlaccident) and (5) the growth rate of gross expenditure on R&D (dlgerd).  

The change in the share of inpatient expenditure in total expenditure (dtexmc) remains often 

significant, though not robust. The same is now true for the change in the insurance coverage 

of the population (dcovero). The average sign for the former variable remains negative; for 

the latter variable it is positive (as expected). The negative sign on ‘dtexmc’, which is in 

contrast to earlier findings (see Docteur and Oxley 2003, p. 74), might reflect a 

rearrangement visible, for instance, in Swiss data. Reforms to hospital remuneration have 

made inpatient treatment financially less attractive for Swiss hospitals. This has contributed 

to a surge in expenditures for outpatient treatment by hospitals in Switzerland over the past 

20 years – these have been the fastest growing expenditure component in the Swiss health 
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system by a wide margin. If hospitals prefer outpatient treatment to inpatient treatment for 

financial reasons, the switch to outpatient treatment must be expected to boost total HCE 

growth instead of dampening it. 

With respect to the signs of the five variables emerging as robust from the MM estimation, 

the positive sign on ‘ffsa’ conforms to prior expectations. Fee-for-service remuneration in 

primary care excites practitioners to offer a lot of treatments (including unnecessary ones), 

which raises costs. Also, that rising real expenditure on health administration (dlta) raises 

total HCE does not come as a surprise. The government share has been introduced into the 

literature as an explanatory variable by Hitiris, who sees it as a proxy for the level of 

development of a country, arguing that “rich countries experiencing a high rate of growth of 

income and public revenue would be expected to direct significant resources to public 

spending, including health care” (Hitiris, 1997, p. 3). He finds a positive and significant 

impact of the government share on the level of per-capita health-care expenditure. This is 

confirmed by Roberts (2000), as well as our results.18 

R&D expenditure has been proposed as a proxy for technological progress – including 

progress in medical technologies – by Okunade and Murthy (2002). They expect a 

significantly positive sign on this variable – and find one. This is confirmed by our outlier-

robust estimation. The only sign that seems odd at first sight is the negative sign on the 

growth rate of the number of land traffic fatalities. But this is probably what has happened: 

the death rate has dropped resulting in higher expenditure on those who are (now) severely 

injured.  

As a final step in our empirical analysis, we include all variables that emerge as robust from 

either the OLS or the MM estimations into the baseline model in order to investigate, which 

of them are statistically significant. The right-hand-side of Table 5 reports the results of the 

outlier-robust MM estimations. Columns (5) and (6) show that all variables that emerged as 

robust explanatory variables for HCE growth either from the OLS EBA regressions (column 

5) or from the MM EBA regressions (column 6) are statistically significant at least at the 10 

percent level, while the two baseline variables remain highly significant with fairly stable 

coefficients across the three specifications.  

This picture changes somewhat when the extended baseline models are estimated with OLS 

(see the left-hand-side of Table 5). Although the two baseline variables remain highly 

significant, their coefficient values vary more across the specifications. When the seven 

covariates that emerged as robust from the OLS EBA regressions are included, the coefficient 

                                                 
18 Note that we lagged the change in the government share (dgsh) – as well as the growth rate of per-capita real 
insurance premiums (dlins) – because of concerns over reverse causality. The un-lagged version of dgsh is also 
robust. 
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on the ‘Baumol variable’ jumps to a value above 2, and the coefficient on per capita GDP 

growth becomes greater than 1, indicating that health care might be a luxury after all. The 

most striking difference between the two parts of Table 5 is, however, that only four out of 

ten covariates are significant when the extended baseline models are estimated with OLS 

rather than with the outlier-robust MM estimator. These four covariates are: (1) the growth in 

acute beds per 1’000 inhabitants (dlbedsi), (2) the change in the rate of unemployment 

(dunemp), (3) the growth in the number of patients undergoing renal dialysis per 100’000 

population – notably with a positive sign – and (4) the growth in per capita real expenditure 

on health administration (dlta). Obviously, the statistical significance of the other six 

covariates is impaired by outliers in our sample of data. 

