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Abstract 

This paper calibrates a class of jump-diffusion long-run risks (LRR) models to quantify 
how well they can jointly explain the equity risk premium and the variance risk premium 
in the U.S. financial markets, and whether they can generate realistic dynamics of risk-
neutral and realized volatilities. I provide evidence that the jump risk in volatility of long 
run consumption growth is a key component of the equity risk premium and the variance 
risk premium in financial markets. Moreover, I find that matching the VIX dynamics 
during the calibration process is crucial when comparing different jump channels. 
Specifically, a jump-in-growth LRR model generates a good fit of the average variance 
risk premium, but a poor fit of the dynamics of the VIX or realized stock volatility. In 
contrast, a jump-in-volatility LRR model generates a smaller variance risk premium but 
better fits the VIX and the realized stock volatility dynamics. Finally, jump-in-volatility 
models generate predictability of returns by the variance risk premium that is more 
consistent with the data. 

JEL classification: G12, G17 
Bank classification: Asset pricing; Economic models 

Résumé 

L’auteur calibre une classe de modèles de diffusion avec sauts et risques de long terme, 
afin d’évaluer leur aptitude à générer les primes de risque sur actions et de risque de 
variance observées dans les marchés financiers américains et des dynamiques des 
volatilités réalisée et risque-neutre reflétant la réalité. Il démontre que le risque de saut 
associé à la volatilité de la croissance de la consommation à long terme est une 
composante clé de ces deux primes. L’auteur constate par ailleurs que reproduire les 
évolutions de l’indice VIX durant le processus de calibrage est un aspect indispensable de 
la comparaison des différentes sources de sauts. Plus précisément, les modèles avec sauts 
dans la croissance anticipée de la consommation répliquent assez bien la prime moyenne 
liée au risque de variance mais plutôt mal l’évolution de l’indice VIX et de la volatilité 
réalisée du marché des actions. À l’opposé, les modèles avec sauts dans la volatilité 
génèrent une prime de risque de variance inférieure à la véritable prime, mais ils 
reproduisent mieux la dynamique de l’indice VIX et de la volatilité réalisée du marché 
des actions. Enfin, cette seconde catégorie de modèles explique mieux la capacité de la 
prime de risque de variance à prédire les rendements du marché des actions, telle qu’elle 
ressort des données empiriques. 

Classification JEL : G12, G17 
Classification de la Banque : Évaluation des actifs; Modèles économiques 

 



1 Introduction

The equity-risk-premium and variance-risk-premium puzzles in the U.S. financial markets

have generated strong academic and practitioner interest.1 There is a fast growing liter-

ature on establishing a general equilibrium model with recursive preferences and long-run

consumption growth risks to explain the two premiums jointly. Building on this literature,

this paper calibrates a class of jump-diffusion long-run risks (LRR) models and quantifies

how well they can jointly account for the equity risk premium, the variance risk premium,

and realistic dynamics of risk-neutral and realized volatilities.

The models are inspired by, and closely related to, previous LRR studies that generalize

the classic Bansal and Yaron (2004) LRRmodel in order to explain the variance risk premium

(see e.g., Drechsler and Yaron, 2010, Shalistovich, 2009, Bollerslev, Tauchen and Zhou, 2009,

Zhou and Zhu, 2009, Benzoni, Collin-Dufresne, and Goldstein, 2010, Eraker, 2008). These

extensions include a second stochastic volatility factor (multi-factor model), a jump process

in long-run expected consumption growth (jump-in-growth), and a jump process in long-run

consumption volatility(jump-in-volatility). Although these studies significantly advance our

understanding of the fundamental source of the variance risk premium, several questions

remain unanswered. First, it is unclear which channel plays the central role in generating

the variance risk premium. Second, it is unclear whether the generalized LRR models can

also generate realistic dynamics of stock volatility.

Both questions are important. On one hand, determining the channel driving the vari-

ance risk premium has important implications for designing proper risk management and

investment strategies.2 On the other hand, volatility dynamics are key inputs of any asset

pricing model.3 If a model misspecifies stock volatility dynamics, it is unlikely to describe

1The variance risk premium is defined as the difference between the variance swap strike and the ex ante
realized variance of the underlying stock index. The high return of selling out-of-money index options or
straddles is also closely related to the variance risk premium (Egloff, Leippold, and Wu 2010).

2Determing the jump channel is also a central topic in the reduced-form option pricing literature (e.g.
Pan 2002, Eraker 2004, Chernov, Gallant, Ghysels, Tauchen 2003, and others).

3The importance of building a realistic volatility model in order to understand the relationship between
volatility and returns and the economic sources of volatility is illustrated in Ghysels, Santa-Clara and Valka-

1



the empirical relationship between market volatility and equity risk premium and to ex-

plain the economic sources of market volatility. The model’s application to stock valuation,

option pricing and strategic asset allocation will be limited too. Since a LRR model is a

general-equilibrium model which connects both time-varying returns and time-varying stock

volatility with the uncertainty of the underlying economic fundamentals, matching volatility

dynamics is as crucial as matching the mean returns.

This paper directly tackles these two questions by using the Simulated Methods of Mo-

ments (SMM) to calibrate a series of continuous-time LRR models. All the LRR models

investigated in this paper are within the class of affi ne models and are closely related to

models proposed in Drechsler and Yaron (2011). In particular, they include multi-factor

models, single- and multi- factor jump-in-growth models, and single- and multi-factor jump-

in-volatility models.4 Drechsler and Yaron (2011) and Benzoni et al. (2010) establish models

that allow both jump processes. In order to investigate how each jump channel alone can

explain the variance risk premium, I also allow only one specific jump channel to be opened

in the model.

Moreover, compared to many LRR studies that obtain parameters through trial-and-

error calibration, the SMM approach provides a simple and effective calibration of the model

whose state variables are latent. It allows one to find the optimal match between the empirical

moments and the simulated ones. Finally, for the continuous-time model investigated here,

the SMM approach avoids the time-aggregation problem (Bansal et al. 2006).

In addition to the standard sample moments discussed in Bansal and Yaron (2004) and

others, I calibrate models based on the lag-1, lag-6 and lag-12 sample autocovariance mo-

ments in monthly VIX to capture volatility dynamics. VIX represents the square-root of

the expected variance under the risk-neutral measure. The variance and autocovariance mo-

ments in VIX help pin down the mean-reverting parameters of the volatility factor(s). In

nov (2005) and Engle et al. (2008).
4There are extensive studies that show the importance of using reduced-form multifactor volatility models

to describe financial markets (see e.g. Chernov et al. 2003, Chacko and Viceira 2003, Engle 1999, Calvet
and Fisher 2008, Bates 2000, Duffi e et al. 2000, and Feunou et al. 2012)
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order to reduce computational cost, I do not include autocovariance moments in realized

stock volatility during the calibration process; however I check how calibrated models match

the dynamic feature in realized stock volatility.

As the main conclusion of this paper, I find that a better fit in volatility dynamics is

an important reason to favor a jump-in-volatility model over a jump-in-growth LRR model.

Overall, all jump models can generate a decent amount of variance risk premium, while main-

taining a good fit in other important asset moments matched by the model in Bansal and

Yaron (2004). In terms of fitting the variance risk premium, the calibrated jump-in-growth

models perform slightly better than the calibrated jump-in-volatility models. However, the

calibrated jump-in-growth models tend to poorly fit the unconditional autocorrelation mo-

ments in VIX or realized volatility, but a jump-in-volatility model performs much better.

All in all, I find that a multi-factor jump-in-volatility LRR model achieves a better balance

matching a high variance risk premium and persistent volatility dynamics.

The advantage of a jump-in-volatility model over a jump-in-growth model also has an

intuitive economic interpretation. In the jump-in-volatility framework, when the volatility

factor jumps up, the market enters into a high volatility period that persists before the

volatility factor returns to the long-term average. In contrast, under the jump-in-growth

framework, when the expected consumption growth in the long-run jumps down, the asset

valuation experiences a one-time downward adjustment while the contemporaneous realized

volatility experiences a short-term surge. However, since the volatility factors are not affected

by growth jumps, market volatility immediately returns to the normal state in the next

period, causing the persistence in volatility to be low.

With the help of the calibrated LRR models, I investigate the connection between the

equity risk premium and the variance risk premium. I show that when data includes the

financial crisis years, the return predictability by the variance premium is severely weakened.

However, there is evidence to suggest that it is driven by a few outliers and that data up

to 2007 may be more appropriate for comparisons. Furthermore, I find that a jump-in-
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volatility model can successfully demonstrate empirically observed predictability, both in the

magnitude of the estimated coeffi cients and the R2s of the regression. In contrast, a jump-in-

growth model generates a statistically significant return predictability with a rather small R2

that suggests small economic significance. This finding stands in contrast to Drechsler and

Yaron (2011), who find that the jump-in-growth model creates realistic stock predictability.

Two factors may explain the difference. First, Drechsler and Yaron (2011) do not calibrate

based on VIX dynamics; second, when regressing excess returns on the variance risk premium,

they use "estimated" variance risk premiums for the empirical regressions and use "perfect"

variance risk premiums for the model-based regressions.

The LRR models suggest that not only does the variance risk premium predict the equity

risk premium, but that the two are also related through jump risks, as investors in equity

markets require compensation for taking the jump risks. I use the model to decompose the

instantaneous equity risk premium into the diffusion and jump components.5 I find that

the average proportion of equity premium that is the compensation for taking jump risks

is from 35-40% for the jump-in-growth model and 16-20% for the jump-in-volatility model.

Therefore, the LRR models imply sizable compensation for jump risks in equity investing.

Aside from the jump-diffusion model, I also investigate whether the diffusion-only LRR

models can generate significant variance risk premium. Two LRR models are investigated.

The first is a one-factor, diffusion-only LRR model similar to Bansal and Yaron (2004). The

second is a multi-factor diffusion-only LRR model. Through a systematic calibration, I find

both models capable of generating realistic moments in real risk-free rates, price-dividend

ratios, and stock returns, as has been suggested by other studies. However, both models

generate very small variance premiums compared to the empirical data. This conclusion is

in contrast to Bollerslev et al. (2009) and Zhou and Zhu (2009). The different conclusions

may be attributed to the difference in model specifications and the calibration approaches.

5Under the continuous-time framework, only instataneous equity risk premiums can be expressed in a
closed form, while the annual equity risk premium can only be evaluated through simulation. However, the
average instantaneous equity risk premium turns out to be very close to the long-term simulated annual
equity risk premium, making our evaluation relevant.

4



In particular, Bollerslev et al. (2009) choose a partial equilibrium approach to solve the LRR

model and Zhou and Zhu (2009) do not check how their models match volatility dynamics.

My evidence suggests that under a strict general equilibrium framework, it is diffi cult for a

diffusion-only LRR model to generate a large variance risk premium.

The main body of this paper is organized as follows: Section 2 outlines the data; Section

3 studies the traditional diffusion-only LRR models; Section 4 studies jump-diffusion LRR

models; Section 5 discusses the relation between the variance risk premium and the equity

risk premium; Section 6 studies other implications of the LRR models; Section 7 concludes.

2 Empirical Data

2.1 Summary Statistics

Table 1 reports the summary statistics of data on consumption, dividend, and asset prices.

