
Stucki, Tobias; Woerter, Martin

Working Paper

Determinants of green innovation: The impact of internal
and external knowledge

KOF Working Papers, No. 314

Provided in Cooperation with:
KOF Swiss Economic Institute, ETH Zurich

Suggested Citation: Stucki, Tobias; Woerter, Martin (2012) : Determinants of green innovation: The
impact of internal and external knowledge, KOF Working Papers, No. 314, ETH Zurich, KOF Swiss
Economic Institute, Zurich,
https://doi.org/10.3929/ethz-a-007365407

This Version is available at:
https://hdl.handle.net/10419/80815

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3929/ethz-a-007365407%0A
https://hdl.handle.net/10419/80815
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


KOF Working Papers  

No. 314
September 2012

Determinants of Green Innovation: 
The Impact of Internal and External Knowledge

Tobias Stucki and Martin Woerter



ETH Zurich
KOF Swiss Economic Institute
WEH D 4
Weinbergstrasse 35
8092 Zurich
Switzerland

Phone +41 44 632 42 39
Fax +41 44 632 12 18
www.kof.ethz.ch
kof@kof.ethz.ch



 

Determinants of Green Innovation: The Impact of Internal 
and External Knowledge 

 

 

Tobias Stucki*, Martin Woerter** 

 

This version: September 2012 
 

 

Abstract. Based on a comprehensive data set comprising 13 countries, 22 industries and a period 
of 30 years we investigate the impact of internal and external knowledge pools of both green and 
‘other than green’ technologies on green patent activities. It turned out that the internal green 
knowledge stock is positively related to green patent activities with a considerably large marginal 
value. The country’s green knowledge stock and the green knowledge stock of the same industry 
in other countries are also positively related with industries’ green patent activities, although with 
a significantly lower marginal value. External ‘other than green’ knowledge stocks are negatively 
related with green inventions. The considerable greater marginal value for internal green 
knowledge stock indicates that a free-riding position on green technology investments of other 
industries in the same country or the same industry in other countries does not seem to be very 
promising in terms of green inventions. The negative marginal effect of external ‘other than 
green’ knowledge stocks and the positive marginal value of external green knowledge stocks 
indicate that country level policy measures to promote green knowledge formation would 
provide additional positive effects for green inventions on an industry level. 
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1 Introduction 

On the one hand, climate change increases the demand for green technologies. On the other hand, 

firms have low incentives to invest in green technologies as there is a ‘double externality 

problem’ (see, e.g., Beise and Rennings 2005, Faber and Frenken 2009, Hall and Helmers 2011). 

Firstly, due to the public goods nature of knowledge (see, e.g., Geroski 1995, Popp 2011) and 

due to financial market imperfections green technology investment decisions are complex and 

often linked with financial constraints. Secondly, because the greatest benefits from green 

innovation are likely to be public rather than private, the customers’ willingness to pay for these 

innovations is low. Accordingly, firms would only invest if the revenues outperform the costs of 

externalities. In fact, firms face not just the question whether it is profitable to innovate in green 

technologies (see Soltmann et al. 2012), but also when they should start to innovate. As the 

demand for green innovation is limited at the current stage and positive knowledge spillovers 

from green R&D activities of other firms and institutions can be expected, a firm probably 

prefers to wait with investments in green innovation. However, they also have to consider the 

costs of permanently lagging behind technologically or even miss the opportunity to enter the 

market before the gap to the technological frontier gets too large. Latecomers (also on an 

industry or country level) that stick to resource-wasting technologies and delay green 

investments run the risk to become and remain uncompetitive (see Porter and van der Linde 

1995). Later policy interventions could be costly and country growth effects are likely to be low 

for a longer transmission phase (see Acemoglu et al. 2012). Whether this prediction will be true 

is determined in large part by the extent of the innovation effects of available knowledge. For 

example it could be easier for a firm to technologically catch up, if it has already a well 

developed traditional knowledge base and if there are synergies with green knowledge.  

In the paper at hand we analyze the impact of different type of knowledge stocks on green 

innovation activities. We distinguish between internal and external stocks, and stocks of green 

and traditional (other than green) knowledge, respectively. Information about the size of the 



 

 

2 

effects of the different knowledge stocks should indicate the overall effect of different types of 

past innovation activities on current innovation activities and thus allow for conclusions about 

the future development. Accordingly, our study provides insights into the question weather it 

may be worth for a firm to wait until technologies mature or weather it should start immediately 

investing in green technologies, conditional on the internal and external technological knowledge 

currently available. 

So far, the impact of different knowledge stocks on green innovation is unclear. Most studies 

in empirical environmental economics that analyze the determinants of green innovation focus on 

the impact of environmental policy, so-called policy induced innovation (see Popp et al. 2009 for 

an overview). To the best of our knowledge, only the study of Aghion et al. (2011) analyzes the 

impact of available knowledge on current innovation activities. Based on firm-level data for the 

auto industry, they study the impact of firm knowledge stocks (dirty and clean) on current green 

innovation activities. Although their main focus is on politically induced innovation, these results 

allow at least some conclusions about the impact of internal knowledge on green patent 

applications.  

The study at hand is based on a broad set of industry-level patent data (panel). The use of 

aggregated patent data has several beneficial features. Firstly, it allows us to use the OECD Stan 

database to control for other than knowledge factors that are likely to be related with current 

innovation activities. Secondly, it allows us to generate a data set on inventions that covers the 

whole manufacturing sector (22 two and three digit industries), the most important countries of 

green invention (13 OECD countries that are responsible for 95% of all green patents and total 

patents worldwide) and a period of 30 years. Thus, we are able to consider a broad set of 

knowledge pools (internal, home country, foreign). This allows us to simultaneously analyze the 

effect of different knowledge pools on green innovation intensity and to draw conclusions about 

their relative importance for green innovation. Furthermore, the balanced data set enables us to 

control for correlated unobserved heterogeneity between the industries of the different countries. 
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The econometric estimations show the expected positive relationship between internal and 

external ‘green knowledge stocks’ on green patent applications. Furthermore, we find that 

external traditional knowledge stocks are negatively related with green patent applications, while 

the internal traditional knowledge stock is positively related. Internal green knowledge stock has 

a significantly greater marginal effect compared to other types of knowledge stocks. 

