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Abstract 

We model the behavior of dealers in Over-the-Counter (OTC) derivatives markets where 
a small number of dealers trade with a continuum of heterogeneous clients (hedgers). 
Imperfect competition and (endogenous) default induce a familiar trade-off between 
competition and risk. Increasing the number of dealers servicing the market decreases the 
price paid by hedgers but lowers revenue for dealers, increasing the probability of a 
default. Restricting entry maximizes welfare when dealers’ efficiency is high relative to 
their market power. A Central Counter-Party (CCP) offering novation tilts the trade-off 
toward more competition. Free-entry is optimal for all level of dealers’ efficiency if they 
can constrain risk-taking by its members. In this model, dealers can choose CCP rules to 
restrict entry and increase their benefits. Moreover, dealers impose binding risk 
constraints to increase revenues at the expense of the hedgers. In other words, dealers can 
use risk controls to commit to a lower degree of competition. These theoretical results 
provide one rationalization of ongoing efforts by regulators globally to promote fair and 
risk-based access to CCPs. 

JEL classification: G10, G18 
Bank classification: Financial markets; Financial system regulation and policies; 
Financial stability 

Résumé 

Les auteurs modélisent le comportement des courtiers sur des marchés de dérivés de gré à 
gré dans lesquels un petit nombre de courtiers traitent avec un éventail de clients 
hétérogènes. La concurrence imparfaite et le risque de défaut (endogène) donnent lieu à 
un arbitrage bien connu entre concurrence et risque. Si l’on accroît le nombre de courtiers 
desservant le marché, on observe une baisse des prix pour les clients, mais aussi une 
diminution des revenus des courtiers, ce qui augmente la probabilité d’une défaillance. 
Des restrictions à l’entrée optimisent le bien-être tant que l’efficience des courtiers est 
élevée relativement à leur pouvoir de marché. La présence d’une contrepartie centrale 
assurant la novation fait pencher la balance en faveur de la concurrence. La libre entrée 
offre une situation optimale quel que soit le niveau d’efficience des courtiers si la 
contrepartie centrale est en mesure de limiter les risques que prennent ses membres. Dans 
le modèle, les courtiers peuvent influer sur les règles qu’applique la contrepartie centrale 
de manière à restreindre l’entrée et à augmenter leurs avantages. De plus, ils peuvent 
imposer des mécanismes contraignants de limitation des risques afin de grossir leurs 
revenus aux dépens des clients. Autrement dit, les dispositifs de contrôle des risques 
permettent aux courtiers de s’engager à réduire la concurrence entre eux. Ces résultats 
théoriques fournissent une justification aux efforts déployés actuellement dans le monde 
par les autorités de réglementation pour favoriser un accès aux contreparties centrales qui 
soit équitable et fondé sur les risques. 

Classification JEL : G10, G18 
Classification de la Banque : Marchés financiers; Réglementation et politiques relatives 
au système financier; Stabilité financière 



1 Introduction

Over-the-counter (OTC) markets are decentralized markets where dealers offer intermedia-

tion services to investors. In practice, a small number of dealers provide customized interme-

diation services to a large number of diverse investors raising questions about the extent to

which OTC dealers can exercise market power and increase profits. Could new entrants and

greater competition among dealers improve welfare? On the other hand, OTC markets con-

centrate couterparty default risk in the hand of dealers and intensifying competition among

dealers may increase dealers default risk, reducing welfare. Indeed, counterparty default

risk played a key role in the propagation of the 2007-2009 crisis into OTC markets (Duffie,

2010a). In response, regulators are pursuing the increased use of Central Counter-parties

(CCPs) to control default risk and mitigate the costs of default.1

We model an OTC market where a small number of dealers meet a continuum of risk-

averse agents with an uncertain endowment (i.e., hedgers). Dealers are differentiated and

have market power. For instance, hedgers’ utility from trading can vary across dealers

because of preferences, differentiated ancillary services, or because the costs of establishing

a relationship vary across dealers. There is no information asymmetry. Dealers offer hedgers

an homogenous swap contract that promises a fixed payment in exchange for their random

endowment. Dealers have limited liability, face an idiosyncratic shock, and may default.

They can transfer the endowment risk, but dealers’ hedging strategies, and their exposures

from other markets or business lines, introduce introduces idiosyncratic default risk. Hence

a swap contract transfers the endowment risk to the dealer but does not eliminate risk

for hedgers. Markets are incomplete since hedgers cannot insure against dealers’ default.

The reduction in risk for hedgers depends on the scale of dealers’ idiosyncratic shocks. We

interpret the reduction of risk as a measure of dealers’ efficiency to transfer risk. Our analysis

leads to the following four theoretical contributions.

Our first contribution is to characterize the trade-off between competition and default

risk in the context of an OTC market.2 Increasing the number of dealers improves welfare via

two channels and reduces welfare via a third channel. A higher number of dealers intensifies

competition, lowering the price paid by hedgers. More dealers also implies that the pool of

dealers is more diverse, lowering transaction costs for hedgers. On the other hand, a lower

1The leaders of the G-20 group of nations stated in September 2009 that all standardized OTC derivatives
contracts should be cleared through CCPs.

2A vast literature assesses the interaction between competition and stability in the context of banking.
Competition may reduce or promote stability. See Keeley (1990), Boyd and De Nicolò (2005), Martinez Miera
and Repullo (2010) and the review in Vives (2010). However, our results show that market infrastructure,
such as CCPs, introduces an important difference between market-based intermediation and banking.
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price reduces revenue and increases the probability of a dealer’s default. This reduces welfare.

The socially optimal level of entry involves trading-off the benefits of a lower price and of

lower transaction costs against the consequences of a higher default probability. Depending

on model parameters, restrictions to entry may be optimal to balance the conflicting effects

of competition. The scale of dealers’ default risk plays a key role. Hedgers prefer to restrict

entry if dealers reduce risk efficiently. In this case, restricting entry at a relatively high level

reaps much of the gain from competition but with a relatively small increase in default risk.

In this case, and all else constant, raising dealers’ market power increases the gains from

competition and raises the restricted level of entry.

Idiosyncratic default justifies the introduction of novation to reap the gains from diversi-

fication (Koeppl and Monnet, 2010). Novation is introduced via a CCP that stands between

hedgers and dealers, becomes a party to every trade, and absorbs counterparty risk in the

OTC market.3 As in Koeppl and Monnet (2010) novation is not a guarantee. Instead, a CCP

can only pool the resources available from its members to fullfill its obligations. We analyze

the effect of novation on the competitive environment, the endogenous (joint) distribution

of dealers’ default, and the optimal level of entry. We also consider the effect of a CCP that

offers novation, set membership requirements, and set limit on the probability of losses due

to dealers’ default.4

In a second contribution, we find that the introduction of novation tilts the social opti-

mum toward a greater level of competition. This arises because the diversification benefits

affect the trade-off associated with increasing the number of dealers. Novation reduces the

welfare (default) costs associated with higher competition. In fact, free-entry becomes op-

timal for a range of dealers’ efficiency where restrictions to entry were previously optimal.

Novation raises the efficiency threshold needed to justify restrictions to entry. This argument

can be extended and applied to other aspects of CCPs that reduce the (marginal) welfare

costs of default associated with new entrants (e.g., such as the collateralizing of dealers’

obligations).

In a third contribution, we show that free-entry is socially optimal if the CCP has the

ability to directly limit dealers’ risk. The CCP chooses a low level of risk when dealers are

more efficient, trading-off the costs and benefits of lower default probability. In equilibrium,

3CCPs have long played an important role in markets for exchange-traded securities but have been
absent from most OTC derivative markets. Counterparty credit risk is more salient in derivative markets
since contractual relationships between counterparties are long-lasting and, therefore, the interaction between
controlling default risk and competition is especially relevant.

4CCPs constrain and mitigate counterparty risk via different means, including margins, haircuts, default
funds, mutualisation, multilateral netting and others. Rules and institutions designed to mitigate the effect
of a dealer’s default on the market are the focus of this paper but are not the only barriers to entry. For
instance, the required technology to offer intermediation services requires substantial fixed investments.
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dealers’ revenues must be consistent with the default probability imposed by the CCP. Hence,

risk controls constrain the dealers’ ability to reduce the price excessively. Still, free-entry

eliminates any price mark-ups due to market power. In addition, free-entry increases the

diversity of the dealers’ pool reducing transaction costs for hedgers. Hedgers reap the benefits

from both greater competition and lower default risk.

Finally, we show that a CCP that maximizes its members’ profits uses strict membership

rules to achieve a level of entry lower than what is socially optimal. Membership requirements

can act as a barrier to entry. Realistically, the number of dealers servicing a given market

may be determined from history, whereas incumbents may not be forced to withdraw, and

the CCP cannot reduce the number of operating dealers. In this case, the CCP chooses to

limit new entry and to implement stringent risk controls on its members’ trading activities.

This is perhaps surprising since, individually, dealers with limited liability prefer to avoid

restrictions on their ability to take risk. But CCP members as a group prefer binding risk-

controls. In effect, these binding risk-controls act as a commitment device that reduces the

effect of competition and leads to more favorable price in equilibrium.5

Barriers to entry into a CCP have practical relevance and the potential conflict between

welfare and the incentives of the clearinghouse’s members provide one explanation as to

why regulators have made open membership to CCPs a central feature of the new regula-

tory architecture.6 National regulators have been implementing these principles and some

CCPs have eased some of their membership requirements in response. For instance, the

US Commodity Futures Trading Commission has imposed rules capping minimum capital

requirements at $50 million. London Clearing House’s LCH.Clearnet’s SwapClear facility,

which until 2012 required that members have $5 billion in equity capital and a $1 trillion

derivatives book, now require $50 million in capital and has no requirement on book size.7

To our knowledge, this paper is the first theoretical analysis of the interactions between

CCP rules, competition and counterparty risk in an OTC market. The relevance of this

5Analog results exist in the literature on the industrial organization of firms. Dixit (1980) and Kreps
and Scheinkman (1983) find that firms can strategically choose ex-ante small levels of productive capacity
in order to decrease competition ex-post.

6See also the discussion in Fontaine, Perez Saiz, and Slive (2012). The Financial Stability Board (FSB)
identified fair and open access to CCPs as one of four safeguards needed to establish a safe environ-
ment for clearing OTC derivatives. The new Principles for Financial Markets Infrastructures (FMI) states
that:“...participation requirements should be justified in terms of the safety and efficiency of the FMI and the
markets it serves,[...] an FMI should endeavour to set requirements that have the least-restrictive impact on
access that circumstances permit.” The Committee on Payment and Settlement Systems (CPSS) together
with the International Organization of Securities Commissions (IOSCO) made fair, open and risk-based
access to CCPs one of its Principles for Financial Markets Infrastructures (CPSS-IOSCO, 2012).

7See Lazarow (2011) for details on the governance structure of some large CCPs.
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issue, however, has been highlighted by Duffie (2010b) and Pirrong (2011).8 The indus-

trial organization of OTC markets has been studied in the microstructure literature (Stoll

1978, Kyle 1985 and Kyle 1989) but dealers’ potential default are typically neglected. A

recent literature justifies the introduction of a CCP. Consistent with more general results in

Koeppl and Monnet (2010), we find that novation improves welfare. They study the benefits

of novation and mutualization with a continuum of dealers. We study the effect of nova-

tion on the trade-off underlying the optimal level of entry by dealers. Acharya and Bisin

(2011) emphasize that with asymmetric information, two parties to a trade cannot commit

to limit risky trading and maintain their default risk in the future – the counter-party risk

externality. Thompson (2010) also analyzes the moral hazard problem associated with the

re-investment of premium by insurance sellers. Carapella and Mills (2012) show that clear-

ing transactions through a CCP reduces the extent to which debt or equity securities are

information-sensitive. However, Thomson and Stephens (2012) show that when transaction

costs are low, asymmetric information on the risk being transferred and the quality of the

counterparties can exist in equilibrium.

Another strand of the nascent literature discusses the effect of different CCP configu-

rations on counterparty risk. Haene and Sturm (2009) model the optimal balance between

default fund and margin contributions in capitalizing a CCP. Rausser, Balson, and Stevens

(2010) suggest that a CCP is not capable of internalizing all the benefits it creates and

therefore should be run as a public-private partnership. Duffie and Zhu (2011) consider the

effect of inefficient netting by CCPs on the counterparty risk of members. Renault (2010)

models the optimal number of CCPs for a market. Finally, there is some empirical evi-

dence that membership restrictions may not address the most salient sources of risk. Jones

and Perignon (2012) argue that a substantial share of the systemic risk faced by the CME

clearinghouse is due to proprietary trading on the part of its members. Still, the empirical

literature remains thin, in large part due to limited access to data.

