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ABSTRACT 
 

Dynamic Panel Data Models with Irregular Spacing: 
With Applications to Early Childhood Development* 

 
With the increased availability of longitudinal data, dynamic panel data models have become 
commonplace. Moreover, the properties of various estimators of such models are well 
known. However, we show that these estimators breakdown when the data are irregularly 
spaced along the time dimension. Unfortunately, this is an increasingly frequent occurrence 
as many longitudinal surveys are collected at non-uniform intervals and no solution is 
currently available when time-varying covariates are included in the model. In this paper, we 
propose several new estimators for dynamic panel data models when data are irregularly 
spaced and compare their finite sample performance to the naïve application of existing 
estimators. We illustrate the practical importance of this issue by turning to two applications 
on early childhood development. 
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1 Introduction

Dynamic panel data (DPD) models were �rst analyzed in Balestra and Nerlove (1966) and have since become

commonplace in economics. Since then, much progress has been made in terms of understanding the properties

of a variety estimators of this model, as well as extending this model along numerous dimensions. However, a

relatively overlooked issue, and one that is becoming more prominent with the increased availability of longitudinal

surveys, pertains to panel data designs with irregular spacing. For example, an often used data set, the Early

Childhood Longitudinal Survey-Kindergarten Cohort (ECLS-K), is a survey of roughly 20,000 children who entered

kindergarten in the United States in Fall 1998. Information is collected on this sample over seven waves: Fall and

Spring Kindergarten, Fall and Spring First Grade, Spring Third Grade, Spring Fifth Grade, and Spring Eighth

Grade. Thus, the �rst four waves are spaced roughly six months apart, waves four, �ve, and six are spaced two years

apart, and waves six and seven are spaced three years apart. Other examples from developed countries are provided

in Table 1.1 As we demonstrate below, irregularly spaced data generates a host of di¢ culties for the estimation of

DPD models that researchers cannot ignore.

Before continuing, however, two important statements must be made. First, a formal de�nition of irregular

spacing is required in order to �x ideas. For purposes of this paper, we use the term irregular spacing to characterize

longitudinal surveys with successive waves that do not conform to successive periods as de�ned by the underlying

data-generating process (DGP). In time series, the distance between successive waves is referred to as the observation

interval, whereas the unit period denotes the reference unit of time for the underlying process (Fuleky 2011). In

discrete time models in time series, it is commonplace to set the unit period equal to the observation interval (Hamilton

1994). However, this assumption is di¢ cult to rationalize in cases such as the ECLS-K where the observation interval

varies substantially.

Second, longitudinal data collected at uniform intervals but with gaps are irregularly spaced according to our

de�nition if the underlying DGP does not have such gaps; i.e., the unit period is smaller than the observation interval.

For example, if the true DGP is based on periods representing a year but the data are only collected biennially, then

the data are irregularly spaced. Less obvious, if the data are collected annually, the data are also irregularly spaced

if the unit period according to the DGP is, say, a week. For instance, using annual longitudinal data to estimate a

DPD model for labor supply may not be irregularly spaced if labor supply is measured using annual hours of work.

However, if labor supply is measured using hours worked in the past week, then the �true�length of a period may be

one week, in which case the data are irregularly spaced under our de�nition.

Thus, irregular spacing in our context is used to denote longitudinal data where the observation interval does not

equal the unit period over the entire sample.2 As a result, a missing data problem is introduced, where the pattern

of missing data is dictated by the survey design and is not observation-speci�c. In other words, if data are missing

for a particular time period, they are missing for the entire sample and for all variables. This di¤ers from most of

1McKenzie (2001) provides a similar list of longitudinal surveys from developing countries.
2 If the DGP is speci�ed in continuous time, then all data (with possible exception of real-time �nancial data) are irregularly spaced.

Robinson (2009) provides a brief survey of this issue in the context of time series models. While worthy of future research in a panel

context, throughout this paper we assume that the DGP is a discrete time process.
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the literature on missing data where the focus is on observation-speci�c missing data in certain waves (e.g., Griliches

et al. 1978; Little and Rubin 2002; Baltagi and Song 2006). While related, we do not consider this issue here.

In this paper, we have several goals. First, we formally discuss the pitfalls to commonly employed DPD estimators

if the data are irregularly spaced. Second, we present several new estimators designed to address the spacing issue.

Third, we assess the �nite sample performance of our new estimators in a Monte Carlo study. Finally, we illustrate the

practical importance of addressing the spacing issue when estimating dynamic models of early childhood development

using data from the ECLS-K.

As noted above, the existing literature on DPD models with irregularly spaced data is very limited. Rosner and

Munoz (1988) address the issue in the context of a DPD model with no time invariant, unobserved heterogeneity

(i.e., a dynamic Pooled Ordinary Least Squares (POLS) model). The solution proposed is a Pooled Nonlinear Least

Squares (NLS) estimator. Jones and Boadi-Boateng (1991) derive an exact maximum likelihood estimator using

the Kalman �lter to estimate a static, random coe¢ cients panel data model with serially correlated errors and

unequal spacing. To address the serial correlation, the authors assume the errors have a continuous-time �rst-order

autoregressive, AR(1), structure. Alternatively, Baltagi and Wu (1999) present a feasible Generalized Least Squares

(GLS) estimator for a static panel data model with AR(1) errors and irregularly spaced data. Finally, in the paper

most similar to ours, McKenzie (2001) analyzes the issue of irregular spacing in the context of dynamic pseudo-panel

models. The author shows that consistent estimation is feasible as the number of observations per cohort goes to

in�nity. However, while covariates other than the lagged dependent variable are allowed in the model, the estimation

strategy requires that these covariates be observed in the missing periods as well. This limits the researcher to only

time-invariant covariates or time-varying covariates that are obtained from outside data sources not subject to the

irregular spacing.

The issue of irregular spacing has received more attention in the time series literature. In one strand, Savin and

White (1978), Jones (1980, 1985, 1986), Dunsmuir and Robinson (1981), Harvey and Pierse (1984), Palm and Nijman

(1984), Dufour and Dagenais (1985), Robinson (1985), Kohn and Ansley (1986), and Shively (1993) confront the

problem of irregularly spaced data in the context of an ARMA(p; q), ARIMA(p; d; q), and ARMAX(p; q; r) models.

The solutions generally center on using a state-space representation along with the Kalman �lter to derive the exact

likelihood function. In another strand, Ryan and Giles (1998), building on Shin and Sarkar (1994a,b), are interested

in testing for the presence of unit roots with missing data. The authors assess the performance of various solutions

relying on imputation of the missing data. Finally, the problem of missing data due to utilizing data collected at

di¤erent frequencies (so-called mixed frequency data) has received much attention; Foroni and Marcellino (2013)

provide an excellent survey. Chiu et al. (2012), for example, are interested in estimating a multivariate Vector

Autoregression (VAR) with mixed frequency data; for example, a bivariate VAR where one variable is available at

monthly intervals and one at quarterly intervals. The authors address the issue in a Bayesian framework using data

augmentation to simulate the missing data for the variable observed at the lower frequency.

In light of this background, our paper is the �rst to our knowledge to explicitly address the issue of irregular

spacing in a standard (i.e., non-pseudo) DPD model with unobserved e¤ects and individual, time-varying covariates.

We obtain several striking �ndings. First, all commonly used DPD estimators are inconsistent in the presence of
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irregularly spaced data. This arises for three reasons: (i) typical transformations no longer eliminate the time invari-

ant, observation-speci�c unobserved e¤ect as this e¤ect has a time-varying factor structure akin to that considered

in the interactive �xed e¤ects literature, (ii) the coe¢ cient on the lagged dependent variable depends on the gap

structure, and (iii) covariates (and idiosyncratic errors) from the missing time periods are relegated to the error

term. Moreover, this inconsistency matters in practice; the �nite sample performance of the commonly used DPD

estimators can be extremely poor.

Second, if the covariates are strictly exogenous and serially uncorrelated, several consistent estimators are avail-

able. In �nite samples, we obtain superior performance by our new estimators: a quasi-di¤erenced GMM estimator

and an extended, nonlinear version of an estimator recently proposed in Everaert (2012). Third, in the presence of

serially correlated covariates, no single estimator dominates. However, we �nd consistently good performance by our

quasi-di¤erenced GMM estimator as well as our extended, nonlinear version of Everaert�s (2012) estimator combined

with the assumption that the covariates follow an AR(1) process. Finally, our empirical application indicates that

ignoring irregular spacing in the ECLS-K when estimating dynamic models for early childhood development �as

measured by student achievement and health measures �alters conclusions regarding the degree of state dependence

in human capital formation and the e¢ cacy of various human capital inputs. These conclusions, in combination with

the fact that even uniformly spaced longitudinal data may be irregularly spaced, should prompt applied researchers

to think much more carefully than is currently the norm about what constitutes the �true�length of a period in the

underlying DGP before estimating dynamic models.

The remainder of the paper is organized as follows. Section 2 presents the DPD model along with the various

estimators considered. Section 3 describes the Monte Carlo Study. Section 4 contains the applications to early

childhood development. Finally, Section 5 concludes.

2 Model

2.1 Setup

The DGP in the standard DPD framework is given by

yit = 
yit�1 + xit� + �i + "it, i = 1; :::; N ; t = 1; :::; T; (1)

where yit is the outcome for observation i in period t, 
 is the autoregressive parameter (j
j < 1), x is a 1 � K

vector of covariates with associated parameter vector �, �i is the observation-speci�c unobserved e¤ect, and "it is

the idiosyncratic, mean zero error term. Implicit in this speci�cation is that yi0 is the initial condition. Throughout

the paper, we focus on the case where 
 6= 0.

Given a random sample, fyit; xitgi=1;::;N ;t=1;:::;T , along with data on the initial condition, (1) may be estimated

using a number of techniques depending on the nature of the dependence between x and the error components, �

and ". Even if x is independent of both error components (conditional on yit�1), pooled OLS (POLS), �xed e¤ects

(FE), and �rst-di¤erenced (FD) estimation of (1) are biased and inconsistent for �xed T (Nickell 1981). However,

instrumental variable (IV) estimation of (1) is consistent as xit�1 represents a valid exclusion restriction. In fact,
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further lags �xit�2, xit�3, ... �may also be incorporated in a Generalized Method of Moments (GMM) framework.

If x is dependent on �, then the preceding estimation strategy is no longer valid. Absent external instruments for

yit�1 and x, another strategy is needed. The typical approach based on Anderson and Hsiao (1981) is to eliminate

� via FD and estimate the model using IV. Speci�cally, given the model

�yit = 
�yit�1 +�xit� +�"it, i = 1; :::; N ; t = 2; :::; T; (2)

where � represents the di¤erence operator, xit�2 represents a valid exclusion restriction. Again, additional moment

conditions may be incorporated in a GMM framework (Arellano and Bond 1991; Arellano and Bover 1995; Blundell

and Bond 1998).3 Other proposed solutions utilize long-di¤erences (LD) combined with IV (Hahn et al. 2007),

deviations from backward means combined with a Hausman and Taylor (1981) IV approach (Everaert 2012), or a

bias-corrected least squares dummy variable (LSDV) approach (Kiviet 1995; Hahn and Kuersteiner 2002; Bun and

Carree 2005).

Unfortunately, when the observed data are irregularly spaced, FE or FD transformations no longer succeed in

eliminating the unobserved e¤ect.4 To proceed, begin by noting the following result obtained trivially from repeated

substitution in (1)

yit = 
syit�s +
s�1X
j=0

xit�j

j� +

s�1X
j=0


j�i +
s�1X
j=0


j"it�j , i = 1; :::; N ; t = 1; :::; T (3)

= 
syit�s +
s�1X
j=0

xit�j

j� +

�
1� 
gm
1� 


�
�i +

s�1X
j=0


j"it�j , (4)

for all s � 1. Let m = 0; 1; 2; :::;M index the M + 1 periods of data observed in the sample, where M < T . Note,

the same periods are assumed to be observed for all observations, i. For example, Figure 1 illustrates the case where

the DGP de�ned by (1) applies to periods t = 1; :::; 8 (with period 0 representing the initial period). However, the

sample only includes data from periods t = 0; 1; 4; 5; 8. Thus, in this example, M = 4 while T = 8.

Figure 1. Illustration of Irregularly Spaced Panel Data

Given the DGP in (1), the result in (3), and irregularly-spaced observed data, the model de�ned over the observed

3Hereafter, we refer to the Anderson and Hsaio (1981) estimator as AH, the Arellano and Bond (1991) GMM estimator as AB, and

the Blundell and Bond (1998) system GMM estimator as BB.
4 In general, LD will also not succeed in removing the unobserved e¤ect unless the data are regularly spaced at the beginning and end

periods of the sample.
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periods is given by

yim = 
gmyim�1 +

gm�1X
j=0

xi;t(m)�j

j� +

�
1� 
gm
1� 


�
�i

+

gm�1X
j=0


j"i;t(m)�j , i = 1; :::; N ; m = 1; :::;M (5)

= 
gmyim�1 + xim� +

24gm�1X
j=1

xi;t(m)�j

j� +

�
1� 
gm
1� 


�
�i +

gm�1X
j=0


j"i;t(m)�j

35
where gm, m = 1; :::;M , is the gap size or the number of periods between observed periods m and m � 1, t(m) is

the actual period re�ected by observed period m, and the term in brackets contains all unobserved determinants of

yim.5

Several observations based on (5) are noteworthy. First, if gm = 1 for all m, then the data are regularly spaced

and (5) simpli�es to (1). Second, the coe¢ cient on the lagged dependent variable is not constant, but rather depends

on the number of true periods spanned by the observed time periods. Third, the error term in brackets contains the

covariates, x, and the idiosyncratic errors, ", from the missing periods in between periods m� 1 and m, in addition

to the contemporaneous error. Fourth, the unobserved e¤ect, �, is now scaled by a period-speci�c factor loading that

depends on the autoregressive parameter and the gap size between periods m and m � 1. As a result, this model

is closely related to recent work on interactive �xed e¤ects models (Ahn et al. 2001; Nauges and Thomas 2003;

Pesaran 2006; Bai 2009; Lee et al. 2012).6 On the one hand, the model in (5) is simpler than those considered in

the interactive �xed e¤ects literature in that the period-speci�c factor loading on �i is �xed with a known functional

form. On the other hand, this prior literature does not confront the issue of unobserved x�s from missing periods in

the error term. Finally, if gm = g > 1 for all m, where g is any �nite constant, then the data are equally-spaced but

with gaps. In this case, FE, FD, and LD will eliminate �. However, complications still arise in that the coe¢ cient

on yim�1 is now 
g and x�s from the missing periods are in the transformed error term.

2.2 Estimation

To evaluate the behavior of various estimators of (5), re-write the model more compactly as

yim = 

gmyim�1 + xim� + �m�i + e"im, i = 1; :::; N ; m = 1; :::;M; (6)

where

�m �
�
1� 
gm
1� 


�
; e"im � gm�1X

j=1

xi;t(m)�j

j� +

gm�1X
j=0


j"i;t(m)�j :

As noted above, this resembles the model considered in the recent literature on interactive �xed e¤ects models except

that �m is �xed with a known structure and e" has a more complex structure. In the remainder of this section, we
begin by �rst assessing the performance of existing estimators applied to (6). We then move on to discuss our new

estimators.
5For example, in Figure 1 t(0) = 0, t(1) = 2, t(2) = 4, t(3) = 5, and t(4) = 8. Moreover, gm = t(m)� t(m� 1).
6The model is also related to prior work on time-varying ine¢ ciency in panel data stochastic frontier models (e.g., Cornwell et al.

1990).
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Pooled OLS The POLS estimator, ignoring the unequal spacing issues, entails applying OLS to the estimating

equation

yim = 
0yim�1 + xim� +
ee"im, i = 1; :::; N ; m = 1; :::;M; (7)

where ee"im = (
gm � 
0)yim�1 + gm�1X
j=1

xi;t(m)�j

j� + �m�i +

gm�1X
j=0


j"i;t(m)�j :

This case is worth noting for three reasons. First, even if �i = � for all i and "it is serially uncorrelated, yim�1 will

not be independent of the error term in (7) due to (
gm � 
0)yim�1. This dependence may also arise if x is not

strictly exogenous (in the sense that E[xit"is] = 0 8s; t); speci�cally, if x is correlated with lagged shocks, then x

from the unobserved periods occurring between periods m� 1 and m will be correlated with yim�1 through "im�1.

Second, even if 
0 is consistently estimated, it lacks any structural interpretation as it represents a weighted average

of various polynomials of 
. Third, the estimates of � will be biased and inconsistent, even if x is uncorrelated with

� and strictly exogenous, if x is serially correlated (due to the inclusion of x from the unobserved periods occurring

between periods m� 1 and m in ee"im).
Nonlinear Least Squares (NLS) POLS ignores the fact that the coe¢ cient on the lagged dependent variable

varies across periods depending on the gap size. Because one knows the structure of this coe¢ cient, we can instead

estimate the model

yim = 

gmyim�1 + xim� + ee"im, i = 1; :::; N ; m = 1; :::;M; (8)

where now ee"im = gm�1X
j=1

xi;t(m)�j

j� + �m�i +

gm�1X
j=0


j"i;t(m)�j ;

using NLS. NLS is consistent for 
 and � if �i = � for all i, x is strictly exogenous and not serially correlated, and "it

is serially uncorrelated. This is the case considered in Rosner and Munoz (1988). If an unobserved e¤ect is present

in the model (or "it is serially correlated), then a NLS-IV procedure may be possible. Speci�cally, xim�1 is a valid

IV if x is uncorrelated with �, predetermined (in the sense that E[xit"is] = 0 8s � t), and serially uncorrelated.

Thus, the inclusion of x from the missing periods in the composite error severely limits the ability of lagged x to

serve as a valid exclusion restriction. However, consistent estimates of � require strict exogeneity (in the sense that

E[xit"is] = 0 8s; t). If x is predetermined as opposed to strictly exogenous, xim will be correlated with ee"im due

to the inclusion of the idiosyncratic error from the periods between m � 1 and m. As such, estimates of � will be

inconsistent even if 
 is consistently estimated. We refer to this as the NLS-IV estimator.7

An alternative NLS approach entails following the Mundlak (1978) correlated random e¤ects (CRE) approach.

Assuming

E[�ijxi] = xi�; (9)

we can write �i = xi� + �i. Then, (8) becomes

yim = 

gmyim�1 + xim� + xi

�
1� 
gm
1� 


�
� + [�i + e"im]. (10)

7We apologize to the reader now for the number of acronyms used in the paper for the various estimators!
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IV is still required for consistent estimation of (10), however, since yim�1 is correlated with the random e¤ect, �i. In

this case, xim�1 is a valid IV if x is strictly exogenous and serially uncorrelated; � can also be consistently estimated

under these conditions. Note, strict exogeneity is required for a consistent estimate of 
 as otherwise Cov(xi;e"im) 6= 0
and Cov(xim�1; xi) 6= 0. We refer to this as the NLS-CRE-IV estimator.

