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Abstract 

We develop a finite-sample procedure to test for mean-variance efficiency and spanning 
without imposing any parametric assumptions on the distribution of model disturbances. 
In so doing, we provide an exact distribution-free method to test uniform linear 
restrictions in multivariate linear regression models. The framework allows for unknown 
forms of non-normalities, and time-varying conditional variances and covariances among 
the model disturbances. We derive exact bounds on the null distribution of joint F 
statistics in order to deal with the presence of nuisance parameters, and we show how to 
implement the resulting generalized non-parametric bounds tests with Monte Carlo 
resampling techniques. In sharp contrast to the usual tests that are not computable when 
the number of test assets is too large, the power of the new test procedure potentially 
increases along both the time and cross-sectional dimensions. 

JEL classification: C12, C15, C33, G11, G12 
Bank classification: Econometric and statistical methods; Asset pricing; Financial 
markets  

Résumé 

Les auteurs élaborent une procédure permettant de tester, en échantillon fini, si un 
portefeuille est efficient dans le plan moyenne-variance et si son efficience peut être 
améliorée par l’addition d’actifs sans qu’il soit nécessaire de fixer par hypothèse la 
distribution des erreurs du modèle. Leur méthode non paramétrique peut servir à tester de 
façon exacte des restrictions uniformes linéaires dans le cadre de modèles de régression 
linéaires multivariés. La procédure autorise des formes inconnues de distribution autres 
que la loi normale ainsi que la variabilité dans le temps des variances et covariances 
conditionnelles des erreurs. Les auteurs calculent des bornes exactes pour la distribution 
conjointe des statistiques de Fisher sous l’hypothèse nulle en présence de paramètres de 
nuisance. Ils montrent aussi comment mettre en œuvre, au moyen de techniques de 
rééchantillonnage à la Monte-Carlo, les tests de bornes non paramétriques généralisés qui 
en résultent. La puissance de la nouvelle procédure peut s’accroître avec l’allongement de 
la série temporelle et la hausse du nombre des actifs. Cette propriété tranche avec les tests 
habituels, qui deviennent inexécutables si le nombre d’actifs est trop élevé. 

Classification JEL : C12, C15, C33, G11, G12 
Classification de la Banque : Méthodes économétriques et statistiques; Évaluation des 
prix des actifs; Marchés financiers 

 



Non-technical summary

Mean-variance analysis plays an important role in modern investment theory as it provides a simple

and intuitive basis for optimal portfolio allocation. In this framework, the merits of alternative

portfolios are compared in terms of their expected return and variance of return. The optimal

solution to the portfolio allocation problem implies that the investor holds a mean-variance efficient

portfolio; i.e., a portfolio with the lowest variance for a given expected return, or more appropriately,

with the highest expected return for a given level of variance. The mean-variance analysis framework

also leads to the derivation of the well-known capital asset pricing model (CAPM) of Sharpe (1964)

and Lintner (1965).

Testing whether a portfolio is mean-variance efficient is therefore important for evaluating port-

folio performance and assessing the validity of linear asset pricing models, including the CAPM

and the more general Arbitrage Pricing Theory (APT) of Ross (1976), which also implies that a

certain benchmark portfolio should be mean-variance efficient. Another related but more stringent

hypothesis with multiple benchmark portfolios is that of mean-variance spanning. It states that the

minimum variance frontier of the benchmark portfolios coincides with that of the benchmark port-

folios plus the test assets. When spanning holds, there are no gains from portfolio diversification

beyond the benchmark assets.

In this paper we develop a new finite-sample procedure to test for mean-variance efficiency and

spanning. Unlike the usual tests, our statistical framework leaves open the possibility of unknown

forms of time-varying non-normalities and many other distribution heterogeneities among the model

disturbances, such as time-varying conditional variances and covariances. Moreover, the usual tests

are not computable when the number of test assets exceeds the number of time-series observations.

Such situations occur naturally when one wishes to test an asset pricing model over a relatively

short subperiod owing to concerns about parameter stability. In contrast, the new test procedure

remains applicable even in these situations and we show that its power to detect departures from

the null hypothesis potentially increases along both the time and cross-sectional dimensions.
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1 Introduction

When performing mean-variance analysis, the merits of alternative portfolios are compared in

terms of their expected return and variance of return. In this framework, a benchmark portfolio

of assets is said to be mean-variance efficient with respect to a given set of test assets if it is not

possible to combine it with the test assets to obtain another portfolio with the same variance as

the benchmark portfolio, but a higher expected return. With multiple benchmark portfolios, the

question becomes whether some combination of them is efficient. This framework provides a basis

for optimal portfolio allocation and also paves the way for the derivation of the well-known capital

asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965). Testing whether a portfolio is

mean-variance efficient is therefore important for evaluating portfolio performance and assessing

the validity of linear asset pricing models, including the CAPM and the more general Arbitrage

Pricing Theory (APT) of Ross (1976), which also implies that a certain benchmark portfolio should

be mean-variance efficient.

A more stringent hypothesis is that of mean-variance spanning, which states that the minimum-

variance frontier of the benchmark portfolios plus the test assets coincides with the frontier of the

benchmark portfolios only; see DeRoon and Nijman (2001) for a survey. When spanning holds, the

addition of the new assets does not improve the efficiency frontier for a mean-variance optimizing

investor. This means that the extra assets are not worth holding, either long or short (Cheung

et al., 2009). See Sentana (2009) for a recent survey of mean-variance efficiency tests and Kan and

Zhou (2012) for more on spanning tests.

The most prominent tests of these hypotheses are those by Gibbons et al. (1989) (GRS) in

the case of mean-variance efficiency, and by Huberman and Kandel (1987) (HK) for the spanning

hypothesis. These tests take the form of either likelihood ratio (LR) tests or system-wide F tests

conducted within a multivariate linear regression (MLR) model, where the number of equations

in the system equals the number of test assets. The CAPM and APT are single-period models,

so in order to test their implications it is necessary to make an assumption concerning the time-
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series behavior of returns. The exact, finite-sample distributional theory for the GRS and HK

tests rests on the assumption that the MLR model disturbances are independent and identically

distributed (i.i.d.) each period according to a multivariate normal distribution. This assumption

can be questionable when dealing with financial asset returns, since there has long been ample

evidence that financial returns exhibit non-normalities; see, for example, Fama (1965), Blattberg

and Gonedes (1974), Affleck-Graves and McDonald (1989), and Zhou (1993). Beaulieu et al. (2007,

2010) (BDK) extend the GRS and HK approaches for testing mean-variance efficiency and spanning.

Their simulation-based procedure does not necessarily assume normality, but it does nevertheless

require that the disturbance distribution be parametrically specified, at least up to a finite number

of unknown nuisance parameters (e.g., Student-t with unknown degrees of freedom). Also, any

procedure (e.g., GRS, HK, BDK) based on standard estimates of the disturbance covariance matrix

requires that the size of the cross-section, N , be less than that of the time series, T , in order to

avoid singularities and hence be computable.

In this paper, we extend the ideas of Gungor and Luger (2009, 2013) to obtain a finite-sample

procedure to test mean-variance efficiency and spanning that relaxes four restrictions of the GRS

and HK tests: (i) the assumption of independent disturbances, (ii) the assumption of identically

distributed disturbances, (iii) the assumption of normally distributed disturbances, and (iv) the

restriction on the number of test assets. Our approach is based on F statistics computed in turn

for each equation of the MLR model and thus remains applicable no matter the number N of

included equations. This idea of using equation-by-equation statistics that leave aside the effects

of disturbance covariances follows Affleck-Graves and McDonald (1990) and Hwang and Satchell

(2012). We propose different ways of combining the resulting N statistics, and we then derive

exact bounds around the unknown null distribution of the aggregate F statistic in order to deal

with the presence of nuisance parameters that arise in our statistical framework. In so doing, we

provide a new method to test uniform (within equation) linear restrictions in MLR models, of which

the efficiency and spanning hypotheses are special cases. The resulting generalized bounds tests
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bear resemblance to the well-known test of Durbin and Watson (1950, 1951) for autocorrelated

disturbances in regression models.

The developed procedure rests on a multivariate conditional symmetry assumption for the

MLR model disturbances, which includes the multivariate normal distribution assumed by GRS

and HK. In fact, the maintained symmetry condition encompasses the entire class of elliptically

symmetric distributions, which play a very important role in mean-variance analysis because they

guarantee full compatibility with expected utility maximization regardless of investor preferences;

see Chamberlain (1983), Owen and Rabinovitch (1983), and Berk (1997). Unlike Gungor and

Luger (2009, 2013), this framework also leaves open the possibility of unknown forms of time-

varying conditional non-normalities and other distribution heterogeneities, such as time-varying

conditional covariance structures. Many popular models (e.g., multivariate GARCH and stochastic

volatility models with symmetrically distributed innovations) are compatible with our statistical

framework. The null distribution of the equation-by-equation F statistics is characterized by a sign-

permutation principle which preserves the cross-sectional covariance structure among the model

disturbances. We rely on the Monte Carlo resampling techniques of Dwass (1957), Barnard (1963),

and Birnbaum (1974) to obtain computationally inexpensive and yet exact p-values, no matter the

sample size; see Dufour and Khalaf (2001) for a survey of Monte Carlo tests in econometrics. In

sharp contrast to the GRS and HK tests that are not computable when N > T , the power of the

proposed test procedure potentially increases with both T and N .