Consequently, we cannot reject our two hypotheses since we see that green knowledge does 

positively affect current green innovation activities (H1) and that the marginal effect of green 

knowledge on current green innovation activities is larger than the marginal effect of traditional 

knowledge (H2). These results indicate that it seems to be difficult to remain competitive in 

green technologies without timely accumulating internal green knowledge. Although effects from 

external green knowledge stocks are positively related with green patent activities of an industry, 

the effects are quite moderate and they cannot compensate the lack of internal green 

competences; evidence for the success of a wait-and-see attitude cannot be seen in the results.  

2 Conceptual background and hypotheses 

2.1 Sources of available knowledge 

There are different pools of knowledge that may have an effect on an industry’s current green 

innovation activities. In line with Mancusi (2008) we distinguish between internal knowledge 

and external knowledge. Internal knowledge refers to the knowledge stock within the industry in 

the home country. Furthermore, we distinguish two types of external knowledge, namely the 

knowledge accumulated in the other industries within the home country (‘country pool’) and 

knowledge accumulated in the same industry in foreign countries (‘industry pool’).1 As we 

                                                 
1 Actually knowledge accumulated in other industries in foreign countries (‘foreign inter-industry pool’) is another 
pool of knowledge that may affect an industry’s current green innovation activities. However, due to 
multicollinearity with the knowledge accumulated in the ‘country pool’, it is not possible to identify the two effects 
separately. As knowledge in the ‘industry pool’ is a more specific type of foreign knowledge, we decided to focus on 
the identification of the effect of foreign intra-industry knowledge. This decision is supported by the results of 
previous empirical studies that find significantly stronger effects of foreign intra-industry knowledge than for inter-
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analyze the impact on green innovation and not for innovation in general, the available pools of 

knowledge can furthermore be separated in green specific knowledge and pools related to 

traditional knowledge. Thus, we define a total of six different pools of knowledge. The aim of 

this paper is to identify the impact of these knowledge pools on current green innovation 

activities. 

2.2 Impact of available knowledge 

Knowledge is a semi public good (non-rival and non-excludable), since not all results from 

knowledge production activities are appropriable. At least some of the knowledge associated 

with the invention ‘spills over’ within firms or industries and also between firms or industries. 

Such ‘knowledge spillovers’ are very important for industries operating on advanced 

technologies like green technologies, since they do not only shape and direct technological 

progress but also affect market competition and the incentives for innovation activities (see 

Shapiro 2011). Consequently they are of considerable meaning for explaining and understanding 

economic processes. They influence innovation activities on several levels (e.g. Peri 2005, Cohen 

et al. 2002), contribute to the diffusion of new technologies (e.g. Jaffe 1989, Keller 2002), 

provide opportunities for entrepreneurial activities (e.g. Audretsch 1995, Audretsch and 

Lehmann 2005), increase productivity (e.g. Griliches 1992, Moretti 2004), and ultimately 

generate economic growth (e.g. Grossman and Helpman 1991). 

On the level of innovation activities spillovers from knowledge accumulation are essentially 

contributing to the innovativeness. On the firm level Blundell et al. (1995) or Crepon et al. 

(1998) identified a strong positive relationship between knowledge capital on the one hand, and 

patent activities or innovativeness on the other hand. Also on the industry level, Dosi (1984) 

convincingly showed for the semiconductor industry that innovation advantages are resulting 

                                                 
industry foreign knowledge on current innovation activities (see Malerba et al. 2007, Mancusi 2008). Malerba et al. 
(2007) even find that the total effect of foreign knowledge is almost explained by its intra-sectoral component. 
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from an accumulated knowledge stock. US companies early invested in semiconductors and 

gained a head start to the European and Japanese competitors and they stayed ahead of 

competitors even once the technology matured and its commercial perspectives became clearer. 

Knowledge does not only ‘spill over’ within firms or industries but also between firms or 

industries (see, e.g., Jaffe 1986, Jaffe et al. 1993). In line with this literature, we expect that the 

size of internally and externally available green knowledge is positively correlated with an 

industry’s current innovation activities in green technologies. 

Whether the knowledge comes from traditional technologies or from green technologies 

should not affect the direction of the effect. Since many green technologies are in a rather early 

phase of development and they are just about to penetrate markets, knowledge and experiences in 

other fields of advanced technologies are likely to play an important role in their development. It 

is likely that advanced knowledge in e.g. chemistry or engines increases the propensity of green 

research activities. This is especially true if there are ‘economies of scope’ in research activities 

(see Henderson and Cockburn 1996 for the pharmaceutical industry), i.e. synergies between 

different R&D projects or lines of research. For instance, an industry with knowledge and 

experiences in turbine development and production has capability advantages to diversify into 

steam turbine for biomass energy, solar energy, or energy from abatement. Or the chemical 

industry has knowledge advantages in order to make the dyeing process of clothes more 

environmental friendly (save water, energy, and abatement). The availability of knowledge 

related ‘economies of scope’ eases the diversification into green technology markets. Such 

industries can refer to internal knowledge and do not need to begin from scratch in order to 

develop green technologies. Consequently, we would expect to see a positive effect of expertise 

in other than green knowledge on green patent activities. In the following we refer to this positive 

effect of available knowledge, either through spillovers from green or other knowledge, as a 

‘resource effect’.  
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Since the work by Jaffe et al. (1993) empirical literature on spillovers is mostly based on 

patent citation data that allows to track the direction and intensity of spillovers. Empirical 

evidence for spillovers in environmental economics is scarce. At least some evidence is found in 

Popp (2006). Based on patent citation data Popp (2006) finds in the case of air pollution control 

patent activities that the relevant knowledge stock in foreign countries influences the 

technological activities in the United States and vice versa. This is especially true for early 

foreign patents. They serve as a building block for green innovations in other countries. 

While the spillover literature focuses on the impact of available knowledge on current 

innovation activities within a certain type of technology, we differ between two types of 

technologies, i.e. green and traditional technologies. Accordingly, in our framework the 

formation of green innovation implies not just the investment in knowledge formation, but also to 

shift resources into the development of a new (green) technology. Thus, the just mentioned 

positive ‘resource effect’ of available knowledge has a flip side. Available knowledge in one of 

the two technology fields (green vs. traditional) represents opportunity costs that may lead to 

‘path dependency’ and affect the decision between further investments in green technologies.  