First-Di¤erencing If the unobserved e¤ect, �, appears in the DGP in (1), an alternative to the Mundlak (1978)

approach is to transform the model to eliminate � from the estimating equation. However, with irregularly spaced

data, the usual transformations no longer succeed in this regard. Consider FD, as utilized in the Anderson and Hsiao

(1981), Arellano and Bond (1991), and Blundell and Bond (1998) approaches. First-di¤erencing the model in (6)

yields

yim � yim�1 = 
gmyim�1 � 
gm�1yim�2 + (xim � xim�1)� + �i(�m � �m�1)

+ e"im � e"im�1, i = 1; :::; N ; m = 2; :::;M (11)

�yim = 
gmyim�1 � 
gm�1yim�2 +�xim� + �i��m +�e"im,
where � represents the di¤erence between consecutive, observed periods (indexed by m) and ��m = (
gm�1 �


gm)=(1� 
).

Several comments are in order. First, ignoring the irregular spacing issue entails estimating

�yim = 
0�yim�1 +�xim� + [�i��m + 

gmyim�1 � 
gm�1yim�2 � 
0�yim�1 +�e"im] (12)

by POLS. Not only does 
0 lack any structural interpretation, but �yim�1 is not independent of the composite error.

Moreover, because the error term includes yim�1 and yim�2, any proposed IV for �yim�1 will also be correlated

with the error term. Second, because FD does not eliminate the unobserved e¤ect from (11), NLS estimation of (11)

will also be inconsistent unless �i = � for all i. However, an NLS-IV procedure utilizing xim�1 as an IV for yim�1

provides consistent estimates if x is independent of �, strictly exogenous, and serially uncorrelated.8 We refer to this

as the FD-NLS-IV estimator. Third, a Mundlak (1978) correlated random e¤ects approach is feasible under di¤erent

restrictions. Speci�cally,

�yim = 

gmyim�1 � 
gm�1yim�2 +�xim� + xi

�

gm�1 � 
gm

1� 


�
� + [�i +�e"im] (13)

is estimable via NLS-IV using xim�1 as an IV for yim�1 provided x is strictly exogenous and serially uncorrelated.

We refer to this estimator as FD-NLS-CRE-IV. However, because FD does not eliminate the unobserved e¤ect, there

would seem to be little gain, relative to the prior NLS estimators, to justify the loss in e¢ ciency.

Long-Di¤erencing Hahn et al. (2007) propose the use of long-di¤erencing to eliminate the unobserved e¤ect, �.

As with FD, this transformation no longer succeeds in this regard with irregularly spaced data. Long-di¤erencing

the model in (6) yields

yiM � yi1 = 
gM yiM�1 � 
g1yi0 + (xiM � xi1)� + �i(�M � �1) + e"iM � e"i1, i = 1; :::; N

8Note, yim�2 is exogenous if x and " are serially uncorrelated.
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where �M � �1 = (
g1 � 
gM )=(1 � 
). Thus, the unobserved e¤ect is not eliminated unless g1 = gM . Absent this

case, there does not appear to be any advantage of the LD approach over the FD approach in this context. Thus,

we do not consider LD estimators beyond this point.

Fixed E¤ects The FE transformation attempts to eliminate � by mean-di¤erencing. Mean-di¤erencing the model

in (6) yields

yim � yi = 
gmyim�1 �
1

M

MX
j=1


gjyij�1 + (xim � xi)� + �i(�m � �m)

+ e"im � e"i, i = 1; :::; N ; m = 1; :::;M (14)

::
yim = 
gmyim�1 � ci +

::
xim� + �i

::

�m +
::e"im,

where
::� denotes deviations from the observation-speci�c mean computed over the observed sample, ci denotes the

observation-speci�c, weighted average of y computed over the observed periods m = 0; :::;M � 1, and

::

�m = �
1

1� 


0@M
gm � MX
j=1


gj

1A : (15)

Again, several comments are in order. First, as in the FD case, the FE transformation fails to eliminate the

unobserved e¤ect. Conventional FE estimation ignoring the irregular spacing would lead one to estimate the mis-

speci�ed model given by

::
yim = 
0

::
yim�1 +

::
xim� +

24(
gm � 
0)yim�1 + 1

M

MX
j=1

(
0 � 
j)yij�1 + �i
::

�m +
::e"im
35 : (16)

As with FD, FE estimation of this model is inconsistent, no valid IV procedure is available, and 
0 does not have

a structural interpretation. Second, NLS estimation of (14) confronts two di¢ culties: the presence of � in the

composite error and the term c. If c is not controlled for explicitly, the model becomes

::
yim = 


gm

�
M � 1
M

�
yim�1 +

::
xim� +

24�i::�m � 1

M

MX
j=1;j 6=m


gjyij�1 +
::e"im
35 : (17)

Here, yim�1 is endogenous due to the presence of the unobserved e¤ect as well as the correlation with y in other

periods through the dynamic process. Moreover, valid IVs are likely not possible since any variable correlated with

yim�1 is likely to be correlated with y in other periods due to the autoregressive nature of y.

On the other hand, incorporating the elements of c as additional covariates creates a non-traditional model akin

to Chamberlain�s �xed e¤ects model (Chamberlain 1984). Speci�cally, the model becomes

::
yim =

MX
j=1


mjyij�1 +
::
xim� +

h
�i
::

�m +
::e"imi , (18)

where


mj =

8<: 
gm
�
M�1
M

�
if m = j

�
gm
�
1
M

�
if m 6= j

(19)
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Thus, estimation of (18) must account not only for the endogeneity of fyij�1gMj=1, but also the period-speci�c coe¢ -

cients on these covariates. However, if x is independent of �, strictly exogenous, and serially uncorrelated,fxij�1gMj=1
are valid IVs for fyij�1gMj=1.

Finally, note that one could eliminate ci entirely by �rst-di¤erencing (14). Interestingly, doing so yields

�
::
yim = 
gmyim�1 � 
gm�1yim�2 +�

::
xim� + �i�

::

�m +
::e"im (20)

) �yim = 
gmyim�1 � 
gm�1yim�2 +�xim� + �i��m + e"im;
which is identical to the FD model in (11). Thus, we do not consider FE-type estimators beyond this point.

Quasi-Di¤erencing (QD) While FD, LD, and FE do not eliminate the unobserved e¤ect, a QD approach does.

To see this, we set up the following quasi-di¤erenced equation

yim � 'myim�1 = 
gmyim�1 � 'm
gm�1yim�2 + (xim � 'mxim�1)� (21)

+ �i(�m � 'm�m�1) + e"im � 'me"im�1, i = 1; :::; N ; m = 2; :::;M .

De�ning

'm �
�m
�m�1

=
1� 
gm
1� 
gm�1

(22)

implies that (21) simpli�es to

yim � 'myim�1 = 
gmyim�1 � 'm
gm�1yim�2 + (xim � 'mxim�1)� + ee"im; (23)

where

ee"im = e"im � 'me"im�1 (24)

=

24gm�1X
j=1

xi;t(m)�j

j � 'm

gm�1�1X
j=1

xi;t(m�1)�j

j

35� + gm�1X
j=0


j"i;t(m)�j � 'm
gm�1�1X
j=0


j"i;t(m�1)�j

Referring to the example in Figure 1, the values of 'm are shown in Table 2.

If 'm were known, (23) is estimable by NLS-IV. Speci�cally, xim�1 is a valid IV for yim�1 if x is strictly exogenous

and x is serially uncorrelated.9 However, as 
 is unknown, our �rst set of newly proposed estimators include three

feasible approaches to quasi-di¤erencing.

First, one may apply a Union of Con�dence Intervals (UCI) approach.10 This approach entails estimating (23)

over a set of possible values for 
 (and hence 'm), testing whether the estimated value of b
(
0) = 
0, where b
(
0)
represents the estimated value of 
 obtained when the QD is performed assuming 
 = 
0, and forming a con�dence

interval for 
 as the union of the con�dence intervals over b
(
p), where 
p denotes all the values where b
(
p) = 
p
cannot be rejected. If the union of (1��)% con�dence intervals are used, then the UCI approach will have a coverage

rate of at least (1 � �), where 1 � � denotes the signi�cance level if the model is otherwise correctly speci�ed. For

xm�1 to be a valid IV for yim�1 in (23), this requires x to be strictly exogenous and serially uncorrelated. Correct

coverage for � requires x to be strictly exogenous. We refer to this as the QD-UCI approach.
9Note, yim�2 is exogenous if x and " are serially uncorrelated.
10For another application of a UCI approach, see Conley et al. (2012).
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An alternative approach follows the logic in Lee et al. (2012), who build on quantile regression estimators

developed in Chernozhukov and Hansen (2006, 2008). To proceed, re-write (23) as

yim �
�
1� 
gm+gm�1

1� 
gm�1

�
yim�1 +

�

gm�1 � 
gm+gm�1

1� 
gm�1

�
yim�2 (25)

=

�
xim �

�
1� 
gm
1� 
gm�1

�
xim�1

�
� + ee"im:

Given a vector of IVs for yim�1, say zim, and a speci�ed value of 
, we can obtain estimates of �(
) and �(
) using

POLS applied to

yim �
�
1� 
gm+gm�1

1� 
gm�1

�
yim�1 +

�

gm�1 � 
gm+gm�1

1� 
gm�1

�
yim�2 (26)

= zim� +

�
xim �

�
1� 
gm
1� 
gm�1

�
xim�1

�
� + ee"im:

Since the IVs do not belong in (26) when 
 is set equal to its true value and the original DGP in (1) is correctly

speci�ed, 
 may be estimated by minimizing the length of b�(
) as
b
 = argmin



b�(
)0Wb�(
); (27)

where W is some positive de�nite weighting matrix. Taking zim = xim�1, b
 and b�(b
) are consistent if x is strictly
exogenous and serially uncorrelated. Alternatively, zim may be replaced by the �tted values from the �rst-stages for

yim�1. Following Lee et al. (2012), we refer to this as the QD-LS-MD approach where MD refers to the distance

minimization that takes place in the second step, given in (27).

Our �nal approach follows from the GMM estimator proposed in Nauges and Thomas (2003). The set of moment

conditions considered is given by

E[wimee"im] = 0; (28)

where wim = fxim, xim�1, yim�2g. GMM is consistent if x is strictly exogenous and serially uncorrelated. Here, the

fact that 'm is a function of 
 is incorporated into the moment conditions and (implicitly) estimated. We refer to

this estimator as QD-GMM.

Orthogonal to Backward Mean Transformation Recently, Everaert (2012) proposed an alternative technique

for estimating DPD models. The approach does not entail transforming the model to eliminate the unobserved e¤ect;

rather, the model in levels is estimated via IV. With regularly spaced data, the model is given by (1), repeated here

for convenience:

yit = 
yit�1 + xit� + �i + "it, i = 1; :::; N ; t = 1; :::; T:

The proposed instrument for yit�1 is the OLS residual of yit�1 regressed on its backward mean, ybit�1, de�ned as

ybit�1 �
1

t

t�1X
s=0

yis: (29)

If xit is independent of �i and "it, then this estimator is consistent as T ! 1, but not as N ! 1 for �xed T .

However, the inconsistency for �xed T is shown to be relatively small in practice.
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If x is correlated with the unobserved e¤ect, then Everaert (2012) suggests using Hausman and Taylor (1981) type

instruments for x; namely, deviations from individual sample means,
::
x. A Mundlak approach (1978) approach in

combination with use of the residual from the backward mean regression as an instrument for yit�1 is also consistent

as T !1.

With irregularly spaced data, the model is given in (6), again repeated for convenience:

yim = 

gmyim�1 + xim� + �m�i + e"im, i = 1; :::; N ; m = 1; :::;M;

where

�m �
�
1� 
gm
1� 


�
; e"im � gm�1X

j=1

xi;t(m)�j

j� +

gm�1X
j=0


j"i;t(m)�j :

Our second set of newly proposed estimators are based on nonlinear versions of Everaert�s (2012) approach. The �rst

such estimator, denoted E-NLS-IV, is consistent as T !1 if x is strictly exogenous and serially uncorrelated. This

estimator utilizes the IVs suggested in Everaert (2012) in an NLS framework to address the time-varying coe¢ cient

on the lagged dependent variable.

A Mundlak (1978) version is also feasible. The NLS-IV estimator applied to the following estimating equation

yim = 

gmyim�1 + xim� + xi

�
1� 
gm
1� 


�
� + [�i + e"im];

using orthogonal deviations from its backward mean as an instrument for yim�1 is referred to as E-NLS-CRE-IV.

This estimator also requires that T !1 and x be strictly exogenous and serially uncorrelated. We develop further

variants of the nonlinear Everaert (2012) approach in the next section.

2.3 Extension

The requirements for consistent estimation of the structural parameters, 
 and �, in (1) are summarized in Table

3. As should be clear, perhaps the most salient issue created by unequally spaced panel data is the relegation of

the covariates from the missing periods into the error term. This implies that serial correlation in x causes all the

estimators considered thus far to be inconsistent due to the endogeneity of x and the inability to obtain suitable IVs

for the lagged dependent variable.11 Since serial correlation in x is likely to be present, this is problematic.

As an alternative, we �rst consider an extension to the prior estimators where we impute x from the missing

periods and incorporate the imputed values into the estimating equation.12 This is analogous to the strategy pursued

in Ryan and Giles (1998) who analyze the problem of testing for unit roots with irregularly spaced time series. In

their context, they consider imputing data for the missing periods using two strategies: linear interpolation and

carrying the last value forward.13

11Note, while the focus here has been on obtaining valid IVs using lagged x, even futher lags of y will not yield a valid IV procedure

when x is serially correlated. This arises since further lags of y will be also be correlated with the missing values of x since y depends on

x.
12We do not consider imputing missing data on y since this is the variable we are trying to model.
13Ryan and Giles (1998) also consider the implications of ignoring the issue by collapsing the data. This corresponds to our naïve

estimators discussed above where the irregular spacing is ignored.
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In our case, the relevant term we are trying to approximate is

gm�1X
j=1

xi;t(m)�j

j�; (30)

which is part of the composite error in (6). While one could impute distinct values for xi;t(m)�j , j = 1; :::; gm � 1,

this creates a di¢ culty in that yim is now a function of gm � 1 lags of x, with gm varying with m in the case of

unequal spacing. Thus, the number of covariates di¤ers across observations. To circumvent this issue, we impute a

single value of x for all x missing between periods m and m� 1. Let xoim denote this value. We can write

gm�1X
j=1

xi;t(m)�j

j� � xoim

�

 � 
gm
1� 


�
�:

The equation of interest in (6) becomes

yim = 

gmyim�1 + xim� +Dimx

o
im

�

 � 
gm
1� 


�
� + �m�i +

gm�1X
j=0


j"i;t(m)�j , (31)

where Dim = I(gm > 1) and I(�) is the indicator function.

Estimation of (31) has its own di¢ culties. If xoim is taken as the last observed value, xim�1, or as a linear function

of xim and xim�1, then this precludes xim�1 from being a valid instrument in the IV procedures discussed above.

Given M su¢ ciently large, this may not be overly problematic as further lags of x may be used as instruments.

However, the problem of weak instruments may arise. To avoid this concern, we only focus on two estimators,

E-NLS-IV and E-NLS-CRE-IV, when replacing xo with either the last observed value or the average of the current

and last observed values. Denote these estimators as E-NLS-IV-L and E-NLS-CRE-IV-L and E-NLS-IV-A and

E-NLS-CRE-IV-A, respectively.

Alternatively, we can take xoim as the current observed value, xim. In this case, (31) becomes

yim = 

gmyim�1 + (1�Dim)xim� +Dimxim�

�
1� 
gm
1� 


�
+ �m�i +

gm�1X
j=0


j"i;t(m)�j . (32)

Utilizing the Everaert (2012) approach, we denote these estimators of (32) as E-NLS-IV-C and E-NLS-CRE-IV-C.

As a second alternative, we consider explicitly modeling the autoregressive process of x.14 Suppose that each

covariate follows an AR(1) process

xit = xit�1 � diag[�1; :::; �K ] + uit; (33)

where xit, xit�1, and uit are 1�K vectors and diag[A1; :::; AK ] is a K�K diagonal matrix with elements A1; :::; AK

along the diagonal. Repeated substitution of (33) into (30) yields

yim = 
gmyim�1 + xim� + �m�i (34)

+Dimxim�1 � diag

24gm�1X
j=1

�gm�j1 
j ; :::;

gm�1X
j=1

�gm�jK 
j

35� � + _
"im, i = 1; :::; N ; m = 1; :::;M;

14Although not in a Bayesian context, this approach is similar to Chiu et al. (2012) who use data augmentation to simulate missing

data in a VAR model with mixed frequency data.
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where
_
"im �

gm�1X
j=1

ui;t(m)�j

 
jX
l=1

�l�1
j+1�l�

!
+

gm�1X
j=0


j"i;t(m)�j :

Assuming x is strictly exogenous with respect to both u and ", and (1) and (33) are correctly speci�ed, then E-

NLS-IV or E-NLS-CRE-IV applied to (34) is consistent as T !1 and also yields estimates of �k, k = 1; :::;K. We

denote these estimators as E-NLS-IV-AR1 and E-NLS-CRE-IV-AR1. We ignore other possible estimators of (34) as

these would require use of instruments further back in time than m � 1 introducing potential problems associated

with weak identi�cation.

3 Monte Carlo Study

3.1 Design of the Data Generating Process

To compare the �nite sample performance of the various estimators discussed above, we utilize the basic Monte Carlo

design in Everaert (2012). The general structure for the DGP, with a single covariate, is as follows:

yit = 
yit�1 + �xit + �i + "it, i = 1; :::; N ; t = 1; :::; T

yi0 = �0 + �1

�
�i + ���i(1� �)�1

1� 


�
+ �i0,

�i0
iid� N

�
0; �2�0

�
�i

iid� N
�
0; �2�

�
xit = ��i + �xit�1 + �it

xi0 =
��i
1� � + �i0

�
1

1� �2

�1=2
�it

iid� N
�
0; �2�

�
"it

iid� N
�
0; �2"

�
where

�2�0 = �2

"
�2"

1� 
2 +
�2�2�(1 + 
�)

(1� 
�)(1� 
2)(1� �2)

#
�2� = �

2
"(1� 
)2

�2� =

�
�2s �


2

1� 
2�
2
"

��
(1� 
�)(1� 
2)(1� �2)

�2(1 + 
�)

�
:

In all the cases, we set �0 = 0; �1 = �2 = 1, �2" = 1, and �2s = 2, where �2s represents the variance of the signal

explaining yit contained in the within variation of xit and yit�1 relative to the noise contained in �i and "it (Everaert

2012). Moreover, we always set N = 500 and perform 250 replications for each experiment.