Pesaran and Yamagata (2012) (PY) also develop (asymptotic) tests of the mean-variance effi-

ciency hypothesis that can be applied when N > T under the assumption that the MLR model

disturbances are i.i.d. over time. Similar to our approach, the PY tests use an aggregation of

t statistics computed equation by equation. In order to deal with the presence of a non-trivial

cross-sectional correlation structure, the PY test statistic is scaled by a threshold estimator of

the average squares of pairwise disturbance correlations. The theory underlying the use of this

threshold estimator nevertheless places certain restrictions on the allowable disturbance correla-
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tions. Specifically, it assumes weakly and sparsely correlated disturbances. So not surprisingly, our

simulation experiments show that the asymptotically standard normal PY test has better power

than ours when the model disturbances are uncorrelated in the cross-section. But as the degree

of cross-sectional disturbance correlation increases (and whether the correlation structure is time-

varying or not), the proposed test procedure does better than the PY test. Moreover, the PY

approach based on t statistics is specifically tailored to the mean-variance efficiency hypothesis; it

does not yield a general testing procedure for any MLR restriction. This leaves our new tests as

the only ones available to test the mean-variance spanning hypothesis or any other uniform linear

restrictions in MLR models when N > T .

It is important to note that large N, small T situations are quite common in empirical finance

applications. Indeed, it is a usual practice to test asset pricing models over relatively short sub-

periods owing to concerns about parameter stability; see Campbell et al. (1997, Ch. 5), Gungor

and Luger (2009, 2013), Ray et al. (2009), and Pesaran and Yamagata (2012) for examples. If

N > T , one may ask: “Why not form portfolios to decrease the number of test assets?” Since Roll

(1977), it has long been recognized that portfolio groupings can result in a loss of information about

the cross-sectional behavior of individual stocks. Specifically, individual asset deviations from the

pricing model can cancel out in the formation of portfolios, thereby destroying test power. As Lo

and MacKinlay (1990) explain, the selection of assets to be included in a given portfolio is almost

never at random, but is often based on some of the stock’s empirical characteristics such as the

market value of the companies’ equity. This way of sorting stocks into groups based on variables

that are correlated with returns is a questionable practice, since it favors a rejection of the asset

pricing model under consideration. Liang (2000) argues that even when the sort is based on a

variable estimated using prior data, measurement error in this variable can also lead to a spurious

rejection. If anything then, it seems more natural to try to increase the number of test assets in

order to boost the probability of rejecting the null hypothesis when it is false. Indeed, an expansion

of the investment universe should help detect violations of the null hypothesis, provided of course
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that more informative test assets get included in the MLR model.

The paper is organized as follows. In section 2 we formally introduce the mean-variance effi-

ciency and spanning hypotheses along with the exact GRS and HK tests. In section 3 we develop

our test procedure in the general MLR context. Section 4 reports the results of our simulation study

comparing the performance of the new procedure with the GRS and PY tests of mean-variance ef-

ficiency, and to the HK test of mean-variance spanning. Section 5 provides an illustrative empirical

application with a large number of individual stocks as test assets, and section 6 concludes.

2 Hypotheses and exact tests

Consider an investment universe comprising a risk-free asset, K portfolios of risky assets and an

additional set of N risky assets. We are interested in the relation between the minimum-variance

frontier spanned by the K benchmark portfolios and the frontier of the N + K assets. At time

t, the risk-free return is denoted by rft, the returns on the K benchmark portfolios are denoted

by rKt and the returns on the other N test assets are denoted by rt. Correspondingly, the time-t

excess returns are denoted by zt = rt − rft and zKt = rKt − rft.

2.1 Mean-variance efficiency

Suppose the excess returns zt are described by the following model:

zt = a + βzKt + εt, (1)

where a is an N -vector of intercepts (or alphas), β is an N×K matrix of linear regression coefficients

(or betas) and εt is an N -vector of model disturbances such that E[εt | zKt] = 0 and E[εtε
′
t] = Σ.

If a portfolio of the K benchmark portfolios is mean-variance efficient (i.e., it minimizes variance

for a given level of expected return), then E[zt] = βE[zKt]. These N conditions can be assessed

by testing the null hypothesis:

HE : a = 0, (2)
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in the context of model (1). Observe that forming P portfolios of the test assets with weights ωp

to deal with large N amounts to testing Hp
0 : ω′pa = 0, for p = 1, ..., P , as opposed to HE in (2). It

is clear, however, that a = 0 implies ω′pa = 0, but not vice versa. Indeed, Hp
0 may hold even if HE

is false. Gungor and Luger (2013) use a split-sample technique to formalize this approach without

introducing any of the data-snooping size distortions (i.e., the appearance of statistical significance

when the null hypothesis is true) discussed in Lo and MacKinlay (1990).

GRS propose a multivariate F test of HE that all the pricing errors comprising the vector a are

jointly equal to zero. Their test assumes that the vectors of disturbance terms εt, t = 1, ..., T , in

(1) are independent and normally distributed around zero with a cross-sectional covariance matrix

that is time-invariant, conditional on the T × K collection of factors ZK = [zK1, ..., zKT ]′; i.e.,

εt |ZK ∼ i.i.d. N(0,Σ). Under normality, the methods of maximum likelihood and ordinary least

squares (OLS) yield the same unconstrained estimates of a and β:

â = z̄− β̂z̄Kt,

β̂ =

[
T∑
t=1

(zt − z̄)(zKt − z̄K)′

][
T∑
t=1

(zKt − z̄K)(zKt − z̄K)′

]−1

,

where z̄ = T−1
∑T

t=1 zt and z̄K = T−1
∑T

t=1 zKt. With â and β̂ in hand, the unconstrained estimate

of the disturbance covariance matrix is found as

Σ̂ =
1

T

T∑
t=1

(
zt − â− β̂zKt

)(
zt − â− β̂zKt

)′
. (3)

For the constrained model, which sets the vector a in (1) equal to zero, the estimates are

β̂0 =

[
T∑
t=1

ztz
′
Kt

][
T∑
t=1

zKtz
′
Kt

]−1

,

Σ̂0 =
1

T

T∑
t=1

(
zt − β̂0zKt

)(
zt − β̂0zKt

)′
. (4)

The GRS test statistic for HE is

JE,1 =
(T −N −K)

N

[
1 + z̄′KΩ̂−1z̄K

]−1
â′Σ̂−1â, (5)
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where Ω̂ = T−1
∑T

t=1(zKt− z̄K)(zKt− z̄K)′. Equivalently, the GRS test statistic can be written as

JE,1 =
(T −N −K)

N

[
|Σ̂0|
|Σ̂|
− 1

]
, (6)

which shows that JE,1 can be interpreted as an LR test (Campbell et al., 1997, Ch. 5). Under the

null hypothesis HE , the statistic JE,1 follows a central F distribution with N degrees of freedom in

the numerator and (T −N −K) degrees of freedom in the denominator.

2.2 Mean-variance spanning

Mean-variance spanning occurs when the minimum-variance frontier of rKt (with K ≥ 2) is the

same as the minimum-variance frontier of rKt and rt. To formulate the spanning hypothesis,

consider the statistical model

rt = a + βrKt + εt, (7)

where the disturbance vector εt now satisfies E[εt | rKt] = 0 and E[εtε
′
t] = Σ. Note that this model

is specified in terms of returns, not excess returns. HK show that mean-variance spanning imposes

on model (7) the 2N restrictions:

HS : a = 0, δ = 0, (8)

where δ = ιN − βιK and ιi is an i-vector of ones.

Just like the GRS test, the one proposed by HK to assess the spanning hypothesis HS assumes

that the disturbances in (7) are normally distributed. Specifically, if we let the T ×K collection of

benchmark returns be collected in RK = [rK1, ..., rKT ]′, then the exactness of the HK test rests on

the assumption that εt |RK ∼ i.i.d. N(0,Σ).

For the unconstrained model, the OLS parameter estimates resemble those for the GRS efficiency

test. In the case of model (7), they are given by

â = r̄− β̂r̄Kt,

β̂ =

[
T∑
t=1

(rt − r̄)(rKt − r̄K)′

][
T∑
t=1

(rKt − r̄K)(rKt − r̄K)′

]−1

,
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where r̄ = T−1
∑T

t=1 rt and r̄K = T−1
∑T

t=1 rKt. The unconstrained estimate of the disturbance

covariance matrix is then

Σ̂ =
1

T

T∑
t=1

(
rt − â− β̂rKt

)(
rt − â− β̂rKt

)′
. (9)

Following Campbell et al. (1997, Ch. 6), the restrictions in (8) can be imposed by partitioning

the matrix β into [b1,C], where the N×1 vector b1 is the first column of β and C is the remainder

N × (K − 1) matrix. Conformably, we partition the vector rKt into its first row r1t and its last

K − 1 rows r(K−1)t. With these partitions, the model in (7) can be written as

rt = a + b1r1t + Cr(K−1)t + εt,

and the constraint βιK = ιN becomes b1 + CιK−1 = ιN . Upon substitution of the restrictions

a = 0 and b1 = ιN −CιK−1, we obtain the constrained version:

rt − ιNr1t = C(r(K−1)t − ιK−1r1t) + εt. (10)

The constrained estimates are then given by

Ĉ0 =

[
T∑
t=1

(rt − ιNr1t)(r(K−1)t − ιK−1r1t)
′

]

×

[
T∑
t=1

(r(K−1)t − ιK−1r1t)(r(K−1)t − ιK−1r1t)
′

]−1

,

b̂1,0 = ιN − Ĉ0ιK−1,

Σ̂0 =
1

T

T∑
t=1

(
rt − β̂0rKt

)(
rt − β̂0rKt

)′
, (11)

where β̂0 = [b̂1,0, Ĉ0].