<Insert Table 5> 

5. Conclusion 
‘What drives health-care expenditure?’ was the question asked by Hartwig (2008). Many 

scholars had asked that question before, and many different drivers have been proposed by a 

flourishing literature. However, so far there has not been a systematic investigation into 

which of these proposed drivers are robust explanatory variables for health-care expenditure 

or its growth. This paper aims at closing this gap in research, applying the methodologies of 

Extreme Bounds Analysis and outlier-robust MM estimation to OECD data. We aimed at 

including all macroeconomic and institutional determinants of health-care expenditure 

(growth) that have been suggested by the literature in our EBA, however multicollinearity 

among some explanatory variables and lack of observations for others prompted us to modify 

or exclude a number of variables from our preferred EBA specification. Nevertheless, the 

latter contains 38 potential determinants. 

Our results confirm the broad picture emerging from the literature that there are not many 

robust drivers of HCE growth. However, we were able to identify ten possible candidates. 

Four of them: the growth in acute beds per 1’000 inhabitants, the change in the rate of 

unemployment, the growth in the number of patients undergoing renal dialysis per 100’000 

population and the growth in per capita real expenditure on health administration emerged as 

significant in both OLS and outlier-robust MM regressions. Also, we are able to confirm the 

long-standing insight originating from Newhouse (1977) that GDP (or income) drives health-

care expenditure. In line with more recent studies, our results predominantly suggest that 

health-care is not a luxury at the macroeconomic level. What seems to be a new insight is that 

the impact of GDP growth on HCE growth is strengthened by outliers in the data. In our 

outlier-robust EBA estimation, GDP growth turns out insignificant in roughly 20 percent of 

the regressions.  
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The most important aim of our study, however, was to check the robustness of Hartwig’s 

(2008) assertion that Baumol’s (1967) model of ‘unbalanced growth’ offers a theoretical 

framework for explaining the rise in health spending. Note that we do not say: We wanted to 

check whether HCE was driven by Baumol’s ‘cost disease’. One simply cannot do that using 

deflated data. Hartwig (2008) uses nominal data in a first step and shows that nominal wage 

growth in excess of productivity growth drives nominal HCE growth. This is what Baumol’s 

model predicts. The small (low-weight) manufacturing sector sets the rate of nominal wage 

growth for the overall economy. The large (heavy-weight) ‘stagnant’ sector with low (or no) 

productivity growth raises prices in line with rising nominal wage costs. Therefore, 

expenditures are channelled into the stagnant sector, the weight of which in nominal GDP 

becomes ever larger. This is the ‘cost disease’: it is about nominal flows. Baumol’s model 

does not predict that the share of the stagnant sector in deflated data rises. On the contrary: 

his model assumes that the relation of the two sectors in real terms stays constant. 

Still, most of the empirical literature on the determinants of health-care expenditure operates 

with deflated data, so in a second step Hartwig (2008) deflated nominal wages and HCE by 

the GDP deflator and re-estimated his model. He found that real wage growth in excess of 

productivity growth still contributes significantly to explaining real HCE growth, and the 

present paper confirms that this finding survives Extreme Bounds Analysis and outlier robust 

estimation. How do we have to interpret this finding? 

Obviously, the difference between real wage growth and productivity growth drives the wage 

share. If real wages grow exactly at the same rate as productivity at the macroeconomic level, 

the wage share stays constant. If they grow more, the wage share rises and vice versa. 

Baumol’s model of unbalanced growth implicitly assumes a constant wage share. In the 

progressive sector, nominal wages grow at the same rate as productivity and the price level 

doesn’t change, so real wage growth and productivity growth are equal. In the stagnant sector 

productivity growth is zero, and prices rise to the same extent as wages. So here also real 

wage growth and productivity growth are equal. Note that this constellation is sufficient to 

cause the ‘cost disease’. What the empirical results in Hartwig (2008) and the present paper 

show is that the ‘cost disease’ is so to speak aggravated if wage earners manage to increase 

the wage share. Conversely, it also means that if the wage share drops this puts a break on the 

growth of health-care expenditure.  