We conduct �ve experiments in total. The �rst four are

(DGP1) Cov(xit; �i) = 0, Cov(xit; xit�1) = 0: � = 0, � = 0

(DGP2) Cov(xit; �i) 6= 0, Cov(xit; xit�1) � 0: � = 1, � = �0:05
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(DGP3) Cov(xit; �i) = 0, Cov(xit; xit�1) 6= 0: � = 0, � = 0:30

(DGP4) Cov(xit; �i) 6= 0, Cov(xit; xit�1) 6= 0: � = 1, � = 0:30:

Thus, the four cases alter the serial correlation of the covariate and the correlation between the covariate and the

unobserved e¤ect. In each experiment, we vary the level of persistence in the outcome and the relative importance

of the covariate, setting

(
; �) =

8>>>>>>>>><>>>>>>>>>:

(0:2; 0:8);

(0:5; 0:5);

(0:8; 0:2);

(0:2; 0:2);

(0:8; 0:8)

9>>>>>>>>>=>>>>>>>>>;
:

Finally, we induce a pattern of irregular spacing to mimic the structure of the ECLS-K, where a �true�period is

approximately six months. Moreover, we wish to ensure that the initial conditions play no role in our results. Thus,

when simulating the data, we set t = �99;�98; :: � 1; 0; 1; :::; 17, and then retain periods f0; 1; 2; 3; 7; 11; 17g for

estimation. Thus, M = 6 in our notation with m = 0 representing the initial period in the data sample.

Our �nal experiment (denoted DGP5) is similar to the fourth experiment �serial correlation in x and correlation

between x and � �except we extend the time dimension.15 Now, we set t = �99;�98; ::� 1; 0; 1; :::; 102 and retain

37 periods. In essence, we replicate the irregular spacing pattern of the ECLS-K �ve more times, setting M = 36

with m = 0 representing the initial period in the data sample.

3.2 Results

The results are presented in Tables 4-9. We report the mean absolute error (MAE) and root mean squared error

(RMSE) for both 
 and �. However, in the interest of brevity, we focus our discussion on RMSE only. Table 4

displays the results when 
 = 0:2 and � = 0:8. Table 5 displays the results when 
 = 0:5 and � = 0:5. Table 6

displays the results when 
 = 0:8 and � = 0:2. Table 7 displays the results when 
 = 0:2 and � = 0:2. Table 8

displays the results when 
 = 0:8 and � = 0:8. Lastly, Table 9 present the coverage rates and mean interval widths

for the QD-UCI estimator for each case.16

To begin, consider DGP1 and DGP2 where x is strictly exogenous and serially uncorrelated. From Table 3,

we know several of the estimators are consistent as N ! 1: NLS-CRE-IV, FD-NLS-CRE-IV, QD-LS-MD, and

QD-GMM. In addition, E-NLS-(CRE-)IV and E-NLS-(CRE-)IV-AR1 are consistent as T !1 as well. The results,

however, indicate important �nite sample di¤erences.17 We observe several results. First, E-NLS-CRE-IV and E-

NLS-CRE-IV-AR1 generally outperform their non-CRE counterparts. This is especially true for the AR1 estimator.

15Alvarez and Arellano (2003) discuss the asymptotic behavior of several DPD estimators under regular spacing and di¤erent combi-

nations of N and T tending to in�nity.
16Tables A1-A6 in the Appendix report the same results but in relative terms (i.e., normalizing the best performance in each column

to unity).
17As is always the case with results based on Monte Carlo simulations, the results are subject to the caveat that they may be speci�c

to the DGPs considered.
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Second, there is little di¤erence in the overall performance of E-NLS-CRE-IV and E-NLS-CRE-IV-AR1 despite the

fact that x is not serially correlated in the population. Thus, there may be some gain to controlling for any �nite

sample serial correlation in x.18 Third, QD-GMM outperforms QD-LS-MD and FD-NLS-CRE-IV in every case.

With respect to FD-NLS-CRE-IV this is not surprising since the �rst-di¤erencing does not remove the unobserved

e¤ect and thus sacri�ces e¢ ciency. NLS-CRE-IV performs comparably to QD-GMM in terms of estimating �, but

generally performs worse overall in terms of estimating 
. Fourth, the performances of QD-GMM, E-NLS-CRE-IV,

and E-NLS-CRE-IV-AR1 are very similar. Perhaps the biggest di¤erence arises with the superior performance of

QD-GMM in terms of estimating 
 when 
 is relatively low; the converse is true when the degree of persistence is

relatively high (i.e., 
 = 0:8). There is much less di¤erence in performance of these estimators in terms of estimating

�. Fifth, the performance of the QD-UCI estimator (Table 9), is extremely poor, especially with respect to estimating


.

The �nal results relate to the performance of the usual DPD estimators: AH, AB, and BB. In terms of estimating

�, these estimators perform reasonably well in all cases considered. Moreover, generally BB (AH) performs best

(worst) amongst the three estimators. In terms of estimating of 
, the usual estimators perform much worse than

the QD estimators, NLS-CRE-IV, E-NLS-CRE-IV, and E-NLS-CRE-IV-AR1. However, a few noteworthy patterns

exist. First, whereas the RMSE of the AH estimator is monotonically increasing in the degree of persistence, the

RMSE of AB (and to a lesser extent BB) follows an inverted U-shaped pattern. In fact, AB signi�cantly outperforms

BB regardless of the level of persistence. This is striking since BB is recommended over AB when 
 > 0:8 with

regularly spaced panel data (Blundell and Bond 1998).19

Now turn to DGP3 and DGP4 where x is strictly exogenous but serially correlated. In DGP3 (DGP4), the average

sample correlation between xit and xit�1 is 0.30 (0.45). With DGP3, the only consistent estimator (as N;T ! 1)

is E-NLS-(CRE-)IV-AR1. With DGP4, x no longer follows a strictly AR(1) process and thus none of the estimators

considered are consistent. Again, we summarize several salient �ndings. First, E-NLS-CRE-IV-AR1 performs as well

as, if not signi�cantly better, than E-NLS-IV-AR1 in nearly all cases. Moreover, E-NLS-CRE-IV-AR1 is consistently

among the top performers in terms of estimating � across the majority of all experiments. However, in terms of

estimating 
, its performance is relatively weak when the degree of persistence is relatively low (i.e., 
 < 0:8). Second,

generally speaking, the performance across the various estimators is more similar in terms of estimating � than 
.

Furthermore, performance in terms of estimating � deteriorates appreciably among many of the estimators as the

degree of persistence of increases. Third, QD-GMM, E-NLS-CRE-IV, and E-NLS-CRE-IV-AR1 perform consistently

well in terms of both estimating both 
 and � across the di¤erent experiments. Thus, while asymptotically biased,

the �nite sample performance of these estimators is very good in these cases considered here. QD-LS-MD and NLS-

CRE-IV deserve mention for performing well in the majority of cases. Fourth, when the degree of persistence is high

(i.e., 
 = 0:8), many of the estimators incorporating imputation perform well in terms of estimating 
. However,

their performance in terms of estimating � is not particularly good with the exception of E-NLS-CRE-IV-AR1. Fifth,

the performance of the QD-UCI estimator (Table 9) continues to be poor.

18This �nding is analagous to that in the program evaluation literature where over-specifying the propensity score model yields

improvements in �nite sample performance (see, e.g., Millimet and Tchernis 2009).
19 It is important to mention, however, that in unreported simulations with 
 = 0:95 and � = 0:5, BB signi�cantly outperformed AB.
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Turning to the performance of the usual DPD estimators when x is serially correlated, we again obtain a few

interesting results. In terms of estimating �, AB and BB continue to perform reasonably well in all cases considered,

with BB performing marginally better. AH performs well when the degree of persistence is relatively low (i.e.,


 < 0:8), but much worse when persistence is high (i.e., 
 = 0:8). In terms of estimating 
, the usual estimators

perform worse to much worse than QD-GMM in every case. Interestingly, though, the RMSE of the AH estimator

continues to be monotonically increasing in the degree of persistence, while the RMSE of AB (and to a lesser extent

BB) follows an inverted U-shaped pattern. Finally, AB continues to outperform BB in terms of estimating 
 regardless

of the level of persistence.

Because the Everaert-type estimators require large N and T for consistency, DGP5 explores the e¤ect of increasing

the time dimension. In the interest of brevity, we simply note that while the performance of many estimators

improves, the qualitative conclusions formed above are not altered. Two �ndings are worth mentioning. First,

there is a noticeable deterioration in the performance of AB in terms of estimating 
, particularly when the degree

of persistence is relatively high (i.e., 
 = 0:8). Now, the performance of AB and BB are comparable (and much

worse than the other estimators considered here). Second, the longer sample has a sizeable bene�cial e¤ect on

the performance of the E-NLS-CRE-IV, E-NLS-CRE-IV-AR1, and, to a lesser extent, QD-GMM estimates of 
.

However, performance in terms of estimating � is only modestly improved.

In Tables 4-8, one �nding that emerges is that the relative performance of the estimators depends, in part, on

whether one focuses on 
 or �. One way to summarize the overall performance of estimators is to assess the MAE and

RMSE of estimates of the long-run e¤ect of x, given by �=(1�
). Table 10 presents the results for this estimand. In

the interest of brevity, we display the results for DGP2 and DGP4 only. Focusing on performance in terms of RMSE,

we obtain several interesting results. First, QD-GMM and E-NLS-CRE-IV-AR1 outperform the other estimators.

E-NLS-CRE-IV also performs well, but E-NLS-CRE-IV-AR1 produces a smaller RMSE in nearly every case. Second,

QD-GMM outperforms E-NLS-CRE-IV-AR1 in three of �ve cases when x is serially correlated (DGP4). The only

exception is when � = 0:2 and � = 0:8. However, when � = 0:2 both estimators perform very well. Finally, while

these two estimators perform best overall, performance of both (as well as all other estimators) is signi�cantly worse

when 
 = � = 0:8. We interpret this case as one where the outcome is highly persistent and the covariates represent

a signi�cant portion of the variation in the outcome.

Since QD-GMM, E-NLS-CRE-IV-AR1, and E-NLS-CRE-IV generally outperform the other estimators considered

here, we undertake one �nal comparison of these estimators. For each experiment analyzed, we compute Pitman�s

(1937) Nearness Measure, denoted PN . Formally, this measure is given by

PN = Pr
h���b�1 � ���� < ���b�2 � ����i ;

where b�j , j = 1; 2, represent two distinct estimators of the parameter �, � 2 f
; �; �=f1 � 
)g. Thus, PN > 0:5

indicates superior performance of the �rst estimator. The advantage of PN is that it summarizes the entire sampling

distribution of an estimator, whereas bias and RMSE rely only on the �rst two moments. In practice, PN is estimated

by its empirical counterpart: the fraction of simulated data sets for each experimental design where one estimator is

closer to the true parameter value than another estimator.
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The results for PN are given in Table 11. In DGP1 and DGP2, when x is not serially correlated, QD-GMM

tends to outperform both of the Evereart-type estimators as long as the degree of persistence is not too high (i.e.,


 < 0:8). Neither of the Everaert-type estimators clearly dominates the other. In DGP3 and DGP4, when x is serially

correlated, the PN criteria continues to indicate superior performance by QD-GMM except in terms of estimating 


when the degree of persistence is relatively high. Moreover, the E-NLS-CRE-IV-AR1 estimator performs marginally

better than overall relative to the E-NLS-CRE-IV estimator. Finally, note that the relative performance of the E-

NLS-CRE-IV-AR1 estimator is sensitive to the time dimension of the sample. In particular, the relative performance

of the E-NLS-CRE-IV-AR1 estimator in terms of estimating 
 improves with an increase in the time dimension of

the sample.

In sum, it is clear that no single estimator dominates the others. That said, QD-GMM and E-NLS-CRE-IV-AR1

appear to be the most consistent performers across the various experiments, with QD-GMM appearing superior when

x is serially correlated according to Pitman�s (1937) Nearness Measure. Furthermore, while these estimators perform

well in practice in the data designs considered, the relatively poor performance of all the estimators considered �

especially in terms of estimating the long-run e¤ects �when x is serially correlated, x explains a relatively large

portion of the variance in the outcome, and persistence is relatively high ought to give applied researchers pause

when estimating DPD models on irregularly spaced data. This situation, unfortunately, is probably encountered

often in practice.

4 Application

4.1 Motivation

In the application, we utilize the ECLS-K to estimate dynamic models of early human capital development. Specif-

ically, we estimate so-called value added models of student achievement to assess persistence in the accumulation

of knowledge during primary school, as well as the relationship between various inputs and test scores. We also

estimate dynamic models of child body mass index (BMI) to analyze the role of various factors in the childhood

obesity epidemic.

Estimation of DPD models in both of these contexts is now fairly commonplace. Cunha and Heckman (2010)

and Conti and Heckman (2012) present a general discussion of the measures of child well-being, dynamics of early

childhood development, and the importance of early interventions. Hanushek (1979), Todd and Wolpin (2003) and

Meghir and Rivkin (2011) provide in-depth discussions related to the value added model of student achievement.

Hanushek (2003) and Meghir and Rivkin (2011) o¤er summaries of the �ndings from the value added literature in

terms of the e¤ects of a few commonly assessed inputs (e.g., teachers and class size). Strauss and Thomas (2008)

give a detailed treatment of dynamic models of health. Cawley (2010) provides a general overview of the economics

of childhood obesity.
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4.2 Data

Collected by the US Department of Education, the ECLS-K surveys a nationally representative cohort of children

throughout the US in fall and spring kindergarten, fall and spring �rst grade, spring third grade, spring �fth grade,

and spring eighth grade. The sample includes data on over 20,000 students who entered kindergarten in one roughly

1,000 schools during the 1998-99 school year. Information is collected on a host of topics, including family background,

teacher and school characteristics, student test scores, and student height and weight. The fall �rst grade wave was

only administered to a portion of the sample and thus we ignore this wave.

When assessing student test scores, we utilize a balanced sample of children through �fth grade for whom we

have non-missing math and reading scores. We ignore the eighth grade wave as many of the teacher and school

level variables change due to the transition into middle school. Our �nal sample includes 5,977 students with math

test scores in fall and spring kindergarten and spring �rst, third, and �fth grades. For reading, our �nal sample

includes 5,564 students. The following covariates are included in the model: teacher experience (binary indicators for

one year or less and between 1.5 and ten years), teacher education (binary indicator for master�s degree or higher),

teacher certi�cation status (binary indicator for elementary certi�cation), class size, teacher race (binary indicator

for white), teacher-student racial match (binary indicator for both being white), class behavior (binary indicator for

teacher describing class as well-behaved or exceptional), number of gifted and talented (GT) students in the class,

number of boys in the class, household socioeconomic status (SES), number of children�s books in the household,

binary indicator for a computer at home, household size, and family type (binary indicators for two parents and one

parent). Interactions between teacher experience, certi�cation status, class size, and class behavior are also included.

Missing values for the covariates are imputed and imputation dummies are added to the control set.

When assessing student health outcomes, we utilize a balanced sample of children through eighth grade for whom

we have non-missing data on age and gender and valid measures of height and weight.20 From the information on

height and weight of the children, we create a z-score for body mass index (BMI). The z-score is obtained using

CDC 2000 growth charts; these are age- and gender-speci�c, are adjusted for normal growth.21 Covariates included

in the model are: an index of SES status, binary indicator for current Temporary Aid for Needy Families (TANF)

participation, binary indicator for current Supplemental Nutrition Assistance Program (SNAP) participation, binary

indicator for health insurance, number of children�s books in the household, household size, family type (binary

indicators for two parents and one parent), hours spent watching television during the school week, hours spent

watching television during the weekend, binary indicator for household rules regarding television watching, days

per week household eats breakfast together, days per week household eats dinner together. Missing values for the

covariates are imputed and imputation dummies are added to the control set.

20Refer to Millimet and Tchernis (2012) for a detailed description of the data creation process.
21z-scores and their percentiles are obtained using the -zanthro- command in Stata.
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4.3 Results

Tables 12-14 present the results for math and reading test scores, respectively. Table 15 displays the results for BMI.

In light of Monte Carlo results, we report only a subset of the coe¢ cient estimates and a subset of the estimators.22

Speci�cally, we report the AH, AB, and BB estimates as these represent the typical, naïve estimators one might use

if the spacing issue is ignored. We also report QD-GMM, E-NLS-CRE-IV, and E-NLS-IV-CRE-AR1.23

Student Achievement Examining the value added models for achievement, a few salient �ndings emerge. First,

the traditional DPD estimators yield estimates of 
 that are predominantly much smaller than those taking account

of the irregular spacing, particularly the Everaert-type estimators.24 Whereas BB yields an estimated coe¢ cient

on lagged test score of 0.314 (0.520) for math (reading), QD-GMM produces an estimate of 0.497 (0.709). The

Evereart-type estimators produce estimates around 0.8. The higher persistence in achievement is consistent with

prior studies of primary school children. Thus, ignoring the spacing issue appears to understate the e¤ects of early

shocks on long-run learning. Second, the Evereart-type estimators are extremely imprecise relative to QD-GMM;

the standard errors are roughly 1.5 times larger (except for the standard error for b
). As a result, the coe¢ cients on
the covariates are scarcely statistically signi�cant at conventional levels. Thus, the Everaert-type estimators, relying

on the Mundlak (1978) approach, appear to be much less e¢ cient in practice, relative to quasi-di¤erencing, when

the number of covariates is fairly large.

Third, several of the variables re�ecting teacher experience, certi�cation, class size, and class behavior are sta-

tistically signi�cant at conventional levels for math using QD-GMM; many fewer are statistically signi�cant for

reading. Interestingly, the parameter estimates are very similar across the typical DPD estimators and QD-GMM.