The top panel presents the summary data of annual consumption and dividend growth from

1951 to 2010. Consumption is collected from The Bureau of Economic Analysis (BEA)

and the dividend series is constructed based on data from the Center of Research in Secu-

rity Prices (CRSP) and COMPUSTAT. The cash dividend yield is calculated based on the

difference between value-weighted market returns with and without dividends. The total

dividend yield, which is used in calibration, is constructed by adding stock repurchases as

in Boudoukh et al. (2007).6 The aggregate consumption has an average annual growth rate

of approximately 2%, a standard deviation of 1%, and a moderate first autocorrelation of

0.38. The two dividend measures have significantly different characteristics. The average

growth rate of the repurchase-adjusted dividend is 2.6%, much higher than that of the cash

dividend which is 1%. Moreover, the repurchase-adjusted dividend is much more volatile,

leptokurtic, and persistent than the cash dividend.

6Since stock repurchasing data are only available after 1971, we do not adjust dividends for the period
before 1971. As shown in Boudoukh et al. (2007), before 1971, payouts to investors were mainly in the form
of cash dividends.
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The middle panel reports the asset pricing data (except the high-frequency and VIX data)

at monthly frequencies over the period from 1951.1 to 2010.7. The nominal risk-free rates are

represented by yields on three-month U.S. Treasury bills, which are obtained from the Fama

Risk-free Rate Data Set in CRSP. The log price-dividend ratios are the logs of the ratios of

the end-of-month S&P 500 index to the trailing 12 month total dividends. Just like in the

top panel, including stock repurchases significantly decreases the growth of price-dividend

ratios since 1990 and makes log price-dividend ratios less trendy, as shown in Figure 1.

All the nominal quantities except for the risk-free rates are adjusted to real terms based on

the ex post inflation rates, which are constructed based on Survey of Professional Forecasters

(SPF) forecasts of the GDP price deflator since 1968 and based on smoothed ex post inflation

data before then. SPF forecasts of the GDP price deflator instead of the CPI deflator are

used mainly because the survey data of the GDP deflator has a much longer history than

that of the CPI deflator (available since 1981). For most of the postwar period, the GDP

deflator tracks the consumer price index (CPI) quite closely, as shown in Figure 2.

The middle panel also records summary statistics for stock realized variance and real-

ized volatility. For the period from 1951 to 1989, the realized variance is calculated by

summing the daily squared returns over a month. For the period from 1990 to 2010, it is

calculated by summing over a month the 5-min intra-day trades of S&P 500 futures adjusted

for overnight price changes. The average realized volatility, which is the square root of the

realized variance, is 13.38% from January 1951 to July 2010. Although the 12-month lag

autocorrelation of the realized variance is quite small, the 12-month lag autocorrelation of

the realized volatility is 0.28. The slow decay in volatility autocorrelation is evidence for the

long-memory characteristics of stock volatility.

The bottom panel of Table 1 reports the summary statistics for the post-1990 part of

the monthly realized variance and realized volatility, the square of the end-of-month VIX

volatility index (VIX2) and VIX, and the estimated variance risk premiums from 1990 to

2010. VIX data are from the Chicago Board of Trade (CBOE). Variance risk premiums
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are measured by the difference between the expected variance (VIX2) under the Q measure

and the expected variance under the P measure. At the one-month horizon, the former

is represented by the VIX2. The latter is measured through the HAR-RV (heterogeneous-

autoregressive realized-volatility) approach adopted by Corsi (2009) and Andersen et al.

(2007). This approach involves conducting an in-sample regression of logRVt on the log

realized variance of past day, week, month, quarter, and half-year, which is

logRVt,t+22 = β0 + β1 logRVt−1,t + β2 logRVt−5,t (1)

+β3 logRVt−22,t + β4 logRVt−132,t + εt,

and then constructing the expected realized variance based on the regression. Studies in

Corsi (2009) and Andersen et al. (2007) find this simple and intuitive method to be at least

on par with many sophisticated volatility forecasting models, and sometimes even better.

As shown in the bottom panel, both the realized variance risk premium (the difference

between V IX2 and RV ) and the (expected) variance risk premium are positive on average.7

At the same time, the monthly autocorrelations of the VIX decay quite slowly from one

month to twelve months, providing evidence that volatility is driven by multiple factors.

2.2 Variance Risk Premium’s Return Predictability: Empirical

Findings

One of the most interesting findings about the variance risk premium is its ability to forecast

stock returns in the short run. Both Bollerslev et al. (2009) and Drechsler et al. (2009) find

the existence of economically significant return predictability peaking at the quarterly hori-

zon. This paper runs predictive regressions with the HAR-RV measurement of the variance

risk premium. It includes two sample periods: January 1990 to December 2007 and January

7Although the variance risk premium is by definition an ex ante premium, I slightly abuse the notation
by calling the difference between the VIX2 and the ex post realized variance the "realized variance risk
premium".
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1990 to July 2010. The regression is in the form of

J∑
j=1

(rm,t+j − rf,t+j−1) = β0 + β1V RPt + εt, (2)

where J represents the forecasting horizon, rm,t+j−rf,t+j−1 represents the excess return at the

period j, and V RPt represents the variance risk premium at month t. Two approaches are

used to calculate the regression statistics. The first one is based on the monthly multivariate

VAR regressions as in Hodrick (1992). The second one is based on the overlapping OLS

regressions with Newey and West (1987) standard errors (use 12 lags).

Table 2 reports the empirical regression results. The main message reflected in this table is

that the regression result can be impacted by the VRP estimation period and the regression

method. The left panel reports the regression estimates and the VAR-implied R2 values.

From 1990 to 2007, the variance risk premium has economically significant predictability

on excess equity returns. The predictability is strongest at the horizon of 3 months. For

the 1990-2010 period, however, the predictability disappears. The right panel of the table

reports OLS regression results and the conclusion is similar: for the period from 1990 to

2007, there exists statistically significant predictability; while for the period from 1990 to

2010, there is none. This result is also consistent with what Bekaert and Engstrom (2009)

find.

The relatively short period for the data and the large spike in stock variance makes

inference diffi cult. The insignificant regression result may either be due to the fact that

the HAR-RV method gives a biased estimate of the P measure expected variance during

the financial crisis or the relationship between volatility and return is affected by outliers.

In an unreported study, I remove two months’ observations (September and October of

2008) from the regression data and find the OLS regressions once again significant. Since

the September and October of 2008 represent the height of the financial crisis and stock

variance experienced unprecedented spikes, these two months’data are potentially outliers
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so that they may distort the regression conclusion. While a more systematic approach for

dealing with outliers are needed in the future, for now, I take the result based on the period

from 1990 to 2007 as the benchmark empirical result for all LRR models to compare.

3 Can One- or Two-Factor LRRModels Generate Vari-

ance Risk Premium?

3.1 Model Setup

Preferences

Following the standard LRR literature, I assume that investors have Epstein-Zin-Weil pref-

erences. Under the continuous-time framework, the recursive utility function is

U(t) = {(1− e−(ln δ)dt)C
1− 1

ψ

t + (e−(ln δ)dt)Et(U(t+ dt)1−γ)
1− 1

ψ
1−γ }

1
1−1/ψ , (3)

where ln δ is the compound discount rate, γ is the degree of risk aversion, and ψ represents

the elasticity of intertemporal substitution (EIS). The continuous-time dynamics of the log

of the Intertemporal Marginal Rate of Substitution(IMRS) mt is

dmt = θ ln δdt− θ

ψ
dct − (1− θ)rc,t, (4)

where θ = (1− γ)/ (1− 1/ψ), dct is the growth rate of log consumption. rc,t = ln
P cont+dt+Ct+dt

P cont

represents the log of the instantaneous return of an asset which is a claim on the consumption

stream and P con
t is the price of the consumption-based asset.8

Under the standard Campbell-Shiller log-linearization approximation, both return on

consumption-claim assets rc,t and dividend-claim asset rd,t are approximated as linear func-

8Analogously, the log of the instantaneous return of an asset that is a claim on the dividend stream is
defined as rd,t, where rd,t = ln

Pt+dt+Dt+dt

Pt
represents the market return on dividend-claim assets.
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tions of the log wealth-consumption ratio vct and the log price-dividend ratio v
d
t , i.e.

rc,t = k0dt+ k1∆vct − (1− k1)vctdt+ d logCt (5)

rd,t = k0ddt+ k1d∆v
d
t − (1− k1d)v

d
t dt+ d logDt,

where ∆vct and ∆vdt represent the instantaneous changes of the two log ratios. k1, k0, k1d, and

k0d are constants determined by the unconditional means of vct and v
d
t ; v

c
t = log(P con

t /Ct) rep-

resents the log wealth-consumption ratio; vdt = log(Pt/Dt) represents the log price-dividend

ratio. The details of the derivations can be found in Eraker and Shaliastovich (2008) and

Appendix A.

Economic Fundamentals

I follow the standard LRR literature to assume that investors make decisions under a

continuous-time, real endowment economy where consumption and dividend are correlated

but separate processes. The growth dynamics of logCt and logDt can be written as

d logCt = (µC + xt −
1

2
V s
t )dt+

√
V s
t dWc,t (6)

d logDt = (µD + φDxt −
1

2
ϕ2
dV

s
t )dt+ ϕd

√
V s
t dWd,t

dWc,t, dWd,t ∼ N(0, 1), corr(dWc,t, dWd,t) = ρdc

where µC and µD are the log of the average consumption growth rates and the log of the

average dividend growth rates, 1
2
V s
t and

1
2
ϕ2
dV

s
t are adjustment terms for Jensen’s inequal-

ity where V s
t is the volatility factor; xt represents the long-run consumption growth; φD

characterizes the sensitivity of dividend growth on xt; the scaling factor ϕd captures the

high leverage of the dividend growth relative to consumption; dWc,t and dWd,t are Brownian

motions with a correlation of ρdc.

In a generalized two-factor LRR model, xt, V
f
t and V

s
t are state variables with stochastic
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volatility dynamics

dxt = −κxxtdt+ ϕe

√
V f
t dWx,t (7)

dV f
t = κfv(V

s
t − V

f
t )dt+ σfw

√
V f
t dW

f
v,t

dV s
t = κsv(V̄s − V s

t )dt+ σsw
√
V s
t dW

s
v,t

dWx,t, dW
f
v,t, dW

s
v,t ∼ N(0, 1), corr(dWx,t, dW

f
v,t) = ρxf .

Here κx, κfv , κ
s
v, σ

f
w and σ

s
w are parameters that characterize the stochastic volatility dynam-

ics. Since this model has two volatility factors, I label it the SV2F model. When V f
t and

V s
t degenerate to the same factor, the model becomes a one-factor model and quite similar

to the original Bansal and Yaron (2004) model except for the square-root diffusion term. I

refer to the degenerate model as the SV1F model.

The specifications above fall into the generalized affi ne form that was discussed by Eraker

et al.(2008). The state variable Yt is [xt, V
f
t , V

s
t ] for the SV2F model and [xt, V

s
t ] for the

SV1F model and can be expressed in vector form

dYt = (M +K ′Yt)dt+ Σ(Yt)dWt (8)

dYt = (MQ +KQYt)dt+ Σ(Yt)dW
Q
t , (9)

Σ(Yt)× Σ(Yt)
′ = h+

∑
i

HiYt (10)

whereM ∈ Rn×1, K ∈ Rn×n, and (h,H) ∈ Rn×n×Rn×n×n. The details of the transformation

between the P and Q measures are shown in Appendix A.

Equilibrium Solution

I obtain the equilibrium model solution by solving the Euler equation

Et[exp(mt + ri,t)] = 1, i ∈ {c, d} (11)
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where mt is the log pricing kernel and rc,t and rd,t are the instantaneous returns of assets

with claims on consumption and dividend respectively from time t to t+ dt.