The HK test statistic takes the following LR form:

JS =
(T −N −K)

N

[√
|Σ̂0|
|Σ̂|
− 1

]
, (12)

and, under the null hypothesis HS , the statistic JS follows a central F distribution with 2N degrees

of freedom in the numerator and 2(T − N −K) degrees of freedom in the denominator. As Kan
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and Zhou (2012) point out, the original expression given in Huberman and Kandel (1987) contains

a typo, whereby the square root is missing from the ratio of determinants. The correct expression

shown in (12) is also found in Jobson and Korkie (1989).

3 Exact non-parametric tests

In this section we develop non-parametric bounds tests of efficiency and spanning that relax four

assumptions of the exact JE,1 and JS tests discussed previously: (i) the assumption of independent

disturbances, (ii) the assumption of identically distributed disturbances, (iii) the assumption of

normally distributed disturbances, and (iv) the restriction that N ≤ T −K − 1.

3.1 MLR framework

The specifications in (1) and (7) are special cases of a general MLR model:

Y = XB + ε, (13)

where Y is a T × N matrix of dependent variables, X is a T × (K + 1) matrix of regressors,

and ε = [ε1, ..., εT ]′ is the T × N matrix of model disturbances. The parameters are collected

in B = [a,β]′, a (K + 1) × N matrix. In the case of model (1) we define Y = [z1, ..., zT ]′ and

X = [ιT ,ZK ], and for model (7) we take Y = [r1, ..., rT ]′ and X = [ιT ,RK ]. From here on, we shall

make explicit when necessary the dependence on Y to distinguish some statistics computed with

the original sample of dependent variables from those computed with “bootstrap” samples, which

later will be denoted by Ỹ.

In the terminology of Berndt and Savin (1977), the mean-variance efficiency and spanning

hypotheses are so-called uniform (within equation) linear restrictions on the parameters of (13),

which can be written as

H0 : HB = D, (14)

where H is an h× (K + 1) matrix of constants of rank h, and D is an h×N matrix of constants.

Indeed, the efficiency hypothesis in (2) obtains upon setting H = [1, 0, ..., 0] and D = [0, ..., 0]. For
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the spanning hypothesis in (8), we set

H =

 1 0 ... 0

0 1 ... 1

 , D =

 0 ... 0

1 ... 1

 .
Observe that the general form in (14) does not permit cross-equation constraints, but it does allow

the restrictions to differ across the equations comprising the system; see Stewart (1997) for further

discussion and examples of MLR restrictions.

With the MLR model in (13), the unrestricted OLS estimates and residuals are given as usual

by

B̂(Y) = (X′X)−1X′Y,

ε̂(Y) = Y −XB̂(Y),

(15)

where the ith column of B̂(Y) = [B̂1(Y), ..., B̂N (Y)] minimizes the ith diagonal element of the

sum-of-squares and cross-products matrix E = (Y−XB)′(Y−XB). The estimated version of this

matrix is

Ê(Y) = ε̂′(Y)ε̂(Y). (16)

Minimizing the diagonal sum-of-squares in E subject to the restrictions in (14) yields the following

constrained estimates and residuals:

B̂0(Y) = B̂(Y)− (X′X)−1H′
[
H(X′X)−1H′

]−1
[
D−HB̂(Y)

]
,

ε̂0(Y) = Y −XB̂0(Y),

(17)

where B̂(Y) is given in (15), and the corresponding restricted residual sum-of-squares and cross-

products matrix is

Ê0(Y) = ε̂′0(Y)ε̂0(Y). (18)

The GRS and HK test statistics in (5) and (12) are constructed specifically for the mean-

variance efficiency and spanning hypotheses in (2) and (8), respectively, which are special cases of

H0 in (14). More generally, some commonly used criteria for H0 are: (i) the LR criterion (Bartlett,

1947; Wilks, 1932), (ii) the Lawley-Hotelling trace criterion (Bartlett, 1939; Hotelling, 1947, 1951;
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Lawley, 1938), (iii) the Bartlett-Nanda-Pillai trace criterion (Bartlett, 1939; Nanda, 1950; Pillai,

1955), and (iv) the maximum root criterion (Roy, 1953). All these test criteria are functions of the

roots m1, ...,mN of the determinantal equation:

∣∣Ê(Y)−mÊ0(Y)
∣∣ = 0,

where the matrices Ê(Y) and Ê0(Y) are defined in (16) and (18), respectively. Under H0 and

when certain other conditions hold, Dufour and Khalaf (2002, Theorem 3.1) show that the joint

distribution of m1, ...,mN does not depend on nuisance parameters, so that test criteria obtained as

functions of these roots are pivotal under the null hypothesis. For this result to hold, however, one

needs to proceed like GRS, HK and BDK by assuming a parametric distribution for the disturbances

of the MLR model; e.g., εt |X ∼ i.i.d. N(0,Σ). Moreover, the matrices Ê(Y) and Ê0(Y) become

singular when N > T , meaning that none of the usual statistics can be computed. Note that even

if N < T , the determinants |Σ̂0| and |Σ̂| seen in (6) and (12) for the GRS and HK tests may not

be numerically computable owing to near singularities when N is too “close” to T . Our empirical

application in section 5 is a case in point.

The test procedure we propose is also derived from (16) and (18), but does not require the

determinants of those matrices, thereby avoiding the singularity problem. The distributional theory

underlying our approach rests on a multivariate symmetry assumption, which includes the normal

distribution assumed by GRS and HK. In the following, the symbol
d
= stands for the equality in

distribution.

Assumption 1 (Reflective symmetry). The cross-sectional disturbance vectors εt, t = 1, ..., T ,

which constitute the rows of ε in (13), are jointly continuous and reflectively symmetric, so that

(ε1, ε2, ..., εT |X)
d
= (±ε1,±ε2, ...,±εT |X),

where ±εt means that the entire vector εt is assigned either a positive or negative sign with proba-

bility 1/2.
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This assumption is satisfied whenever the vectors εt, for t = 1, ..., T , are continuous and re-

flectively symmetric in the sense that εt
d
= −εt, conditional on X and ετ , τ 6= t. This reflective

symmetry condition can be equivalently expressed in terms of the conditional density function as

ft(εt) = ft(−εt). Recall that a random variable x is symmetric around zero if and only if x
d
= −x,

so the symmetry assumption made here represents the most direct non-parametric extension of

univariate symmetry; see Serfling (2006) for more concepts of multivariate symmetry. The class

of distributions encompassed by Assumption 1 is very large and includes elliptically symmetric

distributions, which play a very important role in mean-variance analysis because they guarantee

full compatibility with expected utility maximization regardless of investor preferences (Berk, 1997;

Chamberlain, 1983; Owen and Rabinovitch, 1983).

Several popular models of time-varying covariances, such as (possibly high-dimensional) multi-

variate GARCH or stochastic volatility models, satisfy the symmetry condition in Assumption 1.

For example, suppose the conditional cross-sectional covariance matrix of model disturbances at

time t is Σt and that the disturbances themselves are governed by

εt = Σ
1/2
t ηt,

where {ηt} is an i.i.d. sequence of random vectors drawn from a symmetric distribution (e.g.,

multivariate normal or Student-t) and Σ
1/2
t is an N×N “square root” matrix such that Σ

1/2
t Σ

1/2
t =

Σt. If Σ
1/2
t and ηt are conditionally independent given X and ετ , τ 6= t, then Assumption 1 is

satisfied.

3.2 Test procedure

The proposed test procedure is based on equation-by-equation F statistics that can be computed

from the unrestricted and restricted OLS estimates in (15) and (17). Consider the N × 1 vector of

F statistics:

F(Y) =

(
diag

{
Ê0(Y)

}
− diag

{
Ê(Y)

})
/h

diag
{
Ê(Y)

}
/(T −K − 1)

, (19)
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where Ê(Y) and Ê0(Y) are the unrestricted and restricted N × N residual sum-of-squares and

cross-products matrices in (16) and (18), respectively; diag{·} returns the diagonal elements of a

square matrix. Here h equals the number of rows of H in (14), and the division between the vectors

appearing in the numerator and denominator is performed element-wise. The ith element of the

N -vector F(Y) = [F1(Y), ..., FN (Y)]′ is the usual single-equation F statistic:

Fi(Y) =
(RSS0,i(Y)−RSSi(Y)) /h

RSSi(Y)/(T −K − 1)
,

where the residual sum-of-squares terms RSSi(Y) and RSS0,i(Y) correspond to elements [i, i] of

T Σ̂ and T Σ̂0, respectively; recall that Σ̂ is an unrestricted covariance matrix estimate as in (3) and

(9), and Σ̂0 is the restricted counterpart as in (4) and (11). Note that the degrees-of-freedom term

(T −K − 1)/h could be omitted from (19), since it plays no role under the proposed permutation

approach.