2 Model

We consider a trading environment similar in spirit to that of Duffie, Gârleanu, and Pedersen

(2005) and Lagos and Rocheteau (2009) where hedgers and dealers (described below) meet

8Duffie (2010b), comment 4: “Large [clearing members], which tend to be dealers, may have a conflict
of interest in claiming that smaller CMs are unsafe merely because of being small. [...] Allowing smaller
CMs introduces more competition between large dealers and smaller market participants.” Pirrong (2011),
page 28: “One way to exercise this market power for the benefit of members is to limit membership to an
inefficiently small number through the imposition of unduly restrictive membership requirements. Therefore,
it cannot be ruled out that CCPs will utilize membership requirements for strategic, competitive purposes.”
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to trade an OTC contract. Of course, our focus and the market environment differ. First, we

study how risk and competition change as the number of dealers changes. Hence, we abstract

from search frictions, where results rely on a law of large numbers applied to a continuum

of homogenous dealers. One implication is that dealers’ market power does not arise from

the costs that hedgers face to search for an alternate dealer. Instead, we rely on horizontal

differentiation across dealers where dealers provide different levels of ancillary services which

are reflected by heterogenous trading costs borne by hedgers. Second, dealers carry an

inventory of residual risks and, eventually, may find themselves unable to fulfill their side of

the contract. Markets are incomplete since hedgers cannot insure against dealers’ default.

This risk plays a key role in our analysis. We interpret a low level of residual risk (low

variance) as a proxy for the ability of dealers to transfer risk efficiently. Dealers’ default is

endogenous and we derive the joint distribution of defaults. Finally, we introduce a CCP that

novates all trades, restricts entry via membership rules, and controls the risk arising from

its members’ trading activities. Clearly, real-world CCPs also control risk via, for instance,

margin calls, a default fund and the mutualization of losses. All of these additional features

could add to the trade-off between competition and default risk but would not change the

thrust of our results.

2.1 Over-the-Counter Market

There are two types of agents : a unit measure of non-atomistic risk-averse agents, called

hedgers, and a small number, n ∈ N, of specialized agents, called dealers. There is one asset

and one numéraire good. Each hedger owns m unit of the numéraire and one unit of the

asset. The asset produces a random endowment of the consumption good, ẽ, with

ẽ =

{
e > 0 with probability q

0 with probability 1− q.
(1)

Following, e.g., Lagos and Rocheteau (2009) and Koeppl and Monnet (2010), hedgers have

quasi-linear preferences over the consumption good and the numéraire,9

uh(ẽ, m) = log(1 + ẽ) +m.

9As in the extant literature, studying an economy with log-linear preferences yields greater insight in the
underlying mechanism due to its analytical tractability. However, it implies that wealth effect from hedging
the risk are absent.
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The asset is not tradable – hedgers are exposed to a common endowment shock.10 Dealers

are specialized agents that offer a contingent contract s with payoffs s̃ correlated with the

endowment shock, ẽ. Dealers have linear preferences over the numéraire but with limited

liability. The exchange between dealers and hedgers is an over-the-counter (OTC) financial

market. All dealers offer the same contract but they also offer differentiated ancillary ser-

vices to their clients, for example, cash accounts, accounting services and other customized

services. Alternatively, establishing a relationship between a hedger and a dealer may be

costly or dealers may have varying knowledge about different hedgers. This can also be seen

as an approximation to an environment with search frictions.

Specifically, hedger i incurs a costs of ci,j, in terms of the numéraire, to trade with dealer

j. These costs can be seen as a transaction costs, or costs arising from participating in the

market, in which case, they are incurred directly by the hedgers. They can also be seen as

paid upfront to cover for the costs incurred by dealers to offer customized services. We use

the circular road model of Salop (1979) to model price competition with horizontal differen-

tiation in the OTC market. The Salop circle is an analytical device where heterogeneity is

captured by the location of hedgers and dealers on the circular road (See Figure 1). In this

representation of the market, hedgers are uniformly dispersed around a circle with length

H = 1 and the n dealers are equally spaced along the circle. Horizontal differentiation is

captured by varying trading costs with the distance between hedgers and dealers. Hedger i’s

costs of trading with dealer j located at a distance of di,j on the road is given by ci,j = di,j · t
with t > 0.11

2.2 Dealers’ Intermediation

The timing of events is the following. First, hedgers trade a swap contract with dealers

at a given price, pj, and pay the transaction cost ci,j. Second, all shocks are realized, the

contract’s payoff is determined and some dealers may default.12 The contingent contract is a

fixed-for-floating swap. Both legs of the transaction occur in the second period. The terms

of the contract specify the exchange of a fixed quantity, known today, against an uncertain

quantity. It is natural to set the variable payment to be ẽ and the fixed payment to the mean

10Hedgers have the same exposure and there is no gain from trading between themselves. We abstract ab-
stract from idiosyncratic shocks to hedgers. The common shock is the hedgers’ systemic exposure remaining
after diversification benefits have been exhausted.

11We exclude the case where hedgers can trade with each others. Dealers are truly specialist of offer
services that hedgers cannot replicate easily. We will consider entry of additional, competing, dealers below.

12Hedgers do not default in equilibrium since they only promise to deliver their random endowment.
Moreover, we assume that m is large enough, so that m > p and there is no wealth effect, and that hedgers
can commit to pay the contract’s price. Any monitoring costs by dealers can be included in the trading costs
t without loss of generality.
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of ẽ, e = qe. The net payoff to hedgers from this contract is s̃ = e− ẽ. The distribution of s̃

is given by:

s̃ =

{
(q − 1)e with probability q

qe with probability 1− q.
(2)

Each Hedger makes an additional transfer of the numéraire to the dealer which is the price,

p, of the contract. The price is paid upon settlement of the contract in the second period.13

In equilibrium, hedgers are willing to pay a non-negative price to buy this contract from

dealers, to receive a fixed payment and eliminate uncertainty. Risk-neutral investors would

be indifferent to take either side of this swap with p = 0.

Dealers incur losses from the swap contract whenever s̃ > p. For simplicity, we do not

endow dealers with capital to cover for these losses. Instead, dealer j has access to different

trading strategies in other markets where he can trade to hedge this risk. In our model, a

dealer is not a bank or an insurance company but a trading specialist in financial markets.14

In particular, dealer j can establish different trading strategies, h̃j to hedge the risk. The

net payoff from the combination of a swap contract and the hedge position is ∆̃j = s̃ − h̃j

and is idiosyncratic to each dealer. Its distribution is given by:

∆̃j =

{
(q − 1)σe with probability q

qσe with probability 1− q,

and σ ≥ 0. The shocks ẽ and ∆̃j are uncorrelated and we fix P (∆̃j = (q − 1)σe) =

P (s̃ = (q − 1)e) = q for parsimony. This parametrization implies that E[∆̃j] = 0 and,

more importantly, that the relationship between the variance of the swap and of the hedged

positions is given by:

V ar[∆̃j] = σ2V ar[s̃].

The residual risk introduces the possibility that a dealer may default on its obligations.

The hedge contract mirrors the payoff from the swap contract but with a gap ∆̃j that

represents residual risk, or basis risk. This differs from the common assumption in the

13The fixed payment in a typical swap or futures transaction is set such that there is no initial exchange
of money. This is purely a matter of notional convention. We could define the fixed payment as e− p with
no loss of generality. Our approach highlights the role of risk on the exchanges between hedgers and dealers.

14We refrain from including capital for two reasons. First, our focus is on varying the number of competing
dealers in the market. This raises important general equilibrium questions about how much capital is available
in the economy to cover default risk in the OTC market and to allocate it among dealers (incumbents and
new entrants) as we vary the number of dealers n. Second, although capital could be modeled by adding a
constant payoff to the hedging strategies, this addition would not alter the main results below.
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literature on OTC markets where a dealer has access to a frictionless markets to trade its

risk away entirely (see e.g., Duffie, Gârleanu, and Pedersen 2005). The gap can represent

risk that simply cannot be traded away by dealers, for instance, if the best hedging strategy

is not perfectly correlated with the payoff from the swap contract. The deviations may also

correspond to gains or losses incurred by dealer j from trading strategies in other markets

or business lines. The parameter σ controls the variance reduction that results from hedging

activities. It is a deep parameter that represents how efficiently dealers can transfer the risk

borne by hedgers. In particular, the hedge is perfect if σ = 0. In this case, dealers never

default, since ∆̃j = 0 with probability one, and hedgers face no risk in equilibrium. On the

other end, σ = 1 corresponds to the case where dealers do not reduce variance. Importantly,

the shocks ∆̃j are uncorrelated with hedgers’ endowment shocks. Therefore, trading away

the endowment risk may be beneficial to hedgers even if σ is close to one, and the reduction

of risk is low, since the hedging strategy offer diversification benefits.15

2.3 Dealers’ Default Probability

Dealer j defaults whenever the price obtained from entering the swap contract, pj, is less

than the loss incurred from its partially hedged position.16 The probability that dealer j will

default as a function of price, Dj(p) ≡ Pr
(
pj < ∆̃j

)
, is given by:

Low-Risk Region: Dj(p) = 0 if p ≤ pj

High-Risk Region: Dj(p) = 1− q if p ≤ pj < p

Default Region: Dj(p) = 1 if pj < p,

(3)

where, the thresholds p ≡ σqe and p ≡ σ(q − 1)e define three distinct regions. Nonetheless,

the low-risk and high-risk regions are the only economically relevant cases. The default

region, where dealers always default is irrelevant in equilibrium since it is never optimal for

dealers. The hedgers’s demand is zero in this case (see below). Using a simple distribution

for the shock ∆̃ allows us to derive clear analytical results related to the joint probability

distribution of events where some, many or all dealers default. This is crucial when studying

losses within the CCP.17

15The distribution of ∆̃j is exogenous and homogenous across dealers for parsimony. Thompson (2010)
analyzes the moral hazard that arises when the hedging or re-investment strategies of the dealers are en-
dogenous in the related context of financial insurance contracts for the purpose of credit risk transfer.

16One important consideration is whether hedging by dealers is consistent with their preferences. We show
in Appendix B that, for any price pj , the hedgers’ demand is higher when dealers hedge their risk, even if
only partially.

17It may appear simplistic that the probability of default is zero in the low risk region. Adding one point
or more to the support of ∆̃j would lead to one or more risk regions but the extra cases only complicate
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2.4 Novation by a CCP

Dealer’s default is an idiosyncratic risk and, therefore, re-allocating the losses across hedgers

can improve welfare (Koeppl and Monnet, 2010). Novation by a CCP is one mechanism to

implement this re-allocation and reach an efficient equilibrium when n ≥ 2. With novation,

every contract between a hedger and a dealer is superseded by two contracts: one between

the hedger and the CCP, and one between the CCP and the dealer.

In case of a default, the CCP fulfills its obligations as follows. Consider the event where

k < n of the n dealers face a low realization of their hedge strategy and default on their

contracts with the CCP. Then, the CCP can use the proceeds from contracts with the n− k

surviving dealers to fulfill a pro-rata share (n − k)/k of its obligations toward hedgers. In

return, hedgers pay the same pro-rata share of the agreed price. Then, the net quantity

of the consumption good obtained by one hedger when k of the n dealers default, Fẽ(k), is

given by:

Fẽ(k̃) = 1 + ẽ+
n− k̃

n
(qe− ẽ) . (4)

The hedger entering a swap contract has utility given by:

log
(
Fẽ(k̃)

)
− n− k̃

n
pj − djt, (5)

if a CCP operates in the market and the expected utility is given by:

E[uCCP
h (pj;n)] = qE [log(Fe(k)] + (1− q)E [log(F0(k)]− E

[
n− k

n
pj

]
− djt. (6)

For instance, if all dealers default then Fẽ(n) = 1 + ẽ and if no dealer defaults then Fẽ(0) =

1+ ē. These cases correspond to the hedger’s payoffs in the absence of a CCP. We can derive

the the joint distribution of dealers’ default. Dealer j defaults when pj < ∆̃j. The payoffs

∆̃j are independent of the endowment ẽ, and they have independent bernoulli distributions

across dealers. Therefore, the random variable k̃, the number of default among n dealers,

follows a binomial distribution with parameters Dj(p) and n.18

Since it improves welfare, the CCP’s emergence can be seen as endogenous or following

the analysis and lengthen the propositions. Similarly, extending the length of the support, e, without bound
would eliminate regions where Dj(p) = 0 and where Dj(p) = 1. However, much of the tractability would be
lost without changing the thrust of the paper.