As shown in Appendix A, I use the standard guess-and-verify procedure to solve the

Euler equation. The solutions of the log wealth-consumption ratio vct , the log price-dividend

ratio vdt , and the risk-free rates rt are affi ne functions of state variables:
9

vct = A+B′Yt (12)

vdt = Ad +B′dYt

rt = Φ0 + Φ′1Yt

where A,B,Ad, Bd,Φ0,Φ1 are functions of state variables and preference parameters. A,Ad

and Φ0 are scalars and B, Bd, and Φ1 are n× 1 vectors.

The quardratic variation of return process QVt,t+1 can be expressed as

QVt,t+1 ≡
∫ t+1

τ=t

d[logS, logS]τ ,

where the square brackets represent the standard quardratic variation process. Using the

continuous-version approach of Eraker (2008), I can also deduce the model implied risk-

neutralized expected variance EQ[QVt,t+1] and expected realized variance EP [QVt,t+1] with

the calculation detailed in Appendix A. The model-implied variance risk premium (V RP )

is simply calculated as

V RP = EQ[QVt,t+1]− EP [QVt,t+1]. (13)

9The affi ne structure of the solution process is valid under the Campbell-Shiller log-linearization approx-
imation. As shown by Bansal et al. (2007b), as long as the EIS is not significantly higher than 2 (which is
satisfied in our study), this log-linear approximation yields a result quite close to the more accurate numerical
solution to the Euler equation.

12



3.2 Calibration and Moment Match

I calibrate the model based on various asset pricing moments of interest. These moments

include first and second moments in equity price-dividend ratios, short interest rates, stock

realized volatility and VIX. They also include the lag 1 autocovariance of risk-free rates and

the lag 1, 6, and 12 autocovariances of VIX.10 The calibration strategy is based on the SMM

(Simulated Methods of Moments), which helps to systematically find the best parameters to

fit the overall moments, the details of implementing the SMM is in Appendix B.

My calibration strategy relies on exploring the conditional information from option mar-

kets, an approach adopted in Shaliastovich (2009) and Eraker (2008). Shaliastovich (2009)

uses cross-sectional options data while Eraker (2008) considers index-like VIX data con-

structed from a basket of options. Cross-sectional options data certainly contain rich in-

formation on the investors’attitudes towards market risk, yet individual options pricing,

especially in the in-the-money (ITM) or deep out-of-the-money (OTM) ranges, can be sub-

ject to large biases due to possible model-pricing errors. I therefore follow Eraker (2008) to

calibrate the models based on VIX data that are constructed in a "model-free" way.

For each calibrated model, I split the parameters into two groups. The parameters in the

first group are preset at values consistent with most of the previous LRR studies and are

presented in Panel A of Table 3. All the other parameters are obtained by the SMM. Among

these parameters, the loading factor of the dividend growth on the volatility factor ϕd is

chosen among discrete values of [5, 6.5, 8, 9.5, 11]. For each candidate value ϕd, I optimize

the objective function and choose a ϕd that enables the model to achieve the best fit. I also

start from various initial values of the calibrated parameters to make sure that the parameter

set achieves an optimal fit among a large set of possible parameters.

The results of calibration are presented in Table 3. For the SV1F model, the calibrated

parameters are similar to Bansal et al. (2004). For the SV2F model, the mean-reverting

10I do not include the autocovariance in realized stock volatility as this will allow the model to be compared
with previous studies more easily. However, I do investigate how the calibrated models fit the data on that
dimension.
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parameter is much higher for V f
t than for V s

t , while the volatility of V
f
t is much higher than

that of V s
t . Overall, the SV1F and SV2F models fit the data poorly with large J-statistics

but the SV2F model achieves a slightly better overall fit.

Table 4 reports moment matches between simulated data from calibrated models and

empirical data. The model-implied moments are medians of 1000 simulations with each

simulation spanning a period of 60 years. Long-time simulation moments are close to these

median values jointly (not reported here). In the data column, the numbers in the brackets

are the adjusted averages taking into account the shorter length of VIX data. In the model

column, the numbers in brackets correspond to the 5% and 95% quantiles of the simulated

moments.

As shown in the table, the two models achieve decent fits to the first and second moments

of interest rates, price-dividend ratios, and historical stock volatility. However, the average

model-implied VIX is 13.6% for the SV1F model and 12.6% for the SV2F model, significantly

lower than the sample average VIX of 20.4%; even the adjustment taking into account the

missing VIX values before 1990 cannot explain such large discrepancies. Consequently, both

two models generate variance risk premiums that are one magnitude smaller than the sample

average. This result shows that even a multi-factor model cannot generate a significant

variance risk premium.

This result also runs contrary to Bollerslev et al. (2009) and Zhou and Zhu (2009).

Aside from model specifications, the difference may also be due to the different calibration

approaches. Particularly, Bollerslev et al. (2009) choose a partial equilibrium strategy to

solve the LRR model by setting the wealth return’s loading on the wealth-consumption

ratio (κ1) to be a constant value of 0.9, while in principle, this parameter should be solved

recursively11. On the other hand, Zhou and Zhu (2009) propose a quite general two-factor

model which generates a significant variance risk premium but at the cost of generating

much smaller than empirically observed price-dividend ratios.12 Both Bollerslev and Zhou

11I find that for all the models discussed in this paper, the κ1s are about 0.999.
12They also do not check the model’s implication on the persistence in realized or risk-neutral volatility.
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and Zhu (2009) do not provide evidence on how their models match volatility dynamics,

making direct comparison between theirs and mine more diffi cult. However, the evidence

in this paper suggests that it is diffi cult for a two-factor LRR model to simultaneously

generate large variance risk premium and realistic volatility dynamics. Finally, the model-

implied autocorrelation in VIX generated by the SV1F model decays quickly to 0 as the

interval increases to 12 months; in contrast, the SV2F model demonstrates a non-trivial

autocorrelation even at the 12-month interval. This is presumably why the SV2F model

achieves a better overall fit to the data than the SV1F model.

4 Calibrating One- or Two- Factor LRR Jump-Diffusion

Models

4.1 Model Setup

Given the incapabilities of the SV1F and SV2F models to explain the large variance risk pre-

mium. I add jump processes to the state variables to investigate how jump-diffusion models

can make the difference. I focus on three groups of models: the one-factor jump-diffusion

model (SVJ1F_G(V)), the two-factor jump-diffusion model with short-run consumption and

long-run consumption sharing the same volatility factor (SVJ2F_G(V)_A), and the two-

factor jump-diffusion model with the short-run consumption having persistent volatility and

the long-run consumption growth having non-persistent volatility (SVJ2F_G(V)_B).

The economic fundamentals for all three sets of LRR models can be written in a general
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form as

d logCt = (µC + xt −
1

2
(δcV

f
t + (1− δc)V s

t )dt (14)

+

√
δcV

f
t + (1− δc)V s

t dWc,t,

d logDt = (µD + φDxt −
1

2
ϕ2
d(δcV

f
t +

(1− δc)V s
t ))dt+ ϕd

√
δcV

f
t + (1− δc)V s

t dWd,t,

dWc,t, dWd,t ∼ N(0, 1), corr(dWc,t, dWd,t) = ρdc.

and the state variable dynamics for all three groups of model are

dxt = −κxxtdt+ ϕe

√
V f
t dWx,t + ξxdNx, (15)

dV f
t = [κfv(V

s
t − V

f
t )]dt+ σfw

√
V f
t dW

f
v,t +

ξV fdNV f − E(ξV f )E(dNV f ),

dV s
t = κsv(V̄s − V s

t )dt+ σsw
√
V s
t dW

s
v,t,

dWx,t, dW
f
v,t, dW

s
v,t ∼ N(0, 1), corr(dWx,t, dW

f
v,t) = ρxf .

Here the parameters in the diffusion part have the same meaning as in the SV2F model

except for the jump term in xt, ξxdNx, and the jump term in V
f
t , ξV fdNV f−E(ξV f )E(dNV f ).

For the first set of models, there is only one volatility factor, so V f
t and V

s
t degenerate into

one factor, which means instead of reverting to time-varying V s
t , V

f
t reverts to a constant

mean. Additionally, I set δc = 1 (it makes no difference when there is only one volatility

factor). I assume that there are either jumps in the long-run growth rate xt, which means the

jump intensity in V f
t is zero; or jumps in the volatility factor which means the jump intensity

in xt is zero. This set of models is referred to as the SVJ1F_G(V) model. For the second

set of models, I set δc = 1 and keep the volatility factors V f
t and V s

t . This set of models

is referred to as the SVJ2F_G(V)_A model. This setup is similar to the specification in

Drechsler and Yaron (2011). For the third set of models, I set δc = 0, and the state variable
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dynamics as in Eq. 15, this group is referred to as the SVJ2F_G(V)_B model and the

model can be interpreted as a reduced-form representation of the confidence-based LRR

model proposed by Bansal and Shaliastovich (2009).

For all three sets of models, I assume that jumps are Poisson processes with intensity

being affi ne functions of the sole or the short-run volatility risk factor V f
t , i.e.

Prob(dNx = 1|It) = lXV V
f
t dt (16)

Prob(dNV f = 1|It) = lV V
f
t dt

where lXV and lV are intensity coeffi cients. This reflects the state-dependent feature of the

jump processes: a high-volatility state implies a high probability of a sudden change in the

expected long-run consumption growth rates or volatility.

Following Drechsler and Yaron (2011), I assume the jump size of xt and V f
t to be a

left-skewed compensated Gamma distribution and a right-skewed Gamma distribution re-

spectively, i.e.

ξx ∼ −Γ(γx,
µx
γx

) + µx (17)

ξV ∼ Γ(γV ,
µV
γV

).

where γx and γV are shape parameters and are preset to the standard value of 1; while µx and

µV are scale parameters that characterize the magnitude of the jumps and are determined

in optimization. The distribution of xt implies that xt has many small positive jumps and a

few large negative jumps so that the overall average jump size is zero. The distribution of

V
(f)
t implies that there are relatively infrequent large spikes in market volatility.
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4.2 Calibration and Moment Match

As detailed in Appendix A, adding jumps to the model does not change the affi ne character-

istics of the model and the calculation formula for the expected variance and the calibration

procedure are the same as in the diffusion-only case. The calibration results are reported

in Table 5. The first panel displays preset parameters which are mostly the same as in the

SV1F and SV2F models except for the extra jump intensity and shape parameters. The

shape parameters are all set to 1. The growth jump intensity parameter lXV is set to 4000,

and the volatility jump parameter lV is set to 500. With a long-term mean V
(f)
t of 1.5×10−5;

the jump frequency of xt corresponds to roughly 0.72 jump/year and the jump frequency

of V (f)
t corresponds to 0.09 jump/year. The lXV parameter is well aligned with previous

calibrated parameters in Drechsler and Yaron (2011), but unlike Drechsler and Yaron (2011)

who set lV = lXV , I set lV to a much lower value which is more aligned with Eraker (2008).

The second panel in Table 5 displays parameters that are found through the SMM. As

can be seen, including jump process significantly improves fitting quality across all models.

Generally, a multi-factor jump-diffusion model performs better than a single-factor jump-

diffusion model, which means including a second volatility factor also improves model fit.

Both the risk aversion parameter and the EIS parameter for each model are similar to

Drechsler and Yaron (2011) and other studies. For a single-factor model, the monthly mean-

reverting rate of volatility factor κv is 0.2, much higher than previously reported in other LRR

studies (∼0.1). This is the result of calibrating the model based on monthly autocovariance in

VIX. For multi-factor models, the mean-reverting rate for the non-persistent volatility factor

V f
t ranges from 0.24 to 0.51, representing half lives of 1 to 2.5 months, while the mean-

reverting rate for the persistent volatility factor V s
t ranges from 0.010 to 0.017, representing

half lives of 40 to 70 months.13 The existence of such a persistent volatility factor has been

pointed out by Egloff et al. (2010), Chacko and Viceira (2003), and others.