Barros (1998), in his analysis of the determinants of health expenditure growth came across 

an empirical regularity he could not explain. He writes: “We detect, nevertheless, a clear 

slowdown in health care expenditures (as GDP share) growth in the decade 1980-1990 

relative to the average evolution in the two previous decades. The determinants of this 

slowdown are not identified by our model and the issue clearly calls for further research” 

(Barros, 1999, p. 540). The years since 1980 have witnessed a marked decline in the wage 
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share in most OECD countries. This decline – in conjunction with Baumol’s model of 

unbalanced growth – offers a ready explanation for the deceleration in HCE growth that has 

puzzled Barros. 
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Tables 
Table 1: Macro-level explanatory variables for HCE suggested in the literature 

Measure Definition Suggested by Data Source Remarks

HCEPC Total expenditure on health, per capita, national currency 
units (NCU) at 2000 GDP prices

OECD Health Data 2011

GDPPC Gross Domestic product, per capita, NCU at 2000 GDP 
prices

passim OECD Health Data 2011

DID Change in income distribution Karatzas (2000), Hartwig (2008) ID = COMP/GDPN

ACCIDENT Land traffic accidents, deaths per 100000 population Koenig et al. (2003) OECD Health Data 2011
ALCC Alcohol intake, litres per capita 15+ Gerdtham et al. (1998) OECD Health Data 2011
DP Population density (Population per square kilometre) Crivelli et al. (2006) DP = POP/SURFACE
FPR Female participation ratio, % of active population Gerdtham et al. (1998) OECD Health Data 2010
GSH Public expenditure as percentage of GDP Roberts (2000) GSH = G/GDPN
HCEI Total expenditure on health, per capita in US$ PPP at the 

start of the decade
Barros (1998) Barro models average growth rates over three decades and includes 

for each decade the expenditure level of the first year of the decade. 
With annual growth rates, we cannot mimic this.

HCEI2 Total expenditure on health, per capita in US$ PPP at the 
start of the decade squared

Barros (1998) HCEI2 = HCEI*HCEI Barro models average growth rates over three decades and includes 
for each decade the expenditure level of the first year of the decade. 
With annual growth rates, we cannot mimic this.

LE65F Life expectancy at age 65 for females Christiansen et al. (2006) OECD Health Data 2011 Because the growth in LE65F and LE65M is highly correlated, we 
replaced the two variables by their average LE65. 

LE65M Life expectancy at age 65 for males Christiansen et al. (2006) OECD Health Data 2011 Because the growth in LE65F and LE65M is highly correlated, we 
replaced the two variables by their average LE65. 

MORT Mortality rate (Potential years of life lost per 100000 
population 0-69)

Crivelli et al. (2006) OECD Health Data 2011

OBESE Obese population, measured, % of population Koenig et al. (2003) OECD Health Data 2011 Less than 350 observations
PO Dummy variable, one for countries with below-average 

per-capita GDP 
Crivelli et al. (2006) Built based on GDPPPP

POP80 Share of population 80 years and over (%) Mosca (2007) OECD Health Data 2011
POP75 Share of population 75 years and over (%) Gerdtham et al. (1998) EUROSTAT Not included to avoid too many population variables
POP65 Share of population 65 years and over (%) Christiansen et al. (2006) OECD Health Data 2011 Not included to avoid too many population variables
POP6584 Share of population between 65 and 84 years (%) Di Matteo (2005) EUROSTAT Not included to avoid too many population variables
POP6574 Share of population between 65 and 74 years (%) Di Matteo (2005) EUROSTAT Replaced by POP6579 (using POP65 and POP80)
POP4564 Share of population between 45 and 64 years (%) Di Matteo (2005) EUROSTAT Not included to avoid too many population variables
POP2544 Share of population between 25 and 44 years (%) Di Matteo (2005) EUROSTAT Not included to avoid too many population variables
POP2044 Share of population between 18 and 44 years (%) Di Matteo (2005) EUROSTAT Not included to avoid too many population variables
POP19 Share of population 18 years and under (%) Mosca (2007) EUROSTAT Not included to avoid too many population variables

M vector variables

Dependent variable 

Socio-demographic factors
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POP04 Share of population 4 years and under (%) Gerdtham et al. (1998) EUROSTAT
UNEMP Unemployment rate (% ratio to labour force) Christiansen et al. (2006) OECD Health Data 2010
TOBC Tobacco consumption, grams per capita 15+ Gerdtham et al. (1998) OECD Health Data 2011

BUDCEILA Dummy variable, one for countries with direct budgetary 
controls in the ambulatory sector, zero otherwise

Gerdtham et al. (1998) Construction not documented in the paper. Variable could not be 
built.