The Fi(Y) statistics comprising F(Y) could also be calculated from the restricted and unre-

stricted sum of squared residuals of the following models:

yi = ιTai + xβi + εi, (20)

for i = 1, ..., N , where yi corresponds to column i of Y and x represents columns 2 through K + 1

of X. Here the scalar ai is the ith element of a and the K-vector βi corresponds to the ith column

of β′. When testing the efficiency hypothesis in (2), for instance, the Fi(Y) statistics are related

to the usual t statistic for ai = 0. Indeed, let âi, β̂i denote the OLS estimates of ai, βi in (20) and

consider the following squared t statistic:

t2i =
â2
i (ι
′
TMxιT )

T σ̂2
i /(T −K − 1)

, (21)

where Mx = I − x(x′x)−1x′ is the matrix that projects onto the orthogonal complement to the

span of x, and σ̂2
i = ε̂′iε̂i/T with ε̂i = yi − ιT âi − xβ̂i. In this case with h = 1, it is well known

that Fi(Y) = t2i (Davidson and MacKinnon, 2004, p. 144).

The elements of F(Y) can be combined in different ways to obtain a joint test. A seemingly

natural choice is simply to use the (equally-weighted) average F statistic, which was proposed by

14



Hwang and Satchell (2012) to test the mean-variance efficiency hypothesis; see also Affleck-Graves

and McDonald (1990) for a similar idea. Simulation evidence, however, reveals that this choice

leads to a test with very low power under our permutation scheme. Rather than treating each

individual F statistic equally, a better test is obtained by using the weighted average:

Favg(Y) =

N∑
i=1

ωi(Y)Fi(Y), (22)

where ωi(Y) = Fi(Y)/
∑N

i=1 Fi(Y) assigns more weight to larger F statistics. Another possibility

is simply to retain the maximal value among the F statistics:

Fmax(Y) = max
{
F1(Y), ..., FN (Y)

}
, (23)

which corresponds to the individual F statistic suggesting the greatest violation of the null hypothe-

sis. It is interesting to note that (22) and (23) are related to vector norms. It should also be obvious

that establishing an asymptotic distribution for such general statistics would be a formidable task,

if not an impossible one. As will become clear, it is quite easy to apply our bootstrap approach to

Favg(Y) and Fmax(Y), or to any other function of F(Y).

In our statistical framework built upon the reflective symmetry condition in Assumption 1,

the distribution of Favg(Y) and Fmax(Y) under H0 depends on the values of B left unspecified

by the null hypothesis. We deal with the presence of these nuisance parameters by establishing

exact bounds to the H0-distribution of the test statistics. Before doing so, it is worth emphasizing

again that (22) and (23) can be calculated even if N > T , since the constituent Fi(Y) statistics

can be calculated one equation at a time. Observe also that Favg(Y) and Fmax(Y) potentially

have power increasing with both T and N . To see this, consider the efficiency hypothesis (2) and

statistic (21). As the time series lengthens, the precision with which the ais are estimated should

improve, thereby increasing power. Furthermore, it will become more likely that non-zero ais will

be detected as more informative test assets are included in the MLR model (i.e., ones for which

the “signal-to-noise” ratio in (21) is relatively large). The simulation study in section 4 illustrates

this point.
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3.2.1 Building blocks

The bounds we establish to deal with the nuisance parameters that arise in our context (i.e., the

elements of B not restricted by H0) are based on a point null hypothesis of the form

H∗0 : H0 and B = B∗, (24)

where B∗ are specified values that ensure compatibility with the null hypothesis (i.e., so that

H∗0 ⊆ H0). Define ε∗ = Y−XB∗ and note that under H∗0 these residuals correspond to ε, the true

model disturbances.

Let s̃ = [s̃1, ..., s̃T ]′ denote a T -vector comprising independent Bernoulli random variables such

that Pr[s̃t = 1] = Pr[s̃t = −1] = 1/2, for all t, and define a bootstrap sample of dependent variables

as

Ỹ = XB∗ + s̃� ε∗, (25)

where the notation s̃� ε∗ means that, for t = 1, ..., T , the scalar s̃t multiplies every element in row

t of ε∗. Doing so preserves the contemporaneous covariance structure among the row elements of

ε∗. Then, under H∗0 in (24) and conditional on X, we have that Y
d
= Ỹ, for each of the 2T possible

realizations of Ỹ. From Theorem 1.3.7 in Randles and Wolfe (1979), we know that if Y
d
= Ỹ and

F(·) is a measurable function (possibly vector-valued) defined on the common support of Y and

Ỹ, then F(Y)
d
= F(Ỹ). For our purposes, F(Y) will denote either Favg(Y) in (22) or Fmax(Y) in

(23).

Proposition 1 (Equally likely property). Suppose that the MLR model in (13) with Assumption

1 holds. Let Ỹ be a bootstrap sample generated according to (25) for a given realization of s̃ and

consider the statistic F(Ỹ) computed using the bootstrap sample. Then, under H∗0 in (24) and

given X, the 2T values of F(Ỹ) that can be obtained from all possible realizations of s̃ are equally

likely values for F(Y).

This result shows that F(Y) is pivotal under H∗0 , meaning that its bootstrap distribution does

not depend on any nuisance parameters. In principle, critical values could be found from the
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conditional distribution of F(Y) derived from the 2T equally likely possibilities represented by

F(Ỹ). Determination of this distribution from a complete enumeration of all possible realizations

of s̃ is obviously impractical. To circumvent this problem and still obtain exact p-values, we use

the Monte Carlo (MC) test technique (Barnard, 1963; Birnbaum, 1974; Dwass, 1957).

The MC test proceeds by generating M − 1 random samples Ỹ1, ..., ỸM−1, each one according

to (25). With each such sample, the statistic F(·) is computed to yield F(Ỹi) for i = 1, ...,M − 1.

Proposition 1 implies that the statistics F(Ỹ1), ...,F(ỸM−1),F(Y) are exchangeable under H∗0 .

Note that the bootstrap distribution of the F(·) statistic is discrete, meaning that ties among the

resampled values can occur, at least theoretically. A test with size α can be obtained by applying

the following tie-breaking rule (Dufour, 2006). Draw M i.i.d. variates Ui, i = 1, ...,M , from a

continuous uniform distribution on [0, 1], independently of the F(·) statistics, randomly pair the U

and F(·) statistics, and compute the lexicographic rank of
(
F(Y), UM

)
according to

R̃M
[
F(Y)

]
= 1 +

M−1∑
i=1

I
[
F(Y) > F(Ỹi)

]
+

M−1∑
i=1

I
[
F(Y) = F(Ỹi)

]
× I
[
UM > Ui

]
, (26)

where I[A] is the indicator function of event A.

Upon recognizing that the pairs
(
F(Ỹ1), U1

)
, ...,

(
F(ỸM ), UM−1

)
,
(
F(Y), UM

)
are exchange-

able under H∗0 , we see that the lexicographic ranks are uniformly distributed over the integers

1, ...,M. So the MC p-value can be defined as

p̃M
[
F(Y)

]
=
M − R̃M

[
F(Y)

]
+ 1

M
, (27)

where R̃M
[
F(Y)

]
is the rank of

(
F(Y), UM

)
, defined in (26). If αM is an integer, then the critical

region p̃M
[
F(Y)

]
≤ α has exactly size α in the sense that

Pr
[
p̃M
[
F(Y)

]
≤ α

∣∣X ] = α,

under the point null hypothesis H∗0 in (24).

The MC test of H∗0 paves the way for our proposed bounds tests of H0, the hypothesis of

interest. The basic idea is to obtain both a liberal test and a conservative test, each with nominal
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level α. The null hypothesis H0 will be accepted when it is not rejected by the liberal test, and it

will be rejected when the conservative test is significant.

3.2.2 Bounds MC tests

The liberal and conservative tests are based on the point null hypothesis in (24) specified with

B∗ = B̂0, the OLS estimate of B obtained under H0. By construction, we have HB̂0 = D so that

H∗0 is compatible with H0. The H∗0 -residuals now correspond to those obtained under H0 so that

ε∗ = ε̂0, where we have dropped the dependence on Y seen in (17).

Denote by pLM
[
F(Y)

]
the associated MC p-value computed according to (27), where the super-

script indicates that this is a liberal p-value in the sense that Pr
[
p̃LM
(
F(Y)

)
> α |X

]
≤ 1−α, under

H0. The logic of the decision rule which consists of accepting H0 when p̃LM
(
F(Y)

)
> α follows from

the fact that H∗0 ⊆ H0; i.e., if H∗0 is not rejected, then neither is H0. Dufour (2006) refers to such

a test as a local MC test.

The conservative test also focuses on H∗0 : H0 and B = B̂0, but introduces a test statistic

specifically for that point null hypothesis. Let the residual sum-of-squares and cross-products

matrix at H∗0 be written as E∗ = ε∗′ε∗, which corresponds to (18), and consider the N × 1 vector

of test statistics:

FC(Y) =

(
diag

{
E∗
}
− diag

{
Ê(Y)

})
/h

diag
{
Ê(Y)

}
/(T −K − 1)

,

whose superscript stands for conservative. When computed with the original sample Y, we have

FC(Y) = F(Y). Observe that diag
{
ε∗′ε∗

}
= diag

{
(̃s � ε∗)′(̃s � ε∗)

}
, for any possible realization

of s̃. So with any bootstrap sample Ỹ generated according to (25), the following inequalities hold:

diag
{
E∗
}
≥ diag

{
Ê0(Ỹ)

}
≥ diag

{
Ê(Ỹ)

}
, (28)

where the comparisons are element-wise. This follows from the fact that a restricted residual sum

of squares cannot be smaller than a less restricted one (Davidson and MacKinnon, 2004, §3.8).