13The half-life H is defined as the number of months for the autocorrelation of the process to decay to half
of its monthly autocorrelation level, H = ln(0.5)/ ln(1− κv).
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The overidentification parameter (OID) summarizes the overall fits between the cali-

brated models and the moments used for calibration. When comparing models with the same

moments used for calibration, jump-in-growth models SVJ1F_G and SVJ2F_G_A under-

perform their jump-in-volatility counterparts, but the SVJ2F_G_B model outperforms the

SVJ2F_V_B model and achieves the best in-sample fit across all models. However, when

testing the goodness-of-fit of all original calibrated models against an expanded set of mo-

ments that also include the autocovariance moments in realized volatility, all jump-in-growth

models display much quicker drops in fitting quality. In contrast, jump-in-volatility mod-

els’ overall fitting quality only worsen slightly. For example, the OID test value for the

SVJ2F_V_B model increases from 79.1 to 112.2 when autocovariance moments in realized

stock volatility are included; in contrast, the OID test value for the SVJ2F_G_B model

increases from 44.6 to 278.4.

Table 6 reports the moment match for the jump-diffusion models. As in Table 4, the value

reported is the median of 1000 simulations, with each simulation spanning 60 years. The

brackets in the data columns indicate the adjusted means taking into account the shorter

length of VIX data and the brackets in the model columns indicate 5% and 95% quantiles in

the simulated moments. As shown in Panel A, all jump models display remarkable in-sample

fits for the first and second moments of risk free rates, price-dividend ratios, and historical

realized volatility.14 They also imply an annual equity risk premium of 5 to 6 percent. The

biggest improvement of the jump-diffusion LRR models over the diffusion-only LRR models

is that they all display significant positive variance risk premiums that are comparable to the

adjusted empirical variance risk premium. This is consistent with the argument in Drechsler

and Yaron (2011) that investors’ fear of large jumps in either asset prices or volatility of

asset prices makes them willing to pay a premium to hedge the time-varying stock volatility.

14One exception is the volatility of risk free rates. All models imply a value of about 1% annually, while
the empirical estimate is 2%. However, it is well-known that estimating the volatility of real risk-free rates
is diffi cult. In fact, using ex post inflation rates to adjust nominal rates would give an annual volatility of
4% that is much higher than implied by most LRR models. By using smoothed or survey-based estimates of
expected inflation rates, the discrepancy between models and data has already been significantly reduced.
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Within the same type of LRR models (the same setup except for the jump channel), a

jumps-in-growth model generally generates a higher average variance risk premium than its

jumps-in-volatility counterparts.

Volatility dynamics are directly related to the dynamics of the underlying stock volatility

factors, which in turn affect the risk-return trade-off, return predictability, and valuations for

long-term options and variance swap contracts. Therefore, it is important to check whether

an equilibrium asset pricing model can generate realistic volatility dynamics under both risk-

neutral and historical measures. Panel B of Table 6 reports moment matches in volatility

dynamics. When comparing the model-generated VIX autocorrelation moments to the data,

I find that it is not whether the model contains one or two volatility factors that determines

the fitting quality; instead, it is the jump channel that matters, particularly, jump-in-growth

models generate low median values for 6- and 12-month VIX autocorrelations. Except for

the SVJ2F_G_B model, the sample value is outside the 90% confidence interval implied

by the jump-diffusion models. In contrast, even a single-factor jump-in-volatility model

generates good fits in the 6- and 12-month VIX autocorrelations. I find that the VIX

autocorrelations implied by jump-in-growth models are vulnerable to small-sample effect.

Fo example, a 10,000 month simulation of the SVJ2F_G_B model generates a 6-month

VIX autocorrelation of 0.43 and a 12-month VIX autocorrelation of 0.37 (not reported in

the table); however, the median values of 1000 simulations of 720 months for these two

autocorrelations are only 0.25 and 0.19, respectively.

As for the realized volatility dynamics, jump-in-volatility models also perform better

than jump-in-growth models in terms of matching the data. For each of the SVJ1F_G

and SVJ2F_G_A models, the 1-month autocorrelations in stock volatility match the data

reasonably well, however, the 6-month and 12-month autocorrelations are apparently smaller

than the data suggest. For the SVJ2F_G_Bmodel, the autocorrelations in realized volatility

at all horizons are smaller than the sample average. In contrast, the multifactor jump-in-

volatility models match the realized volatility persistence fairly well, consistent with the
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goodness-of-fit tests reported in Table 6.

To interpret why jump-in-growth models performs more poorly when matching volatil-

ity dynamics than jump-in-volatility models? One notice that a jump-in-volatility model

implies that when there is a large positive volatility jump, there is also a large price jump.

Therefore, the realized volatility is high. On the other hand, a positive jump in volatility

impact future volatility factor through the AR(1) process, meaning that future VIX and

realized volatility would also be high. The volatility clustering effect is hence maintained

well in jump-in-volatility models. In contrast, it is diffi cult for a jump-in-growth model to

generate the volatility clustering effect. Although a negative jump in the long-run growth

cause a contemporaneous surge in realized volatility, the surge is not followed by a surge in

future volatility because the volatility factors are unchanged. Therefore, one would see stock

volatility quickly revert to normal values after the crisis period and the average correlation

in volatility is low.15

Finally, I check whether the calibrated models can describe the empirical time series of

the VIX2. I assume that risk-free rates, price-dividend ratios, and physical expected variance

are all observed without errors. Using the fact that within the LRR model, these variables

are all affi ne functions of the state variables, I extract the latent state variables and obtain

the model-implied VIX2. For the single-factor LRR models, I use risk-free rates and physical

expected variance to extract xt and V f
t ; for the multifactor LRR models I use risk-free

rates, price-dividend ratios, and physical expected variance to extract xt, V
f
t , and V

s
t . As

shown in Figure 3, all jump-diffusion LRR models generate decent fits in the time series of

the VIX2. Several periods of VIX spikes, including the Asian Crisis and the months when

Lehman Brothers bankrupted, are well captured. The only period that the model-implied

VIX2 being significantly smaller than the observed VIX2 is during the months of Russian

15One would argue for a LRR model that has joint jumps in long-run growth and volatility, a setup
similar to Benzoni et al. (2010), so that both variance risk premium and volatility dynamics can be matched
well. Given that the calibrated jump intensity for growth is different from the jump intensity for volatility,
establishing such models might be non-trivial. However, it is certainly possible to establish a LRR model
that incorporate both jumps in long-run growth and jumps in volatility where jump processes have different
jump intensities. Establishing such models is beyond the scope of this paper.
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debt default and the ensuing LTCM collapse. This is a nontrivial achievement for the LRR

models, given that VIX2 is not directly used in extracting the latent state variables. It

provides evidence that the jump-diffusion LRR models are capable of not only describing

the average moments but the time-series dynamics of variance swap rates as well.

To summarize, incorporating jumps in a LRR model is crucial to generate realistic vari-

ance risk premiums and to explain the equity premium puzzle, the low risk-free rate puzzle,

and the high volatility puzzle. The jump-in-growth models are generally more effective at

generating large variance risk premiums than the jump-in-volatility models are. However,

the cost of assuming jumps in long-run consumption growth is reduced persistence in realized

volatility and smaller long-run autocorrelation in the risk-neutral volatility represented by

VIX.16 All jump LRR models do a decent job of fitting the time-series of the VIX2 from 1990

to 2010.

4.3 Robustness Check

• Discount factor and dividend dynamics

In the calibration, I set the discount factor at 0.999 and choose the dividend dynamics

parameters close to Bansal et al. (2007). In this study, I have tried four different subjective

discount factors (δ = 0.999, 0.9985, 0.998, 0.997) and find that only the discount factor of

0.999 allows the model to fit interest rates and price-dividend ratios simultaneously well.

As for the dividend dynamics parameters, I have tested several values of φd, the dividend

growth’s loading factor on the long run risk factor xt. My experiment suggests that at least

within the range of 2.5 to 3.5, similar sample moments can be achieved by small adjustments

16Since I wish to focus on volatility dynamics, I do not report the comparison of the higher moments
in realized volatility and VIX. Jump-in-volatility models tend to generate higher skewness and kurtosis of
realized volatility and VIX than the empirical values, while jump-in-growth models generate a much closer
fit. There are two reasons I do not consider comparing these high moments. First, including high moments
obscures the focus on volatility dynamics. Second, it is quite diffi cult to estimate the unconditional skewness
and kurtosis for a short sample period. Third, the main focus of this paper is not finding an "optimal"
model but an investigatigation of how volatility dynamics can help distinguish different jump channels. A
systematic study that not only considers volatility dynamics and high moments in volatility is for future
research.
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of other parameters; but when φd is out of this range, the search for a better fit is increasingly

diffi cult. I also test how changing the coeffi cient ρdc would impact the model results. I choose

a typical value of 0.4, but varying it from 0.2 to 0.6 does not materially impact the quality

of the model fit, as other parameters can be adjusted accordingly.

• Leverage-effect coeffi cient

Across the models, I restrict the shock correlation coeffi cients ρxf to -0.8. I find that

this coeffi cient has little effect on monthly aggregate asset moments; however, setting ρxf to

-0.8 can significantly improve the model’s description of daily dynamics dependence between

stock returns and the VIX index.

• Jump intensity parameter

I also test whether the calibrated jump parameters will affect the result of estimation. In

jump-in-growth models, the parameter lXV is set to 4000. In jump-in-volatility models, the

coeffi cient of lV is set to 500. I preset the jump intensity parameters because it is extremely

hard to identify jump intensity and jump size jointly. In fact, the experiments suggest that

if jump intensity is not varied much, the impact on sample moments can be largely offset by

adjusting jump size parameters.

5 Variance Risk Premium and Equity Risk Premium

5.1 Variance Risk Premium’s Predictability of Stock Returns

Table 7 and Table 8 report model-implied predictability of equity premium by the variance

risk premium. Table 7 reports statistics based on the VAR regression method of Hodrick

(1992). Table 8 reports statistics based on OLS regression. These two tables show that jump-

in-volatility LRR models can replicate the predictability of stock returns by the variance risk

premium when expected physical variance is measured by the HAR-RV method.
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The top panel in each table reports the regression results when the expected realized

variance is constructed by the "true" volatility state variable across all models. The second

panel in each table reports the regression results when the expected realized variance is esti-

mated by applying the HAR-RV method to the simulated data. Comparing these two panels

in each table, it is apparent that the predictive power of the HAR-RV-based variance risk

premium is much smaller than that of the "true" variance risk premium. For example, for

the SVJ2F_V_B model, the highest R2 of return regressions on "true" variance premiums is

0.05, while the highest R2 of return regressions on estimated variance risk premiums is only

0.02. For jump-in-growth models, the changes in R2s are even more significant. The compar-

ison suggests that there is a significant difference between "true" and noisy measures of the

variance premium. Since using the "true" variance premium’s predicting power in the model

to match the "estimated" variance premium’s predicting power in the data can potentially

overstate the model’s ability to account for variance risk premium’s return predictability, I

focus on the second panel when comparing models against the empirical data.