CAPITA Dummy variable, one for countries with capitation as the 
dominant means of remuneration in primary care, zero 
otherwise

Gerdtham et al. (1998), 
Christiansen et al. (2006)

Gerdtham et al. (1998), 
Christiansen et al. (2006), 
Paris et al. (2010)

CASEHO Dummy variable, one for countries with fee-for-service 
or payment by bed days in in-patient care, zero otherwise

Christiansen et al. (2006) Christiansen et al. (2006), 
Paris et al. (2010)

CEILHO Dummy variable, one for countries with global 
prospective budgets of hospital spending, i.e. countries 
having hospital spending either on budget or established 
levels which should not be exceeded, zero otherwise

Christiansen et al. (2006) Christiansen et al. (2006) Less than 350 observations

COPAY The share of total expenditure on health paid for out of 
pocket (%)

Gerdtham et al. (1998) OECD Health Data 2010 Dropped due to high (negative) correlation with PUHES, which has 
more observations (952 vs. 620).

COPAYGP Dummy variable for range of copayments for general 
practitioner visits, one for all, two for some groups of 
patients, three for no

Christiansen et al. (2006) Christiansen et al. (2006) Highly correlated with COPAYGP. Merged to COPAYDUM: One 
for countries with some copayment for either GP or HO, zero 
otherwise

COPAYHO Dummy variable for range of copayments for hospital 
stays, one for all, two for some groups of patients, three 
for no

Christiansen et al. (2006) Christiansen et al. (2006) Highly correlated with COPAYHO. Merged to COPAYDUM: One 
for countries with some copayment for either GP or HO, zero 
otherwise

COVERO Insurance coverage of the population (%) Gerdtham et al. (1998) OECD Health Data 2011
FFSA Dummy variable, one for countries with fee-for-services 

as the dominant means of remuneration in primary care, 
zero otherwise

Gerdtham et al. (1998) Gerdtham et al. (1998), Paris 
et al. (2010)

FREEHO Dummy variable, one for countries with free choice of 
hospitals, two for countries with limited or no free choice

Christiansen et al. (2006) Christiansen et al. (2006), 
Paris et al. (2010)

Highly correlated with FREEGP and FREESP. Merged to FREE: 
One for countries with free choice of either HO or GP or SP

FREEGP Dummy variable, one for countries with free choice of 
general practitioner, two for countries with limited or no 
free choice

Christiansen et al. (2006) Christiansen et al. (2006), 
Paris et al. (2010)

Highly correlated with FREEHO and FREESP. Merged to FREE: 
One for countries with free choice of either HO or GP or SP

FREESP Dummy variable, one for countries with free choice of 
specialist, two for countries with limited or no free 

Christiansen et al. (2006) Christiansen et al. (2006), 
Paris et al. (2010)

Highly correlated with FREEHO and FREEGP. Merged to FREE: 
One for countries with free choice of either HO or GP or SP

GATEKEEP Dummy variable, one for countries with physicians as 
(compulsory) gatekeepers, zero otherwise

Gerdtham et al. (1998), 
Christiansen et al. (2006)

Gerdtham et al. (1998), 
Christiansen et al. (2006), 
Paris et al. (2010)

GLOBALHO Dummy variable, one for countries which remunerate 
their hospitals mainly by global budget, zero otherwise

Christiansen et al. (2006) Christiansen et al. (2006), 
Paris et al. (2010)

HCSYS Dummy variable, one for countries with public integrated 
systems, two for countries with public contract 
(reimbursement) system, three for countries with a mixed 
model and four for countries in transition

Gerdtham et al. (1998), 
Christiansen et al. (2006)

Gerdtham et al. (1998), 
Christiansen et al. (2006)

Split into 4 variables, two of which (former dummies 3 and 4) are 
dropped because they contain too many zeros. Former dummy 1: 
HCSYSPI. Former dummy 2: HCSYSPC

INS Per capita real insurance premiums Karatzas (2000) INS = (SSS+PINS)/ 
POP/GDPDEF*100

Institutional factors
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MIXEDGP Dummy variable, one for countries with a mix of 
capitation and fee-for-services as the dominant means of 
remuneration in primary care, zero otherwise

Christiansen et al. (2006) Christiansen et al. (2006), 
Paris et al. (2010)

NHSD Dummy variable, one for countries with a decentralised 
National Health System, zero otherwise 

Mosca (2007) Mosca (2007) Less than 350 observations

OVERBILL Dummy variable, one for countries with high potential 
for free setting of medical care prices and overbilling, 0.5 
for countries with some potential and zero otherwise

Gerdtham et al. (1998) Gerdtham et al. (1998) Dropped because it is constant over time meaning it drops out of the 
fixed effects regressions.