Such ‘path dependency’ or technologically lock-in is a well known phenomenon in the history 

of technical change. The QWERTY keyboard (see David 1985), the US Ice-Industry, or the 

typewriter industry (see Utterback 1996) are famous examples of industries that did not change 

timely their technological basis. The German chemical industry after World War II is a further 

example that painfully shows the adverse consequences of a technological lock-in (see Stockes 

1994). Skills, education, and attitudes that have been developed under the traditional 

technological regime delay or even prevent a timely change to newer technologies. Also 

investment in new technologies can be hindered or delayed through ‘sunk’ investments in 

traditional technologies. Accordingly we expect that due to the large opportunity costs, firms 

with a large stock of green (traditional) patents will be more likely to invest in green (traditional) 

technologies today (see Aghion et al. 2011 for a similar argumentation).  
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Despite internal pressure, technological change may also be induced by pressure from 

different external sources such as regulators or customers. An increase in costs of important input 

factors (e.g. energy prices), or a policy induced increase in demand for green products is likely to 

foster green technology investments (see Newell et al. 1999, Berkhout 2002, Popp 2002). A firm 

in an ecologically friendly environment will find it more profitable to invest in green 

technologies. The availability of knowledge of a certain technology is a proxy for the 

characteristics of the environment. We thus assume that a firm in an environment with a large 

stock of green (traditional) patents will be more likely to invest in green (traditional) innovations 

today. 

Literature on opportunity costs in environmental economics mostly focuses on externally 

induced innovation, analyzing the impact of prices and environmental policy (see Popp et al. 

2009 for an overview). In line with our expectation, they find that both higher energy prices and 

changes in environmental policies do stimulate green innovations. 

In sum it is obvious that technical change is a quite complex issue and difficult to frame into 

clear hypotheses. However, it becomes clear from the literature that resource (spillover) effects 

and opportunity cost effects are important forces in order to understand green technology 

activities. Based on the argumentation above Table 1 arranges the relationship between resource 

(spillover) effects and opportunity cost effects on the one side and different types of knowledge 

capital on the other side. This should help to frame our hypotheses. 

 

Insert Table 1 about here 

 

We expect a positive resource effect for all types of knowledge and an ambiguous effect in 

terms of opportunity costs (Table 1). Opportunity costs are positive in the case of green capital 

stocks independent of their origin, and opportunity costs operate against green technology 

innovation in case of traditional capital stocks. Hence, the net effect is positive in case of green 
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knowledge capital and it is ambiguous in case of traditional knowledge capital. Consequently the 

hypotheses read like follows:  

 

H1:  Green knowledge does positively affect current green innovation activities. 

H2:  The marginal effect of green knowledge on current green innovation activities is larger 

 than the marginal effect of traditional knowledge. 

 

Empirical evidence for the impact of available knowledge on green innovation activity is 

rather scarce. In line with hypothesis 1, Aghion et al. (2011) find for the auto industry that the 

stock of green knowledge is positively related with the number of green patents. In line with 

hypothesis 2, they also find a stronger effect from green knowledge than from ‘dirty’ knowledge. 

Furthermore, they find that the size of a firm’s ‘dirty’ knowledge stock has a positive effect on 

clean innovation. Consequently, we would also assume for the investigation at hand that internal 

traditional capital accumulation is positively related with current green patent application. The 

second study related with our analysis is the work by Popp et al. (2011). Popp et al. (2011) do not 

analyze the impact of available knowledge on current innovation, but on investment in green 

technologies. In line with hypothesis 1 they detect a positive influence of world patent 

applications of certain green technologies on domestic investment activities, respectively. 

However, the effect of such technology-induced technical progress appears to be moderate.  

3 Description of the Data 

3.1 Measurement of green invention based on patent statistics 

We use patent statistics in order to measure green investment activities of an industry and to 

detect national and international spillovers. Patent activities are a good measure for innovation 

input (see Griliches 1990) and widely used for international comparisons. Although patent 

propensity varies across firm size, across industries (see Pakes and Griliches 1980 and Scherer 
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1983), and across countries (see Cohen et al. 2002), patents are strongly correlated with R&D 

expenditures and consequently can be considered as a good proxy for knowledge capital (see, 

e.g., Aghion et al. 2011). 

Since the work of Jaffe et al. (1993) most empirical literature on knowledge effects is also 

based on patent statistics. Statistical tests showed that patent citations serve as a measure for 

directed knowledge spillovers (see Jaffe et al. 2000). However, following the reasoning of 

Bottazzi and Peri (2003), such a ‘paper trail’ to track the direction of spillovers does not cover 

the whole amount of R&D externalities. Patent citations do not capture non-codified forms of 

knowledge, which are also an important part of externalities. 

For the paper at hand we use patents as a proxy for knowledge capital of an industry and we 

do not consider patent citations to track knowledge flows. Instead, we exploit the correlation 

between green and non-green capital stocks and green innovation activities to detect knowledge 

effects or R&D externalities within and between countries. Consequently we follow a ‘functional 

approach’ to detect R&D externalities. Such an approach has also been used by Bottazzi and Peri 

(2003) to measure research externalities in generating innovation, Coe and Helpman (1995) to 

detect the meaning of domestic and foreign R&D capital for total factor productivity, Keller 

(2002) to estimate the relationship between spillovers from R&D activities on a geographical 

basis and productivity, and Aghion et al. (2011) to measure internal innovation spillovers from 

green investments.  