As shown in Table 7, when the expected variance is estimated by the HAR-RV method

and VAR regressions are applied, jump-in-volatility models generate a close match in return

predictability by the variance risk premium while the maximum R2 generated in jump-in-

growth models is less than 0.005. The trends of the R2s for different forecasting horizons

are different too. For each of the two multifactor jump-in-volatility models (SVJ2F_V_A,

SVJ2F_V_B), the R2 peaks at the horizon of 3 months and then gradually decreases. For

each of the two multifactor jump-in-growth models (SVJ2F_G_A, SVJ2F_G_B), the R2

peaks at the 1-month horizon and then steadily decreases. The coeffi cients of regression in

the jump-in-volatility models also match the coeffi cients of empirical regressions fairly well.

When OLS regressions are applied, as shown in Table 8, the R2s are much higher than

those in Table 7. The SVJ2F_V_B model generates the closest match in the R2 values,

peaking at the 6-month horizon. The regression estimate, however, monotonically increases

as the regression horizon increases, which is different with what the data suggest. This
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suggests that the SVJ2F_V_B model are able to capture a significant part but not all of

the return predictability by the variance risk premium.

5.2 Unconditional Decomposition of Equity Risk Premium

Table 9 reports the results for decomposing the instantaneous expected equity risk premium

into different parts that are attributed to different risk resources. The second row reports

the annualized unconditional mean of the equity risk premiums for all models. The third

to sixth rows record the premiums attributed to shocks in short-run consumption growth,

shocks in long-run consumption growth, shocks in the short-run volatility factor, and shocks

in the long-run volatility factor. The seventh and eighth rows record the equity premiums

contributed by jump risks in the long-run component and the volatility factor respectively.

For pure diffusion models such as the SV1F and SV2F models, diffusion risks associated

with the long-run risk factor constitute most of the equity risk premium commanded by

investors; in both models the number is close to or even more than 90%. When jumps

are included, the risk premium attributed to the diffusion in the long-run risk factor xt

is significantly reduced. On the other hand, investors command non-trivial proportion of

equity premiums to compensate for risks in jumps: for jump-in-volatility models, jump risks

contribute 16% to 21% of the total unconditional equity risk premium; while in jump-in-

growth models, the percentage varies from 35% to 41%.

As almost all of the variance risk premium is due to the jumps, this indirectly suggests

that variance risk premiums are closely associated with equity premiums. My result is

consistent with what Bollerslev and Todorov (2011) find, but the magnitude is much smaller.

Using non-parametric methods, Bollerslev and Todorov (2011) find that the risk aversion

associated with the tail events not only generates a large variance risk premium, but also

constitutes more than 60% of the equity risk premium. My result implies that most of the

premium is still generated by the risk in long-run consumption growth.
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6 Other Implications of the LRR Model

6.1 Moments in Consumption and Dividend

Although I do not directly include the data regarding consumption and dividend growth in

the calibration, it is interesting to compare the implied consumption and dividend of the

LRR models and the annualized data. Table 10 reports the comparison results.

For the annual consumption, all models match the means of the annual consumption

growth very well. Yet they all generate a slightly higher-than-sample consumption volatility.

The models also imply that the consumption growth is normally distributed. The median

values of skewness are all very small and the median values of the kurtosis are close to 3, in

contrast to the negative sample skewness of -0.59 and the high kurtosis of 3.47 observed in

the post-war data. However, the sample values are well within the 90% confidence interval

implied by all models, as the unconditional skew and kurtosis are hard to estimate robustly.

All models suggest a slightly higher first-order autocorrelation in the consumption process

than the empirical value of 0.38. For all models (except for the SVJ2F_G_B model), the

empirical value is well within the confidence interval.

For the annual dividend growth, all the models display a slightly lower dividend growth

rate than the sample data. However, the dividend volatilities implied by all the models are

lower than that of the sample data. I find that choosing a small dividend volatility parameter

ϕd achieves a better fit in asset pricing moments. As for the higher moments, all models

imply small skewness close to the sample value. However, the median values of kurtosis for

all models are significantly smaller than the sample data. Finally, the autocorrelation of the

dividend growth is matched by all the models reasonably well.

To summarize, the consumption and dividend processes implied by the jump-diffusion

models match the first moment of consumption and dividend growth quite well, yet they

have a mixed performance in matching the higher moments of consumption and dividend.

However, matching both cash-flow data and asset pricing data is not the main goal of this
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paper, especially when the measurement of cash-flow data is still subject to a large potential

bias. Currently consumption is measured as the sum of service and non-durable goods, yet

durable goods can also play an important role in asset pricing. Furthermore, the consumption

of the stock participants may be a better measure of consumption for pricing assets (see

Vissing-Jorgenson 2002). Dividends may also be a biased measure of corporate cash flows,

as dividends can be affected by shifts in corporate financial policy that is unrelated to

macro fundamentals. Several studies reveal important connections between asset prices and

earnings (see Longstaff and Piazzesi 2004, Bansal et al. 2005).

6.2 Return Predictability by Price-Dividend Ratios

Bansal and Yaron(2004) suggest that LRR models can explain price-dividend ratios’strong

predictability of excess stock returns. The conclusion is further supported by Drechsler and

Yaron (2009). From the LRR model’s point of view, the strong predictability exists because

both stock returns and price-dividend ratios are functions of the time-varying volatility

factor(s) and the long-run component in growth, which are highly persistent. However,

given that in the model, the consumption and dividend growth rates are also functions

of the these state variables, the model may imply high predictability of these two growth

rates as well. Furthermore, since the volatility of stock returns, consumption growth, and

dividend growth are functions of the volatility factor(s), the LRR model should imply that

price-dividend ratios can predict future stock, consumption, and dividend volatility as well.

In fact, Beeler and Campbell (2009) point out the counterfactual implications of the LRR

model concerning the price-dividend ratios’predictability of levels and volatilities of stock

returns, consumption and dividend growth. Since the work of Beeler and Campbell (2009) is

based on the canonical model of Bansal and Yaron (2004), whether the conclusion holds for

more general models remains in question. In fact, Drechsler and Yaron (2009) shows a much

closer fit regarding consumption growth and volatility predictability (although they do not

investigate dividend growth and volatility predictability). Here I use the calibrated models

27



to reinvestigate this issue and show that the conclusions reached by Beeler et al. (2009) are

largely intact.

The predictive regression for H periods future compound excess stock returns is:

H−1∑
i=0

(lnRt+i,t+i+1 − lnRf,t+i) = α + βpred(p− d)t + εHt, H ≥ 1 (18)

where Rt+i,t+i+1 represents the market returns from quartert+i to quartert+i+1. Similarly, the

predictive regressions for log consumption and log dividend growth rates are:

H−1∑
i=0

(4ct+i,t+i+1) = αc + βpred_c(p− d)t + εHct, (19)

and
H−1∑
i=0

(4dt+i,t+i+1) = αd + βpred_d(p− d)t + εHdt.

While regressions of consumption and dividend growth rates are based on quarterly data; the

regression for excess stock returns on price-dividend ratios is based on the monthly bivariate

Vector Autoregressive Regression (VAR) model with a lag order of one. Hodrick (1992)

shows that the VAR model can reduce the bias brought by finite sample and overlapping

returns.

In the volatility predictability regressions, I define return volatility as the log of the aggre-

gate realized volatility over the predictive horizon, i.e. V olt+1,t+H = 1
2

ln ΣH
h=0|RVt+h−1,t+h|,

where RVt−1,t = [ΣK−1
k=0 (pt−1+ k+1

K
−pt−1+ k

K
)2] is the realized variance in month t. Further-

more, I define consumption and dividend volatilities as measured by the non-parametric

method proposed in Bansal et al. (2005) and Beeler and Campbell (2009). Specifically, for

each variable yt (which can be quarterly consumption or dividend), AR(1) regressions of

consumption and dividend are run and the absolute values of the residuals εct and εdt are

used to characterize the realized volatilities of the consumption and dividend respectively.

So the H-quarter realized volatility of consumption or dividend is defined as the sum of the
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quarterly realized volatility:

V olt+1,t+H = ΣH
h=1|εy,t+h|, y ∈ (c, d).

Then the volatility predictive regression is:

ln[V olt+1,t+H ] = βv0 + βv1(p− d)t + ξHt. (20)

Panel A of Table 11 reports the empirical data for the regression coeffi cients, t-ratios,

and R2s of the regressions of stock returns, consumption and dividend growth rates on price-

dividend ratios at horizons of four, twelve, and twenty quarters. As shown in the table,

price-divided ratios can strongly predict stock returns. The predictive power increases as

the horizon increases: at the one-year horizon, the regression R2 is 6.1%; at the five-year

horizon, the R2 reaches 18.7%. For consumption growth, the regression has a statistically

significant predictive coeffi cient at the one-year horizon, with a regression R2 of 11.8%. The

predictability decreases significantly when the horizon increases and becomes non-significant

at the three- and five-year horizons. For dividend growth, there is no statistically significant

predictability at any horizon.

Panel B of Table 11 reports the regression results of regressing stock volatility, con-

sumption volatility, and dividend volatility on price-dividend ratios. In contrast to what is

found in Beeler and Campbell (2010), after the dividend is adjusted for stock repurchases,

price-dividend ratios have no predictive power.

Panel A of Table 12 report the regression coeffi cients, t-ratios, and R2s of stock excess

returns and cash-flow growth rates at horizons of 12, 36, and 60 months based on simulations

of all the jump-diffusion models. For the predictability of excess returns, I find that the R2s

of the regressions are similar across all the models but are smaller than the corresponding

regression data shown in Table 11. The R2s in the model are also smaller than the model-

implied R2s in other studies such as Drechsler et al. (2010). The difference may originate
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from the constraints I put on the dynamic structure of the volatility. Among all the models,

the SVJ2F_V_Bmodel demonstrates the strongest predictability from price-dividend ratios.

However, all models imply that the price-dividend ratios strongly predict consumption

and dividend growth rates, with the predictive power becoming stronger as horizon increase.

This result is contrary to the one shown in Table 11 where only short term consumption

growth can be predicted. Similar discrepancies exist in the case of predicting dividend

growth.

Panel B reports the regression results regarding the price-dividend ratios’predictability

of return volatility, consumption volatility, and dividend volatility. Again, there are signifi-

cant discrepancies between LRR models and the data. Most models imply strong volatility

predictability, while the data do not. These mismatches certainly pose diffi cult questions

which future LRR studies must resolve.

7 Concluding Remarks

Studies on long-run risks models have shown their great potential to explain several key

stylized facts in postwar U.S. asset prices, including high and volatile equity risk premium

and high variance risk premium that can possibility predict short term equity return. Among

these studies, Drechsler and Yaron (2011) is particularly interesting to us. It suggests that a

model with a multifactor stochastic volatility structure, jumps in long-run economic growth,

and jumps in volatility can explain equally well variance premium and equity premium, and

at the same time generate other desirable fits in asset prices. However, several important

economic questions were not fully addressed, such as which jump channel is necessary for

generating the variance risk premium and whether the important volatility clustering effect

can be generated.

This paper answers these two questions by calibrating a series of jump-diffusion LRR

models. The main finding is that these two questions are actually closely related. In par-
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ticular, I find that models with jump in consumption growth can generate large variance

premium, but cannot generate a realistic persistence in volatility dynamics. In contrast,

models with jumps in long-run growth volatility explain slightly less variance premium, but

generate more realistic volatility dynamics. Therefore, if volatility dynamics fitting is one

criterion for judging whether an equilibrium pricing model is good or not, then volatility

jump channel should be favored.