To aid in interpretation, Table 14 reports marginal e¤ects of teacher certi�cation by experience level and class size

by behavior and experience level. For math, only three marginal e¤ects are statistically signi�cant at conventional

levels using QD-GMM: certi�cation has a positive association for experienced teachers (10+ years) and class size has

a small, negative association in well-behaved classes with inexperienced (one year) and medium experienced (1.5 to

10 years) teachers. The negative association between class size and achievement for inexperienced teachers contrasts

with Mueller (2013) who examines the interaction between class size and teacher experience using data from Project

22Full results are available upon request. The heteroskedasticity-robust standard errors should be interpreted a bit cautiously as they

fail to account for uncertainty from the �rst-stage predictions in the case of the Everaert-type estimators.
23For the E-NLS-IV-CRE-AR1 estimator, we estimate a restricted model with only four distinct correlation coe¢ cients for the covariates

when analyzeing student achievement. Speci�cally, the teacher variables (experience, education, certi�cation, and race) are assumed to

follow the same autoregressive process; the class variables (class size, class behavior, number of GT students, and number of boy students)

are assumed to follow the same autoregressive process; the family background variables (SES, number of children�s books, household size,

computer at home, and family type) are assumed to follow the same autoregressive process; and, the imputation dummies for missing

covariates are assumed to follow the same autoregressive process. When analyzing BMI, we estimate a restricted model with only three

distinct correlation coe¢ cients. Speci�cally, the family background variables (SES, number of children�s books, household size, family

type, and health insurance) are assumed to follow the same autoregressive process; the household behavior variables (TANF, SNAP,

television hours per day during the school week, television hours per day on the weekend, household televsion rules, school lunch, family

breakfast, and family dinner) are assumed to follow the same autoregressive process; and, the imputation dummies for missing covariates

are assumed to follow the same autoregressive process.
24AH yields a similarly high estimate for 
 for math. However, the standard error is quite large.
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STAR and �nds negative class size e¤ects only for experienced teachers. However, class behavior is not included in

the analysis; Lazear (2001) suggests the e¤ects of class size are intertwined with class behavior. The positive asso-

ciation with certi�cation for experienced teachers only contrasts with Kane et al. (2008) who �nd only small e¤ects

of teacher certi�cation for inexperienced teachers. However, for reading, we obtain statistically signi�cant marginal

e¤ects of teacher certi�cation at all experience levels, with the largest association for inexperienced teachers. Class

size and behavior are not associated with reading achievement at conventional levels of signi�cance.

Body Mass Index Turning to the models for child BMI, we obtain several interesting results. First, the traditional

DPD estimators, along with QD-GMM, produce estimates of 
 that are much smaller than those produced by the

Everaert-type estimators. Second, the Evereart-type estimators are again extremely imprecise relative to QD-GMM;

the standard errors are roughly 1.5-3 times larger (except for the standard error for b
). Here, the coe¢ cients on the
covariates are never statistically signi�cant at conventional levels using the E-NLS-IV-CRE-AR1 estimator.

Third, the health-income gradient suggested by the traditional DPD estimators di¤ers from those estimated by the

QD-GMM and E-NLS-CRE-IV estimators. Speci�cally, AB and AH suggests no statistically meaningful association

between SES on BMI, whereas BB produces a statistically signi�cant negative association at conventional levels.

QD-GMM and E-NLS-CRE-IV, however, both indicate a positive and statistically meaningful association of SES

although the magnitude is not large. Fourth, the various estimators provide divergent evidence regarding associations

between BMI and health insurance and school-provided lunches. In terms of health insurance, while prior evidence

on the e¤ect of insurance along the extensive margin on weight is mixed (see, e.g., Bhattacharya and Sood 2011), the

traditional DPD estimators and QD-GMM indicate a positive and statistically signi�cant association. However, the

magnitude is about twice as large when using the BB and QD-GMM estimators. The relationship is not statistically

meaningful using the Everaert-type estimators. In terms of the school lunch program, while prior evidence based on

static models suggests a positive e¤ect of school-provided lunches on childhood obesity (e.g., Millimet et al. 2010),

the point estimates become small and statistically indistinguishable from zero at conventional levels once we move

away from the traditional DPD estimators.

Finally, all estimators indicate a negative (positive) association hours per day of television watching during the

school week (weekend) and BMI; the estimates are statistically signi�cant at conventional levels for all estimators

except E-NLS-CRE-IV-AR1. In addition, QD-GMM also indicates a negative, statistically signi�cant association

between the presence of household rules regarding television and the number of days per week the household eats

breakfast together and BMI.

5 Conclusion

Problems associated with missing data have a lengthy history in econometrics. In the case of dynamic models,

missing data may arise not just from the usual, observation-speci�c sources such as nonresponse or clerical error, but

also from a data structure that does not align the observation interval with the unit interval from the underlying

data generating process. Dealing with problems of the latter sort in univariate time series models dates back to at

least the 1960s, with Bergstrom (1966) investigating the issue of using discrete time data to estimate continuous
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time processes. However, this issue has been relatively ignored in the literature on dynamic panel data models.

Unfortunately, many longitudinal data sets are designed such that data are collected at irregular intervals, making

it impossible to justify the assumption of equality between the observation and unit intervals.

As demonstrated here, irregular spacing invalidates the typical approaches to estimation of dynamic panel data

models for three reasons. First, the coe¢ cient on the lagged dependent variable is no longer constant. Second,

�rst-di¤erencing no longer eliminates the unobserved e¤ect. Third, covariates (and idiosyncratic errors) from the

missing time periods are relegated to the error term, invalidating typical instrumental variable strategies and making

the covariates endogenous if they are serially correlated. Simulations reveal that the performance of the commonly

used Anderson and Hsiao (1981), Arellano and Bond (1991), and Blundell and Bond (1998) estimators can be quite

poor when irregular spacing is ignored.

As an alternative, we propose two new sets of estimators. The �rst set contains three estimators utilizing quasi-

di¤erencing to remove the unobserved e¤ect in combination with a nonlinear least squares or generalized method of

moments estimator to handle the nonlinearity. The second set contains several extended, nonlinear versions of the

estimator proposed in Everaert (2012). In particular, we also consider our version of the Everaert (2012) estimator

augmented by either imputing the missing covariates or assuming they follow a �rst-order autoregressive process.

Simulations reveal that our new estimators perform signi�cantly better than the Anderson and Hsiao (1981),

Arellano and Bond (1991), and Blundell and Bond (1998) estimators in the presence of irregular spacing. Speci�cally,

we �nd superior performance by two estimators: GMM combined with quasi-di¤erencing and an extended version of

the Everaert (2012) estimator combined with the assumption that the covariates follow an AR(1) process. However,

our applications reveal that the Everaert-type estimators proposed here are less e¢ cient in practice when there are

many covariates. Finally, our applications reveal meaningful, quantitative di¤erences in the estimation of dynamic

models for child human capital development when accounting for irregular spacing, particularly as it relates to the

degree of persistence. Given the plethora of longitudinal surveys with irregular spacing, from both developed and

developing countries, researchers must be wary of spacing.
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Table A1.  Simulation Results: γ = 0.2, β = 0.8.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 4.489 3.391 3.740 3.818 11.185 2.083 1.571 5.069 3.293 5.527
   AB 3.957 3.360 3.129 3.657 10.488 2.202 1.459 5.607 3.424 6.473
   BB 5.277 4.271 4.130 4.568 10.768 1.779 1.241 5.758 3.571 7.596
   NLS-IV 1.220 6.778 1.039 2.276 5.571 1.213 18.967 2.671 18.136 42.255
   NLS-CRE-IV 1.220 1.149 1.031 1.935 5.944 1.000 1.000 2.573 1.589 4.308
   FD-NLS-IV 3.067 3.198 2.412 3.659 9.985 1.470 1.950 2.303 1.390 2.305
   FD-NLS-CRE-IV 3.151 2.625 2.420 2.291 6.047 1.483 1.759 2.299 1.585 2.981
   QD-LS-MD 2.497 2.849 2.619 11.368 2.175 1.555 1.668 2.652 1.018 3.030
   QD-GMM 1.270 1.000 1.000 1.000 1.000 1.230 1.249 2.626 1.599 3.726
   E-NLS-IV 4.632 3.199 6.589 6.950 1.477 1.446 1.083 4.101 2.728 4.045
   E-NLS-CRE-IV 1.685 4.006 1.442 5.456 4.932 1.128 1.271 3.361 2.289 4.326
   E-NLS-IV-L 3.896 2.577 2.018 6.820 10.881 1.404 4.190 5.229 7.313 6.118
   E-NLS-CRE-IV-L 6.705 6.627 4.692 6.517 10.403 1.068 1.519 4.006 2.517 5.086
   E-NLS-IV-A 1.070 9.347 2.752 15.400 28.541 2.676 3.445 1.024 1.390 11.182
   E-NLS-CRE-IV-A 3.747 5.140 1.598 4.242 4.694 3.016 2.688 1.000 1.047 1.000
   E-NLS-IV-C 1.000 7.753 2.409 17.904 31.570 7.926 14.260 7.438 14.847 31.180
   E-NLS-CRE-IV-C 4.505 5.445 1.694 4.340 4.511 6.281 4.502 4.467 1.000 6.403
   E-NLS-IV-AR1 10.731 16.930 4.689 6.485 15.654 1.094 3.759 4.612 4.549 6.709
   E-NLS-CRE-IV-AR1 2.152 3.387 1.763 4.466 3.625 1.061 1.303 2.834 2.299 4.232
Panel II.  Root Mean Squared Error
   AH 3.723 2.803 3.120 3.145 8.979 2.003 1.588 4.305 2.772 4.686
   AB 3.225 2.721 2.573 2.957 8.396 2.060 1.461 4.724 2.871 5.463
   BB 4.246 3.418 3.356 3.650 8.621 1.729 1.278 4.854 2.994 6.397
   NLS-IV 1.216 5.402 1.062 1.888 4.492 1.195 15.361 2.441 14.648 35.374
   NLS-CRE-IV 1.199 1.068 1.050 1.658 4.799 1.000 1.000 2.295 1.414 3.660
   FD-NLS-IV 2.518 2.563 1.999 2.921 7.997 1.447 1.853 2.164 1.308 2.069
   FD-NLS-CRE-IV 2.582 2.128 2.006 1.883 4.870 1.456 1.699 2.161 1.461 2.609
   QD-LS-MD 2.478 2.809 2.581 9.421 2.115 1.557 1.687 2.450 1.021 2.650
   QD-GMM 1.254 1.000 1.000 1.000 1.000 1.232 1.260 2.405 1.467 3.210
   E-NLS-IV 3.963 2.845 5.441 5.779 1.447 1.410 1.097 3.477 2.286 3.449
   E-NLS-CRE-IV 1.619 3.295 1.382 4.378 3.985 1.117 1.259 2.897 1.945 3.674
   E-NLS-IV-L 3.174 2.117 1.707 5.409 8.756 1.377 3.554 4.376 5.948 5.167
   E-NLS-CRE-IV-L 5.369 5.266 3.803 5.176 8.326 1.036 1.465 3.404 2.124 4.301
   E-NLS-IV-A 1.053 7.422 2.321 12.163 22.848 2.329 2.950 1.025 1.266 9.373
   E-NLS-CRE-IV-A 3.093 4.118 1.456 3.425 3.787 2.580 2.350 1.000 1.005 1.000
   E-NLS-IV-C 1.000 6.201 2.089 14.145 25.279 6.388 11.604 6.207 11.991 26.093
   E-NLS-CRE-IV-C 3.666 4.345 1.529 3.500 3.649 5.101 3.772 3.863 1.000 5.406
   E-NLS-IV-AR1 8.815 13.537 3.872 5.121 12.516 1.065 3.246 3.888 3.737 5.652
   E-NLS-CRE-IV-AR1 2.008 2.839 1.647 3.625 2.955 1.050 1.285 2.507 1.957 3.596
Notes:  Results obtaining using 250 simulations with N=500 and M=6 (DGP1-DGP4) or M=36 (DGP5).  DGP1: Mean Corr(Xt,Xt-1)=0.00; Mean 
Corr(Xt,α)=0.00.  DGP2: Mean Corr(Xt,Xt-1)=0.03; Mean Corr(Xt,α)=0.24.  DGP3: Mean Corr(Xt,Xt-1)=0.30; Mean Corr(Xt,α)=0.00.  DGP4 & DGP5: 
Mean Corr(Xt,Xt-1)=0.42; Mean Corr(Xt,α)=0.39.  Gray shading denotes lowest value.  Green shading denotes values within 1.5 times the lowest value.  
See text for further details.
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Table A2.  Simulation Results: γ = 0.5, β = 0.5.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 8.616 6.445 6.673 9.262 23.639 3.154 2.123 8.595 9.568 5.000
   AB 7.496 6.003 5.824 8.874 22.303 3.646 2.212 9.322 10.015 5.912
   BB 11.001 8.611 8.686 12.956 23.337 2.410 1.341 9.279 9.857 6.821
   NLS-IV 1.181 4.880 1.121 10.560 19.798 1.046 6.661 4.331 12.713 9.576
   NLS-CRE-IV 1.208 1.105 1.136 2.084 5.125 1.000 1.031 3.909 3.692 3.432
   FD-NLS-IV 10.669 9.152 8.860 14.698 27.322 3.576 4.690 2.162 2.184 1.000
   FD-NLS-CRE-IV 10.899 8.997 8.936 13.396 23.973 3.638 4.637 2.133 2.434 1.274
   QD-LS-MD 2.201 1.735 2.395 5.370 2.003 1.534 1.588 3.208 3.060 1.844
   QD-GMM 1.000 1.000 1.000 1.000 1.000 1.187 1.374 3.687 3.718 3.002
   E-NLS-IV 4.852 3.557 4.976 7.173 2.884 2.043 1.253 6.939 7.852 3.796
   E-NLS-CRE-IV 3.393 1.633 3.135 7.533 2.426 1.307 1.142 5.006 5.557 3.468
   E-NLS-IV-L 12.054 7.225 8.601 6.965 14.222 1.071 1.000 7.104 10.521 3.615
   E-NLS-CRE-IV-L 14.368 11.968 10.681 17.299 22.748 1.626 2.654 5.685 6.629 3.257
   E-NLS-IV-A 5.292 1.524 2.007 3.651 1.727 6.054 6.336 1.000 1.000 3.670
   E-NLS-CRE-IV-A 8.259 8.306 4.206 9.570 10.395 6.844 6.195 1.843 1.055 2.760
   E-NLS-IV-C 6.668 2.268 1.399 7.105 7.002 13.228 14.993 10.051 15.709 12.546
   E-NLS-CRE-IV-C 9.546 9.457 3.458 10.706 7.451 12.708 10.364 9.912 5.699 9.199
   E-NLS-IV-AR1 8.388 14.701 8.426 20.042 24.648 1.576 2.023 6.201 8.712 3.272
   E-NLS-CRE-IV-AR1 4.139 1.133 2.961 5.165 2.140 1.032 1.298 4.367 5.601 3.552
Panel II.  Root Mean Squared Error
   AH 7.171 5.339 5.789 7.564 18.980 2.941 2.097 7.106 7.760 4.550
   AB 6.084 4.857 4.883 7.006 17.861 3.218 2.104 7.665 8.085 5.369
   BB 8.869 6.920 7.231 10.145 18.689 2.307 1.384 7.637 7.968 6.190
   NLS-IV 1.170 3.969 1.162 8.318 15.899 1.032 5.428 3.640 10.191 8.680
   NLS-CRE-IV 1.180 1.062 1.189 2.030 4.241 1.000 1.026 3.295 3.097 3.130
   FD-NLS-IV 8.575 7.328 7.352 11.464 21.878 3.084 3.914 2.041 2.052 1.000
   FD-NLS-CRE-IV 8.759 7.203 7.415 10.451 19.198 3.130 3.873 2.020 2.251 1.234
   QD-LS-MD 2.240 1.724 2.365 4.613 1.929 1.582 1.604 2.875 2.781 1.729
   QD-GMM 1.000 1.000 1.000 1.000 1.000 1.209 1.358 3.191 3.193 2.754
   E-NLS-IV 3.980 2.918 4.165 5.645 2.405 1.883 1.246 5.706 6.330 3.455
   E-NLS-CRE-IV 2.917 1.630 2.748 6.234 2.055 1.296 1.124 4.158 4.535 3.160
   E-NLS-IV-L 9.693 5.799 7.143 5.466 11.398 1.063 1.000 5.855 8.452 3.298
   E-NLS-CRE-IV-L 11.550 9.589 8.867 13.507 18.214 1.556 2.312 4.715 5.381 2.975
   E-NLS-IV-A 4.315 1.346 1.763 2.913 1.519 4.944 5.161 1.000 1.000 3.339
   E-NLS-CRE-IV-A 6.683 6.678 3.564 7.533 8.336 5.563 5.044 1.713 1.070 2.526
   E-NLS-IV-C 5.435 1.986 1.416 5.608 5.654 10.654 12.085 8.266 12.534 11.355
   E-NLS-CRE-IV-C 7.713 7.591 3.095 8.439 6.001 10.232 8.364 8.175 4.727 8.332
   E-NLS-IV-AR1 9.041 12.472 7.042 15.641 19.748 1.523 3.544 5.137 7.030 2.994
   E-NLS-CRE-IV-AR1 3.507 1.139 2.634 4.338 1.825 1.030 1.269 3.667 4.578 3.236