For the paper at hand, patents have been collected in cooperation with the Swiss Federal 

Institute of Intellectual Property (IGE). Green patents have been selected following the OECD 

definition for environmental patents (see OECD 2012). The OECD definition comprises seven 

environmental areas, (a) general environmental management, (b) energy generation from 

renewable and non-fossil sources, (c) combustion technologies with mitigation potential, (d) 

technologies specific to climate change mitigation, (e) technologies with potential or indirect 

contribution to emission mitigation, (f) emission abatement and fuel efficiency in transportation 
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and (g) energy efficiency in buildings and lighting. In order to identify our proxy for the green 

knowledge base of an industry, further specifications and clarifications had to be made:  

a) In order to assign patents to countries one can choose the applicant’s home country or the 

inventor’s home country. We assigned patents according to the applicant’s address, since this 

information is compulsory for patent applications in all of the investigated countries, except the 

USA; there inventor’s information is compulsory. Hence, we used the inventor statistics for the 

USA. We collected both, the inventor’s information and the applicant’s information for Germany 

in order to have an idea about the robustness of our findings for the USA, assuming that if there 

are distortions than they are similar in all countries. In fact, we did not see any significant 

differences between the inventor’s and applicant’s statistic for Germany. Hence, we feel save to 

use the inventor’s statistic for the USA.  

b) We collected inventions (patent families) and not single patents. Patents were aggregated to 

inventions following the patent family definition of Thomson Reuters’ Derwent World Patents 

Index database [systematic]. Thereby we assure that important inventions are considered. 

Technologically less important patent applications are not taken into account, thereby ensuring 

homogeneity of the data. Moreover this has the advantage that distortions due to different 

granting procedures in countries and distortions due to different application cultures (USA: 

greater number of single applications for one invention compared to Europe) are attenuated. 

c) We only considered patent families that comprise at least one PCT (Patent Cooperation 

Treaty) application. Thus, our dataset only includes inventions with a considerable commercial 

potential.  

d) Patents (inventions) have been aggregated on an industry level, using the Schmoch et al. 

(2003) concordance scheme. Schmoch et al. (2003) links technological fields of the patent 

statistics with 22 two and three digit manufacturing industries. Aggregating patents on an 

industry level reduces potential problems with patent waves within a firm. Furthermore the usual 

problem of double counts of patents in different technology fields is attenuated as well; since the 



 

 

11 

probability is lower that one patent refers to technological fields that are linked with different 

industries.  

e) In sum we have patent (invention)2 data for 13 countries (Austria, Denmark, Finland, 

France, Germany, Ireland, Italy, Japan, the Netherlands, Sweden, Switzerland, the United 

Kingdom and the United States). These 13 countries make up for about 95% of all green patents 

as well as other patents worldwide. Furthermore, the data set includes 22 industries (NACE 

two/three digit level of whole manufacturing sector except ‘printing and publishing’ and 

‘recycling’) and a period of 30 years (1980 to 2009). To reduce the impact of the initial patents 

stock, regressions are only based on the period 1986-2009. This yields a data set of 7150 

observations. Because of missing values for the other model variables, the number of 

observations that could be used for econometric estimations is significantly lower. 

Figure 1 shows the aggregated development of green patents over time. In 1980, the beginning 

of our sample, only a few green inventions were registered. The number of green patents 

remained very low during five years. Between 1985 and 1995, the number slightly increased. The 

increase was, however, not disproportional compared with other patents. A sharp increase in the 

number of green patents can be observed since 1995. In 2009, 13397 green inventions were 

protected worldwide. While the share of green patents was mostly stable in the 80s and 90s, 

green inventions increased disproportionally since 2000. In 2009, nearly 9% of all patents were 

classified as green.  

 

Insert Figure 1 about here 

 

Detailed descriptive statistics for our disaggregated patent data is presented in Table 2. Most 

green inventions are patented in the industries ‘machinery’ (24%), ‘chemicals (excluding 

pharmaceuticals)’ (18%), ‘motor vehicles’ (12%) and ‘electrical machinery and apparatus’ 
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(11%). The two industries ‘motor vehicles’ and ‘electrical machinery and apparatus’ are at the 

same time the most green intensive industries. 

Among the 13 countries that are in our sample, the United States (32%), Japan (23%) and 

Germany (19%) have the highest numbers of green patents. Japan and Germany have also high 

shares of green patents. The highest shares, however, can be found in Denmark; green patents 

represent 12.4% of all patents in Denmark. 

 

Insert Table 2 about here 

 

3.2 OECD Stan data 

In order to control for important industry characteristics beside their stock of knowledge we 

accessed the OECD STAN database (OECD 2011). We used information on labor input (total 

employment) and the capital-stock (gross fixed capital formation, volumes (current price value)) 

of relevant industries for our estimations.  

4 Empirical test of hypotheses 

As stated by Jaffe and Palmer (1997) it is very difficult to specify a theoretically satisfying 

structural or reduced-form innovation equation at the industry level. Our model is based on a 

standard Cobb-Douglas production function for an industry j, in country i at time t: 

_ ,ijt ijt ijtGreen patents AL Kα β=  (1) 

where Green_patents is the number of green patents (inventions), L is the labor input and K the 

capital-stock, A is a constant. The parameters α and β are elasticities with respect to labor and 

physical capital respectively. In our model we use the industries’ total number of employees as a 

proxy for labor (L) and the gross fixed capital formation in real terms is used to proxy physical 

capital (K). Ideally, one would use data on the capital stock instead of capital formation. 

                                                 
2 Patents and inventions are used synonymously.  
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Unfortunately, this information is only available for a few countries in the STAN database. We 

thus use a flow variable as a proxy for physical capital. Both variables, L and K, should be 

positively related with innovation activity. 

Expressing (1) in logarithms yields 

ln( _ ) ln( ) ln( ) ln( ) .ijt ijt ijtGreen patents A L K= + α + β  (2) 

To analyze the impact of available knowledge on green innovation, we augment this 

specification with several variables that measure stocks in green patents. Internal_green_stock 

measures the patent stock of an industry i, in country j at time t. Country_green_stock is the stock 

in green patents accumulated in industries other than i in the home country. Foreign_green_stock 

is the green stock accumulated in the same industry in other countries than j. Following 

Cockburn and Griliches (1988) and Aghion et al. (2011), the patent stock is calculated using the 

perpetual inventory method. Following this method, the stock is defined as 

1_ (1 ) _ _ ,ijt ijt ijtGreen stock Green stock Green patentsδ −= − +  (3) 

where δ is the depreciation rate of R&D capital.3 According to most of the literature, we take δ to 

be equal to 15% (see Keller 2002, Aghion et al. 2011). However, we test the sensitivity of our 

results to other depreciation rates as well (see Table A.4). To capture potential effects of 

available knowledge in traditional technologies, we also control for the stocks of patents that are 

not classified as green (Other_stock). The stock of other patents is calculated in the same way as 

the stock of green patents. The augmented specification is given by: 