The inequalities in (28) imply that F(Ỹ) ≤ FC(Ỹ).
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As we did before in (22) or (23), the FC(·) statistics can be combined by using the weighted

average or maximal values. In obvious notation, let FC(·) denote either FC
avg(·) or FC

max(·). The

foregoing discussion shows that F(·) ≤ FC(·) and hence

Pr[F(·) > ζ] ≤ Pr[FC(·) > ζ], (29)

for any ζ ∈ R. To see how this result will be exploited, let ζα be a critical value such that

Pr[F(Y) > ζα |X] = α when H0 holds; similarly define ζCα via Pr[FC(Y) > ζCα |X] = α under

H∗0 . It follows from (29) that ζα ≤ ζCα , meaning that Pr[F(Y) > ζCα |X] ≤ α when F(Y) follows

its H0-distribution. The consequence is that F(Y) > ζCα ⇒ F(Y) > ζα. In words, if the joint

F bounds test based on ζCα is significant, then for sure the exact joint F test based on ζα is also

significant at level α. In order to operationalize the bounds test, we use the MC test technique.

Proposition 2 (Bounds MC p-values). Suppose the MLR model in (13) with Assumption 1 holds.

Further, consider a statistic F(Y) for testing H0 and the corresponding conservative test statistic

FC(Y). Define liberal and conservative MC p-values as

p̃LM
[
F(Y)

]
=
M − R̃M

[
F(Y)

]
+ 1

M
and p̃CM

[
F(Y)

]
=
M − R̃CM

[
F(Y)

]
+ 1

M
,

where R̃M
[
F(Y)

]
and R̃CM

[
F(Y)

]
are the lexicographic ranks of F(Y) among F(Ỹi) and FC(Ỹi),

i = 1, ...,M−1, respectively. Here the Ỹis are bootstrap samples generated according to (25), which

imposes H∗0 , and the lexicographic ranks are computed as

R̃M
[
F(Y)

]
= 1 +

M−1∑
i=1

I
[
F(Y) > F(Ỹi)

]
+

M−1∑
i=1

I
[
F(Y) = F(Ỹi)

]
× I
[
UM > Ui

]
,

R̃CM
[
F(Y)

]
= 1 +

M−1∑
i=1

I
[
F(Y) > FC(Ỹi)

]
+

M−1∑
i=1

I
[
F(Y) = FC(Ỹi)

]
× I
[
UM > Ui

]
,

where Ui, i = 1, ...,M , are i.i.d. uniform variates on [0, 1], independently of the F statistics. If

αM is an integer, then Pr
[
p̃LM
(
F(Y)

)
> α |X

]
≤ 1 − α and Pr

[
p̃CM
(
F(Y)

)
≤ α |X

]
≤ α, under

the null hypothesis H0 in (14).
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An important remark about Proposition 2 is that a given bootstrap sample Ỹi serves to compute

both F(Ỹi) and FC(Ỹi). Furthermore, the same collection of uniform draws U1, ..., UM should be

used to compute both R̃M
[
F(Y)

]
and R̃CM

[
F(Y)

]
. These requirements ensure that the liberal and

conservative MC p-values do not yield conflicting answers.

The result in Proposition 2 suggests the following MC bounds test of H0 : HB = D at level α:
Reject H0 when p̃CM

(
F(Y)

)
≤ α,

Accept H0 when p̃LM
(
F(Y)

)
> α,

Consider the test inconclusive, otherwise.

(30)

The logic of this decision rule is the same as with the well-known bounds test of Durbin and

Watson (1950, 1951) for autocorrelated disturbances in regression models. For further discussion

and examples of such bounds procedures, see Dufour (1989, 1990), Dufour and Kiviet (1996),

Stewart (1997), and Dufour and Khalaf (2002).

3.2.3 Combination of tests

The decision rule in (30) could be applied with either Favg(Y) in (22) or Fmax(Y) in (23). Sup-

pose that one wishes to test H0 with both of these statistics. A natural way to combine the

information provided by Favg(Y) and Fmax(Y) is to proceed as follows. We begin by computing

the four MC p-values pLM
(
Favg(Y)), pCM

(
Favg(Y)), pLM

(
Fmax(Y)) and pCM

(
Fmax(Y)) according to

Proposition 2. Here again it is important to emphasize that a given bootstrap sample Ỹi serves

to compute Favg(Ỹi), FC
avg(Ỹi), Fmax(Ỹi), and FC

max(Ỹi), and that the same collection of uni-

form draws U1, ..., UM be used to compute the lexicographic ranks R̃M
[
Favg(Y)

]
, R̃CM

[
Favg(Y)

]
,

R̃M
[
Fmax(Y)

]
, and R̃CM

[
Fmax(Y)

]
. Consider then the decision rule, which consists of rejecting H0

when it has been rejected by at least one of the test statistics. This procedure is called an induced

test of H0; see, for example, Savin (1984) and Dufour and Torrès (1998).

The exact size of the induced test is rather difficult to establish, since the joint distribution of

Favg(Y) and Fmax(Y) is intractable. Nevertheless, it is possible to control the level of the induced
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test. To see how, let Mα/2 be an integer and consider the following induced MC bounds test of

H0 : HB = D at overall level α:
Reject H0 when p̃CM

(
Favg(Y)

)
≤ α/2 or p̃CM

(
Fmax(Y)

)
≤ α/2,

Accept H0 when p̃LM
(
Favg(Y)

)
> α/2 and p̃LM

(
Fmax(Y)

)
> α/2,

Consider the test inconclusive, otherwise.

(31)

From Proposition 2 and the Boole-Bonferroni inequality, we have that

Pr
[
p̃CM
(
Favg(Y)

)
≤ α/2 or p̃CM

(
Fmax(Y)

)
≤ α/2 |X

]
≤

Pr
[
p̃CM
(
Favg(Y)

)
≤ α/2 |X

]
+ Pr

[
p̃CM
(
Fmax(Y)

)
≤ α/2 |X

]
≤ α/2 + α/2,

under the null hypothesis. Furthermore, it is easy to see that

Pr
[
p̃LM
(
Favg(Y)

)
> α/2 and p̃LM

(
Fmax(Y)

)
> α/2 |X

]
≤ 1− α/2,

since Proposition 2 ensures that Pr
[
p̃LM
(
Favg(Y)

)
> α/2 |X

]
≤ 1− α/2 and Pr

[
p̃LM
(
Fmax(Y)

)
>

α/2 |X
]
≤ 1− α/2, under H0. Even though we have split the overall level so that α/2 + α/2 = α,

the decision rule in (31) can be applied with different individual αis for the Favg- and Fmax-based

tests, as long as they sum to the desired overall α. Note, however, that there is no criterion for

choosing “optimal” αis, so setting αi = α/2 is quite natural.

4 Simulation study

This section presents the results of simulation experiments to examine the performance of the

proposed procedure for testing the mean-variance efficiency and spanning hypotheses. Here we

simply use Favg and Fmax to refer to the test procedure based on the statistics in (22) and (23),

and we use Fc to refer to the procedure based on the combination of those two statistics. The

tests are performed at the nominal 5% significance level, accordingly we set M = 200 to ensure an

overall level of α = 0.05 for the Fc test.
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We consider the MLR model in (13) given for convenience again here as

yt = a + BxKt + εt, (32)

for t = 1, ..., T , where yt and xKt are interpreted as vectors of excess returns when we examine the

efficiency hypothesis, and simply as returns in the case of mean-variance spanning. The benchmark

portfolio returns are generated as standard normal variables, which is a rather innocuous choice

since the proposed tests are conditional on the realized values of xKt. Here we let K = 1, 3 and

the elements of B are uniformly distributed over [0.5, 1.5]. The model disturbances in (32) have

the following factor structure:

εt = ϕft + λet, (33)

where et ∼ N(0, I). The common factor ft evolves according to a stochastic volatility process of

the form

ft = exp(ht/2)ηt, with ht = φht−1 + ξt, (34)

where the independent error terms ηt and ξt are both i.i.d. according to a normal distribution with

mean zero and variances 1 and 0.1, respectively. The specification in (33) and (34) implies that

Var(εit |Ft−1) = ϕ2
iVar(ft |Ft−1) + λ2 and Cov(εit, εjt |Ft−1) = ϕiϕjVar(ft |Ft−1), where Ft is the

time-t information set. So the autoregressive parameter φ determines the persistence over time

of shocks to the cross-sectional covariance structure. We examine two polar cases by setting the

autoregressive parameter in (34) as either φ = 0 (no persistence) or φ = 0.99 (nearly integrated),

and the recursion is started with h1 = ξ1. The power of the efficiency and spanning tests depends

on the disturbance variance through the values of ϕ and λ in (33). We draw the elements of

ϕ as ϕi ∼ U [0, ϕmax] and we consider the following pairs of values for (ϕmax, λ): (0, 0.8) and

(1, 0.2). When examining the power of the efficiency tests, the elements of a are generated as

ai ∼ U [−0.1, 0.1]. Recall that the spanning hypothesis places restrictions on the elements of both a

and δ. So we investigate the power of the spanning tests under two scenarios: (i) ai ∼ U [−0.1, 0.1],