β

Notes:  See Table A1 for details.
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Table A3.  Simulation Results: γ = 0.8, β = 0.2.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 32.945 32.069 100.643 82.399 37.812 3.067 2.721 6.314 7.069 5.159
   AB 3.597 4.043 3.545 3.617 46.769 2.035 1.797 2.373 2.976 3.448
   BB 15.671 17.056 16.066 15.764 48.829 1.546 1.341 2.136 2.650 3.959
   NLS-IV 4.222 7.371 5.874 12.778 33.447 1.000 1.800 1.238 2.168 3.810
   NLS-CRE-IV 5.172 4.465 5.585 4.996 13.976 1.068 1.024 1.170 1.308 2.262
   FD-NLS-IV 50.319 53.542 53.077 50.333 131.938 3.220 3.521 1.063 1.354 2.493
   FD-NLS-CRE-IV 50.320 53.271 53.002 49.456 129.145 3.220 3.519 1.049 1.291 2.387
   QD-LS-MD 9.693 10.093 7.607 7.034 6.413 1.852 1.859 1.189 1.456 1.000
   QD-GMM 1.528 1.773 1.579 1.489 1.495 1.173 1.137 1.000 1.219 1.538
   E-NLS-IV 1.364 1.508 1.571 1.584 3.306 1.174 1.069 1.761 2.292 2.917
   E-NLS-CRE-IV 1.364 1.228 1.537 1.073 1.326 1.027 1.000 1.233 1.386 2.504
   E-NLS-IV-L 1.501 1.960 1.360 1.857 1.282 9.378 7.667 4.055 1.438 6.411
   E-NLS-CRE-IV-L 1.388 1.946 1.259 1.869 2.223 10.031 10.108 4.677 5.511 10.741
   E-NLS-IV-A 1.014 1.000 1.000 1.000 1.739 5.975 4.560 2.020 1.000 2.927
   E-NLS-CRE-IV-A 1.000 1.232 1.050 1.100 1.036 6.462 6.668 2.602 3.097 7.238
   E-NLS-IV-C 1.132 1.340 1.440 1.745 3.511 8.568 7.962 3.940 3.291 7.627
   E-NLS-CRE-IV-C 1.143 1.095 1.400 1.022 1.120 8.896 9.110 4.277 5.351 10.178
   E-NLS-IV-AR1 1.372 1.465 1.188 1.199 1.021 5.512 10.931 3.352 7.704 13.175
   E-NLS-CRE-IV-AR1 1.391 1.275 1.436 1.048 1.000 1.016 1.017 1.254 1.465 2.584
Panel II.  Root Mean Squared Error
   AH 35.359 33.235 239.823 145.001 38.655 3.375 2.979 13.475 10.347 4.461
   AB 3.552 3.953 3.521 3.543 37.897 1.945 1.771 2.118 2.711 2.902
   BB 12.829 13.909 13.039 12.715 39.568 1.549 1.390 1.939 2.457 3.301
   NLS-IV 4.530 6.310 5.410 10.206 27.126 1.000 1.689 1.149 2.011 3.159
   NLS-CRE-IV 5.341 4.461 5.493 4.842 12.037 1.083 1.067 1.098 1.262 1.914
   FD-NLS-IV 40.395 42.852 42.195 39.813 106.839 2.726 2.982 1.011 1.311 2.112
   FD-NLS-CRE-IV 40.396 42.635 42.136 39.119 104.577 2.726 2.981 1.000 1.258 2.033
   QD-LS-MD 9.942 10.239 7.448 6.802 6.401 1.779 1.795 1.182 1.483 1.000
   QD-GMM 1.519 1.753 1.569 1.462 1.600 1.163 1.146 1.003 1.246 1.436
   E-NLS-IV 1.315 1.440 1.478 1.466 2.784 1.142 1.060 1.578 2.084 2.416
   E-NLS-CRE-IV 1.319 1.211 1.454 1.058 1.266 1.001 1.000 1.152 1.337 2.096
   E-NLS-IV-L 1.512 1.933 1.349 1.775 1.267 7.462 6.234 3.293 1.427 5.131
   E-NLS-CRE-IV-L 1.398 1.933 1.247 1.813 2.012 7.962 8.152 3.766 4.540 8.560
   E-NLS-IV-A 1.011 1.000 1.000 1.002 1.577 4.782 3.745 1.699 1.000 2.385
   E-NLS-CRE-IV-A 1.000 1.224 1.051 1.069 1.044 5.153 5.397 2.133 2.600 5.776
   E-NLS-IV-C 1.134 1.312 1.378 1.579 2.941 6.777 6.401 3.152 2.712 6.080
   E-NLS-CRE-IV-C 1.139 1.090 1.350 1.000 1.107 7.033 7.316 3.417 4.356 8.105
   E-NLS-IV-AR1 1.352 1.432 1.192 1.193 1.035 5.506 9.463 2.798 6.392 10.498
   E-NLS-CRE-IV-AR1 1.345 1.254 1.376 1.025 1.000 1.006 1.034 1.166 1.395 2.156

γ β

Notes:  See Table A1 for details.



Table A4.  Simulation Results: γ = 0.2, β = 0.2.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 4.489 3.933 3.740 6.316 15.176 2.083 1.662 5.069 4.226 5.172
   AB 3.957 3.589 3.129 5.451 14.052 2.202 1.647 5.607 4.613 6.108
   BB 5.277 4.741 4.130 7.131 14.548 1.779 1.331 5.758 4.739 7.040
   NLS-IV 1.220 3.080 1.039 3.174 6.713 1.213 6.064 2.671 9.157 15.401
   NLS-CRE-IV 1.220 1.407 1.031 1.601 3.055 1.000 1.000 2.573 2.085 3.779
   FD-NLS-IV 3.067 3.052 2.412 4.703 9.486 1.470 1.856 2.303 1.876 2.597
   FD-NLS-CRE-IV 3.151 3.039 2.420 4.347 8.467 1.483 1.852 2.299 1.936 2.755
   QD-LS-MD 2.497 2.231 2.619 4.841 2.083 1.555 1.598 2.652 2.211 3.338
   QD-GMM 1.270 1.120 1.000 1.624 1.391 1.230 1.268 2.626 2.162 3.542
   E-NLS-IV 4.632 3.566 6.589 11.424 2.147 1.446 1.113 4.101 3.453 3.653
   E-NLS-CRE-IV 1.685 1.538 1.442 3.080 2.183 1.128 1.054 3.361 2.918 3.942
   E-NLS-IV-L 3.896 2.391 2.018 1.000 7.393 1.404 1.291 5.229 5.022 4.360
   E-NLS-CRE-IV-L 6.705 6.734 4.692 9.453 13.861 1.068 1.415 4.006 3.294 4.714
   E-NLS-IV-A 1.070 2.026 2.752 9.772 4.728 2.676 3.082 1.024 1.160 3.895
   E-NLS-CRE-IV-A 3.747 4.630 1.598 4.950 6.034 3.016 3.138 1.000 1.000 1.000
   E-NLS-IV-C 1.000 1.000 2.409 9.835 5.908 7.926 8.953 7.438 9.275 12.377
   E-NLS-CRE-IV-C 4.505 5.194 1.694 5.166 5.935 6.281 5.664 4.467 2.224 6.151
   E-NLS-IV-AR1 10.256 11.755 4.689 10.970 13.005 1.092 1.051 4.612 4.325 4.676
   E-NLS-CRE-IV-AR1 2.152 1.227 1.763 2.123 1.000 1.061 1.140 2.834 2.609 3.765
Panel II.  Root Mean Squared Error
   AH 3.723 3.271 3.120 5.122 12.261 2.003 1.655 4.305 3.610 4.422
   AB 3.225 2.931 2.573 4.357 11.321 2.060 1.617 4.724 3.913 5.197
   BB 4.246 3.822 3.356 5.631 11.721 1.729 1.355 4.854 4.022 5.979
   NLS-IV 1.216 2.647 1.062 2.846 5.553 1.195 4.990 2.441 7.565 13.027
   NLS-CRE-IV 1.199 1.363 1.050 1.556 2.704 1.000 1.000 2.295 1.879 3.244
   FD-NLS-IV 2.518 2.488 1.999 3.749 7.670 1.447 1.773 2.164 1.780 2.306
   FD-NLS-CRE-IV 2.582 2.480 2.006 3.486 6.861 1.456 1.768 2.161 1.828 2.434
   QD-LS-MD 2.478 2.202 2.581 4.639 2.056 1.557 1.627 2.450 2.054 2.912
   QD-GMM 1.254 1.113 1.000 1.572 1.424 1.232 1.271 2.405 1.996 3.073
   E-NLS-IV 3.963 3.128 5.441 9.205 1.992 1.410 1.121 3.477 2.942 3.139
   E-NLS-CRE-IV 1.619 1.559 1.382 2.870 2.005 1.117 1.042 2.897 2.519 3.378
   E-NLS-IV-L 3.174 2.008 1.707 1.000 5.984 1.377 1.292 4.376 4.202 3.728
   E-NLS-CRE-IV-L 5.369 5.397 3.803 7.431 11.166 1.036 1.378 3.404 2.818 4.021
   E-NLS-IV-A 1.053 1.809 2.321 7.713 3.919 2.329 2.649 1.025 1.152 3.351
   E-NLS-CRE-IV-A 3.093 3.765 1.456 4.040 4.913 2.580 2.682 1.000 1.000 1.000
   E-NLS-IV-C 1.000 1.000 2.089 7.815 4.869 6.388 7.253 6.207 7.701 10.469
   E-NLS-CRE-IV-C 3.666 4.194 1.529 4.206 4.849 5.101 4.652 3.863 2.085 5.241
   E-NLS-IV-AR1 8.505 9.378 3.872 8.657 10.526 1.067 1.023 3.889 3.645 3.993
   E-NLS-CRE-IV-AR1 2.008 1.247 1.647 2.101 1.000 1.050 1.125 2.507 2.287 3.230
Notes:  See Table A1 for details.
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Table A5.  Simulation Results: γ = 0.8, β = 0.8.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 32.945 27.309 100.643 140.775 47.535 3.067 2.628 6.314 13.476 6.437
   AB 3.597 4.139 3.545 4.217 59.490 2.035 1.602 2.373 3.356 4.233
   BB 15.671 15.479 16.066 15.123 61.793 1.546 1.182 2.136 2.962 5.034
   NLS-IV 4.222 10.543 5.874 12.297 49.400 1.000 1.734 1.238 2.604 5.333
   NLS-CRE-IV 5.172 3.212 5.585 6.648 9.831 1.068 1.273 1.170 1.519 1.970
   FD-NLS-IV 50.319 45.126 53.077 43.177 177.800 3.220 3.296 1.063 1.596 3.280
   FD-NLS-CRE-IV 50.320 43.224 53.002 39.346 159.253 3.220 3.233 1.049 1.480 2.926
   QD-LS-MD 9.693 7.706 7.607 7.258 8.008 1.852 1.648 1.189 2.163 4.155
   QD-GMM 1.528 2.084 1.579 1.672 2.908 1.173 1.084 1.000 1.179 1.285
   E-NLS-IV 1.364 1.425 1.571 1.488 4.461 1.174 1.000 1.761 2.882 3.691
   E-NLS-CRE-IV 1.364 1.000 1.537 1.051 1.000 1.027 1.254 1.233 1.376 1.700
   E-NLS-IV-L 1.501 2.674 1.360 2.451 4.091 9.378 1.500 4.055 15.911 17.603
   E-NLS-CRE-IV-L 1.388 3.470 1.259 3.020 3.888 10.031 8.453 4.677 5.605 12.993
   E-NLS-IV-A 1.014 1.384 1.000 2.730 8.242 5.975 2.572 2.020 14.887 19.056
   E-NLS-CRE-IV-A 1.000 1.868 1.050 1.441 1.944 6.462 5.814 2.602 3.328 8.787
   E-NLS-IV-C 1.132 2.085 1.440 3.318 9.637 8.568 3.653 3.940 4.720 5.236
   E-NLS-CRE-IV-C 1.143 1.204 1.400 1.000 1.019 8.896 8.210 4.277 6.141 12.530
   E-NLS-IV-AR1 1.672 1.895 1.188 3.130 4.479 5.272 16.804 3.352 7.616 16.996
   E-NLS-CRE-IV-AR1 1.391 1.025 1.436 1.280 1.217 1.016 1.213 1.254 1.000 1.000
Panel II.  Root Mean Squared Error
   AH 35.359 30.572 239.823 674.922 47.912 3.375 3.071 13.475 49.306 5.617
   AB 3.552 3.963 3.521 3.961 47.052 1.945 1.602 2.118 2.957 3.586
   BB 12.829 12.637 13.039 12.127 48.875 1.549 1.239 1.939 2.657 4.213
   NLS-IV 4.530 8.495 5.410 9.709 39.048 1.000 1.691 1.149 2.324 4.419
   NLS-CRE-IV 5.341 3.391 5.493 8.262 11.231 1.083 1.266 1.098 1.402 1.793
   FD-NLS-IV 40.395 36.225 42.195 34.049 140.521 2.726 2.811 1.011 1.487 2.775
   FD-NLS-CRE-IV 40.396 34.698 42.136 31.029 125.864 2.726 2.764 1.000 1.383 2.510
   QD-LS-MD 9.942 7.830 7.448 6.619 7.959 1.779 1.597 1.182 1.966 3.467
   QD-GMM 1.519 2.025 1.569 1.603 2.767 1.163 1.102 1.003 1.137 1.262
   E-NLS-IV 1.315 1.342 1.478 1.356 3.665 1.142 1.000 1.578 2.487 3.074
   E-NLS-CRE-IV 1.319 1.000 1.454 1.051 1.000 1.001 1.242 1.152 1.292 1.540
   E-NLS-IV-L 1.512 2.352 1.349 2.049 3.387 7.462 1.478 3.293 12.450 14.173
   E-NLS-CRE-IV-L 1.398 3.237 1.247 2.771 3.293 7.962 6.917 3.766 4.493 10.420
   E-NLS-IV-A 1.011 1.277 1.000 2.209 6.578 4.782 2.246 1.699 11.623 15.314
   E-NLS-CRE-IV-A 1.000 1.793 1.051 1.387 1.794 5.153 4.759 2.133 2.707 7.057
   E-NLS-IV-C 1.134 1.808 1.378 2.670 7.672 6.777 3.012 3.152 3.752 4.298
   E-NLS-CRE-IV-C 1.139 1.219 1.350 1.000 1.016 7.033 6.659 3.417 4.806 10.040
   E-NLS-IV-AR1 4.020 1.752 1.192 3.060 3.746 5.269 13.619 2.798 5.935 13.609
   E-NLS-CRE-IV-AR1 1.345 1.031 1.376 1.263 1.222 1.006 1.218 1.166 1.000 1.000
Notes:  See Table A1 for details.

γ β



Table A6.  Simulation Results: Long-run Coefficient.
Estimator

DGP2 DGP4 DGP2 DGP4 DGP2 DGP4 DGP2 DGP4 DGP2 DGP4
Panel I.  Mean Absolute Percentage Error
   AH 2.273 1.698 3.690 3.023 21.840 28.498 2.781 1.564 26.231 21.288
   AB 2.295 1.403 3.481 2.513 1.731 1.604 2.502 1.000 2.016 1.851
   BB 3.127 2.006 4.958 4.674 4.723 2.412 3.627 1.603 5.121 3.403
   NLS-IV 15.201 16.103 8.277 24.387 10.704 56.347 5.589 6.870 35.360 166.632
   NLS-CRE-IV 1.000 1.000 1.000 1.146 3.200 5.042 1.402 1.179 2.355 2.869
   FD-NLS-IV 3.036 2.604 6.050 7.606 8.205 5.389 3.120 1.711 8.364 6.640
   FD-NLS-CRE-IV 2.553 1.300 5.986 7.019 8.197 5.350 3.108 1.514 8.291 6.471
   QD-LS-MD 3.200 19.842 1.828 7.855 9.007 7.015 2.443 4.133 11.696 10.744
   QD-GMM 1.062 1.100 1.029 1.575 1.276 1.101 1.238 1.458 1.617 1.130
   E-NLS-IV 3.373 11.857 4.247 13.140 1.402 2.494 3.901 10.829 1.646 3.421
   E-NLS-CRE-IV 3.339 3.513 1.418 3.140 1.015 1.334 1.504 1.060 1.218 1.280
   E-NLS-IV-L 3.917 15.362 4.462 1.234 5.704 1.440 1.687 2.200 1.000 8.568
   E-NLS-CRE-IV-L 5.100 4.224 6.627 7.333 7.220 4.137 5.543 3.320 7.165 4.896
   E-NLS-IV-A 9.489 28.043 2.698 3.758 3.122 1.000 1.000 6.417 3.268 15.848
   E-NLS-CRE-IV-A 4.574 3.323 6.001 5.968 4.741 2.278 4.790 2.341 5.015 2.920
   E-NLS-IV-C 2.448 18.035 5.138 1.000 5.124 1.749 2.878 1.412 1.502 7.386
   E-NLS-CRE-IV-C 5.291 4.459 7.106 8.320 6.152 3.656 6.043 3.771 6.411 4.608
   E-NLS-IV-AR1 8.738 3.025 7.051 7.750 7.423 5.435 8.074 3.552 13.144 6.081
   E-NLS-CRE-IV-AR1 2.915 2.681 1.073 1.826 1.000 1.269 1.276 1.165 1.181 1.000
Panel II.  Root Mean Squared Error
   AH 2.051 1.644 3.085 2.845 52.158 134.690 2.395 1.511 66.371 70.899
   AB 1.997 1.355 2.832 2.261 1.834 1.862 2.106 1.000 2.098 2.113
   BB 2.632 1.801 3.988 3.934 3.862 2.098 2.929 1.476 4.270 2.782
   NLS-IV 12.516 13.107 6.761 20.458 10.014 123.614 4.573 5.738 30.289 479.613
   NLS-CRE-IV 1.000 1.000 1.003 1.198 3.673 8.538 1.367 1.164 2.483 3.093
   FD-NLS-IV 2.542 2.215 4.848 6.316 6.616 4.490 2.532 1.529 6.900 5.276
   FD-NLS-CRE-IV 2.164 1.236 4.797 5.832 6.610 4.457 2.524 1.378 6.840 5.143
   QD-LS-MD 3.494 17.583 1.895 7.414 10.867 8.967 2.460 4.279 13.731 10.967
   QD-GMM 1.074 1.097 1.000 1.573 1.260 1.153 1.195 1.455 1.587 1.094
   E-NLS-IV 3.171 10.185 3.544 11.029 1.373 2.295 3.428 9.169 1.628 2.962
   E-NLS-CRE-IV 2.838 2.949 1.366 2.874 1.014 1.318 1.469 1.092 1.220 1.203
   E-NLS-IV-L 3.320 12.558 3.583 1.171 4.631 1.308 1.476 1.959 1.000 6.862
   E-NLS-CRE-IV-L 4.208 3.490 5.309 6.092 5.843 3.477 4.388 2.783 5.931 3.924
   E-NLS-IV-A 7.870 22.863 2.193 3.226 2.589 1.000 1.000 5.340 2.882 12.675
   E-NLS-CRE-IV-A 3.779 2.769 4.810 4.969 3.858 1.959 3.803 2.006 4.168 2.385
   E-NLS-IV-C 2.166 14.763 4.122 1.000 4.155 1.531 2.322 1.326 1.398 5.979
   E-NLS-CRE-IV-C 4.347 3.647 5.690 6.901 4.975 3.067 4.759 3.111 5.302 3.683
   E-NLS-IV-AR1 7.216 2.498 5.769 6.432 6.538 4.640 6.350 2.967 10.875 4.832
   E-NLS-CRE-IV-AR1 2.521 2.335 1.047 1.779 1.000 1.257 1.259 1.170 1.196 1.000
Notes:  See Table A1 for details.