1 1 1

1 1

ln( _ ) ln( ) ln( ) ln( ) ln( _ _ )

ln( _ _ ) ln( _ _ )

ln( _ _ )

ijt ijt ijt ijt

ijt ijt

i

Green patents A L K Internal green stock

Country green stock Foreign green stock

Internal other stock

− − 1 −

2 − 3 −

1

= + α + β + δ

              + δ + δ

              + λ 1 1

1

ln( _ _ )

ln( _ _ ) ,

jt ijt

ijt t ij ijt

Country other stock

Foreign other stock Year

− 2 −

3 −

+ λ

              + λ + µ + η + ε

 (4) 

                                                 
3 The initial value of the patent stock is set at Green_stock1980/(δ+g), where g is the pre-1980 growth in patent stock. 
In line with Aghion et al. (2011) we assume g to be 15%. However, the influence of the initial stock should be small, 
as we have a lag of five years between the estimation period and the initial stock. 
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where δ and λ are the coefficients of knowledge stocks and ε is the stochastic error term. As 

patent variables can take on the value 0, we used ln(1+patents) to avoid problems with the 

logarithm (see Wooldridge 2002, p. 185). To deal with the potential problem of reverse causality 

the independent variables are introduced with a lag of one year. To control for correlated 

unobserved heterogeneity, we include country specific industry fixed-effects (η). Furthermore, 

we also include year fixed effects (Year) (see Table 3 for variable description). 

 

Insert Table 3 about here 

5 Estimation results 

5.1 Main results 

The main results are presented in Table 4. In column (1) and (2) we see the OLS log linear fixed-

effects estimations. Column (1) includes a control variable for the capital stock. In column (2) we 

see the same estimation without capital control, which doubles the number of observations from 

2926 to 5853 observations. Since the capital stock variable is insignificant in the model and the 

results are qualitatively the same, we do not further discuss the results of column (1). Column (3) 

shows the results for the fixed-effects Poisson model with robust standard errors as 

recommended by Allison and Waterman (2002) to correct for over-dispersion. Column (4) shows 

the negative binomial model with a pre-sample mean estimator like it was proposed by Blundell 

et al. (1995) in order to deal with fixed unobserved heterogeneity in the presence of lagged 

endogenous variables. In doing so we add the average level of patenting over the pre-sample 

period 1980-1985 for both, green and other patents (both in logs), as well as a binary variable 

that measures whether an industry has patent applications at all in the respective period (see, e.g., 

Mancusi 2008 or Aghion et al. 2011 for a similar approach). Column (5) presents a negative 

binomial model without pre-sample fixed-effects. 



 

 

15 

There are some differences if we compare the results of the OLS log linear fixed-effects 

estimator (column 2) with the negative binomial model with a pre-sample mean estimator 

(column 4). Here, we see a significant effect for ‘country green stock’ and ‘country other stock’ 

in the OLS model (column 2) and an insignificant effect in the negative binomial model (column 

4), respectively. However, when we compare the results of the two negative binomial models of 

column (4) and column (5) we see that there are hardly any differences between the two models.4 

Consequently, the differences between the OLS log linear fixed-effects estimator and the 

negative binomial model with a pre-sample mean estimator are not caused by the inclusion of the 

pre-sample fixed-effects, but due to the exclusion of the individual fixed-effects. There are only 

minor differences if we compare the results from the OLS log linear fixed-effects estimator 

(column 2) with the count data (Poisson) fixed-effects estimator (column 3); most importantly 

the ‘foreign other stock’ variable gets significant in the Poisson model. The signs of the 

coefficients are identical and even the relative size of the coefficients is quite similar independent 

of the applied model. Given these similar results and the fact that the coefficients in the OLS 

estimation can be interpreted as elasticities, we refer to the results in column (2) for what 

follows. 

The ‘internal green stock’, ‘country green stock’, and ‘foreign green stock’ are significantly 

positive related with green patent activities. This indicates positive knowledge spillovers not only 

from the internal green knowledge stock but also from a green technology environment in the 

country and from the same industry in other countries. Consequently we cannot reject hypothesis 

1; green knowledge does positively affect current green innovation activities. It is also 

remarkable that the marginal effect of the ‘internal green’ knowledge stock is significantly larger 

(more than twice) than the effect of ‘country green’ and ‘foreign green’ knowledge stocks, 

respectively.  

                                                 
4 The impact of the pre-sample fixed effects is even smaller when we increase the pre-sample period to ten years. 
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Table 4 column (2) also shows that ‘internal other stock’ is positively related to future green 

patent activities, which is in line with the findings of Aghion et al. (2011). This indicates that 

positive spillovers resulting from an accumulated knowledge stock other than green outweighs 

the negative effect resulting from technological lock-in or great opportunity costs. However, the 

marginal effect of ‘internal green stock’ is nearly three times greater than the marginal effect 

resulting from ‘internal other stock’. In contrast, our proxy for the ‘country other stock’ 

(significantly) and ‘foreign other stock’ (insignificantly) are negatively related to green patents. 

This indicates that a non-green technological environment hinders green patent activities of an 

industry. In this case the opportunity costs for investing in green activities are greater than 

possible positive spillovers (resource effect) resulting from technological know-how in other than 

green technological fields. Consequently, we cannot reject hypotheses 2; the marginal effect of 

green knowledge on current green innovation activities is larger than the marginal effect of 

traditional knowledge. The negative results for external knowledge is intuitively understandable 

if one considers the fact that the positive effect of internal knowledge in traditional technologies 

is moderate in our model, and that the positive spillover (resource) effects from internal 

knowledge are expected to be larger than the spillover effects from external knowledge (see, e.g., 

Keller 2002). 

5.2 Robustness tests 

We made comprehensive tests to proof the robustness of our main results presented in column (2) 

of Table 4. 

Estimates for alternative regression periods 

It cannot be fully excluded that the time window for estimating the initial stock might influence 

the regression results. In our main models (see Table 4) we have an initial stock period of five 

years, i.e. we calculate the stock values from 1980 onwards and estimate the models starting with 

the 1985 values of green patents (see Aghion et al. 2011 for a related procedure). Table A.3 
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provides a robustness test for the initial stock period. It turns out that the relative size of the 

coefficients and also the significance of the effects are robust if we increase the initial stock 

period. However, if we reduce the initial stock period (see Table A.3 column 1 and 2), the 

internal other stock variable gets insignificant. This result indicates that a longer initial stock 

period is required in order to distinguish the effects of ‘internal green stock’ from ‘internal other 

stock’. 