PUBREIMB Dummy variable, one for countries with public 
reimbursement as the dominant means of remuneration in 
inpatient care, zero otherwise

Gerdtham et al. (1998) Gerdtham et al. (1998) Dropped because of high correlation with HCSYSPC

PUHES Public health expenditure as a share of total health 
expenditure

Christiansen et al. (2006) OECD Health Data 2010

REIMBMOD Dummy variable, one for countries with direct payment 
by patient before reimbursement by insurer 
(reimbursement model), zero otherwise

Gerdtham et al. (1998) Construction not documented in the paper. Variable could not be 
built.

SHIC Dummy variable, one for countries with a centralised 
Social Health Insurance System, zero otherwise

Mosca (2007) Mosca (2007) Less than 350 observations

SHID Dummy variable, one for countries with a decentralised 
Social Health Insurance System, zero otherwise

Mosca (2007) Mosca (2007) Less than 350 observations

TA Per capita real expenditure on health administration Karatzas (2000) OECD Health Data 2010
TEXMC The share of inpatient expenditure in total health 

expenditure (%)
Gerdtham et al. (1998) OECD Health Data 2010

WS Dummy variable, one for countries with wage and salary 
as the dominant means of remuneration in primary care, 
zero otherwise

Gerdtham et al. (1998), 
Christiansen et al. (2006)

Gerdtham et al. (1998), 
Christiansen et al. (2006), 
Paris et al. (2010)

HPI Price index for total expenditure on health (2000=100) Karatzas (2000) OECD Health Data 2010

BEDSFPSH Ratio of beds in for-profit hospitals to acute care beds Koenig et al. (2003), Gerdtham et 
al. (1998)

BEDSFPSH = 
BEDSFP/BEDS

Less than 350 observations

BEDSH Acute care beds per general hospital Giannoni/Hitiris (2002) BEDSH = BEDS/HOSP
BEDSI Acute care beds per 1000 inhabitants Christiansen et al. (2006) BEDSI = BEDS/POP
CERV Cervical cancer: percentage of females aged 50-69 

screened, survey or programme data
Koenig et al. (2003) OECD Health Data 2010 Less than 350 observations

DLGERD Gross expenditure on R&D, compound annual growth 
rate (constant prices)

Okunade/Murthy (2002) OECD Main Science and 
Technology Indicators 
(online access July, 11, 
2011)

DOCTCA The stock of practicing physicians per 1000 population Gerdtham et al. (1998) DOCTCA = PHYS/POP
DOCTCA*FFSA The product of DOCTCA and FFSA Gerdtham et al. (1998) = DOCTCA*FFSA Dropped because it is not feasible to include interacted variables in 

EBA.

Prices

Technological and capacity factors
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HRD Total expenditure on health R&D, national currency units 
(NCU) at 2000 GDP prices

Okunade/Murthy (2002) OECD Health Data 2010 Less than 350 observations

MAMMO Mammography: percentage of females aged 50-69 
screened, survey or programme data

Koenig et al. (2003) OECD Health Data 2011 Less than 350 observations

NURCA Number of actively employed nurses per 1000 population Karatzas (2000) NURCA = NUR/POP

OUTPSH Share of total surgeries performed on an outpatient basis Koenig et al. (2003) OUTPSH = SPOUT/TSP Less than 350 observations

PERSH Number of healthcare and non-healthcare personnel per 
hospital

Giannoni/Hitiris (2002) PERSH = HOEMP/HOSP Less than 350 observations

PHYSH Physicians per 100 hospital beds Christiansen et al. (2006) PHYSH = 
PHYSHO/BEDS*100

Less than 350 observations

RAT The ratio of specialists to general practitioners Karatzas (2000) RAT = (PHYS – GP)/GP Less than 350 observations
REND Patients undergoing renal dialysis, rate per 100000 

population
Gerdtham et al. (1998) OECD Health Data 2011

TOMSCA Tomographic scanners per million population Christiansen et al. (2006), Koenig 
et al. (2003)

TOMSCA = CT+MRI+PET Less than 350 observations

BEDS Number of acute care beds OECD Health Data 2011
BEDSFP Number of beds in for-profit hospitals OECD Health Data 2011
COMP Compensation of employees, million of NCU OECD Health Data 2010
COMPR Compensation of employees, million of NCU at 2000 