18A random variable x̃ with a Binomial distribution with parameters p and n has a mean np and variance
np(1− p).
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a mandate by the regulatory authority to clear all trades.19 Moreover, as in Koeppl and

Monnet (2010), novation is not a guarantee. The CCP can only re-distribute the resources

from dealers that did not fail and uses them to fulfil its obligations to hedgers. In returns,

hedgers only pay a pro-rata share of the price. This guarantees that the CCP can fulfill its

obligation to surviving dealers but, yet, that no resources remains idle within the CCP and

all the benefits of diversification are re-distributed outside of the CCP. Introducing a fixed

default fund, or other exogenous resources, does change the nature of the trade-off between

risk and competition.

2.5 Risk Controls and Membership Rules

The CCP can implement membership rules to restrict entry and select the number of dealers

that become members. Hedgers are not clearing members but, instead, hedgers use indirect

clearing and the CCP still novates all the hedgers’ trades. A CCP can also imposes ex-ante

rules on the level of risk that each member can carry. Specifically, it can set the number of

members n freely, as well as the default constraint parameter α such that,

Pr
(
pj < ∆̃j

)
≤ α. (7)

Note that real-world CCPs do not impose a probability constraint directly. However, several

of the practices that CCPs put in place are used to minimize the probability of a large loss

following a member’s default. For instance, initial margins, variation margins and haircuts

on collateral secure the CCP’s claim on each dealers and directly reduces the risk of a loss

following default. Members’ contribution to a default fund, mutualization of losses, and

other institutional features of a CCP also reduce the probability of losses. Similarly, real-

world CCPs do not fix the number of dealers directly but, for instance, set capital or fixed

investment requirements that have the effect of limiting further entry.

3 Equilibrium in the OTC Market

This section describes the equilibrium when the OTC market is unregulated and there is no

CCP. We first consider the case where n is low, and dealers are monopolist. In this case,

the equilibrium does not “cover” the market: some hedgers will not trade since the sum of

the price and the trading costs is too high. We label this case the uncovered equilibrium.

With more dealers in the market, the equilibrium eventually covers the market and there is

19The G20 have agreed that markets for OTC derivatives should be centrally cleared. We analyze the case
with only one CCP operation in a given market. Economies of scale and network effects present in clearing
– but not modeled in this paper – push towards a single CCP for each market.
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imperfect competition in the market. We label this case the covered equilibrium. The latter

is the economically relevant case for many real-world OTC markets. In this case, a low level

of competition yields a high price and the equilibrium lies in the low-risk region while more

competition leads to lower price and the equilibrium eventually reaches the high-risk region.

3.1 Hedgers’ Demand

3.1.1 Demand in a Covered Equilibrium

The covered equilibrium corresponds to the area of the parameter space in Salop (1979)

where dealers are competing with each other. As in Duffie et al. (2005), dealers are ex-ante

homogenous and it is natural to consider an equilibrium where a unique price prevails across

the OTC market. Hence, we follow Salop (1979) and focus on the symmetric equilibrium. To

derive hedgers’ demand, compare the hedger’s utility obtained from trading with different

dealers. The utility of a hedger from trading with the nearest dealer j located at a distance

dj is log(1 + ē) +m− pj − djt if the dealer does not default, and log(1 + ẽ) +m− djt if the

dealers default. Then, the expected utility is given by:

E[uh(pj)] =


Π+ q log(1 + e)− pj − djt if p ≤ pj

q(Π + log(1 + e)− pj)− djt if p ≤ pj < p

q log(1 + e)− djt if pj < p

, (8)

where Π is the surplus derived from trading,

Π = log(1 + e)− q log(1 + e) > 0, (9)

since hedgers are risk-averse with respect to the consumption good. In a symmetric equilib-

rium, all dealers but dealer j set their price to p̂. Consider the second nearest dealer, j − 1

say, located at distance 1
n
−dj on the other side of the hedger. The utility from trading with

dealer j − 1 is given by:

E[uh(p̂)] =


Π+ q log(1 + e)− p̂− ( 1

n
− dj)t if p ≤ p̂

q(Π + log(1 + e)− p̂)− ( 1
n
− dj)t if p ≤ p̂ < p

q log(1 + e)− ( 1
n
− dj)t if p̂ < p

, (10)
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and, therefore, the hedger will prefer to trade with dealer j if

E[uh(pj)] ≥ E[uh(p̂)] ⇔


−pj+p̂+ 1

n
t

2t
≥ dj if p ≤ pj, p̂

−qpj+qp̂+ 1
n
t

2t
≥ dj if pj, p̂ ∈ [p, p)

1
2n

≥ dj if pj, p̂ < p

. (11)

We obtain a similar condition for those hedgers between dealer j and j+1. Then the demand

schedule for dealer j is given by,

yc(pj, p̂) =


H

−pj+p̂+ 1
n
t

t
if p ≤ pj, p̂

H
−qpj+qp̂+ 1

n
t

t
if pj, p̂ ∈ [p, p)

0 if pj, p̂ < p,

(12)

where yc(pj, p̂) is the quantity of contracts sold by dealer j as function of its own price, pj,

and the price of other dealers, p̂.20 This results confirms the irrelevance of the case p̂ < p,

which corresponds to the Default region above, since dealers face zero demand in this case.

3.1.2 Demand in the Uncovered Equilibrium

A hedger does not trade with any dealer if its expected utility is less than its reservation

value,

R = log(1 + e)q + log(1)(1− q) +m = q log(1 + e) +m. (13)

Comparing Equation 8 and Equations 13, shows that some hedgers choose not to trade if the

prices offered by dealers or the trading costs, t, are large enough. In this case, each dealer

is a local monopoly, corresponding to the monopolistic area of the parameter space in Salop

(1979). The demand schedule in the uncovered case is

yu(pj) =


2H
t
max (Π− pj, 0) if p ≤ pj

q 2H
t
max (Π− pj, 0) if pj ∈ [p, p)

0 if pj < p,

(14)

20Strictly speaking, the demand schedule also exists and is well-defined for cases where the prices of two
neighboring dealers are located on each side of p. We do not present the results here to economize on space
since we focus on symmetric equilibrium prices are identical across dealers and any two prices always lie in
the same region.
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3.1.3 Social Welfare

The total expected utility of hedgers trading a swap contract is given by:

E[Uh] = 2n

∫ d∗

0

E[uhi
(p∗)]di (15)

where the integral is over all hedgers on one side of a given dealer, up to distance, d∗, where

the marginal hedger is located. This distance in given in equilibrium. Multiplying by two

includes hedgers on both sides of this dealer, and multiplying by n homogenous dealers gives

the total expected utility of hedgers in equilibrium.

3.2 Equilibrium without a CCP

All dealers choose a price simultaneously taking into account the hedgers’ demand. The

expected utility of individual dealers, is defined by:

E[ud] = E[max(y(pj − ∆̃j), 0)], (16)

where y is the quantity of contract sold to hedgers.21 The following Proposition characterizes

the equilibrium price, as well as the equilibrium expected utility of hedgers and dealers. We

normalize the mass of hedgers to one, H = 1, and consider cases where dealers are sufficiently

efficient to reduce risk for hedgers, 0 ≤ σ ≤ σ̄. In this case, the sequence of equilibrium type

as n increases is the following: (i) monopoly in the low-risk region, (ii) imperfect competition

in the low-risk region and, (iii) imperfect competition in the high-risk region.22 If the scale

of the dealers’ risk is too high, σ > σ̄, then the equilibrium lies in the high-risk region for all

n because the hedgers’ surplus from trading is not sufficiently high. All proofs can be found

in the Appendix for the more general case where H > 0 and σ ≥ 0.

Proposition 1 Equilibrium in the OTC Market without CCP

Fix H = 1 and consider cases where dealers’ efficiency ranges in 0 ≤ σ ≤ σ̄ = Π
2qe

. The sub-

scripts u and c designate the uncovered equilibrium and the covered equilibrium, respectively.

The superscripts lr and hr designate the low risk and high risk regions, respectively.

Low-Risk Uncovered Equilibrium :

For any 1 ≤ n ≤ nlr
u , where nlr

u = t
Π
, a symmetric equilibrium exists, is unique, and

21Dealers’ utility is linear in the numéraire. Implicitly, dealers have access to a spot market where they
can exchange any surplus pj − ∆̃j > 0 in the form of the numéraire. Alternatively, dealers’ utility is linear
in the commodity and the numéraire.

22When σ < σ̄ the efficiency of dealers and the price that hedgers are willing to pay is to low so that the
equilibrium never lies in the low-risk region.

13



lies in the low-risk uncovered region (dealers are monopolies). This equilibrium is such

that,

plru =
Π

2

E[U lr
h,u] = n

Π

t

(
Π

4
+ q log(1 + e)

)
.

Low-Risk Covered Equilibrium :

For any nlr
c ≤ n ≤ n̄lr

c , where nlr
c = 2t

Π
, n̄lr

c = t
p̄
and nlr

c ≤ n̄lr
c , a symmetric equilib-

rium exists, is unique, and lies in the low-risk covered region (dealers compete). This

equilibrium is such that,

plrc =
t

n

E[U lr
h,c] =

(
log(1 + qe)− 5t

4n

)
,

and dealers’s expected profits decreases with n (see Appendix).

High-Risk Covered Equilibrium :

For any n > nhr
c , where

nhr
c = max

(
n̄lr
c ,

t(1 +H)

q(Π− (q − 1)σe)

)
,

a symmetric equilibrium exists, is unique, and lies in the high-risk covered region (deal-

ers compete). This equilibrium is such that,

phrc =
t

qn
+ (q − 1)σe

E[Uhr
h,c] =

(
q(Π− (q − 1)σe) + q log(1 + e)− 5t

4n

)
,

and dealers’s expected profits decreases with n (see Appendix).

The monopolistic equilibrium exists only if nlr
u = t/Π ≥ 1. That is, if the costs of differen-

tiation, measured by t, is larger than the surplus from a trade, Π. Then, some hedgers do

not to trade and the number of dealers n does not affect the equilibrium. Eventually, as the

number of dealers increase, or if differentiation is low enough, the equilibrium is covered and
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there is imperfect competition between adjacent dealers.23 Then, each dealer trades with all

hedgers located on either of the dealer side but within a maximum distance of 1/2n. The

quantity traded by every dealer is y∗ = H/n.

The equilibrium price balances market power and default risk. When the number of

dealers is relatively low, and the equilibrium still lies in the low-risk region, the contract’s

price exceeds the expected payoff (plru ≥ plrc > E[s̃] = 0). However, as n rises beyond nhr
c ,

and we reach the high-risk region, the equilibrium price reflects the probability that a dealer

may default. Eventually, as competition increases, default risk dominates market power and

the contract price declines below the expected payoff to compensate hedgers for losses due

to default. The threshold, nhr
c , between the low-risk and the high-risk regions compares the

level of differentiation t and the dealers’ risk σqe. If dealers are efficient (σ is small) or

if differentiation is high, then a larger increase in the number of dealers competing in the

market is required before the equilibrium reaches the high-risk region (nhr
c ≫ nlr

c ).

3.3 Equilibrium with Novation

One way to see the benefits of novation is to assess the diversification benefits for the (risk-

averse) hedgers directly. Using the binomial distribution of dealers’ default, a hedger’s

expected utility in the high-risk region is given by:

E[uCCP
h (pj;n)] = vh(n)− qpj − djt, (17)

where qpj = E[n−k
n
pj]. The first term, vh(n), corresponds to the expected utility from the

consumption goods, given by:

vh(n) ≡ E[log(Fẽ(k))]

= qE [log(Fe(k))] + (1− q)E [log(F0(k))] . (18)

It follows that for a given price, the expected utility, increases with n due to the benefits of

diversification. The effect of n works through its effect on Fẽ(k̃). The means of Fe(k) and

23The demand schedule for all values of pj has a kink at the point between the uncovered and the covered
cases. This kink reflects the effect of competition on the price elasticity of hedgers (compare the slope of the
hedgers’ demand between the uncovered case and the covered case). The transition between an uncovered
equilibrium toward a covered equilibrium in the low-risk region, as we vary n from nlr

u to nlr
c can be made

smooth by proper choice of the parameter values. For instance nlr
c −nlr

u ≤ 1 ⇔ H ≤ Π. Similarly, parameters
values can be chosen such that the transition between the covered equilibrium is smooth.
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F0(k) do not change with n,

E(Fe(k)) = 1 + qe+ e(1− q)2

E(F0(k)) = 1 + qe− eq(1− q),

but their variances decrease strictly with n,

V ar(Fe(k)) = e2
(1− q)q

n
(1− q)2

V ar(F0(k)) = e2
(1− q)q

n
q2,

and reach zero in the limit. Therefore, the distribution of consumption when the number

of dealers is n and the distribution when the number of dealers is n + 1 differ by a mean-

preserving spread where the dispersion of the distribution decreases with n. Then, from

standard results, vh(n) and is increasing in n because the log function is concave (Rothschild

and Stiglitz 1970 and, e.g., the review in Levy 1992). Next, define ΠCCP as the surplus from

trading when the CCP provides diversification benefits,

ΠCCP (n) ≡ vh(n)− q log(1 + e)

q
.