Alternative construction of the patent stock 

In our main models (Table 4) we applied a depreciation rate of 15% in order to calculate 

knowledge stocks. Table A.4 (column 1 and 2) presents the results for alternative depreciation 

rates of 10% and 30%. The results are relatively independent of the chosen depreciation rate. The 

coefficients are similar and directions of the effects are identical. Only the effect of internal other 

stock gets insignificant if we reduce the depreciation rate to 10%.  

Checking for outliers 

Outliers may bias the results in OLS estimations. Consequently we run our estimation excluding 

the top 1% of performers and the top 5% of the performers, respectively. The results are 

presented in Table A.4 column 3 and 4. We can see that our main results are not driven by 

outliers; neither the direction nor the significance of the effects change considerably. The 

strongest reduction in coefficient we see for ‘country green stock’, if we skip the top 5%. 

However, ‘country green stock’ still remains significant.5 

6 Conclusions 

Based on industry-level panel data the paper at hand investigates the meaning of green 

knowledge stock and ‘other than green’ knowledge stock for the green patent applications of an 

                                                 
5 Our main estimates presented in of Table 4 are based on 262 groups. To check for outliers we excluded all groups 
with an average clean or ‘other than green’ patent stock greater than or equal to the top 1% and 5% of the groups, 
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industry. The data allows us to distinguish between an industry’s internal knowledge stock, the 

knowledge stock of a country, and the knowledge stock of the same industry in other countries. 

Applying different econometric models and a number of robustness tests show that an industry’s 

internal green knowledge stock shows the largest positive elasticity. The elasticities of country 

green knowledge stock and the green knowledge stock of the same industry in other countries are 

also positively related with future green patent applications; however, their elasticities are 

significantly smaller. Turning to the effects of other than green knowledge stocks, we see a more 

ambiguous result. ‘Internal other knowledge stock’ is positively related with future green patent 

applications, although the elasticity is very moderate. ‘Country other knowledge stock’ and other 

than green knowledge stock of the same industry in other countries are negatively related with 

future green patent applications. These results emphasise the importance of the internal green 

knowledge base for green technological activities. Potential positive spillovers from other than 

green existing knowledge bases are moderate and clearly outweighed by negative opportunity 

cost effects. Consequently we cannot reject our two hypotheses. We see that green knowledge 

does positively affect current green innovation activities (H1) and that the marginal effect of 

green knowledge on current green innovation activities is larger than the marginal effect of 

traditional knowledge (H2).  

These results indicate that early knowledge accumulation is likely to payoff in terms of patent 

applications or innovation performance. The marginal effect of internal green knowledge is much 

larger than the marginal effects of external green knowledge stocks. Consequently a wait-and-see 

position of an industry is likely to lead to a relatively moderate green innovation performance, 

since a lack of internal green knowledge stock can hardly be compensated by positive spillovers 

from other industries in the same country or the same industry in other countries. A free-riding 

                                                 
respectively. All in all we thus dropped three and 13 groups that account for 1.2% and 5.0% of the observations, 
respectively. 
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position on green technology investments of other industries or the same industry in other 

countries does not seem to be very promising.  

Green technology activities on a country level are positively related with industry level green 

patent applications. Moreover we see a considerable negative effect of other than green 

knowledge stocks on a country level on industry’s green patent applications. This result indicates 

considerable opportunity costs for green research activities. However, the opportunity costs could 

be lowered through country level policy measures to create a more green research friendly 

environment. This implies that research activities in green technologies become more attractive, 

since profit expectations would be improved. Furthermore, increasing green knowledge stocks on 

a country level would create positive spillovers for green patent applications on an industry level. 

Consequently, we would also perceive an indirect positive effect from improving the framework 

conditions on a country level. Given the moderate impact of foreign green stock on industry’s 

green patent applications a free-riding position on a country level would be also questionable if 

green technology development has some priority.  
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Table 1: Expected direction of the knowledge effects by the different sources of knowledge 

  Internal knowledge Country knowledge Foreign knowledge 
  Green Traditional Green Traditional Green Traditional 

Resource effect: + + + + + + 
Opportunity cost effect: + - + - + - 
Net effect: + ~ + ~ + ~ 
 

 

 

 

Figure 1: Development of green patents worldwide, 1980-2009 
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Notes: To reduce the problem of double counts of patents, this information is based on world-aggregated data and 
is not restricted to countries and industries that are in our estimation sample. 
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Table 2: Number of green and other patents (inventions) by industry and country 

Period 1980-2009 
Number of other 

patents 
Number of 

green patents 

Relative share 
in total green 

patents 

Share of green  
patents in total 

patents 
Industry        
Food, beverages 37'991 1'674 0.65% 4.4% 
Tobacco products 2'336 69 0.03% 3.0% 
Textiles 16'147 1'073 0.42% 6.6% 
Wearing apparel 5'751 75 0.03% 1.3% 
Leather articles 3'682 19 0.01% 0.5% 
Wood products 4'607 257 0.10% 5.6% 
Paper 21'521 1'402 0.54% 6.5% 
Petroleum products, nuclear fuel 17'082 3'539 1.37% 20.7% 
Rubber and plastics products 102'379 6'518 2.53% 6.4% 
Non-metallic mineral products 82'249 8'998 3.49% 10.9% 
Basic metals 42'518 6'906 2.68% 16.2% 
Fabricated metal products 62'002 8'120 3.15% 13.1% 
Machinery 422'498 61'860 23.97% 14.6% 
Office machinery and computers 272'259 5'286 2.05% 1.9% 
Electrical machinery and apparatus 96'680 28'546 11.06% 29.5% 
Radio, television and communication equipment 417'488 23'782 9.22% 5.7% 
Medical, precision and optical instruments 467'133 14'950 5.79% 3.2% 
Motor vehicles 91'038 29'949 11.61% 32.9% 
Other transport equipment 25'800 2'502 0.97% 9.7% 
Furniture, consumer goods 47'429 567 0.22% 1.2% 
Chemicals (excluding pharmaceuticals) 301'877 46'550 18.04% 15.4% 
Pharmaceuticals 324'108 5'391 2.09% 1.7% 