δi = 0, and (ii) ai = 0, δi ∼ U [−0.2, 0.2]. Finally, we let the sample size vary as T = 60, 100 and

the number of test assets as N = 50, 100, 200, 400.
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Even though we are mainly concerned with testing mean-variance efficiency and spanning when

N > T , we nevertheless include some cases in which the GRS JE,1 and the HK JS tests are

computable. As we mentioned in the introduction, PY also develop tests of the efficiency hypothesis

(2) in large N situations. Of the two tests they propose, the one that allows for the presence of

cross-sectional correlations is computed as

JE,2 =
N−1/2

∑N
i=1

(
t2i − v

v−2

)
(

v
v−2

)√
2(v−1)
v−4 [1 + (N − 1)ρ̂2]

,

where t2i is the squared t statistic defined in (21) and ρ̂2 is a threshold estimator of the average

squares of pairwise disturbance correlations given by

ρ̂2 =
2

N(N − 1)

N∑
i=2

i−1∑
j=1

ρ̂2
ijI[vρ̂2

ij ≥ θN ],

with ρ̂ij = ε̂′iε̂i/
√

(ε̂′iε̂i)(ε̂
′
j ε̂j); recall that ε̂i are the OLS residuals from (20). PY suggest selecting

the threshold value via
√
θN = Φ−1

(
(1 − pN )/2

)
, where Φ−1(·) is the standard normal quantile

function and pN = 1/(N−1). Assuming, as in GRS, that εt |X ∼ i.i.d. (0,Σ), as well as some other

regularity conditions, PY show that JE,2 is asymptotically N(0, 1) when mean-variance efficiency

holds.

The empirical size and power (in percentage) of JE,1, JE,2, and the proposed Favg, Fmax, Fc

tests are reported in Tables 1 and 2 for K = 1 and 3, respectively. Table 3 compares the new tests

for the spanning hypothesis with the HK test, JS . In each table, the symbol “-” indicates cases

when the GRS test or the HK test is not computable and the entries set in bold show the most

powerful tests. From Panel A of each table, we see that all the tests respect the nominal level

constraint. Indeed, the empirical size of the proposed tests is always strictly less than 5%, while

that of JE,1 and JE,2 is either close to or less than 5%.

Tables 1 and 2 further show that the power of JE,2 is better than that of JE,1 and the proposed

tests when the model disturbances are i.i.d. both over time and in the cross-section (φ = 0,

ϕmax = 0). Note that increasing N with i.i.d. disturbances yields little additional power for the

new tests, if any at all. Although relatively low, observe that the power of Favg is nevertheless higher
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than that of Fmax in this case. When the disturbances are cross-sectionally correlated, however,

JE,2 is dominated by one of the other tests. The pattern is that JE,1 is the better test when it is

computable. But as soon as N > T , the power ranking has Fmax in first place, followed by Favg,

and both of these are quite far ahead of the JE,2 test. For instance, when φ = 0, ϕmax = 1, λ = 0.2

and T = 60, N = 400, the power of Fmax is about 97% while that of JE,2 is about 23%. The

reason is that the theory underlying the use of the threshold estimator in JE,2 assumes that the

correlation matrix is sparse (i.e., with only a finite number of non-zero correlations that vanish as

N grows). On the contrary, Assumption 1 allows for any correlation structure. The power results

in Tables 1 and 2 are all the more remarkable considering the distribution-free nature of the new

tests. A comparison of Tables 1 and 2 reveals that all the tests tend to have relatively lower power

when K increases. The reason why the bounds tests become more conservative is that increasing

K from 1 to 3 triples the number of nuisance parameters in the testing problem, thereby increasing

the inequalities in (28).

Table 3 tells a similar story when examining the mean-variance spanning hypothesis. Here we

see that the JS test is preferred when N < T , but a larger number of test assets leaves the new tests

as the only ones available to assess the spanning hypothesis. Table 3 again shows that the Favg

and Fmax tests have low power in the i.i.d. case. As before, however, we see that the presence of

cross-sectional correlation among the model disturbances restores the power of the new tests. Our

general conclusion is that Favg tends to fare relatively better than Fmax when the cross-sectional

correlations are weak, and that Fmax has the better power when those correlations become stronger.

The combined test, Fc, therefore seems quite attractive for practical applications when one does

not have any a priori information about the cross-sectional covariance structure.

5 Empirical application

Our empirical illustration uses monthly returns on 452 individual stocks traded on the NYSE,

AMEX and NASDAQ markets for the 39-year period from January 1973 to December 2011 (468
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months). These are all the stocks for which data are available in the Centre for Research in Securities

Prices (CRSP) monthly files for this sample period. We use the one-month U.S. Treasury bill as

the risk-free asset when forming excess returns. It is also quite common in the empirical finance

literature to test asset pricing models over subperiods owing to concerns about parameter stability.

So here we also divide the 39 years into seven 5-year, one 4-year, three 10-year, and one 9-year

subperiods. This breakdown follows Campbell et al. (1997, Ch. 5), Gungor and Luger (2009, 2013),

and Ray et al. (2009). As in Pesaran and Yamagata (2012), we complement the subperiod analysis

by performing the tests using the returns observed over 60-month rolling windows.

5.1 Efficiency assessment

We assess the efficiency hypothesis first in the context of the Sharpe-Lintner version of the CAPM

using the excess returns of a value-weighted stock market index of all stocks listed on the NYSE,

AMEX and NASDAQ as proxy for the market risk factor. Second, we test the more general Fama

and French (1993) three-factor model, which adds two risk factors to the CAPM specification:

(i) the average returns on three small capitalization portfolios minus the average return on three

big market capitalization portfolios, and (ii) the average return on two value portfolios minus the

average return on two growth portfolios.

Table 4 reports the p-values of the mean-variance efficiency tests, where columns 2–6 pertain to

the CAPM and columns 7–11 are for the Fama-French model. The new test procedure is applied

here with M = 500, so the smallest possible MC p-value is 0.2%. Based on the decision rule in (30)

with α = 5%, we report only the conservative MC p-value if p̃CM
(
F(Y)

)
≤ α, whereas the liberal MC

p-value is reported when p̃LM
(
F(Y)

)
> α. Recall that the MC tests may yield an inconclusive out-

come. In these inconclusive cases that occur when p̃CM
(
F(Y)

)
> α and p̃LM

(
F(Y)

)
≤ α, we report

both the conservative and liberal MC p-values. When the combined Fc test outcome is conclusive,

the reported p-value is the minimum of the Favg and Fmax p-values, which should be compared to

a 2.5% cut-off. Otherwise we report min(p̃CM
(
Favg

)
, p̃CM

(
Fmax

)
) and min(p̃LM

(
Favg

)
, p̃LM

(
Fmax

)
),

simultaneously. We set in bold the entries that correspond to a rejection of the null hypothesis at
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the overall 5% significance level.

Looking at the full sample results, we see that the GRS JE,1 and the three MC tests do not

reject efficiency in the CAPM, but the JE,2 test indicates a decisive rejection of that null hypothesis.

In the subperiods, the JE,2, Favg, Fmax and Fc test outcomes agree in almost all cases, except in

the 10-year period 1/83–12/92. Overall, the CAPM finds strong support from the MC tests. This

is further corroborated by the 60-month rolling-window p-values shown in Figure 1. We clearly see

the p-values staying above the cut-off line, indicating non-rejections of the CAPM.

Turning next to the Fama-French model, we see from Table 4 that mean-variance efficiency

finds broad support across tests and time periods. This can also be gleaned from Figure 2, where

the rolling-window MC p-values, while again fluctuating a lot from month to month, never indicate

a rejection of the efficiency hypothesis. Given that the CAPM is generally not rejected in the

subperiods, it is then entirely coherent to find that the Fama-French portfolios are efficient as well,

since the latter nests the single-factor model. The message to take away from Figures 1 and 2

is that even though they never quite dip below the 5% cut-off line, the new non-parametric tests

display non-trivial power with empirical p-values showing a great deal of variation and often moving

toward a rejection of the mean-variance efficiency hypothesis.

5.2 Spanning assessment

In order to assess the mean-variance spanning hypothesis, we could use at most 188 of the 452

individual stocks. With any more equations in the MLR model, the HK test statistic in (12) could

not be computed, as the matrices Σ̂0 and Σ̂ did not admit numerical determinants. Table 5 reports

the spanning test results in the context of the Fama-French model. It is immediately clear that

mean-variance spanning is strongly rejected, suggesting that the individual stocks can improve the

efficiency frontier spanned by the three Fama-French portfolios. Over the seven 5-year and the one

4-year subperiods, the MC tests show rejections half the time. On the other hand, the spanning

hypothesis is decisively rejected in the 39-year period and in the three 10-year and one 9-year

subperiods, which suggests that mean-variance spanning is less likely to hold when assessed over
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longer periods.

Focusing on the 60-month rolling-window results, the bottom portion of Figure 3 shows that

the Fc p-values stay close to their lowest possible value of 0.2% most of the time, and few are

the instances where they cross above the 2.5% cut-off line. This figure is a good example of how

inference may differ across the Favg and Fmax tests. We see in the top portion that when the Favg

test is decisive, it rejects the spanning hypothesis almost every month, while Fmax does not in the

1980s and from the mid-1990s until the early 2000s. In light of our simulation results, this could

be occurring in periods of low cross-sectional correlation across model disturbances. The Fc test

offers a way to resolve any disagreements that might occur between the Favg and Fmax tests. The

rather sustained rejections occurring in the period of increased stock market turbulence from 2001

onward are particularly noteworthy.