This definition is an analog to the notation previously introduced for the hedger’s surplus.

The difference between ΠCCP (n) and Π measures the benefits from diversification. Indeed,

there is no diversification benefits when n = 1 and we have that, ΠCCP (1) = Π. Moreover,

the benefits from diversification increases with the number of members since ΠCCP (n) > Π

for all n > 1 (vh(n) increases with n). In turns, hedgers, expected utility increases with n,

E[uCCP
h (pj;n)] =

{
Π+ log(1 + e)− pj − djt if pj ≥ p

q(ΠCCP (n) + log(1 + e)− pj)− djt if pj ∈ [p, p)
, (19)

where, again, the case pj < p is irrelevant. For a given price, the hedger’s expected utility

increases with n in the high-risk region but there is no effect in the low-risk region since

default is absent. Of course, the net effect also depends on the equilibrium price. The

following proposition builds on Proposition 1 and verifies that expected utility also increases

in Equilibrium. we focus on the effect of novation. The effect of entry restrictions and that

of risk controls will be analyzed in the following section.

Proposition 2 Equilibrium in the OTC Market with Novation

Fix H = 1 and consider cases where n > 1 and 0 ≤ σ ≤ σ̄ = Π
2qe

. The subscripts u
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and c designate the uncovered equilibrium and the covered equilibrium, respectively. The

superscripts lr and hr designate the low risk and high risk regions, respectively.

The introduction of novation,

• does not affect the equilibrium price given in Proposition 1 (Equilibrium without a

CCP),

• does not affect dealers’ expected profit,

• but novation improves welfare. Hedgers’ total utility is given by

E[Uhr
h,c] =

(
q(ΠCCP (n)− (q − 1)σe) + q log(1 + e)− 5t

4n

)
for nhr

c,CCP < n < +∞.

where nhr
c,CCP is given in the Appendix.

Novation does not affect the price in a covered equilibrium. Due to competition, dealers

cannot raise their price beyond a level consistent with the extent of differentiation. Novation

does not affect the price in the uncovered equilibrium either since diversification has no

effect in the low-risk region.24 Therefore, dealers’ profit is unchanged. On the other hand,

hedgers’ expected utility increases due to novation (ΠCCP (n) ≥ Π) and hedgers capture

all of the welfare gains due to novation. Therefore, the introduction of novation improves

social welfare.25 For our purpose, this framework captures the key effect of novation. As the

number of dealers increases, and competition intensifies, novation reduces the welfare declines

associated with the increase in individual dealer’s default risk. This trade-off determines the

optimal level of entry on the OCT market.

4 Novation, Restrictions to Entry and Risk Controls

4.1 Socially Optimal Level of Entry

We first study the optimal level of entry in a CCP that only offers novation but does not

control risk. Consider the free-entry equilibrium where new dealers enter the market as

long as expected profits are positive. Free-entry leads to an equilibrium where dealers have

24This is an artefact of our specification where the dealers’ hedging shocks only take two, bounded, values.
Otherwise, monopolistic dealers would capture part of the diversification benefits from novation.

25The CCP only affects the price in the high-risk region, i.e., ΠCCP (n) = Π in the low-risk region.
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no market power but which lies in the high-risk region. Therefore, free-entry may not be

socially optimal since the lower price associated with a higher degree of competition may not

warrant the higher default probability in the high-risk region.26 The following proposition

characterizes the free-entry equilibrium with and without novation. In each case, there is a

role for a CCP to restrict entry. The analysis yields two results. First, hedgers prefer free-

entry when dealers’ market power is high relative to their ability to transfer risk efficiently.

Otherwise, hedgers would prefer a situation where entry is restricted and competition is

inhibited. Second, novation tilts the optimal level of entry toward more competition.

Proposition 3 Free-Entry Equilibrium

Define the social welfare as the sum of all hedgers’ utility. Define σ∗
OTC and σ∗

CCP as,

σ∗
OTC =

4(1− q)Π

9qe− 4q2e
)

σ∗
CCP =

4
(
Π− qΠCCP (+∞)

)
9qe− 4q2e

,

with 0 < σ∗
CCP < σ∗

OTC < σ̄.

• In the free entry equilibrium, i.e., as n → +∞,

phrc → (q − 1)σe, E[uhr
d,c] → 0, and D → 1− q.

• Hedgers’ utility without and with novation is given by

E[Uhr
h,c] → q(Π− (q − 1)σe) + q log(1 + e)

E[Uhr
h,c] →

(
q(ΠCCP (+∞)− (q − 1)σe) + q log(1 + e)

)
,

respectively.

• In the OTC market without novation, social welfare is maximized by restricting entry

to n∗
OTC ≤ nhr

c if σ < σ∗
OTC ≤ σ̄. Then, the equilibrium lies in the low-risk region with

imperfect competition. Otherwise, if σ > σ∗
OTC, then the social welfare in the OTC

market without CCP is maximized in the free-entry equilibrium.

• In the OTC market with novation, social welfare is maximized by restricting entry to

n∗
CCP ≤ nhr

c,CCP if σ < σ∗
CCP . Otherwise, if σ > σ∗

CCP the social welfare in the OTC

market with a CCP offering novation is maximized in the free-entry equilibrium.

26The same trade-off arises if we consider the sum of dealers and hedgers’ expected utility as a criteria for
social welfare. For instance, if hedgers hold all the share of the dealer’s firm.
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The free-entry equilibrium reaches the high-risk region and dealers default with probability

1 − q.27 Whether free entry is optimal depends on the following trade-off. Increasing the

number of dealers improves welfare via two channels. A higher number of dealers intensifies

competition, lowering the price paid by hedgers. More dealers also implies that the pool

of dealers is more diverse, lowering transaction costs for hedgers. On the other hand, a

lower price reduces revenue and increases the probability of a dealer’s default. This reduces

welfare. Whether the trade-off favors more or less entry depends in a significant way on the

ability of dealers to reduce risk for hedgers. When dealers are sufficiently efficient, σ < σ∗
OTC ,

a relatively large number of new entrants is required to reach the high-risk region. At this

point, just before crossing into the high-risk region, competition is sufficiently intense and

the potential benefit of further entry, via a lower price, does not compensate for the increased

default risk. Hedgers would prefer that entry be restricted. Higher efficiency implies that

the optimal level of entry is higher.

Novation increases the hedgers’ expected utility in the free-entry equilibrium. But free-

entry man still not be optimal. New entrants are beneficial as long as their effect on the

equilibrium default risk is less than the benefits due to lower price. Novation pushes this

threshold lower, σ∗
CCP < σ∗

OTC and tilts the optimum toward greater competition in two

ways. If restrictions to entry are still optimal, novation increases the number of dealers

needed before reaching a point where the benefits of higher competition do not compensate

for the higher default risk, raising the optimal level of entry. Moreover, if Π− qΠCCP (+∞)

is sufficiently large, then the introduction of novation can switch the social optimum to the

free-entry equilibrium.

4.2 Social Optimal Level of Entry with Risk Controls

Next, we consider how the introduction of risk controls within the the CCP, via the constraint

in Equation 7, affects the optimal level of entry.

Proposition 4 Optimal CCP Rules

Define social welfare as the sum of all hedgers’ utility and σ+
CCP ,

σ∗
CCP < σ+

CCP =
Π− qΠCCP (+∞)

q(2− qe)
.

• Free-entry to a CCP that controls risk is socially optimal.

27The implication that n → +∞ should not be interpreted literally. The number of new entrants is
bounded if they must incur a fixed cost. Then, the Proposition still holds unless the level of fixed cost is so
high that competition cannot materially reduce risk.
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• If σ < σ+
CCP , then the optimal risk control is α+ < 1− q and the equilibrium is in the

low-risk region. Otherwise, the optimal risk control is α+ = 1− q and the economy is

in the high-risk region.

Free-entry is optimal in the presence of risk controls. As above, the free-entry entry equilib-

rium in the high-risk region is socially optimal for low level of dealers’ efficiency. Reaching

the low-risk regions via entry restrictions implies increases of dealers’ revenues that are too

high relative to the gain in terms of default risk. But free-entry is also optimal for high

levels of efficiency. The ability to control risk directly allows the CCP to maintain the equi-

librium in the low-risk regions for higher levels of dealers’ efficiency. The binding constraint

implies that dealers must seek a price that is consistent with their risk limit. But free-entry

eliminates any mark-up of prices due to market power. Hence, hedgers reap the benefits of

lower-risk and greater competition. The level of dealers’ efficiency dictates the level of the

CCP’s risk controls. The CCP selects a lower level of default risk when dealers are relatively

efficient.

4.3 Dealers’ Optimal CCP Rules

This Section derives the choice of CCP’s rule by dealers that can coordinate their actions to

maximize their total expected profits,

1

n

n∑
i=1

E[u∗
d]. (20)

By symmetry, this is equivalent to maximizing each dealer’s utility ED∗
i .

28 We consider two

cases. In the first case, dealers can set both n and α. Alternatively, dealers must take the

initial number incumbents as given from history and they cannot exclude any incumbent

member (but they could allow for new entrants). The following Proposition summarizes the

results.

Proposition 5 Dealers’ Optimal CCP Rules

• If members can determine n and α, then they choose either nlr
u or the minimum n

where a covered equilibrium exists, the equilibrium is in the low-risk region and the risk

constraint is not binding. (Otherwise, they would also choose α < 1− q).

• If n is exogenous and cannot be reduced then members choose α < 1 − q and exclude

new entrants.
28There is a large literature that studies stability of cartels and other coalition structures. See, e.g.,

Donsimoni et al. (1986), Bloch (1996) or Thoron (1998).
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Dealers’ choices of n and α differ from the social optimum. If the dealers control the CCP

structure, they can maximize expected profit by choosing a low number of members n,

in which case the risk constraint becomes irrelevant. Dealers choose to nearly cover the

market but nonetheless remain local monopolist. Otherwise, if n is given exogenously, dealers

can maximize profit by setting a binding risk constraint while restricting further entry.

Incumbent members set binding risk constraints ex-ante to dampen the effect of competition,

leading to higher profits.29

Several comments are in order. First, CCP rules and regulation that reduce access

excessively may induce the emergence of competing CCP. This is outside the scope of this

paper. Note that there are strong network effects that favors concentration of clearing

services in OTC markets within a single entity (Duffie and Zhu, 2011). In any case, potential

entry by an alternative CCP involves large fixed costs that should limit but not eliminate

members’ rents. But the exogenous trading costs parameters t controls the level of rents.

If entry by a competing CCP is viable at lower level of rents, this corresponds to lowering

t. Second, while the CCP can monitor dealers’ activity and serve as a commitment device,

we did not discuss how dealers agree to a set of CCP rule ex-ante. A formal game-theoretic

analysis of this problem is beyond the scope of this paper. But note that the threat to break

discussion and leave the CCP is not credible. Hedgers value trading with CCP members

more. Moreover, with homogenous dealers, a coalition grouping all members that agree to

the a common set of rules described above is likely to be stable against deviations by subset

of dealers.

5 Conclusion and Extensions

Clearing houses and CCPs have for long played a key role in securities markets and their

importance will increase in OTC derivatives markets over the next few years. In order to

manage risk, a CCP typically imposes stringent membership requirements and other risk

controls. Our analysis emphasizes that these restrictions affect the industrial organization

of the financial markets that the CCP serves. We have shown conditions for which allowing

free-entry to the CCP maximizes welfare implies. This minimizes rent and maximizes the

diversity of dealers servicing the market, reducing trading costs. We also find that the

optimal risk controls trades-off the costs to hedgers arising from a default against the costs

from increasing stability. A very different outcome arises when members determine the CCP

29Analog results exist in the literature on the industrial organization of firms. Dixit (1980) and Kreps
and Scheinkman (1983) find that firms can strategically choose ex-ante small levels of productive capacity
in order to decrease competition ex-post.
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rules and regulations. Members use risk controls to commit to a lower degree of competition

and increase their profit. This has positive implications for the stability of the market but

at a greater costs to hedgers relative to the social optimum.

Other aspects of a CCP’s structure could be brought within the model. Margins, default

funds, and mutualization may also affect the trade-off between competition and default risk.