Country         
Austria 30'593 3'311 1.28% 10.8% 
Switzerland 93'498 5'720 2.22% 6.1% 
Germany 414'160 49'795 19.30% 12.0% 
Denmark 30'970 3'825 1.48% 12.4% 
Finland 43'313 3'004 1.16% 6.9% 
France 167'953 14'723 5.71% 8.8% 
United Kingdom 194'920 14'829 5.75% 7.6% 
Ireland 10'929 693 0.27% 6.3% 
Italy 58'198 4'314 1.67% 7.4% 
Japan 490'415 59'595 23.10% 12.2% 
Netherlands 116'486 9'306 3.61% 8.0% 
Sweden 93'741 6'397 2.48% 6.8% 
United States 1'119'399 82'521 31.98% 7.4% 

 
Notes: These statistics are based on 30 cross-sections, 13 countries and 22 industries (total of 8580 observations); the relative 
share in total green patents is calculated as the share of an industry’s/country’s number of green patents relative to the number of 
all green patents in our sample (sum of green patents over all industries/countries in the sample); the share of green patents in 
total patents is defined as an industry’s/ country’s share of green patents relative to its total number of patents (green patents and 
other patents). 
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Table 3: Variable definition and measurement 

Variable Definition/measurement Source 
Dependent variable     

Green_patentsijt Number of green patents 
own 
calculations 

Independent variable     
L ijt Number of persons engaged (total employment) OECD STAN 

K ijt 
Gross fixed capital formation, volumes (current price 
value) 

OECD STAN 

Internal_green_stockijt Stock of green patents in industry i in country j 
own 
calculations 

Country_green_stockijt 
Stock of green patents in industries other than i in 
the home country j  

own 
calculations 

Foreign_green_stockijt 
Stock of green patents accumulated in industry i in 
countries other than j  

own 
calculations 

Internal_other_stockijt 
Stock of patents that are not classified as green in 
industry i in country j 

own 
calculations 

Country_other_stockijt 
Stock of patents that are not classified as green in 
industries other than i in the home country j  

own 
calculations 

Foreign_other_stockijt 
Stock of patents that are not classified as green 
accumulated in industry i in countries other than j  

own 
calculations 
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Table 4: Estimation results 

  (1) (2) (3) (4) (5) 

Dependent variable ln(Green_patents)ijt  ln(Green_patents)ijt  Green_patentsijt  Green_patentsijt  Green_patentsijt  

Estimation method 
OLS log linear 
fixed-effects 
regression 

OLS log linear 
fixed-effects 
regression 

Fixed-effects 
Poisson 

regression 

Negative 
Binomial pre-
sample mean 

estimator 

Negative 
Binomial 
regression 

Period 1986-2009 1986-2009 1986-2009 1986-2009 1986-2009 

ln(L) ijt-1 .17865*** .12403** .31257*** .06947*** .06648*** 

  (.0653) (.05176) (.09491) (.01942) (.02004) 

ln(K) ijt-1 .03076     

  (.02231)     

ln(Internal_green_stock)ijt-1 .4116*** .58207*** .62047*** .75159*** .73738*** 

  (.04558) (.02889) (.07983) (.03151) (.03023) 

ln(Country_green_stock)ijt-1 .1122 .24049*** .39299*** .10258 .11629 

  (.10672) (.07774) (.13661) (.08427) (.08308) 

ln(Foreign_green_stock)ijt-1 .35862*** .19496*** .38123** .2085*** .22025*** 

  (.07204) (.04611) (.15775) (.07927) (.07856) 

ln(Internal_other_stock)ijt-1 .0863 .07367* .26311** .16557*** .15139*** 

  (.06033) (.03891) (.11866) (.03724) (.03375) 

ln(Country_other_stock)ijt-1 .09922 -.42895*** -.39683* -.05453 -.03807 

  (.15064) (.0986) (.22064) (.12932) (.12933) 

ln(Foreign_other_stock)ijt-1 -.02646 -.06231 -.47793*** -.21378** -.1912** 

  (.12657) (.09281) (.17856) (.09337) (.09196) 

Constant -5.0206*** -.10172  -2.0347** -2.2145*** 

  (1.3699) (.95507)  (.83271) (.81713) 

Year fixed effects yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes no no 

Country fixed effects no no no yes yes 

Industry fixed effects no no no yes yes 

Pre-sample fixed effects no no no yes no 

N 2926 5853 5527 5853 5853 

Groups 166 262 247 262 262 

F 44.97*** 96.41***    

Wald chi2   31891.02*** 93601.19*** 83584.20*** 

R2 within 0.55 0.65    

Rho 0.66 0.52    

F test of rho=0 7.65*** 7.53***    

Hausman chi2 100.57*** 120.75***    

LogLikelihood   -15161.07 -13864.70 -13873.28 

Over-dispersion (alpha)    0.07*** 0.07*** 
 

Notes: see Table 3 for the variable definitions; Columns (1), (2), (4) and (5): standard errors that are robust to 
heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in brackets under the 
coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. F test and 
Hausman test are based on estimates without robust standard errors; Column (3): In line with Allison and Waterman 
(2002) we used robust standard errors to correct for overdispersion; Column (4): Pre-sample mean scaling approach 
proposed by Blundell et al. (1995) was used to account for fixed unobserved heterogeneity in the propensity to patent 
in the presence of lagged endogenous variables. Likelihood ratio test that alpha equals zero is based on estimates 
without robust standard errors. 
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Table A.1: Correlation matrix (based on model (2) of Table 4; 5853 observations) 

  ln(Green_patents)ijt ln(L)ijt-1 ln(Internal_green_stock)ijt-1 ln(Country_green_stock)ijt-1 ln(Foreign_green_stock)ijt-1 ln(Internal_other_stock)ijt-1 ln(Country_other_stock)ijt-1 

ln(L) ijt-1 0.54              

ln(Internal_green_stock)ijt-1 0.94  0.54        

ln(Country_green_stock)ijt-1 0.55  0.43  0.60       

ln(Foreign_green_stock)ijt-1 0.70  0.21  0.77  0.21      

ln(Internal_other_stock)ijt-1 0.83  0.56  0.89  0.70  0.69     

ln(Country_other_stock)ijt-1 0.56  0.45  0.61  0.99  0.23  0.70    

ln(Foreign_other_stock)ijt-1 0.62  0.15  0.68  0.26  0.90  0.76  0.27  

 
 