β/(1-γ)
 γ=0.2, β=0.8  γ=0.5, β=0.5  γ=0.8, β=0.2  γ=0.2, β=0.2  γ=0.8, β=0.8



Table 1.  Examples of Irregularly Spaced Longitudinal Surveys in Developed Countries
Country Survey Structure
Australia Australian Longitudinal Study on Women's Health 

(ALSWH)
Waves for different cohorts are separated by 2-4 years

Longitudinal Study of Australian Children (LSAC) Biennial from 2003-present

Longitudinal Survey of Immigrants to Australia Wave 1 covers first 6 months post-immigration, Wave 2 covers 
6-18 months post-immigration, Wave 3 covers 18-42 months 
post-immigration

Canada National Longitudinal Survey of Children and Youth 
(NLSCY)

Biennial from 1994-2009

France French Longitudinal Study of Children (ELFE) Individuals at birth, 2 months old, 10 months old, annual until 5 
years old, then every 2-3 years thereafter

Japan Nihon University Japanese Longitudinal Study of 
Aging (NUJLSOA)

Biennial for first three waves, Waves 3 and 4 separated by 3 
years

UK 1958 National Child Development Study (NCDS) Individuals at birth, 7 years old, 11 years old, 16 years old, 23 
years old, 33 years old, 42 years old, 46 years old, 50 years old, 
and 55 years old

1970 British Cohort Study (BCS70) Individuals at birth, 5 years old, 10 years old, 16 years old, 26 
years old, 30 years old, 34 years old, 38 years old, and 42 years 
old

Millennium Cohort Study (MCS) Individuals at birth, 9 months old, 3 years old, 5 years old, and 
7 years old

National Pupil Database (NPD) Annual data on all students attending state primary and 
secondary schools, but national achievement assessments are 
only for ages 7, 11, 14, and 16

USA Current Populaton Survey 4 consecutive months, 8 month gap, 4 consecutive months

Early Childhood Longitudinal Survey-Kindergarten 
Cohort (ECLS-K)

Fall & Spring Kindergarten, Fall & Spring 1st Grade, Spring 
3rd Grade, Spring 5th Grade, Spring 8th Grade 

Early Childhood Longitudinal Survey-Birth Cohort 
(ECLS-B)

Children at 9 months of age, 2 years old, 4 years old, Fall 
Kindergarten (either age 5 or 6)

Education Longitudinal Study of 2002 (ELS:2002) Tenth Grade, Twelfth Grade, 4 years post baseline, 10 years 
post baseline

General Social Survey (GSS) Biennial
Health and Retirement Study (HRS) Biennial
High School & Beyond (HS&B) 2 cohorts surveyed every two years for 6 years with the 

younger cohort also surveyed 12 years post baseline

High School Longitudinal Study of 2009 (HSLS:09) Fall 9th Grade, Spring 11th Grade, Spring 12th Grade, 6 years 
post baseline, 12 years post baseline

National Education Longitudinal Study of 1988 
(NELS:88)

8th Grade, 10th Grade, 12th Grade, 6 years post baseline, 12 
years post baseline

National Longitudinal Study of Adolescent Health 
(Add Health)

Waves 1 and 2 are separated by 1 year, Wave 3 is 6 years post 
baseline, Wave 4 is 13 years post baseline

National Longitudinal Survey of Youth 1979 
(NLSY79)

Annual from 1979-1994, biennial thereafter

Panel Study of Income Dynamics (PSID) Annual from 1968-1997, biennial thereafter
Second Longitudinal Study of Aging (LSOAII) Waves 1 and 2 are separated by 3 years, Waves 2 and 3 are 

separated by 2 years
Survey of Income and Program Participation Variable design, but 8 equally-spaced waves are administered 

over a 32 month window
Note:  As some of these surveys are on-going, the reported structure refers to the intended collection design.  See McKenzie (2001) 
for data examples from developing countries.



Table 2.  Hypothetical Values of ϕm.

γ 2 3 4
0.9 1 0.53 2.71
0.8 1 0.56 2.44
0.7 1 0.59 2.19
0.6 1 0.63 1.96
0.5 1 0.67 1.75
0.4 1 0.71 1.56
0.3 1 0.77 1.39
0.2 1 0.83 1.24
0.1 1 0.91 1.11
0 1 1 1

Note:  See text for details.

Period m



Table 3.  Requirements for Consistency as N→∞ with Irregularly Spaced Panel Data when γ, β ≠ 0.
Estimator γ β
POLS Never. x  is uncorrelated with α  and serially uncorrelated.
NLS α i = α for all i , x is strictly exogenous and serially uncorrelated, and 

ε  is serially uncorrelated.
α i = α for all i , x is strictly exogenous and serially uncorrelated, and 
ε  is serially uncorrelated.

NLS-IV
x  is uncorrelated with α , predetermined, and serially uncorrelated. x  is uncorrelated with α , strictly exogenous, and serially uncorrelated.

NLS-CRE-IV x  is strictly exogenous and serially uncorrelated. x  is strictly exogenous and serially uncorrelated.
FD Never. Never.
AH Never. Never.
FD-NLS α i = α for all i , x is strictly exogenous and serially uncorrelated, and 

ε  is serially uncorrelated.
α i = α for all i , x is strictly exogenous and serially uncorrelated, and 
ε  is serially uncorrelated.

FD-NLS-IV x  is uncorrelated with α , strictly exogenous, and serially uncorrelated, 
and ε is serially uncorrelated.

x  is uncorrelated with α , strictly exogenous, and serially uncorrelated, 
and ε is serially uncorrelated.

FD-NLS-CRE-IV x  is strictly exogenous and serially uncorrelated, and ε is serially 
uncorrelated.

x  is strictly exogenous and serially uncorrelated, and ε is serially 
uncorrelated.

AB Never. Never.
BB Never. Never.
QD-UCI  x  is strictly exogenous and serially uncorrelated, and ε is serially 

uncorrelated.
 x  is strictly exogenous and serially uncorrelated, and ε is serially 
uncorrelated.

QD-LS-MD  x  is strictly exogenous and serially uncorrelated, and ε is serially 
uncorrelated.

 x  is strictly exogenous and serially uncorrelated, and ε is serially 
uncorrelated.

QD-GMM  x  is strictly exogenous and serially uncorrelated, and ε is serially 
uncorrelated.

 x  is strictly exogenous and serially uncorrelated, and ε is serially 
uncorrelated.

E-NLS-IV T→∞, x is strictly exogenous and serially uncorrelated, and ε is 
serially uncorrelated.

T→∞, x is strictly exogenous and serially uncorrelated, and ε is 
serially uncorrelated.

E-NLS-CRE-IV T→∞, x is strictly exogenous and serially uncorrelated, and ε is 
serially uncorrelated.

T→∞, x is strictly exogenous and serially uncorrelated, and ε is 
serially uncorrelated.

E-NLS-IV-AR1 T→∞, x is strictly exogenous and follows an AR(1) process, and ε is 
serially uncorrelated.

T→∞, x is strictly exogenous and follows an AR(1) process, and ε is 
serially uncorrelated.

E-NLS-CRE-IV-AR1 T→∞, x is strictly exogenous and follows an AR(1) process, and ε is 
serially uncorrelated.

T→∞, x is strictly exogenous and follows an AR(1) process, and ε is 
serially uncorrelated.

Notes:  POLS = Pooled Ordinary Least Squares; NLS = Nonlinear Least Squares; CRE = Correlated Random Effects; IV = Instrumental Variables; FD = First-
Differencing; AB = Arellano-Bond; BB = Blundell-Bond; QD = Quasi-Differencing; UCI = Union of Confidence Intervals; MD = Distance Minimization; GMM = 
Generalized Method of Moments; E = Everaert; AR1 = First-Order Autoregressive.



Table 4.  Simulation Results: γ = 0.2, β = 0.8.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 0.406 0.401 0.456 0.454 0.545 0.022 0.018 0.065 0.065 0.047
   AB 0.358 0.397 0.381 0.435 0.511 0.024 0.017 0.072 0.068 0.055
   BB 0.477 0.505 0.503 0.544 0.525 0.019 0.014 0.074 0.071 0.064
   NLS-IV 0.110 0.802 0.127 0.271 0.272 0.013 0.219 0.034 0.359 0.358
   NLS-CRE-IV 0.110 0.136 0.126 0.230 0.290 0.011 0.012 0.033 0.031 0.037
   FD-NLS-IV 0.277 0.378 0.294 0.435 0.487 0.016 0.023 0.030 0.028 0.020
   FD-NLS-CRE-IV 0.285 0.311 0.295 0.273 0.295 0.016 0.020 0.030 0.031 0.025
   QD-LS-MD 0.226 0.337 0.319 1.353 0.106 0.017 0.019 0.034 0.020 0.026
   QD-GMM 0.115 0.118 0.122 0.119 0.049 0.013 0.014 0.034 0.032 0.032
   E-NLS-IV 0.419 0.378 0.803 0.827 0.072 0.016 0.013 0.053 0.054 0.034
   E-NLS-CRE-IV 0.152 0.474 0.176 0.649 0.240 0.012 0.015 0.043 0.045 0.037
   E-NLS-IV-L 0.352 0.305 0.246 0.812 0.530 0.015 0.048 0.067 0.145 0.052
   E-NLS-CRE-IV-L 0.606 0.784 0.572 0.776 0.507 0.012 0.018 0.051 0.050 0.043
   E-NLS-IV-A 0.097 1.106 0.335 1.833 1.391 0.029 0.040 0.013 0.028 0.095
   E-NLS-CRE-IV-A 0.339 0.608 0.195 0.505 0.229 0.032 0.031 0.013 0.021 0.008
   E-NLS-IV-C 0.090 0.917 0.294 2.131 1.539 0.085 0.165 0.096 0.294 0.264
   E-NLS-CRE-IV-C 0.407 0.644 0.206 0.517 0.220 0.068 0.052 0.057 0.020 0.054
   E-NLS-IV-AR1 0.970 2.003 0.571 0.772 0.763 0.012 0.043 0.059 0.090 0.057
   E-NLS-CRE-IV-AR1 0.194 0.401 0.215 0.531 0.177 0.011 0.015 0.036 0.046 0.036
Panel II.  Root Mean Squared Error
   AH 0.085 0.084 0.095 0.095 0.110 0.022 0.018 0.054 0.055 0.038
   AB 0.073 0.082 0.078 0.089 0.102 0.022 0.017 0.060 0.056 0.044
   BB 0.097 0.102 0.102 0.110 0.105 0.019 0.015 0.061 0.059 0.052
   NLS-IV 0.028 0.162 0.032 0.057 0.055 0.013 0.176 0.031 0.288 0.287
   NLS-CRE-IV 0.027 0.032 0.032 0.050 0.059 0.011 0.011 0.029 0.028 0.030
   FD-NLS-IV 0.057 0.077 0.061 0.088 0.098 0.016 0.021 0.027 0.026 0.017
   FD-NLS-CRE-IV 0.059 0.064 0.061 0.057 0.059 0.016 0.019 0.027 0.029 0.021
   QD-LS-MD 0.056 0.084 0.078 0.284 0.026 0.017 0.019 0.031 0.020 0.021
   QD-GMM 0.029 0.030 0.030 0.030 0.012 0.013 0.014 0.030 0.029 0.026
   E-NLS-IV 0.090 0.085 0.165 0.174 0.018 0.015 0.013 0.044 0.045 0.028
   E-NLS-CRE-IV 0.037 0.099 0.042 0.132 0.049 0.012 0.014 0.037 0.038 0.030
   E-NLS-IV-L 0.072 0.063 0.052 0.163 0.107 0.015 0.041 0.055 0.117 0.042
   E-NLS-CRE-IV-L 0.122 0.158 0.116 0.156 0.102 0.011 0.017 0.043 0.042 0.035
   E-NLS-IV-A 0.024 0.222 0.071 0.367 0.279 0.025 0.034 0.013 0.025 0.076
   E-NLS-CRE-IV-A 0.070 0.123 0.044 0.103 0.046 0.028 0.027 0.013 0.020 0.008
   E-NLS-IV-C 0.023 0.186 0.063 0.427 0.308 0.070 0.133 0.078 0.236 0.212
   E-NLS-CRE-IV-C 0.083 0.130 0.046 0.106 0.044 0.055 0.043 0.049 0.020 0.044
   E-NLS-IV-AR1 0.201 0.405 0.118 0.154 0.153 0.012 0.037 0.049 0.073 0.046
   E-NLS-CRE-IV-AR1 0.046 0.085 0.050 0.109 0.036 0.011 0.015 0.032 0.038 0.029
Notes:  Results obtaining using 250 simulations with N=500 and M=6 (DGP1-DGP4) or M=36 (DGP5).  DGP1: Mean Corr(Xt,Xt-1)=0.00; Mean 
Corr(Xt,α)=0.00.  DGP2: Mean Corr(Xt,Xt-1)=-0.01; Mean Corr(Xt,α)=0.20.  DGP3: Mean Corr(Xt,Xt-1)=0.30; Mean Corr(Xt,α)=0.00.  DGP4 & DGP5: 
Mean Corr(Xt,Xt-1)=0.38; Mean Corr(Xt,α)=0.35.  Gray shading denotes lowest value.  Green shading denotes values within 1.5 times the lowest value.  See 
text for further details.

γ β



Table 5.  Simulation Results: γ = 0.5, β = 0.5.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 0.356 0.360 0.347 0.346 0.478 0.049 0.035 0.177 0.177 0.121
   AB 0.310 0.335 0.303 0.332 0.451 0.057 0.036 0.192 0.185 0.143
   BB 0.455 0.480 0.451 0.485 0.472 0.038 0.022 0.191 0.182 0.165
   NLS-IV 0.049 0.272 0.058 0.395 0.401 0.016 0.110 0.089 0.235 0.231
   NLS-CRE-IV 0.050 0.062 0.059 0.078 0.104 0.016 0.017 0.080 0.068 0.083
   FD-NLS-IV 0.441 0.511 0.460 0.550 0.553 0.056 0.077 0.045 0.040 0.024
   FD-NLS-CRE-IV 0.451 0.502 0.464 0.501 0.485 0.057 0.076 0.044 0.045 0.031
   QD-LS-MD 0.091 0.097 0.124 0.201 0.041 0.024 0.026 0.066 0.057 0.045
   QD-GMM 0.041 0.056 0.052 0.037 0.020 0.019 0.023 0.076 0.069 0.072
   E-NLS-IV 0.201 0.198 0.258 0.268 0.058 0.032 0.021 0.143 0.145 0.092
   E-NLS-CRE-IV 0.140 0.091 0.163 0.282 0.049 0.020 0.019 0.103 0.103 0.084
   E-NLS-IV-L 0.498 0.403 0.447 0.261 0.288 0.017 0.016 0.146 0.195 0.087
   E-NLS-CRE-IV-L 0.594 0.668 0.555 0.647 0.460 0.025 0.044 0.117 0.123 0.079
   E-NLS-IV-A 0.219 0.085 0.104 0.137 0.035 0.095 0.104 0.021 0.018 0.089
   E-NLS-CRE-IV-A 0.341 0.463 0.219 0.358 0.210 0.107 0.102 0.038 0.020 0.067
   E-NLS-IV-C 0.276 0.127 0.073 0.266 0.142 0.207 0.247 0.207 0.291 0.303
   E-NLS-CRE-IV-C 0.395 0.528 0.180 0.400 0.151 0.199 0.171 0.204 0.105 0.222
   E-NLS-IV-AR1 0.347 0.820 0.438 0.750 0.499 0.025 0.033 0.128 0.161 0.079
   E-NLS-CRE-IV-AR1 0.171 0.063 0.154 0.193 0.043 0.016 0.021 0.090 0.104 0.086
Panel II.  Root Mean Squared Error
   AH 0.185 0.186 0.182 0.182 0.240 0.029 0.022 0.090 0.090 0.061
   AB 0.157 0.169 0.153 0.168 0.226 0.031 0.022 0.097 0.094 0.072
   BB 0.229 0.241 0.227 0.244 0.236 0.023 0.014 0.097 0.093 0.083
   NLS-IV 0.030 0.138 0.036 0.200 0.201 0.010 0.056 0.046 0.119 0.116
   NLS-CRE-IV 0.030 0.037 0.037 0.049 0.054 0.010 0.011 0.042 0.036 0.042
   FD-NLS-IV 0.221 0.256 0.231 0.275 0.276 0.030 0.040 0.026 0.024 0.013
   FD-NLS-CRE-IV 0.226 0.251 0.233 0.251 0.243 0.031 0.040 0.026 0.026 0.016
   QD-LS-MD 0.058 0.060 0.074 0.111 0.024 0.015 0.016 0.036 0.032 0.023
   QD-GMM 0.026 0.035 0.031 0.024 0.013 0.012 0.014 0.041 0.037 0.037
   E-NLS-IV 0.103 0.102 0.131 0.136 0.030 0.018 0.013 0.072 0.074 0.046
   E-NLS-CRE-IV 0.075 0.057 0.086 0.150 0.026 0.013 0.012 0.053 0.053 0.042
   E-NLS-IV-L 0.250 0.202 0.224 0.131 0.144 0.010 0.010 0.074 0.098 0.044
   E-NLS-CRE-IV-L 0.298 0.334 0.278 0.324 0.230 0.015 0.024 0.060 0.063 0.040
   E-NLS-IV-A 0.111 0.047 0.055 0.070 0.019 0.048 0.053 0.013 0.012 0.045
   E-NLS-CRE-IV-A 0.172 0.233 0.112 0.181 0.105 0.054 0.052 0.022 0.012 0.034
   E-NLS-IV-C 0.140 0.069 0.044 0.135 0.071 0.104 0.124 0.105 0.146 0.151
   E-NLS-CRE-IV-C 0.199 0.265 0.097 0.203 0.076 0.100 0.086 0.104 0.055 0.111
   E-NLS-IV-AR1 0.233 0.435 0.221 0.375 0.250 0.015 0.036 0.065 0.082 0.040
   E-NLS-CRE-IV-AR1 0.090 0.040 0.083 0.104 0.023 0.010 0.013 0.047 0.053 0.043

γ β

Notes:  Green shading denotes values within 1.5 times the lowest value.  See Table 4 and text for further details.