But the thrust of the message would likely remain. In this more general model, a CCP could

use these risk-controls to achieve the benefits from competition with lower increase in default

risk while dealers could use these risk-controls to achieve high profits and limit the effect of

competition. Similarly, considering fixed costs to entry would not affect the results.

Several extensions would be of interest. First, the social planner’s problem ignored po-

tential externalities that different choices of competition and default risk in one market may

have in other markets. For instance, a negative externality from default of too-big-to-fail

dealers or positive externality from having a robust pool of diverse dealers might tilt the

social optimum away from or close to competition, respectively. Second, the potential coor-

dination between dealers, or the lack thereof, could be the focus of a formal game-theoretic

analysis. More interesting, is the possibility that incumbent dealers may allow access to new

entrants but at a price. Third, though in this model we considered the case where the level

of dealers’ hedging efficiency is homogenous and exogenous, a broader perspective would

ask what would be the dealers’ optimal choice of hedging strategy. The interaction between

dealers behavior and the CCP’s structure would lead us to ask how can the planners’ im-

plement free-entry equilibrium in low-risk regions. In other words, under what mechanism

would dealers chooses strategies that reduces risk optimally from the point of view of the

hedgers.
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Figure 1: Salop’s Circular Road
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A Proofs of Propositions

A.1 Proof of proposition 1

We probe a general case of the proposition for any value of H.

A.1.1 Uncovered equilibrium case

For the dealers, the expected utility is

E[ud,u] = E[yu(pj)(pj − ∆̃j)/yu(pj)(pj − ∆̃j) ≥ 0] · Pr(yu(pj)(pj − ∆̃j) ≥ 0) =

= yu(pj)E[pj − ∆̃j/pj − ∆̃j ≥ 0] · Pr(p− ∆̃j ≥ 0), (21)

which can be rewritten as

E[ud,u] =


yu(pj)pj if pj ≥ p

yu(pj)(pj − p)q if pj ∈ [p, p)

0 if pj < p
.

If we assume that the equilibrium price is in the low risk region (p ≤ pj), and also that pj ≤ Π,
then the expected utility is

E[ud,u(pj = plru )] =
2H

t
(Π− pj) pj .

which is a concave quadratic function. To derive this expression, we have used the function yu
derived in the main text. Therefore, first order conditions are necessary and sufficient to find an
optimum price which is equal to

plru =
Π

2
< Π. (22)

In order to satisfy the constraint p = qσe ≤ plru the following condition on σ must be satisfied:

qσe ≤ Π

2
⇔

σ ≤ Π

2qe
. (23)

In equilibrium, the utility of the dealer in the low risk region is

E[ulrd,u] = yu(p
lr
u )p

lr
u =

2H

t

(
Π

2

)2

. (24)

Now, we assume that the uncovered equilibrium price is in the high risk region. In that case, the
equilibrium price phru must satisfy the following first order condition:
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∂E[uhrd,u(pj = phru )]

∂pj
=

∂yu
∂pj

(phru − (q − 1)σe)q + yuq

= −2qH

t
(phru − (q − 1)σe)q +

2qH

t
(Π− phru )q = 0.

Therefore, phru is equal to

phru =
Π+ (q − 1)σe

2
, (25)

where phru < plru . Since yu(pj)(pj−(q−1)σe)q is a concave quadratic function, first order conditions
are necessary and sufficient to find an optimum.

In order to satisfy the constraint (q − 1)σe ≤ phru < qσe the following conditions on σ must be
satisfied:

phru =
Π+ (q − 1)σe

2
< qσe ⇔

σ >
Π

(1 + q)e
, (26)

and

phru =
Π+ (q − 1)σe

2
≥ (q − 1)σe ⇔ σ ≥ − Π

(1− q)e
,

which is always satisfied because by assumption σ ≥ 0.

In equilibrium, the utility of the dealer in the high risk region is

E[uhrd,u] = yu(p
hr
u )(phru − (q − 1)σe)q =

2q2H

t

(
Π− (q − 1)σe

2

)2

. (27)

In order to have an equilibrium in the low risk region, the expected utility for every dealer in the
low risk region must be greater than in the high risk region. This condition is satisfied as long as
σ satisfies the condition σ ≤ Π

qe which is obtained as follows:

E[uhrd,u] =
2q2H

t

(
Π− (q − 1)σe

2

)2

≤ E[ulrd,u] =
2H

t

(
Π

2

)2

⇔ q
Π− (q − 1)σe

2
≤ Π

2
⇔

qΠ− q(q − 1)σe ≤ Π ⇔ (q − 1)Π ≤ q(q − 1)σe ⇔ Π ≥ qσe ⇔

σ ≤ Π

qe
. (28)

Since we can easily show that Π
(1+q)e ≤ Π

2qe ≤ Π
qe , then the inequalities (23), (26) and (28) can be

summarized as follows:

• if σ ≤ σ = Π
2qe , then plru = Π

2 > p is the uncovered equilibrium price, and

• if σ > σ = Π
2qe , then phru = Π+(q−1)σe

2 < p is the uncovered equilibrium price
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Now we need to verify that this equilibrium is uncovered, that is, we need to verify that every
dealer sells in equilibrium a number of contracts lower than H/n. In equilibrium in the low risk
region, every dealer sells yu(p

lr
u ) =

2H
t

Π
2 = HΠ

t > 0 which must be lower than H
n by definition of the

uncovered equilibrium. Since H/n is decreasing with n and tends to 0 as n tends to the infinity,
there exists nlr

u such that when n ≥ nlr
u , we have yu(p

lr
u ) > H/n and there will not be uncovered

equilibrium. The expression of nlr
u is obtained as follows:

ΠH

t
=

H

nlr
u

⇔ nlr
u =

t

Π
.

For the high risk region, we can also find nhr
u such that when n ≥ nhr

u , we have yu(p
hr
u ) > H/n and

there will not be uncovered equilibrium. The expression of nlr
u is obtained as follows:

2qH

t

Π− (q − 1)σe

2
=

H

nhr
u

⇔ nhr
u =

t

q(Π− (q − 1)σe)
.

The total utility of all hedgers that trade with one dealer j is equal to the integral of the utility
of all hedgers where we integrate over the distance dj between every hedger and the dealer. Every
hedger trades with a dealer as long as the utility is greater than the reservation value. From this
condition, we obtain the maximum distance of hedgers that trade with dealer j. For the low risk
region, this distance is given by the following inequality:

Π + q log(1 + e)− pj − djt ≥ q log(1 + e) ⇔
Π− pj

t
≥ dj .

From this inequality, we obtain the total utility of all hedgers for the low risk region, which is equal
to

2H

Π−plru
t∫

0

[
Π+ q log(1 + e)− plru − zt

]
dz.

This expression can be simplified as follows:

2H

Π−plru
t∫

0

[
Π+ q log(1 + e)− plru − zt

]
dz = 2H

(Π + q log(1 + e)− plru )
Π− plru

t
−
[
z2t

2

]z=Π−plru
t

z=0


= 2H

(
(Π + q log(1 + e)− plru )

Π− plru
t

− (Π− plru )
2

2t

)
=

= 2H
Π− plru

t

(
Π+ q log(1 + e)− plru − Π− plru

2

)
= 2H

Π− plru
t

(
Π− plru

2
+ q log(1 + e)

)
.
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By using the equilibrium price plru from (22), we can simplify furthermore the expression in order
to obtain

2H

Π−plru
t∫

0

[
Π+ q log(1 + e)− plru − zt

]
dz =

2H

t

Π

2

(
Π

4
+ q log(1 + e)

)
. (29)

Finally, the total utility of hedgers E[U lr
h,u] is given by the sum of utilities of hedgers that trade

with every dealer. Therefore, this is given by n times (29):

E[U lr
h,u] = n

ΠH

t

(
Π

4
+ q log(1 + e)

)
. (30)

Since prices do not depend on n in the uncovered case, this expression is strictly increasing in n.

In the high risk region we can obtain the utility of the hedgers that trade with a dealer using
identical derivations used in the low risk region:

2H

q
Π−phru

t∫
0

[
q(Π + log(1 + e)− phru )− zt

]
dz

= 2H

(q(Π− phru ) + q log(1 + e)
)
q
Π− phru

t
−
[
z2t

2

]z=q
Π−phru

t

z=0


= 2H

((
q(Π− phru ) + q log(1 + e)

)
q
Π− phru

t
− q2(Π− phru )2

2t

)
= 2Hq

Π− phru
t

(
q(Π− phru ) + q log(1 + e)− q

Π− phru
2

)
= 2H

Π− phru
t

(
q
Π− phru

2
+ q log(1 + e)

)
.

By using the equilibrium price phru from (25), we can simplify furthermore the expression in order
to obtain

2H

q
Π−phru

t∫
0

[
q(Π + log(1 + e)− phru )− zt

]
dz =

2H

t

Π− (q − 1)σe

2

(
q
Π− (q − 1)σe

4
+ q log(1 + e)

)
.

The total utility of hedgers in the high risk region would be n times this quantity:

E[Uhr
h,u] = n

H

t
(Π− (q − 1)σe)

(
q
Π− (q − 1)σe

4
+ q log(1 + e)

)
. (31)

Since prices do not depend on n in the uncovered case, this expression is strictly increasing in n.
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A.1.2 Covered equilibrium case

In the covered equilibrium case, we can derivate the expected utility of every dealer as in equation
(21) which can be rewritten as

E[ud,c] =


yc(pj , p̂)pj if p ≤ pj , p̂

yc(pj , p̂)(pj − (q − 1)σe)q if pj , p̂ ∈ [p, p)

0 if pj , p̂ < p
. (32)

This expression assumes that all dealers set a price in the same region.

Demand when dealers set prices in different regions:

In the main text we have shown how to derive the demand function yc where we assume that the
prices of all dealers are either in the high risk region or in the low risk region. However, in order
to obtain the symmetric equilibrium, we need to calculate the demand function for the case where,
given that the rest of the dealers set the price in a given region, a dealer deviates and sets a price
in a different region. For the case where a dealer j deviates to set a price pj in the low risk region
given that the rest of the dealers set a price p̂ in the high risk region, the hedgers that trade with
dealer j are given by the following inequality:

Π + q log(1 + e)− pj − djt ≥ q(Π + log(1 + e)− p̂)− (
1

n
− dj)t ⇐⇒

(1− q)Π− pj + qp̂+ 1
n t

2t
≥ dj .

From this inequality, we can express the demand for dealer j in this case (denoted as ylrc (pj , p̂)) as

ylrc (pj , p̂) = H
(1− q)Π− pj + qp̂+ 1

n t

t
. (33)

For the case where a dealer j deviates to set a price pj in the high risk region given that the rest
of the dealers set a price p̂ in the low risk region, the hedgers that trade with dealer j are given by
the following inequality:

q(Π + log(1 + e)− pj)− djt ≥ Π+ q log(1 + e)− p̂− (
1

n
− dj)t ⇐⇒

(q − 1)Π− qpj + p̂+ 1
n t

2t
≥ dj .

From this inequality, we can express the demand for dealer j in this case (denoted as yhrc (pj , p̂)) as

yhrc (pj , p̂) = H
(q − 1)Π− qpj + p̂+ 1

n t

t
. (34)

Calculation of the symmetric equilibrium in the low risk region:

If we assume that the equilibrium price is in the low risk region, the symmetric equilibrium price
plrc must be given by the first order conditions

∂E[ud,c(pj = plrc , p̂ = plrc )]

∂pj
=

∂yc
∂pj

plrc + yc = 0,
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where we have differentiated the expected utility expression from (32).

Since in the symmetric covered equilibrium all firms charge the same price it must be the case that
yc = H/n. Therefore, we have

∂E[ud,c(pj = plrc , p̂ = plrc )]

∂pj
= −H

t
plrc +

H

n
= 0 ⇔

plrc =
t

n
. (35)

In order for plrc to be an equilibrium, the second order conditions must be verified. They are given
by

∂2E[ud,c(pj = plrc , p̂ = plrc )]

∂p2j
=

∂2yc
∂p2j

plrc +
∂yc
∂pj

+
∂yc
∂pj

.

Since the second derivative of yc(pj , p̂) is zero, second order conditions are satisfied at the optimum:

∂2E[ud,c(pj = plrc , p̂ = plrc )]

∂p2j
= 2

∂yc
∂pj

= −2
H

t
≤ 0.