 
 
 

Table A.2: Descriptive statistics (based on model (2) of Table 4; 5853 observations) 

Variable Mean Std. Dev. Min Max 
Dependent variable         
ln(Green_patents)ijt  1.85  1.75  0 7.50  
Independent variable         
ln(L) ijt-1 10.78  1.80  4.61  14.40  
ln(Internal_green_stock)ijt-1 2.79  2.09  0 9.05  
ln(Country_green_stock)ijt-1 6.70  1.81  0.48  10.48  
ln(Foreign_green_stock)ijt-1 5.75  2.28  0 10.24  
ln(Internal_other_stock)ijt-1 5.21  2.25  0 11.36  
ln(Country_other_stock)ijt-1 9.15  1.78  3.02  13.03  
ln(Foreign_other_stock)ijt-1 8.53  1.85  2.90  12.19  
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Table A.3: Estimates of model (2) of Table 4 for alternative time windows 

  (1) (2) (3) (4) (5) (6) 

Dependent variable ln(Green_patents)ijt ln(Green_patents)ijt ln(Green_patents)ijt ln(Green_patents)ijt ln(Green_patents)ijt ln(Green_patents)ijt 

Estimation method 
OLS log linear fixed- 

effects regression 
OLS log linear fixed-

effects regression 
OLS log linear fixed-

effects regression 
OLS log linear fixed-

effects regression 
OLS log linear fixed-

effects regression 
OLS log linear fixed-

effects regression 

Period 1984-2009 1985-2009 1986-2009 1988-2009 1989-2009 1990-2009 

ln(L) ijt-1 .13685*** .12556** .12403** .13218** .13633** .13498**  
  (.05009) (.0502) (.05176) (.05393) (.0566) (.05947)    

ln(Internal_green_stock)ijt-1 .60626*** .59486*** .58207*** .54591*** .52525*** .46676*** 
  (.02724) (.02804) (.02889) (.03073) (.03219) (.03492)    

ln(Country_green_stock)ijt-1 .2047*** .22877*** .24049*** .24264*** .21497*** .19928**  
  (.07527) (.07723) (.07774) (.07611) (.07755) (.07694)    

ln(Foreign_green_stock)ijt-1 .16316*** .18653*** .19496*** .2071*** .20982*** .22804*** 
  (.04179) (.04357) (.04611) (.04993) (.05226) (.05473)    

ln(Internal_other_stock)ijt-1 .04897 .05634 .07367* .08996** .10999** .13574*** 
  (.03483) (.03676) (.03891) (.04411) (.04609) (.05191)    

ln(Country_other_stock)ijt-1 -.39006*** -.41406*** -.42895*** -.40194*** -.37121*** -.27681**  
  (.09294) (.09638) (.0986) (.09824) (.10547) (.11301)    

ln(Foreign_other_stock)ijt-1 -.02489 -.04458 -.06231 -.07938 -.07992 -.06302    
  (.08469) (.08843) (.09281) (.1079) (.11614) (.13456)    

Constant -.45043 -.14137 -.10172 -.20787 -.37225 -1.1219    
  (.86759) (.90322) (.95507) (1.057) (1.1658) (1.3862)    

Year fixed effects yes yes yes yes yes yes 
Country specific industry fixed 
effects 

yes yes yes yes yes yes 

N 6239 6046 5853 5458 5247 4825    
Groups 262 262 262 262 262 262 
F 99.02*** 99.57*** 96.41*** 84.17*** 82.09*** 66.95*** 

R2 within 0.68 0.66 0.65 0.61 0.59 0.53    
Rho 0.49 0.51 0.52 0.52 0.53 0.53 

 
Notes: see Table 3 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in 
brackets under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. 
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Table A.4: Alternative estimates of model (2) of Table 4 

  (1) (2) (3) (4) 
Dependent variable ln(Green_patents)ijt  ln(Green_patents)ijt  ln(Green_patents)ijt  ln(Green_patents)ijt  
Estimation method OLS log linear fixed-effects regression OLS log linear fixed-effects regression OLS log linear fixed-effects regression OLS log linear fixed-effects regression 
Period 1986-2009 1986-2009 1986-2009 1986-2009 
Robustness test Depreciation rate=10% Depreciation rate=30% Checking for outliers: drop top 1% Checking for outliers: drop top 5% 
ln(L) ijt-1 .12852** .11318** .12432** .12652**  
  (.05625) (.04476) (.0517) (.05052)    
ln(Internal_green_stock)ijt-1 .5793*** .57424*** .57579*** .54868*** 
  (.03135) (.02625) (.02916) (.02865)    
ln(Country_green_stock)ijt-1 .22144** .20371*** .22895*** .14213*   
  (.09397) (.05361) (.07805) (.0734)    
ln(Foreign_green_stock)ijt-1 .21977*** .15393*** .19869*** .18423*** 
  (.0555) (.03458) (.04619) (.04627)    
ln(Internal_other_stock)ijt-1 .06041 .09688*** .07516* .08664**  
  (.04422) (.03049) (.03909) (.03859)    
ln(Country_other_stock)ijt-1 -.42871*** -.32017*** -.41746*** -.31909*** 
  (.12584) (.06128) (.09916) (.09446)    
ln(Foreign_other_stock)ijt-1 -.04541 -.05894 -.04977 -.05404    
  (.10001) (.08008) (.09388) (.09705)    
Constant -.28851 -.36834 -.22981 -.46072    
  (1.0974) (.78155) (.95283) (.95298)    
Year fixed effects yes yes yes yes 
Country specific industry fixed effects yes yes yes yes 
N 5853 5853 5781 5560    
Groups 262 262 259 249 
F 39.06*** 132.51*** 92.81*** 81.99*** 
R2 within 0.54 0.67 0.65 0.62    
Rho 0.57 0.41 0.52 0.48 

 
Notes: see Table 3 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in 
brackets under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. 
 