Table 6.  Simulation Results: γ = 0.8, β = 0.2.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 0.484 0.453 1.408 1.251 0.218 0.211 0.184 0.809 0.716 0.278
   AB 0.053 0.057 0.050 0.055 0.270 0.140 0.122 0.304 0.301 0.186
   BB 0.230 0.241 0.225 0.239 0.282 0.106 0.091 0.273 0.268 0.214
   NLS-IV 0.062 0.104 0.082 0.194 0.193 0.069 0.122 0.159 0.219 0.206
   NLS-CRE-IV 0.076 0.063 0.078 0.076 0.081 0.073 0.069 0.150 0.132 0.122
   FD-NLS-IV 0.740 0.757 0.743 0.764 0.762 0.221 0.239 0.136 0.137 0.134
   FD-NLS-CRE-IV 0.740 0.753 0.742 0.751 0.746 0.221 0.238 0.134 0.131 0.129
   QD-LS-MD 0.143 0.143 0.106 0.107 0.037 0.127 0.126 0.152 0.147 0.054
   QD-GMM 0.022 0.025 0.022 0.023 0.009 0.081 0.077 0.128 0.123 0.083
   E-NLS-IV 0.020 0.021 0.022 0.024 0.019 0.081 0.072 0.225 0.232 0.157
   E-NLS-CRE-IV 0.020 0.017 0.022 0.016 0.008 0.071 0.068 0.158 0.140 0.135
   E-NLS-IV-L 0.022 0.028 0.019 0.028 0.007 0.645 0.519 0.519 0.146 0.346
   E-NLS-CRE-IV-L 0.020 0.028 0.018 0.028 0.013 0.690 0.685 0.599 0.558 0.579
   E-NLS-IV-A 0.015 0.014 0.014 0.015 0.010 0.411 0.309 0.259 0.101 0.158
   E-NLS-CRE-IV-A 0.015 0.017 0.015 0.017 0.006 0.444 0.452 0.333 0.314 0.390
   E-NLS-IV-C 0.017 0.019 0.020 0.026 0.020 0.589 0.539 0.505 0.333 0.411
   E-NLS-CRE-IV-C 0.017 0.015 0.020 0.016 0.006 0.612 0.617 0.548 0.542 0.549
   E-NLS-IV-AR1 0.020 0.021 0.017 0.018 0.006 0.379 0.740 0.429 0.780 0.711
   E-NLS-CRE-IV-AR1 0.020 0.018 0.020 0.016 0.006 0.070 0.069 0.161 0.148 0.139
Panel II.  Root Mean Squared Error
   AH 0.518 0.470 3.378 2.227 0.221 0.059 0.050 0.435 0.259 0.060
   AB 0.052 0.056 0.050 0.054 0.216 0.034 0.030 0.068 0.068 0.039
   BB 0.188 0.197 0.184 0.195 0.226 0.027 0.024 0.063 0.061 0.045
   NLS-IV 0.066 0.089 0.076 0.157 0.155 0.017 0.029 0.037 0.050 0.043
   NLS-CRE-IV 0.078 0.063 0.077 0.074 0.069 0.019 0.018 0.035 0.032 0.026
   FD-NLS-IV 0.592 0.606 0.594 0.611 0.610 0.048 0.050 0.033 0.033 0.029
   FD-NLS-CRE-IV 0.592 0.603 0.593 0.601 0.597 0.048 0.050 0.032 0.031 0.028
   QD-LS-MD 0.146 0.145 0.105 0.104 0.037 0.031 0.030 0.038 0.037 0.014
   QD-GMM 0.022 0.025 0.022 0.022 0.009 0.020 0.019 0.032 0.031 0.019
   E-NLS-IV 0.019 0.020 0.021 0.023 0.016 0.020 0.018 0.051 0.052 0.033
   E-NLS-CRE-IV 0.019 0.017 0.020 0.016 0.007 0.017 0.017 0.037 0.033 0.028
   E-NLS-IV-L 0.022 0.027 0.019 0.027 0.007 0.130 0.105 0.106 0.036 0.070
   E-NLS-CRE-IV-L 0.020 0.027 0.018 0.028 0.011 0.139 0.138 0.121 0.114 0.116
   E-NLS-IV-A 0.015 0.014 0.014 0.015 0.009 0.083 0.063 0.055 0.025 0.032
   E-NLS-CRE-IV-A 0.015 0.017 0.015 0.016 0.006 0.090 0.091 0.069 0.065 0.078
   E-NLS-IV-C 0.017 0.019 0.019 0.024 0.017 0.118 0.108 0.102 0.068 0.082
   E-NLS-CRE-IV-C 0.017 0.015 0.019 0.015 0.006 0.123 0.124 0.110 0.109 0.110
   E-NLS-IV-AR1 0.020 0.020 0.017 0.018 0.006 0.096 0.160 0.090 0.160 0.142
   E-NLS-CRE-IV-AR1 0.020 0.018 0.019 0.016 0.006 0.018 0.017 0.038 0.035 0.029

βγ

Notes:  Green shading denotes values within 1.5 times the lowest value.   See Table 4 and text for further details.



Table 7.  Simulation Results: γ = 0.2, β = 0.2.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 0.406 0.401 0.456 0.455 0.546 0.022 0.018 0.065 0.065 0.047
   AB 0.358 0.366 0.381 0.393 0.505 0.024 0.018 0.072 0.071 0.055
   BB 0.477 0.484 0.503 0.514 0.523 0.019 0.015 0.074 0.073 0.064
   NLS-IV 0.110 0.314 0.127 0.229 0.241 0.013 0.066 0.034 0.141 0.139
   NLS-CRE-IV 0.110 0.144 0.126 0.115 0.110 0.011 0.011 0.033 0.032 0.034
   FD-NLS-IV 0.277 0.311 0.294 0.339 0.341 0.016 0.020 0.030 0.029 0.024
   FD-NLS-CRE-IV 0.285 0.310 0.295 0.313 0.304 0.016 0.020 0.030 0.030 0.025
   QD-LS-MD 0.226 0.228 0.319 0.349 0.075 0.017 0.017 0.034 0.034 0.030
   QD-GMM 0.115 0.114 0.122 0.117 0.050 0.013 0.014 0.034 0.033 0.032
   E-NLS-IV 0.419 0.364 0.803 0.824 0.077 0.016 0.012 0.053 0.053 0.033
   E-NLS-CRE-IV 0.152 0.157 0.176 0.222 0.078 0.012 0.012 0.043 0.045 0.036
   E-NLS-IV-L 0.352 0.244 0.246 0.072 0.266 0.015 0.014 0.067 0.077 0.039
   E-NLS-CRE-IV-L 0.606 0.687 0.572 0.682 0.498 0.012 0.015 0.051 0.051 0.043
   E-NLS-IV-A 0.097 0.207 0.335 0.705 0.170 0.029 0.034 0.013 0.018 0.035
   E-NLS-CRE-IV-A 0.339 0.473 0.195 0.357 0.217 0.032 0.034 0.013 0.015 0.009
   E-NLS-IV-C 0.090 0.102 0.294 0.709 0.212 0.085 0.098 0.096 0.143 0.112
   E-NLS-CRE-IV-C 0.407 0.530 0.206 0.373 0.213 0.068 0.062 0.057 0.034 0.056
   E-NLS-IV-AR1 0.927 1.200 0.571 0.791 0.468 0.012 0.011 0.059 0.067 0.042
   E-NLS-CRE-IV-AR1 0.194 0.125 0.215 0.153 0.036 0.011 0.012 0.036 0.040 0.034
Panel II.  Root Mean Squared Error
   AH 0.085 0.084 0.095 0.095 0.110 0.005 0.005 0.014 0.014 0.009
   AB 0.073 0.075 0.078 0.081 0.101 0.006 0.004 0.015 0.015 0.011
   BB 0.097 0.098 0.102 0.104 0.105 0.005 0.004 0.015 0.015 0.013
   NLS-IV 0.028 0.068 0.032 0.053 0.050 0.003 0.014 0.008 0.028 0.028
   NLS-CRE-IV 0.027 0.035 0.032 0.029 0.024 0.003 0.003 0.007 0.007 0.007
   FD-NLS-IV 0.057 0.064 0.061 0.069 0.069 0.004 0.005 0.007 0.007 0.005
   FD-NLS-CRE-IV 0.059 0.064 0.061 0.064 0.061 0.004 0.005 0.007 0.007 0.005
   QD-LS-MD 0.056 0.056 0.078 0.086 0.018 0.004 0.004 0.008 0.008 0.006
   QD-GMM 0.029 0.029 0.030 0.029 0.013 0.003 0.003 0.008 0.008 0.007
   E-NLS-IV 0.090 0.080 0.165 0.170 0.018 0.004 0.003 0.011 0.011 0.007
   E-NLS-CRE-IV 0.037 0.040 0.042 0.053 0.018 0.003 0.003 0.009 0.009 0.007
   E-NLS-IV-L 0.072 0.051 0.052 0.018 0.053 0.004 0.004 0.014 0.016 0.008
   E-NLS-CRE-IV-L 0.122 0.138 0.116 0.137 0.100 0.003 0.004 0.011 0.011 0.009
   E-NLS-IV-A 0.024 0.046 0.071 0.143 0.035 0.006 0.007 0.003 0.004 0.007
   E-NLS-CRE-IV-A 0.070 0.097 0.044 0.075 0.044 0.007 0.007 0.003 0.004 0.002
   E-NLS-IV-C 0.023 0.026 0.063 0.145 0.044 0.017 0.020 0.020 0.029 0.022
   E-NLS-CRE-IV-C 0.083 0.108 0.046 0.078 0.043 0.014 0.013 0.012 0.008 0.011
   E-NLS-IV-AR1 0.194 0.241 0.118 0.160 0.094 0.003 0.003 0.012 0.014 0.009
   E-NLS-CRE-IV-AR1 0.046 0.032 0.050 0.039 0.009 0.003 0.003 0.008 0.009 0.007
Notes:  Green shading denotes values within 1.5 times the lowest value.  See Table 4 and text for further details.

γ β



Table 8.  Simulation Results: γ = 0.8, β = 0.8.
Estimator

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  Mean Absolute Percentage Error
   AH 0.484 0.477 1.408 2.607 0.219 0.211 0.195 0.809 1.170 0.280
   AB 0.053 0.072 0.050 0.078 0.275 0.140 0.119 0.304 0.291 0.184
   BB 0.230 0.270 0.225 0.280 0.285 0.106 0.088 0.273 0.257 0.219
   NLS-IV 0.062 0.184 0.082 0.228 0.228 0.069 0.128 0.159 0.226 0.232
   NLS-CRE-IV 0.076 0.056 0.078 0.123 0.045 0.073 0.094 0.150 0.132 0.086
   FD-NLS-IV 0.740 0.788 0.743 0.800 0.821 0.221 0.244 0.136 0.139 0.143
   FD-NLS-CRE-IV 0.740 0.754 0.742 0.729 0.735 0.221 0.239 0.134 0.128 0.127
   QD-LS-MD 0.143 0.135 0.106 0.134 0.037 0.127 0.122 0.152 0.188 0.181
   QD-GMM 0.022 0.036 0.022 0.031 0.013 0.081 0.080 0.128 0.102 0.056
   E-NLS-IV 0.020 0.025 0.022 0.028 0.021 0.081 0.074 0.225 0.250 0.161
   E-NLS-CRE-IV 0.020 0.017 0.022 0.019 0.005 0.071 0.093 0.158 0.119 0.074
   E-NLS-IV-L 0.022 0.047 0.019 0.045 0.019 0.645 0.111 0.519 1.381 0.767
   E-NLS-CRE-IV-L 0.020 0.061 0.018 0.056 0.018 0.690 0.626 0.599 0.487 0.566
   E-NLS-IV-A 0.015 0.024 0.014 0.051 0.038 0.411 0.190 0.259 1.292 0.830
   E-NLS-CRE-IV-A 0.015 0.033 0.015 0.027 0.009 0.444 0.431 0.333 0.289 0.383
   E-NLS-IV-C 0.017 0.036 0.020 0.061 0.044 0.589 0.271 0.505 0.410 0.228
   E-NLS-CRE-IV-C 0.017 0.021 0.020 0.019 0.005 0.612 0.608 0.548 0.533 0.546
   E-NLS-IV-AR1 0.025 0.033 0.017 0.058 0.021 0.362 1.244 0.429 0.661 0.740
   E-NLS-CRE-IV-AR1 0.020 0.018 0.020 0.024 0.006 0.070 0.090 0.161 0.087 0.044
Panel II.  Root Mean Squared Error
   AH 0.518 0.532 3.378 12.682 0.224 0.235 0.225 1.738 4.405 0.244
   AB 0.052 0.069 0.050 0.074 0.220 0.136 0.117 0.273 0.264 0.156
   BB 0.188 0.220 0.184 0.228 0.228 0.108 0.091 0.250 0.237 0.183
   NLS-IV 0.066 0.148 0.076 0.182 0.183 0.070 0.124 0.148 0.208 0.192
   NLS-CRE-IV 0.078 0.059 0.077 0.155 0.052 0.076 0.093 0.142 0.125 0.078
   FD-NLS-IV 0.592 0.630 0.594 0.640 0.657 0.190 0.206 0.130 0.133 0.121
   FD-NLS-CRE-IV 0.592 0.604 0.593 0.583 0.588 0.190 0.202 0.129 0.124 0.109
   QD-LS-MD 0.146 0.136 0.105 0.124 0.037 0.124 0.117 0.152 0.176 0.151
   QD-GMM 0.022 0.035 0.022 0.030 0.013 0.081 0.081 0.129 0.102 0.055
   E-NLS-IV 0.019 0.023 0.021 0.025 0.017 0.080 0.073 0.204 0.222 0.134
   E-NLS-CRE-IV 0.019 0.017 0.020 0.020 0.005 0.070 0.091 0.149 0.115 0.067
   E-NLS-IV-L 0.022 0.041 0.019 0.038 0.016 0.521 0.108 0.425 1.112 0.617
   E-NLS-CRE-IV-L 0.020 0.056 0.018 0.052 0.015 0.555 0.507 0.486 0.401 0.453
   E-NLS-IV-A 0.015 0.022 0.014 0.042 0.031 0.334 0.165 0.219 1.038 0.666
   E-NLS-CRE-IV-A 0.015 0.031 0.015 0.026 0.008 0.359 0.349 0.275 0.242 0.307
   E-NLS-IV-C 0.017 0.031 0.019 0.050 0.036 0.473 0.221 0.407 0.335 0.187
   E-NLS-CRE-IV-C 0.017 0.021 0.019 0.019 0.005 0.491 0.488 0.441 0.429 0.437
   E-NLS-IV-AR1 0.059 0.030 0.017 0.058 0.018 0.368 0.998 0.361 0.530 0.592
   E-NLS-CRE-IV-AR1 0.020 0.018 0.019 0.024 0.006 0.070 0.089 0.150 0.089 0.044

β

Notes:  Green shading denotes values within 1.5 times the lowest value.   See Table 4 and text for further details.

γ



Table 9.  Simulation Results for QD-UCI.

DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
Panel I.  γ = 0.2, β = 0.8
   Coverage 0.400 0.040 0.408 0.004 0.000 0.900 0.784 0.548 0.608 0.120
   Mean Width 0.069 0.062 0.073 0.065 0.023 0.048 0.048 0.052 0.052 0.020

Panel II.  γ = 0.5, β = 0.5
   Coverage 0.000 0.000 0.000 0.000 0.000 0.664 0.264 0.524 0.588 0.084
   Mean Width 0.088 0.083 0.092 0.085 0.030 0.043 0.043 0.049 0.050 0.019

Panel III.  γ = 0.8, β = 0.2
   Coverage 0.000 0.000 0.000 0.000 0.000 0.580 0.504 0.864 0.888 0.584
   Mean Width 0.161 0.168 0.163 0.171 0.065 0.070 0.068 0.089 0.092 0.035

Panel IV.  γ = 0.2, β = 0.2
   Coverage 0.400 0.224 0.408 0.188 0.000 0.900 0.820 0.548 0.568 0.064
   Mean Width 0.069 0.067 0.073 0.070 0.026 0.012 0.012 0.013 0.013 0.005

Panel V.  γ = 0.8, β = 0.8
   Coverage 0.000 0.000 0.000 0.000 0.000 0.580 0.488 0.864 0.892 0.340
   Mean Width 0.161 0.163 0.163 0.168 0.062 0.278 0.283 0.356 0.377 0.143

γ β

Notes:  Coverage rate refers to the fraction of simulations where the 95% confidence interval includes the true value.  Mean width is the average confidence interval width.  See 
Table 4 and text for further details.



Table 10.  Simulation Results: Long-run Coefficient.
Estimator

DGP2 DGP4 DGP2 DGP4 DGP2 DGP4 DGP2 DGP4 DGP2 DGP4
Panel I.  Mean Absolute Percentage Error
   AH 0.079 0.048 0.237 0.131 2.158 4.129 0.079 0.048 2.565 2.529
   AB 0.080 0.040 0.224 0.109 0.171 0.232 0.071 0.031 0.197 0.220
   BB 0.108 0.057 0.319 0.203 0.467 0.349 0.103 0.049 0.501 0.404
   NLS-IV 0.527 0.459 0.532 1.057 1.058 8.163 0.159 0.211 3.457 19.798
   NLS-CRE-IV 0.035 0.028 0.064 0.050 0.316 0.730 0.040 0.036 0.230 0.341
   FD-NLS-IV 0.105 0.074 0.389 0.330 0.811 0.781 0.089 0.053 0.818 0.789
   FD-NLS-CRE-IV 0.088 0.037 0.385 0.304 0.810 0.775 0.088 0.046 0.811 0.769
   QD-LS-MD 0.111 0.565 0.118 0.341 0.890 1.016 0.069 0.127 1.144 1.277
   QD-GMM 0.037 0.031 0.066 0.068 0.126 0.160 0.035 0.045 0.158 0.134
   E-NLS-IV 0.117 0.338 0.273 0.570 0.139 0.361 0.111 0.332 0.161 0.406
   E-NLS-CRE-IV 0.116 0.100 0.091 0.136 0.100 0.193 0.043 0.033 0.119 0.152
   E-NLS-IV-L 0.136 0.438 0.287 0.054 0.564 0.209 0.048 0.068 0.098 1.018
   E-NLS-CRE-IV-L 0.177 0.120 0.426 0.318 0.713 0.599 0.157 0.102 0.701 0.582
   E-NLS-IV-A 0.329 0.799 0.173 0.163 0.308 0.145 0.028 0.197 0.320 1.883
   E-NLS-CRE-IV-A 0.159 0.095 0.386 0.259 0.468 0.330 0.136 0.072 0.490 0.347
   E-NLS-IV-C 0.085 0.514 0.330 0.043 0.506 0.253 0.082 0.043 0.147 0.878
   E-NLS-CRE-IV-C 0.183 0.127 0.457 0.361 0.608 0.530 0.172 0.116 0.627 0.548
   E-NLS-IV-AR1 0.303 0.086 0.453 0.336 0.734 0.787 0.229 0.109 1.285 0.722
   E-NLS-CRE-IV-AR1 0.101 0.076 0.069 0.079 0.099 0.184 0.036 0.036 0.115 0.119
Panel II.  Root Mean Squared Error
   AH 0.087 0.058 0.248 0.149 6.394 23.439 0.022 0.014 31.474 42.436
   AB 0.084 0.048 0.228 0.118 0.225 0.324 0.019 0.009 0.995 1.265
   BB 0.111 0.063 0.320 0.206 0.473 0.365 0.026 0.014 2.025 1.665
   NLS-IV 0.530 0.460 0.543 1.071 1.228 21.512 0.041 0.054 14.363 287.068
   NLS-CRE-IV 0.042 0.035 0.081 0.063 0.450 1.486 0.012 0.011 1.178 1.851
   FD-NLS-IV 0.108 0.078 0.389 0.331 0.811 0.781 0.023 0.014 3.272 3.158
   FD-NLS-CRE-IV 0.092 0.043 0.385 0.305 0.810 0.776 0.023 0.013 3.243 3.078
   QD-LS-MD 0.148 0.617 0.152 0.388 1.332 1.560 0.022 0.040 6.511 6.564
   QD-GMM 0.045 0.038 0.080 0.082 0.154 0.201 0.011 0.014 0.753 0.655
   E-NLS-IV 0.134 0.357 0.285 0.577 0.168 0.399 0.031 0.086 0.772 1.773
   E-NLS-CRE-IV 0.120 0.103 0.110 0.150 0.124 0.229 0.013 0.010 0.579 0.720
   E-NLS-IV-L 0.141 0.440 0.288 0.061 0.568 0.228 0.013 0.018 0.474 4.107
   E-NLS-CRE-IV-L 0.178 0.122 0.426 0.319 0.716 0.605 0.040 0.026 2.813 2.348
   E-NLS-IV-A 0.333 0.802 0.176 0.169 0.317 0.174 0.009 0.050 1.367 7.587
   E-NLS-CRE-IV-A 0.160 0.097 0.386 0.260 0.473 0.341 0.034 0.019 1.977 1.427
   E-NLS-IV-C 0.092 0.518 0.331 0.052 0.509 0.267 0.021 0.012 0.663 3.579
   E-NLS-CRE-IV-C 0.184 0.128 0.457 0.361 0.610 0.534 0.043 0.029 2.514 2.204
   E-NLS-IV-AR1 0.305 0.088 0.463 0.337 0.802 0.807 0.057 0.028 5.157 2.892
   E-NLS-CRE-IV-AR1 0.107 0.082 0.084 0.093 0.123 0.219 0.011 0.011 0.567 0.599

β/(1-γ)
 γ=0.2, β=0.8  γ=0.5, β=0.5  γ=0.8, β=0.2  γ=0.2, β=0.2  γ=0.8, β=0.8

Notes:  Green shading denotes values within 1.5 times the lowest value.   See Table 4 and text for further details.