Also, in order to have p ≤ plrc we need to satisfy the following inequality:

qσe ≤ t

n
⇔

n ≤ n∗
c =

t

qσe
=

t

p
. (36)

The utility of every dealer is

E[ulrd,c] = yc(p
lr
c )p

lr
c =

Ht

n2
. (37)

If there is a symmetric equilibrium, the price must be given by (35). In order for this price to be an
equilibrium, we need to verify that a dealer does not want to deviate by setting a price in the high
risk region given that the rest of dealers set a price plrc = t

n in the low risk region. By using the
demand function obtained in (34), the best deviating price chosen by dealer j (denoted by phr l

j ) is
given by first order conditions:

∂E[ud,c(pj , p̂ = t
n)]

∂pj
=

∂yhrc
∂pj

(pj − p)q + yhrc q = 0

= −qH

t
(pj − p)q +H

(q − 1)Π− qpj +
t
n + t

n

t
q = 0

⇔

phr l
j =

p+ q−1
q Π+ 2t

qn

2
.
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Using this price, we can obtain the expected utility of the dealer deviating:

E[ud,c] = yc(p
hr l
j , p̂)(phr l

j − p)q

= H
q−1
2 Π− qp

2 + t
n

t
q
−p+ q−1

q Π+ 2t
qn

2

=
H

t

(
q − 1

2
Π−

qp

2
+

t

n

)(
q − 1

2
Π−

qp

2
+

t

n

)
=

H

t

(
(q − 1)Π− qp

2
+

t

n

)2

. (38)

In order to verify that this is not a profitable deviation, we need to compare the utility from (38)
with the utility from not deviating. If we assume that σ ≤ Π

2qe , then the following inequality is
satisfied:

(q − 1)Π− qp = (q − 1) (Π− qσe) ≤ 0

Therefore, since the term (q − 1)Π − qp in (38) is negative, it must be the case that the utility

in (38) is smaller than the utility E[ulrd,c] in (37). Therefore, it is not a profitable deviation for a
dealer to set a low price in order to be in the high risk region given that the rest of the dealers set
a price in the low risk region equal to plrc = t

n .

Also, for this equilibrium to exist it must be that the marginal hedger in d = H/n is having an
utility that is greater than the outside value. For the low risk region we have

log(1 + qe)− plrc − dt ≥ q log(1 + e) ⇔ Π− t

n
− H

n
t ≥ 0 ⇔

n ≥ nlr
c =

t(1 +H)

Π
(39)

Therefore, it must be that n ≥ nlr
c for the covered equilibrium to exist in the low risk region.

Calculation of the symmetric equilibrium in the high risk region:

When n increases, plrc decreases, and eventually the equilibrium price will be in the high risk region.
The equilibrium price phrc in the high risk region is given by

∂E[ud,c(pj = phrc , p̂ = phrc )]

∂pj
=

∂yc
∂pj

(phrc − (q − 1)σe)q + ycq = 0

= −qH

t
(phrc − (q − 1)σe)q +

H

n
q = 0

⇔

phrc = (q − 1)σe+
t

qn
. (40)

Second order conditions are also satisfied:
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∂2E[ud,c(pj = phrc , pk = phrc )]

∂p2j
=

∂2yc
∂p2j

(phrc − (q − 1)σe)q +
∂yc
∂pj

q +
∂yc
∂pj

q =

= 2
∂yc
∂pj

q = 2
−Hq

t
q ≤ 0.

In order for price phrc in (40) to be an equilibrium in the high risk region, it must be that phrc < qσe.
From this condition, we obtain the following inequality on n:

phrc = (q − 1)σe+
t

qn
< qσe ⇔ t

qσe
= n∗

c < n. (41)

The utility of every dealer is

E[uhrd,c] = yc(p
hr
c )(phrc − (q − 1)σe)q =

Ht

n2
. (42)

Again, in order for this to be an equilibrium, we need to check that a dealer does not want to deviate
to set a price in the low risk region given that the rest of dealers set a price phrc = (q − 1)σe + t

qn
in the high risk region. The expression of the demand for a dealer deviating in (33) increases with
the deviating price of the dealer (as long as the deviating price is greater than p). When pj = p
demand is the highest possible for the dealer which is equal to

ylrc (pj = p, p̂ = p+
t

qn
) = H

(1− q)Π− p+ qp̂+ t
n

t
=

= H
(1− q)Π− p+ qp+ 2t

n

t
.

If we assume that q is high enough and t low enough, the term −p+ qp < 0 is greater in absolute
value than (1 − q)Π + t

n > 0 and therefore the demand of the deviating dealer is zero because
ylrc < 0. Therefore, deviating is not profitable for the dealer when q is high enough and t low
enough30.

Also, for this equilibrium to exist it must be that the marginal hedger in d = H/n is having
an utility that is greater than the outside value. For the high risk region we have the following
condition:

q(Π− phrc ) + q log(1 + e)− dt ≥ q log(1 + e) ⇔ q(Π− (q − 1)σe− t

qn
)− H

n
t ≥ 0 ⇔

n ≥ nhr
c =

t(1 +H)

q(Π− (q − 1)σe)
.

30Given the assumed condition on σ, σ ≤ Π
2qe , and H = 1, the rest of the parameters e and Π can be

adjusted to satisfy all these conditions that ensure the existence and unicity of equilibrium.
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We can compare nhr
c and nlr

c :

nhr
c ≤ nlr

c ⇔ t(1 +H)

q(Π− (q − 1)σe)
≤ t(1 +H)

Π
⇔

Π ≤ q(Π− (q − 1)σe) ⇔ q(q − 1)σe ≤ (q − 1)Π ⇔

qσe ≥ Π ⇔ σ ≥ Π

qe
.

Given these inequalities, the covered equilibrium in the low risk region will exist as long as nlr
c < n∗

c

therefore, it exists when n ∈ [min(nlr
c , n

∗
c), n

∗
c ]. Similarly, the covered equilibrium in the high risk

region will exist when n > max(nhr
c , n∗

c).

If H = 1 and σ ≤ σ = Π
2qe < Π

qe then nlr
c = 2t

Π and since n∗
c = t

qσe then we have that nlr
c < n∗

c

because we have assumed that σ ≤ σ = Π
2qe . Therefore, in this case there exists a low risk covered

equilibrium in the interval [nlr
c , n

∗
c ].

Utility of hedgers in the covered equilibrium:

Since in the covered equilibrium, the distance from the hedger indifferent between two dealers and
the dealer he is trading with is equal to 1/2n, then utility for hedgers covered by one dealer for the
low risk region is equal to

2H

∫ 1/(2n)

0
[log(1 + qe)− zt− pc] dz = 2H

(
log(1 + qe)

1

2n
− pc

1

2n
− t

8n2

)
(43)

= 2H
1

2n

(
log(1 + qe)− t

n
− t

4n

)
=

H

n

(
log(1 + qe)− 5t

4n

)
. (44)

And for the high risk region is equal to

2H

∫ 1/(2n)

0
[q(Π + log(1 + e)− pc)− zt] dz = 2H

(
(q(Π− pc) + q log(1 + e))

1

2n
− t

8n2

)
= 2H

1

2n

(
q(Π− pc) + q log(1 + e)− t

4n

)
=

H

n

(
q(Π− (q − 1)σe− t

qn
) + q log(1 + e)− t

4n

)
=

H

n

(
q(Π− (q − 1)σe) + q log(1 + e)− 5t

4n

)
. (45)

Finally, the total utility of hedgers would be n times the values obtained in (44) and (45):

E[U lr
h,c] = H

(
log(1 + qe)− 5t

4n

)
. (46)

E[Uhr
h,c] = H

(
q(Π− (q − 1)σe) + q log(1 + e)− 5t

4n

)
. (47)

Note that total utility of hedgers are strictly increasing in n.
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A.2 Proof of proposition 2

We probe a general case of the proposition for any value of H.

A.2.1 Uncovered equilibrium case

In the low risk region there is no default, therefore same results as in proposition 1 apply.Using
identical analysis to the one used in proposition 1 in the uncovered equilibrium case, we find that
the uncovered equilibrium price in the high risk region is

phru,CCP =
ΠCCP (n) + (q − 1)σe

2
> phru .

In order to satisfy the constraint phru <p the following condition on σ must be satisfied:

ΠCCP (n) + (q − 1)σe

2
< qσe ⇔ ΠCCP (n) + (q − 1)σe < 2qσe

⇔ σ >
ΠCCP (n)

(1 + q)e
>

Π

(1 + q)e
.

The utility of the dealer in the high risk region is

E[uhrd,u] =
2q2H

t

(
ΠCCP (n)− (q − 1)σe

2

)2

,

which is greater than the case without CCP in (27).

Also, the uncovered equilibrium price, threshold nlr
u , and dealer’s utility in the low risk region are:

plru,CCP =
Π

2
, nlr

u =
t

Π
, E[ulrd,u] =

2H

t

(
Π

2

)2

,

where as in proposition 1 it is necessary σ ≤ Π
2qe in order for this price to be in the low risk region.

The expected utility for dealers in the high risk region is lower than in the low risk region if the
following condition on σ is satisfied:

E[uhrd,u] =
2q2H

t

(
ΠCCP (n)− (q − 1)σe

2

)2

≤ E[ulrd,u] =
2H

t

(
Π

2

)2

⇔ q
ΠCCP (n)− (q − 1)σe

2
≤ Π

2
⇔

qΠCCP (n)− q(q − 1)σe ≤ Π ⇔ q(1− q)σe ≤ Π− qΠCCP (n)

⇔ σ ≤ Π− qΠCCP (n)

q(1− q)e
<

Π

qe
<

Π

2qe
.

Finally, for the high risk region, the value nhr
u is obtained as the solution to the following fixed

point equation

2qH

t

ΠCCP (nhr
u,CCP )− (q − 1)σe

2
=

H

nhr
u,CCP

,

where we have that nhr
u,CCP < nhr

u .
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A.2.2 Covered equilibrium case

Using identical operations from proposition 1 we can find

plrc =
t

n

phrc = (q − 1)σe+
t

qn
. (48)

Also, as shown in proposition 1 in (36) and (41), if n ≤ n∗
c =

t
qσe then plrc ≥ p, and if t

qσe = n∗
c < n

then phrc < p.

As we have done in proposition 1 in (39), it must be that the marginal hedger in d = H/n is having
an utility that is greater than the outside value. Therefore, we can find the value of the coefficient
nhr
c,CCP that solves the following condition:

qΠCCP (nhr
c,CCP )− q(q − 1)σe =

t(1 +H)

nhr
c,CCP

.

Note that nhr
c does not have a closed form solution. Because ΠCCP (n) is increasing with n, it must

be the case that nhr
c,CCP < nhr

c .

Similarly, the term nlr
c = t(1+H)

Π is identical to the case of proposition 1. The utility of every dealer
in every region is

E[ulrd,c] = yc(p
lr
c )p

lr
c =

Ht

n2

E[uhrd,c] = yc(p
hr
c )(phrc − (q − 1)σe)q =

Ht

n2
.

Finally, identical operations from proposition 1 give the utility of the hedgers for the low and high
risk regions and conditions for existence of the equilibrium.

A.3 Proof of proposition 3

A.3.1 Free entry in the OTC market without novation

When n → +∞, we are in the high risk region and yc = H/n → 0. From (40) in proposition 1, we
also have that

phrc = (q − 1)σe+
t

qn
→

n→+∞
(q − 1)σe.

Therefore, in the free entry equilibrium the price is the lowest possible in the high risk region. Also,
with free entry, dealers will enter in the market as long as E[uhrd,c] ≥ 0, therefore, in the limit we

have E[uhrd,c] → 0.
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A.3.2 Social optimum in the OTC market without novation

By summarizing the results from proposition 1 in (30), (31), (46) and (47), we obtain the utility of
hedgers for every case equal to

E[U lr
h,u] = n

ΠH

t

(
Π

4
+ q log(1 + e)

)
for n ≤ t

Π

E[Uhr
h,u] = n

H

t
(Π− (q − 1)σe)

(
q
Π− (q − 1)σe

4
+ q log(1 + e)

)
for n ≤ t

q(Π− (q − 1)σe)

E[U lr
h,c] = H

(
log(1 + qe)− 5t

4n

)
for n ∈ [min(

t(1 +H)

Π
,

t

qσe
),

t

qσe
]

E[Uhr
h,c] = H

(
q(Π− (q − 1)σe) + q log(1 + e)− 5t

4n

)
for n ∈ (max(

t(1 +H)

q(Π− (q − 1)σe)
,

t

qσe
),+∞).