6 Conclusion

The starting point for the econometric analysis of linear factor asset pricing models, such as the

CAPM or APT models, is an assumption about the time-series behavior of returns. For example,

the well-known GRS and HK exact tests of mean-variance efficiency and spanning, respectively,

assume that returns, conditional on the factor portfolio realizations, are i.i.d. through time and

jointly multivariate normal. This assumption is at odds with a huge body of empirical evidence,

since it precludes not only non-normalities, but also multivariate GARCH-type effects. Another

shortcoming of these tests is that they can no longer be computed when the number of test assets

(i.e., the number of equations in the MLR) is too large relative to the available time series. This is

rather unfortunate, since it is natural to try to use as many test assets as possible in order to boost

test power. Indeed, as the test asset universe expands, it should become more likely that violations

of the null hypothesis will be detected.

In this paper we have proposed an exact test procedure that overcomes these problems, with-

out imposing any parametric assumptions on the MLR disturbance distribution. Our statistical
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framework leaves open the possibility of unknown forms of time-varying non-normalities and many

other distribution heterogeneities, such as time-varying conditional variances and covariances. We

derived liberal and conservative bounds on the null distribution of joint F statistics in order to

deal with the presence of nuisance parameters, and have shown how to implement the exact test

procedure with Monte Carlo resampling techniques. The null distribution of the proposed bounds

tests is obtained conditional on the absolute values of the model residuals. The Lehmann and Stein

(1949) impossibility theorem shows that such sign tests are the only ones that yield valid inference

when one wishes to remain completely agnostic about disturbance distribution heterogeneities; see

also Dufour (2003) for more on this point. It is important to bear in mind that even though we

found the GRS, PY and HK tests to be fairly robust to deviations from their underlying assumption

of i.i.d. model disturbance vectors, there is no theoretical guarantee that this would always be the

case.

A very appealing feature of our approach is that it remains applicable no matter the number

of equations in the MLR. In fact, the results of our simulation study show that the power of

the proposed tests potentially increases along both the time and cross-sectional dimensions. This

makes the new test procedure a very useful way of assessing mean-variance efficiency and spanning,

especially when the MLR includes a large number of correlated disturbances. Observe that our

approach applies not only to those hypotheses, but to any uniform linear restriction in the MLR

model. Investigating the performance of our test procedure for other MLR restrictions is the subject

of ongoing research.
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Table 1. Comparison of empirical size and power of mean-variance efficiency tests: 1 benchmark portfolio

φ = 0, ϕmax = 0, λ = 0.8 φ = 0, ϕmax = 1, λ = 0.2 φ = 0.99, ϕmax = 1, λ = 0.2

T N = 50 100 200 400 50 100 200 400 50 100 200 400

Panel A: Size

60 JE,1 5.1 - - - 4.5 - - - 5.2 - - -

JE,2 2.7 0.4 0.3 0.0 6.9 6.7 5.7 5.8 5.7 6.6 6.0 5.8

Favg 1.6 0.4 0.3 0.4 1.4 2.2 1.6 1.8 1.8 2.6 1.4 1.3

Fmax 1.0 1.2 1.2 1.4 1.6 2.2 1.2 1.8 2.1 1.8 0.8 1.3

Fc 0.9 0.3 0.5 1.0 1.2 1.6 0.7 1.5 1.4 1.9 1.0 0.8

100 JE,1 4.0 - - - 5.5 - - - 3.9 - - -

JE,2 2.9 1.4 0.6 0.0 7.9 6.2 6.8 7.8 5.6 6.5 5.8 6.1

Favg 1.7 1.3 0.5 0.2 2.3 1.4 1.0 2.1 1.4 1.9 1.1 1.1

Fmax 1.6 1.3 1.0 1.3 1.5 1.3 0.8 1.6 1.3 1.7 1.1 0.9

Fc 1.1 0.9 0.4 0.6 1.4 1.0 0.9 1.6 1.2 1.1 1.0 1.1

Panel B: Power with ai ∼ U [−0.1, 0.1]

60 JE,1 12.1 - - - 95.1 - - - 95.7 - - -

JE,2 27.4 31.0 32.1 36.0 25.4 22.9 21.3 23.6 32.3 32.0 31.0 31.0

Favg 6.3 7.6 7.6 7.1 63.4 70.6 79.0 86.0 57.5 65.0 68.7 75.7

Fmax 3.9 5.5 5.0 6.1 70.1 82.3 92.7 97.2 64.4 76.7 88.3 94.7

Fc 4.0 5.8 6.4 5.7 58.7 71.2 84.7 92.0 57.3 69.0 80.2 89.4

100 JE,1 40.0 - - - 100.0 - - - 100.0 - - -

JE,2 59.2 80.7 93.5 99.5 59.2 59.8 60.2 63.8 51.1 49.2 49.4 50.4

Favg 14.0 17.5 22.5 32.9 89.8 97.1 99.8 99.5 79.1 87.3 90.6 95.4

Fmax 8.8 9.0 11.1 11.0 93.2 99.1 100.0 100.0 85.5 94.5 98.6 99.9

Fc 10.3 12.4 16.1 24.6 89.5 97.4 99.8 100.0 80.5 91.4 97.0 99.8

Notes: This table reports the empirical size in Panel A and power in Panel B of the GRS JE,1 test, the PY JE,2 test, and the proposed

MC bounds tests with M = 200 based on the Favg and Fmax statistics; the test combining the latter two is denoted by Fc. The returns

are generated according to the MLR model with K = 1 and normally distributed disturbances. The model disturbances are i.i.d. both

over time and in the cross-section when φ = 0 and ϕmax = 0; a higher value of ϕmax implies stronger cross-sectional covariances; a

non-zero value of φ makes the covariance structure time-dependent. Entries are percentage rates, the nominal level is 5%, and the results

are based on 1,000 replications. The symbol “-” is used whenever the GRS test is not computable and the entries set in bold show the

most powerful tests.
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Table 2. Comparison of empirical size and power of mean-variance efficiency tests: 3 benchmark portfolio

φ = 0, ϕmax = 0, λ = 0.8 φ = 0, ϕmax = 1, λ = 0.2 φ = 0.99, ϕmax = 1, λ = 0.2

T N = 50 100 200 400 50 100 200 400 50 100 200 400

Panel A: Size

60 JE,1 5.3 - - - 5.1 - - - 5.1 - - -

JE,2 1.6 0.4 0.0 0.0 7.3 8.0 6.8 7.4 7.5 5.7 6.4 6.5

Favg 0.1 0.1 0.0 0.0 0.5 0.3 0.2 0.3 0.1 0.3 0.2 0.1

Fmax 0.1 0.1 0.0 0.3 0.4 0.2 0.2 0.4 0.1 0.4 0.1 0.2

Fc 0.1 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.1 0.1 0.0 0.0

100 JE,1 4.5 - - - 4.7 - - - 5.4 - - -

JE,2 3.8 1.1 0.1 0.1 6.4 7.2 6.1 6.5 7.1 6.7 7.0 6.9

Favg 0.1 0.1 0.0 0.0 0.3 0.2 0.1 0.2 0.4 0.7 0.2 0.1

Fmax 0.0 0.2 0.3 0.0 0.3 0.1 0.1 0.0 0.2 0.2 0.3 0.2

Fc 0.1 0.2 0.1 0.0 0.2 0.1 0.0 0.0 0.1 0.5 0.2 0.1

Panel B: Power with ai ∼ U [−0.1, 0.1]

60 JE,1 9.8 - - - 86.8 - - - 89.5 - - -

JE,2 24.8 29.5 31.0 30.3 25.9 23.1 20.0 20.2 29.4 29.5 28.3 30.0

Favg 0.8 0.8 0.1 0.0 20.3 17.0 15.5 14.0 23.7 21.9 21.4 17.3

Fmax 0.3 0.9 0.5 0.6 35.6 44.2 56.5 68.9 36.2 43.1 54.8 64.8

Fc 0.4 0.6 0.2 0.5 26.6 32.2 42.3 54.1 30.2 32.3 42.2 51.3

100 JE,1 41.7 - - - 100.0 - - - 100.0 - - -

JE,2 58.3 77.7 93.9 99.4 56.5 60.2 56.5 59.2 49.8 50.2 50.2 54.0

Favg 2.0 1.3 0.3 0.0 59.1 67.0 72.0 82.9 53.3 59.1 64.6 68.7

Fmax 1.4 1.8 1.7 1.7 74.0 89.0 95.7 99.3 70.3 81.0 91.8 98.0

Fc 1.7 1.0 1.2 0.7 65.3 81.3 90.2 98.0 63.0 73.9 87.0 95.0

Notes: This table mimics Table 1, except that here the returns are generated according to the MLR model with K = 3.