GDP prices
OECD Health Data 2010

CT Number of Computed Tomography Scanners OECD Health Data 2010
EMP Total employment, thousands of persons OECD Health Data 2010
G General government’s total outlays, mln. of NCU OECD Health Data 2010
GDPDEF GDP deflator, price index (2000=100) OECD Health Data 2011
GDPN Nominal GDP, million of NCU OECD Health Data 2010
GDPPPP GDP per capita in US$ PPP OECD Health Data 2011
GP Number of general practitioners OECD Health Data 2010
HOEMP Total hospital employment, number of persons OECD Health Data 2011
HOSP Number of general hospitals OECD Health Data 2011
MRI Number of Magnetic Resonance Imaging units OECD Health Data 2010
NUR Number of practicing nurses OECD Health Data 2011
PET Number of PET Scanners OECD Health Data 2010
PHYS Number of practising physicians OECD Health Data 2011
PHYSHO Number of physicians employed in hospitals OECD Health Data 2011
PINS Private insurance, million of NCU OECD Health Data 2010
POP Total population, thousands of persons OECD Health Data 2011
SPOUT Outpatient surgical procedures (“day cases”) OECD Health Data 2010
SSS Social security schemes, million of NCU OECD Health Data 2010
SURFACE Surface of country, square kilometres CIA World Factbook

Variables needed to build explanatory variables
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TSP Total surgical procedures, number OECD Health Data 2010
WSEMP Number of wage and salaried employees, thousands of 

persons
OECD Health Data 2010

 

Notes: Variables in light grey are included in a modified form. Those in dark grey have not be included in the analysis. 
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Table 2: Descriptive statistics 

Variable Obs Mean Std. Dev. Min Max

dlhcepc 1028 4.01 5.06 -28.33 30.60

dlgdppc 1218 2.23 3.02 -14.88 12.26
did 1055 0.02 1.35 -6.60 10.68

dlaccident 1101 -2.90 12.64 -99.49 90.15
dlalcc 1176 -0.10 5.65 -38.30 30.01
ddp 1272 0.81 2.79 -67.83 48.07
dfpr 901 0.29 0.79 -4.00 11.00
dgsh1 733 0.10 2.03 -11.90 15.51
dlle65 1192 0.78 1.29 -4.85 7.87
dmort 1114 -0.14 0.26 -2.62 1.77
dobese 67 0.30 0.63 -1.50 1.80
po 924 0.55 0.50 0.00 1.00
dpop80 1360 0.06 0.08 -0.90 0.40
dpop6579 1360 0.07 0.16 -0.50 1.40
dpop04 966 -0.07 0.16 -0.76 0.54
dunemp 981 0.08 1.01 -4.20 5.80
dltobc 800 -1.57 6.02 -54.81 53.54

capita 1066 0.17 0.38 0.00 1.00
caseho 688 0.14 0.35 0.00 1.00
ceilho 289 0.72 0.45 0.00 1.00
copaydum 1428 0.17 0.38 0.00 1.50
dcovero 1053 0.37 2.23 -5.80 36.40
ffsa 1042 0.39 0.49 0.00 1.00
free 1428 0.39 0.49 0.00 1.00
gatekeep 1083 0.54 0.50 0.00 1.00
globalho 689 0.43 0.49 0.00 1.00
hcsyspi 1428 0.25 0.44 0.00 1.00
hcsyspc 1428 0.27 0.44 0.00 1.00
dlins1 503 4.42 9.45 -79.57 66.09
mixedgp 1075 0.24 0.43 0.00 1.00
nhsd 209 0.26 0.44 0.00 1.00
dpuhes 952 0.07 2.25 -16.10 15.10
shic 220 0.20 0.40 0.00 1.00
shid 220 0.25 0.43 0.00 1.00
dlta 544 4.53 21.19 -150.41 248.49
dtexmc 730 -0.25 2.64 -22.00 17.40
ws 1095 0.15 0.35 0.00 1.00