I find several questions for the LRR model remain unanswered. To begin, the sample

data suggest no strong predictability of consumption and dividend by price-dividend ratios,

yet most of the calibrated models give opposite conclusions. Additionally, the sample data

suggest no predictability of volatility of returns, consumption growth, and dividend growth,

yet most of the investigated models imply strong volatility predictability by price-dividend

ratios.

These discrepancies may be related to the fact that it is very hard to find direct evidence

for the long-run component in aggregate consumption. Aside from the fact that the data for

annual consumption are still limited, other factors may also contribute. Vissing-Jørgensen

(2002) suggest that the measurement of consumption should either include durable goods or

account for the limited stock market participation effect. Hansen and Sargent (2010) suggest

that the long-run risk assumption may originate from the model uncertainty of investors.

Bonomo et al. (2011) propose that the low predictability in consumption growth can be

explained by generalized disappointment aversion. More research is needed in the future to

enlighten our understanding of the sources of long-run risks in consumption growth.

Appendix

A. Solving the Equilibrium Model

A.1 Fundamental and Pricing Kernel Dynamics

For a LRR model, the vector Yt includes all state variables of interest in this study. Following
Eraker and Shaliastovich (2008), the dynamics of Yt is:

dYt = µ(Yt)dt+ Σ(Yt)dWt + ξt · dNt (A.1)
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where
µ(Yt) = M +KYt

Σ(Yt)Σ(Yt)
′ = h+

∑
HiYt.

Here M is a n × 1 vector; K is a n × n matrix; h is a n × n matrix; and Hi∈{1,...n} are
n × n matrices. dWt is a Brownian motion vector; dNt represents jump intensity of state
variables. They are governed by Poisson processes with time-varying jump intensity. For
example, Prob(dNx = 1|zt) = lXV V

f
t dt and Prob(dNV = 1|zt) = lV V

f
t dt. ξi represents

the jump size. The jump size in xt follows a compensated negative Gamma distribution,
i.e. ξx ∼ −Γ(µx, γx) + µx, and the jump size in V

f
t follows a standard Gamma distribution,

which is ξV ∼ Γ(µV , γV ).
I assume the representative agent has a recursive utility function as follows:

Ut = {(1− e−(ln δ)dt)C1−ρ
t + (e−(ln δ)dt)Et(U(t+ dt)1−γ)

1−ρ
1−γ }

1
1−ρ

where ρ = 1
ψ
.

The formula describing the dynamics of d logMt is:

d logMt + (1− θ)drt +
θ

ψ
d logCt = (log δ)θdt, (A.3)

similar to the evolution of the pricing kernel in the discrete-time modeling framework.

A.2 Solving the Model

Under the equilibrium, for the consumption-claim asset (or wealth), we have:

d(mt + rc,t) = θ(∆vct + d log(Ct) +
dt

exp(vct )
) (A.4)

− θ
ψ
d logCt + log(δ)θdt

= 0,

and for the dividend-claim based asset (or equity), we have

d(mt + rd,t) = θ(∆vdt + d logDt +
dt

exp(vdt )
) (A.5)

− θ
ψ
d logDt + (log δ)θdt

= 0

At the same time, under the log-linear approximation, we can write returns in wealth and
in equity as:

rc,t = k0dt+ k1∆vct − (1− k1)vctdt+ d logCt (A.6)

rd,t = k0ddt+ k1d∆v
d
t − (1− k1d)v

d
t dt+ d logDt
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Assuming vct = A+ BYt, vdt = Ad + BdYt and substituting them into the Euler equation
A.4 and A.5 above, we get

K ′χ− θ(1− k1)B + 0.5χ′Hχ+ l
′

1(%(χ)− 1) = 0 (A.7)

θ(ln δ + k0 − (1− k1)A) +M ′χ = 0

K ′χd + (θ − 1)(k1 − 1)B + (k1d − 1)Bd + 0.5χ′dHχd + l
′

1(%(χd)− 1) = 0

θ(ln δ − (θ − 1)(ln k1 + (k1 − 1)B′µY )− (ln k1d + (k1d − 1)B′dµY +

M ′χd + 0.5χ′dhχd + l0[ρ(χd)− 1] = 0

Ad +B′dµY = ln
κ1,d

1− κ1,d

.

Here χ = θ((1−ρ)δc+k1B), χd = δd+k1dBd−(γδc+(1−θ)k1B),and µY is the unconditional
mean of state variables (for logCt, logDt, the unconditional mean is set to zero).
The coeffi cients κ0, κ1,κ0d, κ1d have the following:

κ1 =
exp(E(vct ))

1 + exp(E(vct ))
(A.8)

and

κ0 = − ln[(1− κ1)1−κ1
1 κκ11 ]

and

κ1d =
exp(E(vdt ))

1 + exp(E(vdt ))
(A.9)

and

κ0d = − ln[(1− κ1d)
1−κ1d
1 κκ1d1d ].

These four constants are not known initially, but I can assume reasonable starting values
and recursively solve them until the solutions converge.

A.3 Risk-free Rate

Using the fact that Mte
∫ t
0 r(s)ds is a martingale, with Ito’s lemma, I can derive the instanta-

neous risk-free interest rate as
rt = Φ0 + Φ1Yt (A.10)

here

Φ0 = θβ + (θ − 1)(ln k1 + (k1 − 1)B′µYt) +M ′λ− 1

2
λ′hλ,

Φ1 = (1− θ)(k1 − 1)B +K ′λ− 1

2
λ′Hλ− l′1(%(−λ)− 1)

where λ = γδc+ (1− θ)k1B is the price of risks. The calculations of Φ0 and Φ1 follow Eraker
(2008)
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A.4 Risk Neutral Dynamics

The risk neutral dynamics of state variables can be expressed as

dYt = (MQ +KQYt)dt+ Σ(Yt)dW
Q
t + ξQt · dNQ

t , (A.11)

where MQ = M − hλ,KQ = K − Hλ, dWQ
t = dWt + Λtdt and λ = γδc + (1 − θ)k1B

reflects how different shocks of state variables can affect the change in the stochastic discount
factor. Λt = Σ(Xt)

′λ can be understood as the price of the diffusion shock.
The jump arrival intensity transformation under the risk-neutral measure are

lQxV = exp(−λxµx)(1−
λxµx
γx

)−γxlxV , (A.12)

and lQV = (1 +
λvµv
γv

)−γv lV .

For jump size distribution, the risk neutral moment generating function as follows:

%Qx (u) = exp(µxu)(1 +
µQx u

γQx
)−γ

Q
x , (A.13)

%QV (u) = (1− µQV u

γQV
)−γ

Q
V ,

here γQx = γx, µ
Q
x = µxγx

γx+λxµx
, γQV = γV , µ

Q
V = µV γV

γV +λV µV
.

A.5 Calculation of the Variance Risk Premium

As suggested in Duffi e et al. (2000) and Eraker (2008), I can take advantage of the fact that
log stock prices are affi ne functions of the state variables so the moment generating functions
for both P and Q measures can be expressed in a semi-closed form:

ψi(u, Yt, 0, T ) = Ei
0 exp(u lnST ) (A.14)

= eαi(u,T )+βi(u,T )Yt, i ∈ {P,Q},

where αi(u, t) and βi(u, t) satisfies

∂βi
∂t

= Ki′β +
1

2
β′Hβ + li

′

1 (%i(β)− 1) (A.15)

and
∂αi
∂t

= M i′β +
1

2
β′hβ + li

′

0 (%i(β)− 1), (A.16)

with the initial conditions of αi(u, 0) = 0 and βi(u, 0) = u.
The one-month ahead conditional variances in risk-neutral and physical measures can
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therefore be written as

V arit[lnR
i
t,t+1] =

∂2 lnψi(u, Yt, t, t+ 1)

∂u2
|u=0 (A.17)

= α′′i (0, 1) + β′′i (0, 1)Y i
t , i ∈ P,Q.

Furthermore, the expectation of stock return quadratic variations QVt,t+1 under both
physical and risk-neutral measures can be approximately calculated as the integrated condi-
tional variance, i.e.

Ei[QVt,t+1] ' Ei[

M∑
n=1

V arit+ n
M

[lnRt+ n
M
,t+n+1

M
]] (A.18)

' V arit[lnRt,t+1], i ∈ {P,Q}

where

QVt,t+1 =

∫ t+1

t

ν2
sds = lim

N→∞

N∑
i=1

(pi+1 − pi)2.

The risk-neutral expected variance corresponds to the short-term variance swap rate,
which can be represented by the square of the VIX index provided by the CBOE. The
physical expected variance can be estimated based on the high-frequency S&P 500 futures
data. The variance risk premium (V RP ) is defined as the difference between the expected
variance under the two measures; i.e.,

V RP = EQ[QVt,t+1]− EP [QVt,t+1]. (A.19)

Under the two-factor model, V RP is an affi ne function of the short-run and long-run volatility
factors V f

t and V s
t , while under the one-factor model, it is an affi ne function of the single

volatility factor Vt.

A.6 Decompose equity risk premium

Assuming the log pricing kernel can be decomposed into a diffusion part and a jump part,
i.e.

mt = md
t +mj

t (A.20)

= (log(δ)θ − θ

ψ
dct + (θ − 1)rdc,t)︸ ︷︷ ︸

diffusion

+(θ − 1)rJc,t︸ ︷︷ ︸
jump
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where rc,t = rdc,t+ rJc,t is the return on consumption claim based assets. Under the Campbell-
Shiller assumption, rc,t is a function of wealth-consumption ratios and consumption growth:

rc,t = k0dt+ k1∆vct − (1− k1)vctdt+ d logCt. (A.21)

Similarly, the log of the market return can also be split into a diffusion term and a jump
term and it is also determined by price-dividend ratio and dividend growth.

rm,t = rdm,t + rJm,t (A.22)

= k0ddt+ k1d∆v
d
t − (1− k1d)v

d
t dt+ d(logDt)

Following Drechsler and Yaron (2011), the instantaneous expected equity risk premium is
determined by the sum of diffusion and jump risk premiums:

Et(Rm −Rf ) (A.23)

= −Covt(md
t+dt, r

d
m,t+dt) +

lnEt[e
rJm,t+dt ] + lnEt[e

mJt+dt ]− lnEt[e
rJm,t+dt+m

J
t+dt ]

Substituting vct = A + BYt and vdt = Ad + BdYt into eq.(A.20) and eq. (A.21) gives the
diffusion part of the premium. Since bothmd

t+dt and r
d
m,t+dt are functions of random shocks of

state variables and consumption and dividend growth rates, such as dWx,t, dWvf,t, dWvp,t, dWc,t,and
dWd,t, the compensation of the diffusion risk premium can be decomposed into components
contributed to by various risk sources, i.e.

−Covt(md
t+dt, r

d
m,t+dt) = γϕdρdc(δcV

f
t + (1− δc)V s

t )︸ ︷︷ ︸
dWc

(A.24)

+(1− θ)κ1κ1d(Bxϕe +Bvfσwfρxf )(Bdxϕe +Bdvfσwfρxf )V
f
t︸ ︷︷ ︸

dWx

+(1− θ)κ1κ1dBvfBdvfσ
f2
w (1− ρ2

xf )V
f
t︸ ︷︷ ︸

dW f
v

+(1− θ)κ1κ1dBvsBdvsσ
s2
w V

s
t︸ ︷︷ ︸

dW s
v

For the SV1F, SVJ1F_G, SVJ1F_V, SVJ2F_G_A, and SVJ2F_V_A models, δc = 1;
for the SV2F, SVJ2F_G_B, and SVJ2F_V_B models, δc = 0. B = [Bx, Bvf , Bvs]

′, Bd =
[Bdx, Bdvf , Bdvs]

′

The jump part of the premium can be calculated based on the characteristic functions of
the jump distribution in xt and V

f
t . For xt, it is

[ψµx,γx(κ1dBdx)− 1− ψµx,γx(κ1dBdx − (1− θ)κ1Bx) + ψµx,γx(−(1− θ)κ1Bx)]lXV V
f
t , (A.25)

where the characteristic function ψµx,γx(u) for the negative compensated Gamma distribution
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is
exp(µxu)(1 +

µxu

γx
)−γx ;

for jump in volatility, it is

[ψµv ,γv(κ1dBdvf )−1−ψµv ,γv(κ1dBdvf − (1− θ)κ1Bvf ) +ψµv ,γv(−(1− θ)κ1Bvf )]lV V
f
t ; (A.26)

where the characteristic function ψµv ,γv(u) for the Gamma distribution,is

(1− µxu

γx
)−γx .