36



Table 3. Comparison of empirical size and power of mean-variance spanning tests: 3 benchmark portfolios

φ = 0, ϕmax = 0, λ = 0.8 φ = 0, ϕmax = 1, λ = 0.2 φ = 0.99, ϕmax = 1, λ = 0.2

T N = 50 100 200 400 50 100 200 400 50 100 200 400

Panel A: Size

60 JS 4.6 - - - 5.7 - - - 5.5 - - -

Favg 0.4 0.3 0.0 0.0 0.6 0.7 0.7 0.9 1.2 1.0 1.0 1.1

Fmax 0.8 0.8 0.9 0.9 0.5 0.9 0.6 0.8 0.9 1.1 1.0 0.9

Fc 0.3 0.6 0.4 0.7 0.5 0.8 0.3 1.1 0.9 0.8 1.1 0.9

100 JS 5.5 - - - 6.6 - - - 5.3 - - -

Favg 0.2 0.0 0.0 0.0 0.5 0.5 1.2 0.8 0.6 1.4 1.3 0.7

Fmax 0.6 0.4 0.4 0.6 0.3 0.5 0.7 0.7 0.7 0.6 0.7 0.6

Fc 0.6 0.0 0.2 0.3 0.3 0.3 0.6 0.6 0.7 0.7 1.0 0.4

Panel B: Power with ai ∼ U [−0.1, 0.1], δi = 0

60 JS 8.5 - - - 64.7 - - - 65.4 - - -

Favg 1.4 1.0 0.2 0.0 19.8 19.3 16.3 13.4 20.7 21.5 22.1 20.9

Fmax 2.2 1.4 1.7 2.3 43.2 56.3 67.6 77.0 40.6 52.6 64.0 73.8

Fc 1.6 1.2 1.1 0.8 32.4 43.7 51.9 62.5 31.0 42.4 51.2 59.7

100 JS 26.3 - - - 100.0 - - - 100.0 - - -

Favg 1.7 1.1 0.7 0.0 56.7 64.3 71.9 77.0 51.1 53.2 58.5 59.5

Fmax 3.0 3.7 4.1 3.3 78.8 91.7 98.3 99.9 73.9 85.6 93.4 98.9

Fc 1.7 2.8 2.5 1.7 71.1 84.5 95.0 99.1 65.5 77.8 87.9 96.4

Panel C: Power with ai = 0, δi ∼ U [−0.2, 0.2]

60 JS 9.9 - - - 74.6 - - - 76.4 - - -

Favg 1.8 1.2 0.5 0.1 36.3 39.8 38.6 39.6 35.6 36.4 41.2 40.3

Fmax 2.2 3.2 2.7 2.4 56.8 71.2 82.6 89.9 55.7 66.0 81.1 87.7

Fc 1.7 1.7 1.4 1.5 46.3 58.6 70.5 78.1 45.0 55.6 70.2 77.3

100 JS 36.2 - - - 100.0 - - - 100.0 - - -

Favg 4.7 2.3 2.6 0.7 79.2 86.8 90.4 93.7 66.2 68.3 75.3 80.3

Fmax 5.2 4.5 5.8 7.8 91.0 97.7 99.5 100.0 84.7 91.6 97.8 99.3

Fc 3.8 2.8 2.7 4.0 85.8 94.7 98.5 99.6 78.2 87.8 95.0 98.4

Notes: This table reports the empirical size in Panel A and power in Panels B and C of the HK JS test and the proposed MC bounds

tests with M = 200 based on the Favg and Fmax statistics; the test combining the latter two is denoted by Fc. The returns are

generated according to the MLR model with K = 3 and normally distributed disturbances. The model disturbances are i.i.d. both

over time and in the cross-section when φ = 0 and ϕmax = 0; a higher value of ϕmax implies stronger cross-sectional covariances; a

non-zero value of φ makes the covariance structure time-dependent. Entries are percentage rates, the nominal level is 5%, and the

results are based on 1,000 replications. The symbol “-” is used whenever the HK test is not computable and the entries set in bold

show the most powerful tests.
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Table 4. Mean-variance efficiency tests: CAPM and Fama-French model

CAPM Fama-French Model

Time period JE,1 JE,2 Favg Fmax Fc JE,1 JE,2 Favg Fmax Fc

39-year period

1/73–12/11 0.999 0.000 0.048, 0.994 0.300 0.048 0.956 0.122 0.188 0.242 0.188

5-year subperiods and a 4-year subperiod

1/73–12/77 - 0.495 0.684 0.564 0.564 - 0.547 0.246 0.328 0.246

1/78–12/82 - 0.358 0.052 0.212 0.052 - 0.794 0.668 0.736 0.668

1/83–12/87 - 0.400 0.804 0.916 0.804 - 0.494 0.822 0.896 0.822

1/88–12/92 - 0.470 0.658 0.666 0.658 - 0.265 0.202 0.126 0.126

1/93–12/97 - 0.800 0.984 0.984 0.984 - 0.712 0.878 0.628 0.628

1/98–12/02 - 0.952 1.000 0.830 0.830 - 0.970 0.998 0.984 0.984

1/03–12/07 - 0.090 0.046, 0.828 0.258 0.046 - 0.091 0.114 0.380 0.114

1/08–12/11 - 0.728 0.926 0.912 0.912 - 0.748 0.962 0.768 0.768

10-year subperiods and a 9-year subperiod

1/73–12/82 - 0.078 0.130 0.256 0.130 - 0.569 0.524 0.734 0.524

1/83–12/92 - 0.041 0.210 0.636 0.210 - 0.054 0.078 0.038, 0.914 0.038

1/93–12/02 - 0.673 0.930 0.934 0.930 - 0.862 0.914 0.758 0.758

1/03–12/11 - 0.241 0.204 0.182 0.182 - 0.208 0.170 0.134 0.134

Notes: The entries are p-values and those set in bold represent cases of significance at the 5% level. The results are based

on the returns of 452 individual stocks traded in NYSE, AMEX, and NASDAQ, the returns of a value-weighted stock market

index, two long-short portfolios based on size and book-to-market value, and the one-month Treasury bill rate as the risk-free

rate. Columns 2–3 report the p-values of the parametric JE,1 and JE,2 tests for the CAPM; columns 4–6 show the MC

p-values of the non-parametric Favg , Fmax and Fc tests for the same model. The parametric and non-parametric tests for the

Fama-French model are presented in columns 7–8 and 9–11, respectively. For Favg and Fmax we report only the conservative

MC p-value if p̃CM
(
F(Y)

)
≤ α, whereas the liberal MC p-value is reported when p̃LM

(
F(Y)

)
> α. In the case of inconclusive

outcomes, both the conservative and the liberal MC p-values are reported. For the combined Fc test, the reported p-value is the

minimum of the Favg and Fmax p-values when the outcome is conclusive. Otherwise we report min(p̃CM
(
Favg

)
, p̃CM

(
Fmax

)
)

and min(p̃LM
(
Favg

)
, p̃LM

(
Fmax

)
), simultaneously. The symbol “-” is used whenever the GRS test is not computable.
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Table 5. Mean-variance spanning tests: Fama-French model

Time period JS Favg Fmax Fc

39-year period

1/73–12/11 0.000 0.002 0.002 0.002

5-year subperiods and a 4-year subperiod

1/73–12/77 - 0.002 0.004 0.002

1/78–12/82 - 0.008, 0.636 0.024, 0.200 0.008, 0.200

1/83–12/87 - 0.048, 0.978 0.498 0.048

1/88–12/92 - 0.008 0.010 0.008

1/93–12/97 - 0.002, 0.298 0.046, 0.304 0.002, 0.298

1/98–12/02 - 0.002 0.016 0.002

1/03–12/07 - 0.002, 0.066 0.016, 0.146 0.002, 0.066

1/08–12/11 - 0.002 0.012 0.002

10-year subperiods and a 9-year subperiod

1/73–12/82 - 0.002 0.002 0.002

1/83–12/92 - 0.002 0.048 0.002

1/93–12/02 - 0.002 0.036 0.002

1/03–12/11 - 0.002 0.008 0.002

Notes: The entries are p-values and those set in bold represent cases of significance at the 5% level. The results

are based on the returns of 188 individual stocks traded in NYSE, AMEX, and NASDAQ, the returns of a

value-weighted stock market index, and two long-short portfolios based on size and book-to-market value. Column

2 reports the p-values for the parametric JS test; columns 3–5 show the MC p-values for the non-parametric

Favg , Fmax and Fc tests. For Favg and Fmax we report only the conservative MC p-value if p̃CM
(
F(Y)

)
≤ α,

whereas the liberal MC p-value is reported when p̃LM
(
F(Y)

)
> α. In the case of inconclusive outcomes,

both the conservative and the liberal MC p-values are reported. For the combined Fc test, the reported

p-value is the minimum of the Favg and Fmax p-values when the outcome is conclusive. Otherwise we report

min(p̃CM
(
Favg

)
, p̃CM

(
Fmax

)
) and min(p̃LM

(
Favg

)
, p̃LM

(
Fmax

)
), simultaneously. The symbol “-” is used whenever

the HK test is not computable.
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Figure 1. Time variation in p-values (as percentage rates) of the Favg and Fmax tests (top) and the Fc test (bottom)

of mean-variance efficiency based on the CAPM using a 60-month rolling window. The discontinuities in the series indicate

periods of inconclusive test outcomes.
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Figure 2. Time variation in p-values (as percentage rates) of the Favg and Fmax tests (top) and the Fc test (bottom) of

mean-variance efficiency based on the 3-factor Fama-French model using a 60-month rolling window. The discontinuities in the

series indicate periods of inconclusive test outcomes.
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Figure 3. Time variation in p-values (as percentage rates) of the Favg and Fmax tests (top) and the Fc test (bottom) of

mean-variance spanning based on the 3-factor Fama-French model using a 60-month rolling window. The discontinuities in the

series indicate periods of inconclusive test outcomes.
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