dlhpi 416 6.98 9.29 -32.85 73.90  
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dbedsfpsh 231 0.23 1.04 -6.30 3.95
dlbedsh 397 0.05 4.83 -30.11 27.93
dlbedsi 639 -1.69 3.51 -42.08 11.08
dcerv 150 0.46 2.37 -7.10 16.00
dlgerd 668 5.32 7.12 -24.37 64.34
dldoctca 638 2.02 3.64 -28.79 17.53
dlhrd 268 5.91 32.42 -302.04 210.41
dmammo 158 1.12 4.16 -17.40 25.70
dlnurca 370 1.34 3.61 -21.66 18.71
doutpsh 201 1.16 1.84 -5.12 8.46
dlpersh 172 2.59 4.40 -17.35 32.41
dlphysh 202 3.05 4.46 -19.35 25.38
drat 238 0.55 14.36 -128.13 132.71
dlrend 602 6.21 10.24 -51.85 88.85
dltomsca 127 6.55 7.47 -3.10 37.10  

Note: Variables in light grey have less than 350 observations. 

 

Table 3: Baseline regressions 

(1) (2) (3) (4) (5) (6) (7) (8)

 Only constant Fixed country Fixed year Fixed both  Only constant Fixed country Fixed year Fixed both

dlgdppc 0.538*** 0.464*** 0.712*** 0.619*** 0.397*** 0.389*** 0.540*** 0.527***
(11.07) (8.934) (12.34) (9.492) (6.384) (4.710) (5.619) (6.196)

did 1.508*** 1.493*** 1.275*** 1.276*** 1.548*** 1.556*** 1.412*** 1.541***
(14.88) (14.73) (11.70) (11.66) (10.24) (7.284) (8.493) (7.816)

Observations 924 924 924 924 924 924 924 924
R-squared 0.245 0.284 0.327 0.358
p-val. vs.none 0.03 0.00 0.00

Ordinary Least Squares MM-estimations

 

Notes: t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4: EBA results 

 Avg. Min. Max. %sign. CDF(0)  Avg. Min. Max. %sign. CDF(0)

dlgdppc 0.72 -0.53 2.47 99.55 99.87 0.41 -0.29 0.80 80.93 97.15
did 1.37 0.63 2.51 99.87 100.00 1.36 0.08 2.36 98.20 100.00

ffsa 2.69 0.82 11.85 44.44 100.00 2.09 -2.08 8.03 27.78 97.22
dlbedsi 0.05 -0.01 0.16 6.80 99.03 0.08 -0.04 0.40 33.33 91.67
dunemp 0.38 -0.03 0.82 44.44 98.77 0.14 -0.18 0.45 2.78 80.56
dlrend -0.04 -0.12 0.01 45.68 96.30 0.03 -0.03 0.05 50.00 91.67
dfpr -0.52 -2.15 0.08 60.19 96.12 -0.02 -0.92 0.39 11.11 58.33
dlta 0.02 -0.07 0.06 60.49 95.06 0.06 0.02 0.09 97.22 100.00
dltobc 0.04 -0.02 0.07 25.93 95.06 0.00 -0.04 0.08 13.89 66.67
dgsh1 0.10 -0.05 0.29 5.83 94.17 0.26 0.13 0.38 88.89 100.00
dlle65 0.23 -0.28 0.57 42.68 93.90 0.17 -0.24 0.73 2.78 91.67
dtexmc -0.25 -0.36 0.14 86.42 93.83 -0.15 -0.30 0.08 72.22 94.44
ws -1.08 -2.97 3.13 23.75 93.75 -0.24 -2.68 1.42 13.89 80.56
po 0.44 -0.23 2.55 2.47 92.59 0.72 -0.35 2.28 19.44 88.89
dlnurca -0.07 -0.22 0.05 0.00 92.59 -0.05 -0.31 0.10 22.22 86.11
dpop80 -1.92 -5.32 3.61 1.23 87.65 0.40 -3.60 4.72 0.00 61.11
dldoctca -0.05 -0.78 0.11 11.65 85.44 0.04 -0.13 0.16 19.44 86.11
dlins1 0.01 -0.01 0.04 0.00 85.37 0.00 -0.06 0.03 5.56 58.33
gatekeep 0.49 -1.96 3.43 0.00 85.19 0.16 -1.23 1.96 2.78 66.67
dpop6579 0.46 -4.91 2.64 2.47 82.72 0.07 -2.00 1.65 2.78 66.67
dpuhes -0.12 -0.48 0.43 74.07 80.25 0.14 -0.14 0.74 30.56 86.11
mixedgp -1.32 -7.09 1.74 16.05 79.01 -0.46 -2.20 4.30 16.67 91.67
hcsyspc 0.23 -1.17 2.29 2.47 79.01 -0.09 -1.60 0.96 2.78 63.89
globalho 0.37 -2.08 2.38 0.00 75.31 -0.29 -2.38 1.15 2.78 83.33
capita -0.31 -5.80 21.83 23.16 75.08 -0.24 -1.65 4.07 5.56 88.89
dpop04 0.74 -3.14 9.17 6.17 74.07 -0.60 -3.39 5.10 8.33 80.56
hcsyspi -0.38 -2.33 1.61 3.70 69.14 -0.27 -2.33 0.35 11.11 75.00
dcovero 0.08 -0.16 1.44 10.68 66.99 0.12 -0.61 0.27 80.56 88.89
free 0.04 -2.87 2.05 1.23 61.73 0.06 -2.52 0.84 5.56 69.44
dmort 0.00 0.00 0.00 3.70 60.49 0.00 -0.01 0.00 8.33 72.22
caseho 0.15 -2.95 4.12 0.26 60.32 -0.15 -3.23 3.00 11.11 80.56
dlalcc 0.00 -0.12 0.28 33.01 60.19 0.00 -0.18 0.10 11.11 63.89
dlaccident 0.00 -0.04 0.10 2.91 57.28 -0.04 -0.08 0.02 91.67 97.22
dlgerd 0.00 -0.08 0.06 0.00 57.28 0.08 -0.01 0.12 77.78 97.22
dlhpi -0.03 -0.43 0.18 4.82 56.63 0.04 -0.20 0.27 33.33 72.22
ddp 0.10 -0.55 2.59 1.94 52.43 0.02 -0.25 0.76 0.00 69.44
copaydum -0.02 -2.44 1.35 0.00 51.46 -0.10 -2.40 0.61 2.78 58.33
dlbedsh 0.02 -0.07 0.24 8.74 50.49 0.02 -0.07 0.17 52.78 50.00