Since every case gives an utility that is increasing with n, we need to compare them at the highest
possible n. To simplify the analysis, we treat n here as a real number. This gives the following
expected utility values

E[U lr
h,u] =

t

Π

ΠH

t

(
Π

4
+ q log(1 + e)

)
E[Uhr

h,u] = H

(
Π− (q − 1)σe

4
+ log(1 + e)

)
E[U lr

h,c] = H

(
log(1 + qe)− 5t

4 t
qσe

)
E[Uhr

h,c] = H (q(Π− (q − 1)σe) + q log(1 + e)) .

First we need to obtain conditions for the inequality E[U lr
h,c] ≤ E[Uhr

h,c] to be satisfied:

E[U lr
h,c] ≤ E[Uhr

h,c] ⇔ log(1 + qe)− 5qσe

4
≤ q(Π− (q − 1)σe) + q log(1 + e)

⇔ Π− 5qσe

4
≤ qΠ− q(q − 1)σe ⇔ (1− q)Π− 5qσe

4
≤ q(1− q)σe ⇔

(1− q)Π ≤
(
5qe

4
+ q(1− q)e

)
σ ⇔ (1− q)Π ≤

(
5qe+ 4qe− 4q2e

4

)
σ ⇔

(1− q)Π ≤
(
9qe− 4q2e

4

)
σ ⇔

0 <
4(1− q)Π

9qe− 4q2e
≤ σ. (49)

As we probed in proposition 1, the covered equilibrium in the low risk region will exist as long as
nlr
c < n∗

c . Therefore, from (36) and (39), the covered case in the low risk region exists if

t(1 +H)

Π
≤ t

qσe
⇔ σ ≤ Π

(1 +H)qe
. (50)

37



We can compare the values of (49) and (50) to obtain the following condition on H:

4(1− q)Π

9qe− 4q2e
≤ Π

(1 +H)qe
⇔ 4(1− q)

9− 4q
≤ 1

(1 +H)
⇔ 1 +H ≤ 9− 4q

4(1− q)

⇔ H ≤ 9− 4q

4(1− q)
− 1 =

5

4(1− q)
≡ H∗.

Therefore, the comparison between E[U lr
h,c] and E[Uhr

h,c] is only valid when H ≤ H∗ = 5
4(1−q) where

H∗ is a number strictly greater than one.

Also, (49) is always lower than the threshold Π
2qeas we can show as follows:

4(1− q)Π

9qe− 4q2e
<

Π

2qe
⇔ 4(1− q)

9− 4q
<

1

2
⇔ (51)

8− 8q < 9− 4q ⇔ −1 < 4q ⇔ −1

4
< q.

By comparing E[U lr
h,u] and E[Uhr

h,c] we find the following condition on σ :

E[U lr
h,u] ≤ E[Uhr

h,c] ⇔
1

4
log(1 + qe) +

3

4
q log(1 + e) ≤ q(Π− (q − 1)σe) + q log(1 + e) ⇔

1

4
log(1 + qe) + q log(1 + e)− 1

4
q log(1 + e) ≤ q(Π− (q − 1)σe) + q log(1 + e) ⇔

1

4
Π ≤ qΠ− q(q − 1)σe ⇔ (

1

4
− q)Π ≤ q(1− q)σe

⇔
(14 − q)Π

q(1− q)e
≤ σ. (52)

The threshold in (52) is always lower than the threshold Π
2qeas we can show as follows:

(14 − q)Π

q(1− q)e
<

Π

2qe
⇔ (1− 4q)

4(1− q)
<

1

2
⇔ (53)

2− 8q < 4− 4q ⇔ −2 < 4q,

which is always satisfied because q is a probability. We compare the thresholds in (49) and (52).
It is relatively easy to show mathematically that

4(1− q)Π

9qe− 4q2e
≥

(14 − q)Π

q(1− q)e
⇔ 1− q

9
4 − q

≥
1
4 − q

1− q
for any q ∈ [0, 1].

Also, if we assume that σ > Π
2qe , then it must be true that E[Uhr

h,u] ≤ E[Uhr
h,c]. This is because when

n = +∞, we are in the covered high risk region, the price is the minimum possible and equal to
(q − 1)σe and the distance from the hedger to the dealer is 0. However, in the uncovered region
the price is higher and the distance is not zero.

Therefore, we can summarize these conditions obtained as follows:
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• If H ≤ H∗, then if σ ∈ [ 4(1−q)Π
9qe−4q2e

,+∞) the free entry equilibrium is socially optimum. This
is the relevant case to consider when we assume H = 1 because H∗ > 1.

• If H > H∗, then if σ ∈ [
( 1
4
−q)Π

q(1−q)e ,+∞) the free entry equilibrium is socially optimum.

Depending on the value of H, we define σ∗
OTC = 4(1−q)Π

9qe−4q2e
or σ∗

OTC =
( 1
4
−q)Π

q(1−q)e . If H = 1, then the
first definition applies.

Finally, we want to show in what region there is the optimum for hedgers when the free entry
equilibrium is not socially optimum. If σ ≤ Π

2qe we compare E[U lr
h,c] and E[U lr

h,u] we obtain the
following condition on σ:

E[U lr
h,c] ≥ E[U lr

h,u] ⇔ log(1 + qe)− 5qσe

4
≥ Π

4
+ q log(1 + e) ⇔

Π− 5qσe

4
≥ Π

4
⇔ 3Π

4
≥ 5qσe

4

⇔ 3Π

5qe
≥ σ. (54)

Because q is a probability, it must be true that the threshold from (54) is greater than the threshold
obtained in 49, as shown as follows:

3Π

5qe
≥ 4(1− q)Π

9qe− 4q2e
⇔ 3

5
≥ 4(1− q)

9− 4q
⇔ 27− 12q ≥ 20− 20q ⇔

8q ≥ −7 ⇔ q ≥ −7/8.

Finally, as we have shown before, if σ > Π
2qe , then it must be true that E[Uhr

h,u] ≤ E[Uhr
h,c]. Therefore,

E[Uhr
h,u] can never be an optimum. Therefore, these results can be summarized as follows:

• If H ≤ H∗, then if σ ∈ [0, 4(1−q)Π
9qe−4q2e

) the social optimum is in the low risk covered region. This
is the relevant case to consider when we assume H = 1 because H∗ > 1.

• If H > H∗, then if σ ∈ [0,min( Π
(1+H)qe ,

4(1−q)Π
9qe−4q2e

) the social optimum is in the low risk

covered region. and if σ ∈ [min( Π
(1+H)qe ,

4(1−q)Π
9qe−4q2e

),
( 1
4
−q)Π

q(1−q)e) the social optimum is in the low
risk uncovered region. Note that depending of the value of some parameters, the low risk
uncovered region could not exist.

A.3.3 Free entry in the OTC market with novation

As n increases, we are in the covered case. Therefore from (48) in proposition 2, we have that

phrc,CCP = (q − 1)σe+
t

qn
→

n→+∞
p = (q − 1)σe.

With free entry by dealers and no risk controls, dealers will enter in the market as long asE[uhrd,c] ≥ 0,

therefore, in the limit we have E[uhrd,c] → 0 and dealers trade yc =
H
n → 0.

Therefore, in the free entry equilibrium, the price is the lowest for all n. Since all hedgers pay
the lowest possible price and they are infinitely close to a dealer, then their utility is the highest
possible.
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A.3.4 Social optimum in the OTC market with novation

We proceed using identical calculations as in the case without novation, but due to the diversification
from the CCP, the surplus for hedgers is ΠCCP (n). First we need to find conditions for the
inequality E[U lr

h,c] ≤ E[Uhr
h,c] to be satisfied. As we did in (49), we can find the following condition

on σ:
4
(
Π− qΠCCP (+∞)

)
9qe− 4q2e

≤ σ. (55)

The covered case in the low risk region exists if

t(1 +H)

Π
≤ t

qσe
⇔ σ ≤ Π

(1 +H)qe
. (56)

We compare the thresholds in (55) and (56) as follows:

4
(
Π− qΠCCP (+∞)

)
9qe− 4q2e

≤ Π

(1 +H)qe
⇔

4
(
Π− qΠCCP (+∞)

)
9− 4q

≤ Π

(1 +H)
⇔

1 +H ≤ (9− 4q)Π

4 (Π− qΠCCP (+∞))
⇔

H ≤ (9− 4q)Π

4 (Π− qΠCCP (+∞))
− 1 ≡ H∗

CCP .

Therefore, the comparison between E[U lr
h,c] and E[Uhr

h,c] is only valid when H ≤ H∗
CCP . Note that

because ΠCCP (+∞) ≥ Π then Π− qΠCCP (+∞) ≤ (1− q)Π and

H∗
CCP =

(9− 4q)Π

4 (Π− qΠCCP (+∞))
− 1 ≥ (9− 4q)Π

4 (Π− qΠ)
− 1 =

5

4 (1− q)
> 1.

Because ΠCCP (+∞) > Π it must be the case that the following inequality is satisfied:

4
(
Π− qΠCCP (+∞)

)
9qe− 4q2e

<
4(1− q)Π

9qe− 4q2e
.

Since we probed in (51) that 4(1−q)Π
9qe−4q2e

< Π
2qe , then it is also true that

4(Π−qΠCCP (+∞))
9qe−4q2e

< Π
2qe .

Since we assume that σ ≤ Π
2qe , then for E[U lr

h,u] ≤ E[Uhr
h,c] to be satisfied, we need the following

condition as we probed in (50):

1
4Π− qΠCCP (+∞)

q(1− q)e
≤ σ.

Also, because ΠCCP (+∞) > Π the following inequality is satisfied:

1
4Π− qΠCCP (+∞)

q(1− q)e
<

(14 − q)Π

q(1− q)e
.

Since we probed in (53) that
( 1
4
−q)Π

q(1−q)e < Π
2qe , then it is also true that

1
4
Π−qΠCCP (+∞)

q(1−q)e < Π
2qe .

40



Also it is easy to check numerically that

4
(
Π− qΠCCP (+∞)

)
9qe− 4q2e

≥
1
4Π− qΠCCP (+∞)

q(1− q)e
for any q ∈ [0, 1].

Therefore, we can summarize these conditions as follows:

• If H ≤ H∗
CCP , then if σ ∈ [

4(Π−qΠCCP (+∞))
9qe−4q2e

,+∞) the free entry equilibrium is socially
optimum. This is the relevant case to consider when we assume H = 1 because H∗

CCP > 1.

• If H > H∗
CCP , then if σ ∈ [

1
4
Π−qΠCCP (+∞)

q(1−q)e ,+∞) the free entry equilibrium is socially opti-
mum.

We define σ∗
CCP =

4(Π−qΠCCP (+∞))
9qe−4q2e

or σ∗
CCP =

1
4
Π−qΠCCP (+∞)

q(1−q)e depending on the value of H. For
the case H = 1, the first definition applies.

Note that because ΠCCP (+∞) > Π then we have that σ∗
CCP < σ∗

OTC .

To show where is the optimum when the free entry equilibrium is not socially optimum, we proceed
like in the no novation case and we arrive to the following result:

• If H ≤ H∗
CCP , then if σ ∈ [0,

4(Π−qΠCCP (+∞))
9qe−4q2e

) the social optimum is in the low risk covered
region. This is the relevant case to consider when we assume H = 1 because H∗

CCP > 1.

• If H > H∗
CCP , then if σ ∈ [0,min( Π

(1+H)qe ,
4(Π−qΠCCP (+∞))

9qe−4q2e
) the social optimum is in the low

risk covered region. and if σ ∈ [min( Π
(1+H)qe ,

4(Π−qΠCCP (+∞))
9qe−4q2e

),
1
4
Π−qΠCCP (+∞)

q(1−q)e ) the social
optimum is in the low risk uncovered region. Note that depending of the value of some
parameters, the low risk uncovered region could not exist.

A.4 Proof of proposition 4

To probe proposition 4, we first show the existence and unicity of a default constrained equilibrium
where the default probability constraint Pr(pj < ∆̃j) ≤ α must be satisfied.

A.4.1 Existence and unicity of default-constrained equilibrium

For any α < 1−q and assuming that σ ≤ σ = Π
2qe , we know from proposition 2 that the equilibrium

for any n < n = max(nhr
c,CCP , n

∗
c) will satisfy the default constraint with strict inequality because

we are in the low risk region (and therefore default probability is zero). Therefore, for any n < n
the default constrained equilibrium is just the uncovered/covered case shown before.

If n ≥ n the unconstrained equilibrium does not satisfy the default probability constraint because
we are in the high risk region and α < 1− q.

Now we probe existence and unicity of this default-constrained equilibrium. For any α < 1 − q,

price must be in the low risk region, therefore the constraint Pr
(
pj < ∆̃j

)
≤ α is satisfied if and

only if pj ≥ p.
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First we check if this equilibrium is uncovered. The uncovered equilibrium problem subject to the
constraint is

max
pj

yu(pj)pj = 2H
Π− pj

t
pj

st

pj ≥ p.