Table 11.  Simulation Results: Pitman's Nearness Measure.

γ β β/(1-γ) γ β β/(1-γ) γ β β/(1-γ)
I.  γ = 0.2, β = 0.8
  DGP1 0.784 0.416 0.728 0.624 0.436 0.612 0.732 0.420 0.708
  DGP2 0.040 0.552 0.080 0.996 0.536 0.980 0.972 0.536 0.960
  DGP3 0.784 0.036 0.768 0.652 0.828 0.764 0.724 0.596 0.868
  DGP4 0.016 0.492 0.024 1.000 0.896 0.952 1.000 0.880 0.844
  DGP5 0.000 0.020 0.060 1.000 0.844 0.368 0.980 0.788 0.176
II.  γ = 0.5, β = 0.5
  DGP1 0.908 0.288 0.860 0.900 0.572 0.920 0.948 0.428 0.944
  DGP2 0.240 0.700 0.204 0.712 0.392 0.632 0.568 0.444 0.540
  DGP3 0.324 0.036 0.200 0.972 0.948 0.992 0.956 0.756 0.980
  DGP4 0.004 0.520 0.060 0.992 0.976 0.772 0.960 0.976 0.568
  DGP5 0.136 0.980 0.948 0.824 0.908 0.000 0.792 0.932 0.008
III.  γ = 0.8, β = 0.2
  DGP1 0.560 0.464 0.444 0.472 0.484 0.504 0.488 0.472 0.492
  DGP2 0.596 0.520 0.500 0.372 0.468 0.416 0.376 0.496 0.396
  DGP3 0.276 0.528 0.384 0.528 0.660 0.668 0.492 0.640 0.640
  DGP4 0.404 0.604 0.400 0.388 0.604 0.580 0.368 0.628 0.544
  DGP5 0.152 0.952 0.016 0.476 0.912 0.860 0.368 0.920 0.832
IV.  γ = 0.2, β = 0.2
  DGP1 0.784 0.416 0.728 0.624 0.436 0.612 0.732 0.420 0.708
  DGP2 0.344 0.608 0.340 0.608 0.404 0.588 0.532 0.436 0.504
  DGP3 0.784 0.036 0.768 0.652 0.828 0.764 0.724 0.596 0.868
  DGP4 0.168 0.084 0.552 0.740 0.888 0.380 0.604 0.732 0.388
  DGP5 0.172 0.000 0.988 0.708 0.772 0.080 0.372 0.680 0.424
V.  γ = 0.8, β = 0.8
  DGP1 0.560 0.464 0.444 0.472 0.484 0.504 0.488 0.472 0.492
  DGP2 0.500 0.440 0.400 0.252 0.620 0.360 0.264 0.584 0.316
  DGP3 0.276 0.528 0.384 0.528 0.660 0.668 0.492 0.640 0.640
  DGP4 0.732 0.232 0.156 0.336 0.608 0.568 0.396 0.448 0.424
  DGP5 0.596 0.088 0.076 0.208 0.636 0.640 0.216 0.444 0.500

QD-GMM vs. E-NLS-CRE-IV QD-GMM vs. E-NLS-CRE-IV-AR1E-NLS-CRE-IV vs. E-NLS-CRE-IV-AR1

Notes: Figures represent the empirical probablity that the first estimator listed in the title of each panel is closer in absolute value to the true parameter than the second estimator.  Figures greater than 0.5 are shaded.  See 
Table 4 and text for further details.



Table 12.  Determinants of Math Achievement.
 

γ 0.224 0.326 * 0.314 * 0.497 * 0.802 * 0.798 *
(0.213) (0.019) (0.014) (0.021) (0.008) (0.008)

Teacher Experience 0.142 0.130 0.102 0.105 -0.044 0.050
  (1 = 1 years or less) (0.107) (0.130) (0.129) (0.100) (0.169) (0.136)
Teacher Experience 0.110 * 0.114 ‡ 0.102 ‡ 0.124 * 0.032 † 0.136
  (1 = 1.5-10 years) (0.052) (0.061) (0.060) (0.046) (0.072) (0.067)
Teacher Education 0.008 0.000 0.001 0.008 0.013 0.012
  (1 = MA or higher) (0.009) (0.010) (0.010) (0.009) (0.014) (0.014)
Teacher Elementary 0.042 ‡ 0.036 0.037 0.046 † 0.014 0.042
  Certification (1 = Yes) (0.022) (0.026) (0.026) (0.020) (0.030) (0.030)
Certification x Teacher -0.025 -0.021 -0.015 -0.002 0.024 0.016
  Experience (1 years or less) (0.050) (0.061) (0.061) (0.046) (0.074) (0.068)
Certification x Teacher -0.091 * -0.097 * -0.090 * -0.079 * -0.033 -0.074 ‡
  Experience (1.5-10 years) (0.033) (0.034) (0.034) (0.027) (0.041) (0.041)
Class Size 0.001 0.000 0.001 0.001 -0.001 0.000

(0.002) (0.002) (0.002) (0.001) (0.002) (0.002)
Class Size x Teacher -0.007 -0.007 -0.006 -0.006 -0.001 -0.004
  Experience (1 year or less) (0.005) (0.006) (0.006) (0.004) (0.007) (0.005)
Class Size x Teacher 0.000 0.000 0.000 -0.002 0.000 -0.002
  Experience (1.5-10 years) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
Class Behavior 0.095 † 0.114 † 0.119 † 0.079 † 0.079 0.043
  (1 = Well or Exceptional) (0.048) (0.051) (0.051) (0.038) (0.062) (0.055)
Class Size x Class Behavior -0.003 -0.003 -0.004 -0.003 -0.003 -0.001
  (Well or Exceptional) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
Class Size x Class Behavior 0.006 * 0.006 * 0.006 * 0.006 * 0.005 ‡ 0.005 ‡
  (Well or Exceptional) x (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
  Teacher Experience
  (1 years of Less)
Class Size x Class Behavior -0.001 -0.001 -0.001 0.000 0.000 0.000
  (Well or Exceptional) x (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
  Teacher Experience
  (1.5-10 years)

Notes: ‡ p<0.10, † p<0.05, and * p<0.01. Data from the ECLS-K. Heteroskedasticity-robust standard errors in parentheses. Number of
observations = 29,855 (5,977 students over five time periods). γ is the coefficient on the lagged dependent variable. Abbreviation: GT = Gifted and
Talented. Other covariates included: number of children's books in the home, household size, dummy variables indicating 2-parent or 1-parent
households, socioeconomic status, dummy vairable indicating if teacher is white, dummy variable indicating computer in the home, and dummy
variables if socioeconomic status, children's books, household size, teacher experience, teacher experience in grade, teacher certification status, class
size, class behavior, and number of GT or boys in class are missing. Excluded instruments used by AH and QD-GMM: number of children's books
in the home, socioeconomic status, class behavior, and dummy variables if these are missing.  See text for further details.

Math z-Score
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Table 13.  Determinants of Reading Achievement.

γ 0.775 0.571 * 0.520 * 0.709 * 0.834 * 0.829 *
(0.564) (0.017) (0.014) (0.017) (0.008) (0.008)

Teacher Experience -0.149 -0.135 -0.138 -0.152 -0.162 -0.151
  (1 = 1 years or less) (0.152) (0.161) (0.156) (0.117) (0.174) (0.146)
Teacher Experience -0.035 -0.048 -0.048 -0.004 0.000 0.103
  (1 = 1.5-10 years) (0.072) (0.072) (0.070) (0.056) (0.074) (0.070)
Teacher Education -0.006 -0.007 -0.008 -0.005 -0.006 -0.004
  (1 = MA or higher) (0.014) (0.013) (0.013) (0.011) (0.014) (0.016)
Teacher Elementary 0.084 ‡ 0.066 † 0.063 † 0.059 * 0.019 0.044 ‡
  Certification (1 = Yes) (0.050) (0.031) (0.030) (0.023) (0.031) (0.026)
Certification x Teacher 0.000 0.027 0.030 0.035 0.053 0.034
  Experience (1 years or less) (0.084) (0.078) (0.076) (0.056) (0.081) (0.084)
Certification x Teacher -0.042 -0.032 -0.030 -0.011 0.010 -0.026
  Experience (1.5-10 years) (0.051) (0.041) (0.040) (0.031) (0.043) (0.044)
Class Size -0.003 -0.004 -0.004 -0.002 -0.001 0.003

(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)
Class Size x Teacher 0.003 0.001 0.001 0.002 0.001 0.003
  Experience (1 year or less) (0.007) (0.007) (0.006) (0.005) (0.007) (0.006)
Class Size x Teacher 0.004 0.004 0.004 0.002 -0.001 -0.003
  Experience (1.5-10 years) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003)
Class Behavior 0.050 0.039 0.037 0.016 0.040 0.123 ‡
  (1 = Well or Exceptional) (0.068) (0.061) (0.059) (0.044) (0.061) (0.066)
Class Size x Class Behavior -0.001 0.000 0.000 0.000 -0.002 -0.005 ‡
  (Well or Exceptional) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003)
Class Size x Class Behavior 0.006 † 0.005 ‡ 0.005 ‡ 0.005 † 0.006 ‡ 0.006 ‡
  (Well or Exceptional) x (0.003) (0.003) (0.003) (0.002) (0.003) (0.003)
  Teacher Experience
  (1 years of Less)
Class Size x Class Behavior 0.000 0.000 0.000 0.000 0.000 0.000
  (Well or Exceptional) x (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
  Teacher Experience
  (1.5-10 years)

    BB QD-GMM E-NLS-CRE-
IV

E-NLS-CRE-
IV-AR1

Notes: ‡ p<0.10, † p<0.05, and * p<0.01. Data from the ECLS-K. Heteroskedasticity-robust standard errors in parentheses. Number of
observations = 27,820 (5,564 students over five time periods).  See Table 12 and text for further details.

Reading z-Score
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Table 14.  Determinants of Student Achievement: Marginal Effects of Teacher Certification and Class Size.

I.  Math
Certification for 0.017 0.015 0.022 0.044 0.038 0.058
  Low Experienced Teacher (0.046) (0.056) (0.056) (0.042) (0.069) (0.064)
Certification for -0.050 † -0.061 † -0.053 † -0.033 -0.019 -0.033
  Medium Experienced Teacher (0.025) (0.025) (0.025) (0.020) (0.031) (0.032)
Certification for 0.042 ‡ 0.036 0.037 0.046 † 0.014 0.042
  High Experienced Teacher (0.022) (0.026) (0.026) (0.020) (0.030) (0.030)
Class Size in -0.010 † -0.011 ‡ -0.009 -0.007 ‡ -0.004 -0.005
  Well-Behaved Class with (0.005) (0.006) (0.006) (0.004) (0.007) (0.005)
  Low Experienced Teacher
Class Size in -0.003 -0.004 ‡ -0.003 -0.003 ‡ -0.003 -0.003
  Well-Behaved Class with (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
  Medium Experienced Teacher
Class Size in -0.002 -0.004 ‡ -0.003 -0.002 -0.003 -0.001
  Well-Behaved Class with (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
  High Experienced Teacher
Class Size in -0.007 -0.007 -0.005 -0.005 -0.002 -0.004
  Poorly-Behaved Class with (0.005) (0.006) (0.006) (0.004) (0.007) (0.005)
  Low Experienced Teacher
Class Size in 0.000 0.000 0.001 0.000 0.000 -0.002
  Poorly-Behaved Class with (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
  Medium Experienced Teacher
Class Size in 0.001 0.000 0.001 0.001 -0.001 0.000
  Poorly-Behaved Class with (0.002) (0.002) (0.002) (0.001) (0.002) (0.002)
  High Experienced Teacher

II.  Reading
Certification for 0.084 0.093 0.093 0.094 ‡ 0.072 0.078
  Low Experienced Teacher (0.067) (0.074) (0.072) (0.053) (0.077) (0.080)
Certification for 0.041 0.034 0.032 0.048 ‡ 0.029 0.018
  Medium Experienced Teacher (0.032) (0.031) (0.031) (0.025) (0.033) (0.036)
Certification for 0.084 ‡ 0.066 † 0.063 † 0.059 * 0.019 0.044 ‡
  High Experienced Teacher (0.050) (0.031) (0.030) (0.023) (0.031) (0.026)
Class Size in -0.001 -0.002 -0.002 0.001 -0.001 0.001
  Well-Behaved Class with (0.006) (0.007) (0.006) (0.005) (0.007) (0.006)
  Low Experienced Teacher
Class Size in 0.000 0.000 0.000 0.000 -0.003 -0.006 ‡
  Well-Behaved Class with (0.003) (0.003) (0.003) (0.002) (0.003) (0.003)
  Medium Experienced Teacher
Class Size in -0.004 -0.004 ‡ -0.004 ‡ -0.002 -0.002 -0.002
  Well-Behaved Class with (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
  High Experienced Teacher
Class Size in 0.000 -0.002 -0.002 0.000 0.000 0.006
  Poorly-Behaved Class with (0.007) (0.006) (0.006) (0.005) (0.007) (0.006)
  Low Experienced Teacher
Class Size in 0.001 0.000 0.000 -0.001 -0.001 -0.001
  Poorly-Behaved Class with (0.003) (0.003) (0.003) (0.002) (0.003) (0.003)
  Medium Experienced Teacher
Class Size in -0.003 -0.004 -0.004 -0.002 -0.001 0.003
  Poorly-Behaved Class with (0.003) (0.003) (0.003) (0.002) (0.002) (0.002)
  High Experienced Teacher

E-NLS-CRE-
IV-AR1

Notes: ‡ p<0.10, † p<0.05, and * p<0.01. Data from the ECLS-K. Heteroskedasticity-robust standard errors in parentheses. See Tables 12
and 13 for further details.
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Table 15.  Determinants of Child Body Mass Index.

γ 0.361 * 0.221 * 0.349 * 0.389 * 0.890 * 0.891 *
(0.059) (0.014) (0.014) (0.016) (0.006) (0.006)

Socioeconomic 0.018 0.015 -0.025 † 0.033 * 0.027 † 0.007
  Status (0.011) (0.011) (0.013) (0.010) (0.013) (0.012)
TANF  (1 = Yes) 0.010 0.007 0.008 -0.004 0.006 0.000

(0.021) (0.023) (0.025) (0.018) (0.035) (0.035)
SNAP  (1 = Yes) -0.005 -0.006 -0.006 -0.006 -0.005 -0.021

(0.015) (0.015) (0.016) (0.013) (0.026) (0.026)
Health Insurance  0.025 † 0.021 ‡ 0.042 * 0.046 * -0.012 -0.010
  (1 = Yes) (0.010) (0.011) (0.012) (0.009) (0.019) (0.013)
NSLP (1 = Yes) 0.022 * 0.027 * 0.041 * 0.001 0.005 -0.007

(0.008) (0.008) (0.009) (0.007) (0.014) (0.014)
TV - School -0.007 * -0.007 * -0.005 -0.004 ‡ -0.011 † -0.004
  Week (hrs/day) (0.002) (0.003) (0.003) (0.002) (0.005) (0.005)
TV - 0.007 * 0.008 * 0.009 * 0.006 * 0.008 ‡ 0.005
  Weekend (hrs/day) (0.002) (0.002) (0.003) (0.002) (0.004) (0.005)
TV Rules (1 = Yes) -0.011 -0.008 -0.013 -0.023 † -0.017 -0.026

(0.011) (0.012) (0.013) (0.010) (0.019) (0.020)
HH Eats Breakfast 0.000 -0.001 -0.004 * -0.003 * 0.003 0.000
  Together (days/wk) (0.002) (0.002) (0.002) (0.001) (0.003) (0.003)
HH Eats Dinner -0.001 -0.001 -0.002 -0.003 0.000 -0.003
  Together (days/wk) (0.002) (0.002) (0.002) (0.002) (0.003) (0.004)

E-NLS-CRE-
IV

E-NLS-CRE-
IV-AR1    AH     AB

Notes: ‡ p<0.10, † p<0.05, and * p<0.01. Data from the ECLS-K. Heteroskedasticity-robust standard errors in parentheses. Number of
observations = 54,930 (9,155 students over six time periods). γ is the coefficient on the lagged dependent variable. Abbreviations: TANF =
Temporary Aid for Needy Families; SNAP = Supplemental Nutrition Assistance Program; NSLP = National School Lunch Program; HH =
household. Other covariates included: number of children's books in the home, household size, dummy variables indicating 2-parent or 1-parent
households, and dummy variables if socioeconomic status, children's books, household size, TANF, SNAP, health insurance, NSLP, TV variables,
and how often the household eats breakfast or dinner together are missing. Excluded instruments used by AH and QD-GMM: number of children's
books in the home, socioeconomic status, TV hours per day during the school week, and dummy variables if these are missing. See text for further
details.

BMI z-Score

    BB QD-GMM
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