OLS regressions MM regressions

 

Notes: Each cell contains information on the estimated β-coefficients. The columns “Avg.”, 
“Min.” and “Max” report the average, minimum and maximum β-coefficients, respectively. 
The column “%sign.” reports the percentage of cases in which the estimated coefficient 
estimate is significant at the 10 percent level. The column “CDF(0)” reports the percentage of 
the cumulative distribution function lying on one side of zero. The OLS-results are based 
upon a total of 66’711 regressions. The MM-results are based upon 666 regressions. Values 
above 95% are highlighted in grey. 
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Table 5: Extended regression results 

(1) (2) (3) (4) (5) (6)

 Baseline Robust OLS Robust MM  Baseline Robust OLS Robust MM

dlgdppc 0.619*** 1.065*** 0.685*** 0.527*** 0.854*** 0.625***
(9.492) (5.432) (4.796) (6.196) (19.55) (4.326)

did 1.276*** 2.058*** 1.713*** 1.541*** 1.382*** 1.696***
(11.66) (6.156) (7.140) (7.816) (25.68) (9.585)

ffsa 0.620 4.212 0.831*** 2.776**
(0.497) (1.350) (5.387) (2.522)

dlbedsi 0.142** 0.278***
(2.100) (32.49)

dunemp 1.279*** 1.152***
(3.202) (15.45)

dlrend 0.0536** 0.0421***
(2.049) (19.25)

dfpr 0.391 -0.736***
(0.711) (-12.40)

dlta 0.0412 0.0450*** 0.0240*** 0.0543***
(1.659) (6.656) (4.162) (12.39)

dltobc 0.00362 0.0292**
(0.0926) (2.248)

dgsh1 -0.0578 0.202***
(-0.521) (3.858)

dlaccident 0.00979 -0.0715***
(0.677) (-7.164)

dlgerd -0.0164 -0.0522*
(-0.358) (-1.945)

Observations 924 136 259 924 136 259
R-squared 0.358 0.614 0.521

Ordinary Least Squares MM-estimations

 

Notes: t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Figures 
Figure 1: Outlying observations and bad leverage points 

  (a)    (b)    (c) 

Notes: The solid lines represent the OLS estimates including the unusual observation(s). The dotted 
lines represent the OLS estimates without the unusual observations A, B, or C. The dashed line 
represents the OLS estimate without observations C and D. 
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