B. Model Calibration

To calibrate the model parameters, I choose a systematic strategy based on the Simulated
Methods of Moments (SMM) (Duffi e et al.1993 , Gourieroux et al.1996 ).17 Here is the
procedure for carrying out the SMM calibration.
Step 1: Collecting the target moments of the data, I split the moments into two parts,

the first part are moments that are based on the data from 1951 to 2010, while the second
part are moments based on the volatility data from 1990 to 2010. Specially, I write the
vector of moments ỹ(t) as

ỹ(t) = [ỹ1(t), ỹ2(t)] (21)

where

ỹ1(t) =


Rft, (p− d)t, (

√
RV )t

[Rft−E(Rft)]
2, [(
√
RV )t−E(

√
RV )]2

[(p− d)t−E(p− d)]2

[Rft−E(Rft)][Rf,t−1−E(Rft)]


and

ỹ2(t)=


V IX t, [V IX t−E(V IX)]2),

[V IX t−E(V IX)][V IX t−1−E(V IX)]
[V IX t−E(V IX)][V IX t−6−E(V IX)],

[V IX t−E(V IX)][1
3

∑13
n=11 V IX t−n−E(V IX)]

 ,

the first set of moments ỹ1(t) includes the first and second moments of the risk-free rate,
the log price-dividend ratio, and the realized volatility together with the first autocovariance
moment of the risk-free rate, while the second set of ỹ2(t) includes the moments based on the
VIX data including the lag-1, lag-6 and lag-12 autocovariances ( the lag-12 autocovariances
are estimated by averaging the lag-11, lag-12, and lag-13 autocovariances).
To overcome the issue of the shorter periods of options data as compared to other asset

market data, a procedure from Singleton (2006) is adopted to construct an overidentification
vector of MOID(m, ỹt) which includes data from both periods. The estimated moments
minimize the objective function

m̃(ỹdatat ) = arg min
m=[m1,m2]

MOID(m, ỹdatat )′WTMOID(m, ỹdatat ), (22)

17Part of my code is adapted from Fackler and Tastan (2008).
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where MOID(m, ỹdata) = [ 1
T1

∑T1
1 ỹdata1 (t)−m1,

1
T2

∑T1+T2
T1+1 ỹdata1 (t)−m1,

1
T2

∑T2
1 ỹdata2 (t)−m2]

is the overidentification vector. The estimation ofWT follows a standard two-stage process.
Step 2: For a given parameter set θ, the state variable dynamics are discretized and

simulated and the corresponding asset prices such as the short rates and the price dividend
ratios are calculated based on the equilibrium solution at each period. Each simulation
contains a sample size of 20,000 months. In the simulation, the same proportion of the VIX
data is ignored as when estimating the real data.18

Step 3: The overidentification vectorMOID(m̃(ỹt, ŷsimu(θ)) is constructed and the optimal
calibration θ0 is the solution to minimize the criteria function

MOID(m̃(ỹt), ŷsimu(θ))
′ΩTMOID(m̃(ỹt), ŷsimu(θ)). (23)

Here the optimal weighting matrix of ΩT is estimated using a Newey-west estimator and a
Bartlett weighting scheme with a lag length of 10.
Step 4: To compare the quality of fit across different models, I calculate the overidentifi-

cation J-statistics and adjust them based on the fact that the moments are obtained by sim-
ulation instead of analytical solution. The typical adjustment based on the ratio of the simu-
lated data length (20,000 months) to the realized data length (about 720 months) is applied.
Since the simulation length is more than 20 times that of the actual data length, the adjust-
ment is fairly small. For testing on moments that include correlations in realized volatility,
the procedure is the same except that ỹ1(t) now also includes the lag-1, lag-6, and lag-
12 autocovariance moments in realized volatility [

√
RVt − E(

√
RV )][

√
RVt−1 − E(

√
RV )],

[
√
RVt − E(

√
RV )][

√
RVt−6 − E(

√
RV )], and 1

3

∑13
i=11 [
√
RVt − E(

√
RV )][

√
RVt−i − E(

√
RV )].
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Table 1: Summary Statistics

This table presents the summary statistics of the empirical data. All variables are reported
in annualized percentage form whenever appropriate except that RV, VIX2, and VRPHAR
are recorded in units of 1/12 of the annual variance.

Annual: 1951-2010

Mean Std.dev. Skewness Kurtosis AC(1) AC(6) AC(12)

∆c 2.03 1.22 -0.59 3.47 0.38

∆dcash 1.00 6.90 0.42 4.85 0.18

∆dpayout 2.52 12.52 0.18 5.51 0.35

Monthly: 1951m1 to 2010m7

Rf 1.68 2.03 0.06 3.49 0.88

log(P/D) 3.17 0.29 -0.24 2.04 0.98

Rm-Rf 6.70 14.76 -0.40 4.68 0.05

RV∗ 19.78 39.87 11.32 166.21 0.40 0.13 0.08

RVol 13.38 7.64 3.73 29.74 0.63 0.37 0.28

Monthly: 1990m1-2010m7

RV∗1990−2010 29.71 49.36 7.98 87.2 0.55 0.11 0.07

VIX2∗ 39.75 36.47 3.33 18.92 0.82 0.33 0.23

RVol 16.62 8.98 3.01 19.13 0.68 0.33 0.26

VIX 20.35 7.94 1.57 6.87 0.86 0.51 0.39

VRPHAR−RV 13.87 23.70 4.37 35.68 0.38 0.08 0.13

*:unit of 1/12 of the annualized variance
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Table 2: Empirical Predictability of Stock Returns by Variance Risk Premium

This table presents the coeffi cients, t-statistics, and R2s of regression of excess returns on
variance risk premium. Regression methods are VAR and OLS. Variance risk premiums are
estimated based on the difference between VIX2 and the physical expected variance
measured by the HAR-RV method. The monthly data is from 1990.1 to 2007.12 and from
1990.1 to 2010.7 The returns are defined as the mean excess returns with horizons of 1
month, 3 months, 6 months, 9 months and 12 months.

Periods 1990-2007 1990-2010 1990-2007 1990-2010

β̂ t̂ R̂2(%) β̂ t̂ R̂2(%) β̂ t̂ R̂2(%) β̂ t̂ R̂2(%)

VRP measure based on HAR-RV (VAR) VRP measure based on HAR-RV (OLS)

1 month 0.037 1.67 2.3 -0.001 -0.06 0.0 0.037 3.27 2.3 -0.001 -0.05 0.0

3 months 0.064 1.93 2.4 0.005 0.17 0.0 0.107 4.67 6.9 0.021 0.43 0.4

6 months 0.069 1.93 1.5 0.005 0.20 0.0 0.140 4.08 6.1 0.047 0.89 0.9

9 months 0.069 1.92 1.0 0.006 0.20 0.0 0.136 2.38 3.7 0.068 1.44 1.2

12 months 0.069 1.92 0.8 0.006 0.20 0.0 0.114 1.66 1.8 0.070 1.55 0.9
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Table 3: Calibration of the Diffusion-only Long-run Risks Models

This table reports calibration results of diffusion-only LRR models. Panel A reports the
parameters that are preset. Panel B reports the parameters that are systematically
calibrated. The table also reports the overidentification J-statistics describing the overall
model fit. All the parameter units are at monthly frequencies.

Panel A: Preset Parameters

Parameter SV1F SV2F
δ 0.999 0.999
µc 0.0017 0.0017
µd 0.002 0.002
φd 3 3
ρdc 0.4 0.4
ρxf -0.8 -0.8

Panel B: Systematically Calibrated Parameters

Parameter SV1F SV2F
ϕd 6.5 6.5
γ 9.32 7.15
ψ 1.54 1.71
κx 0.003 0.009
ϕe 0.016 0.014

σfw(×104) 32.2 15.28
κfv 0.28 1.40

V̄f (×105) 2.18 -
V̄p(×105) - 0.15
σpw(×104) - 3.04

κpv - 0.064
OID 677.1 515.3
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Table 4: Moment Matches for the SV1F and SV2F LRR Models

This table displays matches in key moments between the SV1F and SV2F models and the
monthly U.S. data. The reported value are medians from 1000 simulations with each
spanning a period of 60 years. In the data column, the numbers in the brackets are the
adjusted averages taking into account the different spanning periods between the stock
data and the VIX data. In the model columns, the numbers in the brackets correspond to
5% and 95% quantiles for the finite sample simulations.

Data SV1F SV2F
E(Rf ) 1.68(1.51) 1.47 1.84

[0.40,2.52] [1.02,2.54]
σ(Rf ) 2.03(1.61) 1.21 0.93

[0.98,1.52] [0.71,1.32]
AC1(Rf ) 0.88(0.95) 0.79 0.90

[0.72,0.86] [0.68,0.90]
E(p-d) 3.17(3.19) 2.85 3.24

[2.54,3.15] [2.99,3.45]
σ(p-d) 0.29(0.27) 0.16 0.22

[0.10,0.27] [0.14,0.34]
E(RVol) 13.38(13.86) 12.72 11.92

[11.79,13.68] [10.58,13.65]
AC(RVol) 0.63 0.70 0.65

[0.64,0.74] [0.58,0.72]
E(VIX) 20.35(18.11) 13.64 12.62

[12.25,15.03] [10.59,15.44]
AC1(VIX) 0.86(0.86) 0.72 0.78

[0.63,0.80] [0.66,0.87]
AC6(VIX) 0.51(0.58) 0.13 0.48

[-0.04,0.34] [0.25,0.67]
AC12(VIX) 0.39(0.48) 0.00 0.27

[-0.16,0.18] [0.01,0.51]
Rm−Rf 0.07 0.07 0.05

[0.05,0.10] [0.03,0.08]
V RP ∗ 13.87(11.01) 1.98 0.81

[-0.51,2.44] [-2.40,3.54]

*: VRP is in the unit of 1/12 of the annualized variance
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Table 5: Calibration of the Jump-Diffusion Long-run Risks Models

This table reports calibration results of jump-diffusion LRR models. Panel A reports
preset parameters; Panel B reports calibrated parameters. The table also reports the
overidentification J-statistics which describe the quality of the overall model fit. OID
reports the J-statistics for the moments included in the calibration; OIDAC1(RV ol) reports
the J-statistics for the same calibrated models, but for different asset moments that also
include the 1-month autocorrelation in the realized volatility in addition to the moments
used for calibration; OIDAC1,6,12(RV ol) reports the J-statistics for the same models and for
the moments that also include the 1-month, 6-month, and 12-month autocorrelations in the
realized volatility. All the parameters are in monthly frequencies.