The unique optimum of this problem when the constraint does not bind is Π
2 . Since p ≤ Π

2 by
assumption and the objective function is concave and quadratic, then Π

2 is the optimum. However,
since n ≥ n this equilibrium cannot exist (because the amount traded by every agent is > H

n ).
Therefore, the default-constrained equilibrium cannot be uncovered.

Now we show existence of constrained covered equilibrium equal to p. If all other dealers are
charging p = p, then any dealer j has to maximize the low-risk region profits subject to the
constraint. If the equilibrium is covered, the optimization problem is

max
pj

yc(pj , p̂ = p)pj = H
−pj + p+ 1

n t

t
pj

st

pj ≥ p.

The objective function is a concave quadratic function with a maximum at p∗j = 1
2(p + t

n). If
1
2(p+

t
n) < p then the unconstrained optimum for dealer j is lower than p. Therefore, the optimum

for dealer j must be p. This inequality is satisfied when p > t
n or n > n∗

c = t
p = t

qσe , which is

satisfied by assumption (because n ≥ n = max(nhr
c , n∗

c)). At this equilibrium every dealer has
utility

H

n
p. (57)

Finally, we show this equilibrium is unique. Let assume that there is an equilibrium where all firms
set p̂ > p. This equilibrium would be covered where the constraint is satisfied with strict inequality
(low risk region). Therefore, we can apply results from proposition 2. But from proposition 2, for
n ≥ n the (unconstrained) equilibrium is unique and it is in the high risk region. Therefore, p̂
cannot be an equilibrium.

Therefore, if n ≥ n there exists a unique default-constrained equilibrium p.

A.4.2 Social Optimum with a CCP

Let assume that σ ≤ Π
2qe . For any α < 1 − q, we know from proposition 2 that the equilibrium

for any n < n = max(nhr
c , n∗

c) will satisfy the default constraint with strict inequality and will be
in the low risk region. Also, for n ≥ n = max(nhr

c,CCP , n
∗
c) the equilibrium is default constrained

with price equal to p = qσe. The choice of α < 1− q and n = +∞ gives a higher utility for dealers
than any n < n because hedgers are in the low risk region in any case, they are infinitely close to a
dealer, and they pay the lowest minimum price p to be in the low risk region. In this case, hedgers
utility is

H (log(1 + qe)− p) . (58)
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We need to compare this amount with the utility of hedgers when α ≥ 1−q. If n < n, we are in the
low risk region and as discussed above, the utility is lower than the case α < 1 − q and n = +∞.
If n ≥ n then the utility is maximized at n = +∞ and we are in the high risk region, where the
hedgers obtain

H
(
q(ΠCCP (+∞)− (q − 1)σe) + q log(1 + e)

)
. (59)

This is also the utility in the free entry equilibrium. By concavity of the log function, the following
inequality must be satisfied:

ΠCCP (+∞) ≡
q log

(
1 + qe+ e(1− q)2

)
+ (1− q) log (1 + qe− eq(1− q))− q log(1 + e)

q

<
log(1 + qe)− q log(1 + e)

q
=

Π

q
. (60)

We need to compare the two values in (58) and (59):

H (log(1 + qe)− p) ≥ H
(
q(ΠCCP (+∞)− (q − 1)σe) + q log(1 + e)

)
⇔

log(1 + qe)− p ≥ q(ΠCCP (+∞)− (q − 1)σe) + q log(1 + e) ⇔
Π− p ≥ qΠCCP (+∞) + q(1− q)σe ⇔
Π− qΠCCP (+∞) ≥ +q(2− q)σe ⇔

σ+
CCP ≡ Π− qΠCCP (+∞)

q(2− q)e
≥ σ. (61)

And because qΠCCP (+∞) < Π as we showed in (60), we have Π−qΠCCP (+∞)
q(2−q)e > 0.

Therefore, when σ ≤ σ+
CCP ≡ Π−qΠCCP (+∞)

q(2−q)e we have that a CCP that limits trade through setting

α < 1 − q and n = +∞ maximizes total utility of hedgers. And when σ > σ+
CCP then n = +∞

without ris controls (so any α ≥ 1− q) maximizes total utility of hedgers.

Note that when σ = 0 there is never default in any case and the free entry (unconstrained)
equilibrium maximizes the utility of hedgers.

A.5 Proof of proposition 5

A.5.1 Case n exogenous, choice of α

By proposition 4, if n ≥ n̄ and α∗ ∈ [0, 1−q), then the equilibrium price is p. We want to show that
if n ≥ n̄, then by choosing any value α∗ ∈ [0, 1− q) the dealers are better off. For that, we need to
compare the dealers expected utility when they are unconstrained obtained in (42), Ht

n2 , with the

default-constrained utility obtained in proposition 4 in (57), H
n p. The condition to be satisfied is

Ht

n2
<

H

n
p ⇔ t

n
< p ⇔ n∗

c =
t

qσe
< n.

This condition is satisfied by the assumption made n ≥ n̄ = max(nhr
c , n∗

c).

Now we check if the optimum for the dealers is also the best for the hedgers. When α∗ ∈ [0, 1− q),
then the equilibrium price is p. Therefore, the utility of the hedgers is n times the quantity in (43),
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equal to

H

(
log(1 + qe)− p− t

4n

)
. (62)

If α∗ ≥ 1− q then the utility of the hedgers is obtained from (47) where we have substituted Π by
ΠCCP (n):

H

(
q(ΠCCP (n)− (q − 1)σe) + q log(1 + e)− 5t

4n

)
. (63)

By comparing (62) and (63), we obtain the following condition:

log(1 + qe)− p− t

4n
≥ q(ΠCCP (n)− (q − 1)σe) + q log(1 + e)− 5t

4n
⇔

Π− qΠCCP (n) +
t

n
− p+ (q − 1)p ≥ 0 ⇔ Π− qΠCCP (n) +

t

n
≥ (2− q)p

⇔
Π− qΠCCP (n) + t

n

(2− q)qe
≡ σCCP (n) ≥ σ.

Note that σCCP (n) > 0, σCCP (n) is decreasing with n, and σCCP (n = +∞) = σ+
CCP from (61) in

the previous proposition.

Therefore, when n ≥ n̄ is exogenous and σ ≤ σCCP (n) then hedgers are better off with any
α∗ ∈ [0, 1− q).

A.5.2 Choice of n and α

From the previous section, we can find the optimum α for a given n. If n ≥ n, it is optimum to
choose any α∗ ∈ [0, 1−q) and from (57) every dealer obtains H

n p. For n < n, α∗ is irrelevant because
we are in the low risk region (we are assuming that σ ≤ Π

2qe). In order to obtain the optimum n∗

that maximizes every dealer utility, we need to compare every case. From (24), in the uncovered

equilibrium every dealer has utility E[ulrd,u] =
2H
t

(
Π
2

)2
, independent of n. From (37), in the low

risk covered case every dealer has utility E[ulrd,c] =
Ht
n2 , decreasing with n. Therefore the minimum n

for the covered equilibrium to exist will maximize the utility. This is n = min(nlr
c,CCP , n

∗
c). Finally,

in the low risk covered case H
n p gives the highest utility.

Now we compare these utilities of the dealers. If n∗
c ≥ nlr

c,CCP then there is low risk region in the
covered equilibrium and this implies

n∗
c ≥ nlr

c,CCP ⇔ t

qσe
≥ t(1 +H)

Π
⇔ σ ≤ Π

(1 +H)qe
.

Since by assumption we have σ ≤ Π
2qe , then if H ≤ 1 we have Π

2qe ≤ Π
(1+H)qe and there exists covered

equilibrium in the low risk region. Therefore, the minimum n for the covered equilibrium to exist
is nlr

c,CCP = t(1+H)
Π . If E[ulrd,c] exists, then it must be that E[ulrd,c] ≥

H
n p. This is because E[ulrd,c]

exists at smaller n and plrc ≥ p. Using similar arguments, we have that E[ulrd,u] ≥
H
n p.

Therefore, we just need to compare E[ulrd,c] at n
lr
c,CCP with E[ulrd,u] :

44



E[ulrd,c] ≥ E[ulrd,u] ⇔
Π2H

t(1 +H)2
≥ 2H

t

(
Π

2

)2

⇔ 1

(1 +H)2
≥ 1

2

⇔
√
2 ≥ 1 +H ⇔ H ≤

√
2− 1 ≈ 0.41. (64)

Therefore, if H ∈ (0,
√
2 − 1] then, nlr

c,CCP maximizes the utility of every dealer, and if H ∈
(
√
2 − 1, 1], nlr

u maximizes the utility of every dealer. Also, if H > 1 and σ ≤ Π
(1+H)qe , then from

the inequality (64), we have E[ulrd,c] < E[ulrd,u] so the uncovered low risk equilibrium is optimal.

Finally, if H > 1 and Π
(1+H)qe ≤ σ ≤ Π

2qe we have n∗
c < nlr

c,CCP and therefore there is not low risk

equilibrium in the covered case. However, since we have previously shown that, E[ulrd,u] ≥
H
n p, then

nlr
u gives the highest utility for dealers.

Since we have shown that the optimum is in either nlr
u or nlr

c,CCP , the choice of α is irrelevant
because α is only relevant in the high risk covered region.

B Demand of hedgers when dealers cannot hedge the

hedgers’ risk

Let assume in this section that dealers cannot trade the swap contract s̃ in the outside market.
The utility of hedger trading with a dealer j that does not default is

log(1 + ẽ+ s̃)− pj − djt = log(1 + qe)− pj − djt,

where s̃ = qe − ẽ. Dealer defaults when pj < s̃. If pj ≥ qe the dealer never defaults. If pj ∈
[(q − 1)e, qe) the dealer defaults when ẽ = 0 (and therefore s̃ = qe) which occurs with probability
1− q. In that case, the utility of the hedger is

log(1)− djt = −djt.

This is the key difference with the case where dealers can hedge the hedgers’ risk. Because the
variable ∆̃j is incorrelated with ẽ, then dealer j defaults with exogenous probability and when there
is a default,, the hedger obtains q log(1+ e)+ (1− q) log(1) = q log(1+ e) > 0. However, in the case
of no hedging, dealer defaults when ẽ = 0 (when the outcome is negative for the dealer) and the
hedger obtains log(1) = 0. Therefore, the expected utility of the hedger when pj ∈ [(q − 1)e, qe) is

E[uh(pj)] = (log(1 + qe)− pj) ·Nj − djt

= q (Π + q log(1 + e)− pj)− djt.

Therefore, the utility of the hedger in every region can be written as

E[uh(pj)] =


Π+ q log(1 + e)− pj − djt if pj ≥ qe

q (Π + q log(1 + e)− pj)− djt if pj ∈ [(q − 1)e, qe)
q log(1 + e)− djt if pj < (q − 1)e

We can compare the utility in the high risk region with the case where dealers can hedge the risk
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from hedgers:

q (Π + q log(1 + e)− pj)− djt ≤ q (Π + log(1 + e)− pj)− djt ⇔
q log(1 + e) ≤ log(1 + e) ⇔ q ≤ 1.

Since it is always true that q ≤ 1, then in the high risk region, hedgers are worse off when dealers
do not trade the risk from hedgers.

The number of trades is given by the number of hedgers that get a higher value than the outside
value of no trading, q log(1 + e). Note that in the region pj ∈ [(q − 1)e, qe), we have

q (log(1 + qe)− pj)− djt ≥ q log(1 + e) ⇔

q
log(1 + qe)− log(1 + e)− pj

t
≥ dj .

Since log(1 + qe)− log(1 + e) ≤ 0 for any q ≤ 1, it is necessary that pj < 0 and negative enough in
order to have a strictly positive number of hedgers trading with dealer j (dj > 0). Hedgers need
to be paid to buy the contract in order to have a positive number of hedgers willing to trade with
a dealer. Therefore, the number of swap contracts bought by the hedgers to a dealer for a given
price pj in the uncovered equilibrium when dealers do not hedge the risk is

yu,nh(pj) =


2H
t max (Π− pj , 0) if pj ≥ qe

0 if pj ∈ [log(1 + qe)− log(1 + e), qe)
2qH
t max (log(1 + qe)− log(1 + e)− pj , 0) if pj ∈ [(q − 1)e, log(1 + qe)− log(1 + e))

0 if pj < (q − 1)e

Since log(1 + qe) − log(1 + e) < 0 < Π, we have yu,nh(pj) < yu(pj) for any price pj . This explain
why dealers need to hedge the risk of hedgers. Hedging helps increasing the demand of contrats
bought by hedgers.

46