Panel A: Preset Parameters

Parameter SVJ1F_G SVJ1F_V SVJ2F_G_A SVJ2F_V_A SVJ2F_G_B SVJ2F_G_B

δ 0.999 0.999 0.999 0.999 0.999 0.999

µc 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

µd 0.002 0.002 0.002 0.002 0.002 0.002

φd 3 3 3 3 3 3

ρdc 0.4 0.4 0.4 0.4 0.4 0.4

ρxf -0.8 -0.8 -0.8 -0.8 -0.8 -0.8

lXV 4000 0 4000 0 4000 0

γx 1 1 1 1 1 1

lV 0 500 0 500 0 500

γV 1 1 1 1 1 1

Panel B: Systematically Calibrated Parameters

Parameter SVJ1F_G SVJ1F_V SVJ2F_G_A SVJ2F_V_A SVJ2F_G_B SVJ2F_V_B

ϕd 5 5 8 8 5 5

γ 5.66 5.97 6.31 7.93 5.90 6.27

ψ 1.77 1.76 1.71 1.53 1.68 1.49

κx 0.009 0.010 0.006 0.005 0.017 0.011

ϕe 0.024 0.040 0.031 0.020 0.058 0.052

σfw(×104) 33.21 2.07 20.20 2.90 36.92 2.84

κ
(f)
v 0.23 0.21 0.24 0.31 0.51 0.35

V̄f (×105) 2.63 2.42 - - - -

V̄s(×105) - - 0.87 1.54 1.43 1.36

σsw(×104) - - 1.83 2.91 2.80 2.67

κsv - - 0.017 0.010 0.012 0.012

µx(×104) 3.92 - 4.17 - 8.46 -

µV (×105) - 14.07 - 17.53 - 19.87

OID 102.5 84.1 86.7 81.8 44.6 79.1

OIDAC1(RV ol) 150.5 102.8 110.4 102.4 221.5 83.9

OIDAC1,6,12(RV ol) 209.4 167.7 159.0 109.3 278.4 112.2
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Table 6: Moment Matches of the Jump-Diffusion LRR Models

This table displays matches in key moments between the calibrated jump-diffusion models
and the monthly U.S. data. The reported values are medians from 1000 simulations with
each spanning a period of 60 years. In the data column, the numbers in the brackets are
the adjusted averages taking into account the different spanning periods between the stock
data and the VIX data. In the model columns, the numbers in the brackets correspond to
5% and 95% quantiles for the finite sample simulations.

Panel A: Asset Moments (excluding volatility dynamics)

Data SVJ1F_G SVJ1F_V SVJ2F_G_A SVJ2F_V_A SVJ2F_G_B SVJ2F_V_B

E(Rf ) 1.68(1.51) 1.58 1.68 1.64 2.05 1.82 2.09

[0.63,2.35] [0.86,2.44] [0.83,2.34] [1.18,2.80] [0.95,2.48] [1.21,2.91]

σ(Rf ) 2.03(1.61) 1.14 1.25 1.01 1.05 1.21 1.14

[0.89,1.59] [1.06,1.57] [0.77,1.39] [0.63,1.55] [0.87,1.69] [0.76,1.91]

AC1(Rf ) 0.88(0.95) 0.87 0.87 0.86 0.81 0.89 0.88

[0.81,0.93] [0.82,0.92] [0.80,0.92] [0.74,0.91] [0.81,0.94] [0.79,0.95]

E(p-d) 3.17(3.19) 3.19 3.21 3.16 2.98 3.26 3.24

[2.92,3.42] [2.97,3.43] [2.89,3.40] [2.70,3.22] [3.08,3.37] [3.03,3.42]

σ(p-d) 0.29(0.27) 0.23 0.23 0.22 0.21 0.21 0.22

[0.15,0.38] [0.16,0.34] [0.14,0.37] [0.15,0.34] [0.14,0.31] [0.14,0.34]

E(RVol) 13.38(13.86) 14.09 14.15 12.91 16.25 13.29 13.00

[12.79,15.41] [13.95,14.35] [11.09,14.90] [13.81,19.77] [11.09,16.22] [10.89,15.65]

E(VIX) 20.35(18.11) 17.52 16.90 16.45 19.02 16.89 15.93

[15.58,19.86] [16.72,17.10] [13.32,20.51] [14.81,24.49] [12.88,22.47] [12.04,21.12]

Rm−Rf 0.07 0.06 0.06 0.06 0.06 0.06 0.05

[0.03,0.09] [0.03,0.09] [0.04,0.09] [0.03,0.10] [0.03,0.09] [0.03,0.08]

V RP ∗ 13.87(11.01) 9.03 7.12 8.66 8.14 9.05 7.06

[6.59,13.08] [7.08,7.21] [4.54,16.55] [2.39,17.41] [3.58,20.15] [2.20,16.76]

* VRP is in the unit of 1/12 of the annualized variance
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Table 6: Matches in Moments for the Jump-Diffusion LRR Models: Continued

Panel B: Asset Moments: Volatility Dynamics

Data SVJ1F_G SVJ1F_V SVJ2F_G_A SVJ2F_V_A SVJ2F_G_B SVJ2F_V_B

AC1(VIX) 0.86(0.86) 0.76 0.85 0.78 0.88 0.68 0.88

[0.66,0.84] [0.83,0.86] [0.69,0.86] [0.79,0.96] [0.56,0.80] [0.79,0.98]

AC6(VIX) 0.51(0.58) 0.18 0.42 0.25 0.55 0.25 0.52

[-0.01,0.40] [0.35,0.48] [0.03,0.47] [0.25,0.82] [0.03,0.53] [0.23,0.87]

AC12(VIX) 0.39(0.48) 0.02 0.35 0.10 0.47 0.19 0.43

[-0.16,0.23] [0.18,0.41] [-0.12,0.32] [0.15,0.73] [-0.02,0.47] [0.08,0.77]

AC1(RVol) 0.64 0.48 0.48 0.48 0.64 0.33 0.57

[0.31,0.61] [0.40,0.55] [0.31,0.70] [0.53,0.75] [0.15,0.53] [0.42,0.69]

AC6(RVol) 0.37 0.12 0.22 0.13 0.28 0.14 0.25

[0.04,0.23] [0.17,0.26] [0.04,0.23] [0.18,0.45] [0.03,0.32] [0.15,0.43]

AC12(RVol) 0.28 0.02 0.08 0.02 0.18 0.12 0.19

[-0.06,0.12] [0.05,0.12] [-0.06,0.12] [0.06,0.38] [0.02,0.29] [0.07,0.39]
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Table 10: Comparison of Consumption and Dividend Growth Moments

This table displays moment matches in annual US consumption and dividend growth The
percentiles of the statistics are based on 1000 model simulations with each simulation
spanning a period of 60 years.

data SVJ1F_G SVJ1F_V SVJ2F_G_A SVJ2F_V_A SVJ2F_G_B SVJ2F_V_B

E(∆c) 2.03 2.09 2.05 2.03 2.06 2.06 2.03

[0.52,3.38] [0.57,3.43] [0.80,3.11] [0.87,3.22] [0.74,3.22] [0.77,3.32]

σ(∆c) 1.22 1.88 1.85 1.21 1.35 1.88 1.59

[1.45,2.55] [1.45,2.48] [0.88,1.83] [1.04,1.87] [1.34,2.70] [1.15,2.31]

Skew.(∆c) -0.59 -0.20 -0.02 -0.21 -0.01 -0.22 0.02

[-0.92,0.41] [-0.83,0.73] [-0.96,0.46] [-0.82,0.89] [-1.02,0.56] [-0.70,0.77]

Kurt.(∆c) 3.47 2.99 2.92 2.89 3.14 2.91 2.82

[2.23,4.72] [2.16,5.18] [2.11,4.71] [2.21,6.49] [2.18,4.64] [2.09,4.37]

AC1(∆c) 0.38 0.50 0.55 0.60 0.44 0.66 0.62

[0.25,0.71] [0.30,0.74] [0.31,0.81] [0.17, 0.67] [0.42,0.81] [0.35,0.80]

E(4d) 2.52 2.20 2.14 2.02 1.45 2.25 2.21

[-2.60,6.41] [-2.66,6.68] [-2.11,5.67] [-3.13,5.84] [-1.73,5.94] [-0.02,0.06]

σ(∆d) 12.52 8.05 7.74 7.13 11.68 6.97 6.31

[6.56,10.13] [6.29,9.74] [5.57,9.13] [9.03,15.52] [5.30,9.56] [4.72,8.45]

Skew.(∆d) 0.18 -0.19 -0.08 -0.17 -0.07 -0.15 0.00

[-0.92,0.50] [-1.09,0.85] [-0.96,0.62] [-1.24,0.98] [-0.83,0.58] [-0.70,0.68]

Kurt.(∆d) 5.51 3.21 3.21 3.45 3.53 2.99 2.96

[2.34,5.37] [2.31,7.08] [2.44,5.68] [2.46,8.00] [2.23,4.55] [2.24,4.32]

AC1(∆d) 0.35 0.36 0.40 0.32 0.26 0.51 0.45

[0.14,0.57] [0.16,0.61] [0.10,0.54] [0.03,0.46] [0.27,0.69] [0.20,0.67]
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Table 11: Predictability of Excess Returns, Consumption and Dividends

This table presents the coeffi cients, t-statistics, and R2s imputed from the monthly data
from 1951.1 to 2010.7. Panel A reports regressions of excess returns, consumption growth
rates, dividend growth rates on log price-dividend ratios; Panel B reports regressions of
stock return volatility, consumption volatility, and dividend volatility on lagged log
price-dividend ratios. For excess return predictability, VAR analysis is used to deduce the
t-ratio and R2. R2 is in percentage unit.

Panel A. Regressions of Returns, Consumption and Dividend Growth

excess return (VAR) consumption growth(OLS) dividend growth(OLS)
β̂ t̂ R̂2(%) β̂ t̂ R̂2 β̂ t̂ R̂2(%)

12 months -12.95 -1.99 6.1 0.016 2.03 11.8 0.089 1.22 2.5
36 months -32.75 -1.97 14.3 0.028 1.55 8.3 0.096 0.53 0.9
60 months -46.33 -1.91 18.7 0.028 1.26 5.2 0.066 0.33 0.03

Panel B. Regressions of Volatilities of Stock Returns, Consumption Growth, and Dividend Growth

realized volatility(OLS) consumption volatility(OLS) dividend volatility(OLS)
β̂ t̂ R̂2(%) β̂ t̂ R̂2 β̂ t̂ R̂2(%)

12 months -0.18 -0.65 1.9 -0.27 -1.15 2.3 -0.18 -0.50 0.8
36 months -0.11 -0.44 0.9 -0.33 -1.42 6.8 -0.05 -0.15 0.08
60 months -0.01 -0.03 0.0 -0.26 -1.41 6.3 0.03 -0.10 0.04
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Figure 1: log P/D ratio with and without Stock Repurchase Adjustment

This figure illustrates the log P/D ratio based on cash dividend and adjusted with
repurchase. Since the repurchase data is only available since 1971, the two series are the
same before 1971. The log P/D ratio denotes the log of the ratio between the S&P 500
index and the total dividend (including repurchase) paid over the last 12 months.
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Figure 2: GDP Deflator and Consumption Price Index

This figure illustrates the quarterly GDP deflator and the consumer price index (CPI) from
Q1:1951 to Q2:2010. The data is collected from the BEA
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Figure 3: Empirical and Model-implied Risk-Neutral Expected Variance (VIX2)

This figure illustrates the 1-month risk-neutral expected variance (VIX2) and the
model-implied values of the VIX2.
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