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Abstract 
 
A frequent assumption of hedonic price estimation using property market data is that spatial 
autocorrelation of regression residuals is a feature of the error generating process. Under 
this assumption, spatial error dependence models that impose a specific spatial structure on 
the error generating process provide efficient parameter estimates. In this paper we argue 
that spatial autocorrelation is induced by spatial features influencing property prices that are 
not observed by the researcher. Whilst many of these features comprise the subtle nuances 
of location that might adequately be handled by modelling the error process, others may be 
substantive spatial features whose absence from the model is likely to induce omitted 
variable bias in the parameter estimates. Accordingly we propose an alternative estimation 
strategy. We use spatial statistics to determine the nature of spatial dependence in 
regression residuals. Subsequently we adopt a semiparametric smooth spatial effects 
estimator to account for omitted locational covariates over the spatial scale indicated by the 
spatial statistics. The parameter estimates from this model are found to differ significantly 
from those of a spatial error dependence model. 

 
Key words: Hedonics, omitted variables, spatial error dependence, smooth spatial effects, 
Moran’s I 
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1. INTRODUCTION 
The recent history of research into the hedonic analysis of property markets has witnessed a 
widespread recognition of the importance of spatial processes. In the theoretical literature, 
models have been developed in which households’ choices of residential location may 
depend explicitly on the sets of people that choose to live in each location (e.g. Epple and 
Platt, 1998; Epple and Seig, 1999; Nesheim, 2002). These models predict that in equilibrium, 
households will sort themselves across the urban area such that the characteristics of 
households living in the same neighbourhood are likely to be more similar to each other than 
they are to the population as a whole. This equilibrium is characterised by a hedonic price 
function that maintains price differentials between locations in the urban area (Nesheim, 
2002). 

Likewise, in the empirical literature, there has been a growing acknowledgement that the 
econometric methods used to estimate hedonic price functions from property market data 
should explicitly concern themselves with the spatial organisation of the data (e.g. Dubin, 
1988, 1992, 1998; Can, 1992; Pace and Gilley, 1997; Can and Megbolugbe, 1997; Basu and 
Thibodeau, 1998; Pavlov, 2000; Bell and Bockstael, 2000; Leggett and Bockstael, 2000; 
Gawande and Jenkins-Smith, 2001; Ihlanfeldt and Taylor, 2001, Gibbons and Machin, 2003; 
Gibbons, 2003).  

In particular, empirical researchers are concerned with the fact that the selling prices of 
properties will be positively correlated over space. In addition to the price differentials 
generated by the sorting processes identified in the theoretical literature, there are numerous 
reasons why researchers might expect prices to be spatially correlated. For example, urban 
areas often develop piecemeal over time. Local neighbourhoods tend to be constructed at 
the same time and by the same developers. Consequently, properties within 
neighbourhoods are likely to exhibit structural similarities not only in terms of their age but 
also in terms of their size, layout and interior and exterior design features. Moreover, 
properties in the same neighbourhood also share the same physical surroundings. As such 
they will have comparable access to locational amenities (e.g. schools, shops, parks, 
transport links etc.) and exposure to disamenities (e.g. industrial sites, landfills, air pollution, 
noise pollution etc.). If households value proximity to (distance from) these amenities 
(disamenities), then the selling prices of properties will be correlated over space. 

The efforts of empirical researchers to incorporate spatial considerations into their analyses 
have been manifold. For example, in order to attend to the theoretical prediction that 
property prices may vary according to the socioeconomic composition of neighbourhoods, 
researchers invariably include measures of neighbourhood socioeconomics in their 
specification of the hedonic price function. Alternatively, hedonic price functions can be 
specified such that the marginal prices of property attributes are allowed to vary according to 
neighbourhood characteristics (e.g. Can, 1992, Can and Megbolugbe, 1997). In a similar 
vein, some researchers have sort to identify sets of socioeconomically homogeneous 
neighbourhoods and estimate separate hedonic price functions for properties falling into 
each set (e.g. Day, 2003; Day et al., 2003; Goodman and Thibodeau, 2003). We employ this 
latter estimation strategy in the empirical work presented in this paper. 

Furthermore, researchers have employed ever more sophisticated data sets that provide 
details of many of the structural characteristics of properties and make use of geographical 
information systems (GIS) to construct variables that paint a comprehensive picture of each 
properties’ access to amenities and exposure to disamenities (e.g. Lake et al., 2000). The 
data set used in this study and described in Section 2 of this paper is an example of just 
such a data set.  

Despite these advances in data collation, it seems unlikely that any data set will be 
sufficiently comprehensive that it captures every aspect of property construction and location 
that might induce correlation in prices over space.  
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Typically, researchers address this problem by including locational constants that crudely 
describe each property’s location in the urban area (e.g. properties may be categorised 
according to postal region or perhaps administrative or political subdivisions of the urban 
area). Even so, there is no guarantee that these locational constants are effective proxies for 
variations in the unobserved covariates. In particular, it seems unlikely that the unmeasured 
spatial processes will operate on the exact spatial scale as the regions defined by the 
locational constants. Similarly, it seems implausible to expect that these spatial processes 
will obey the rigid boundaries imposed by the locational constants. For example, it is more 
likely that a property located at the edge of its allotted region will hold more in common with 
properties lying just over the boundary in the adjacent region, than it will with properties on 
the far side of its own region (Dubin, 1992). Alternatively, some researchers include as 
regressors polynomial expressions in the latitude and longitude of each property (e.g. Dubin, 
1992; Pace and Gilley, 1997). Whilst allowing for continuous variation in prices over the 
urban area, this approach will only effectively capture large-scale spatial variation in prices.  

The fact remains, that any empirical specification of the regressors in a hedonic price 
function is unlikely to be sufficiently comprehensive to remove all spatial effects from the 
data. Of course, one can test this hypothesis by examining regression residuals for spatial 
autocorrelation. Evidence of positive spatial autocorrelation in regression residuals is an 
indication of spatial processes that are not captured by the specification of the hedonic price 
function. As described in Section 3 of this paper these tests require the researcher to specify 
a priori the area over which spatial autocorrelation in the regression residuals is thought to 
operate. However, there is no established procedure for determining this distance. Can 
(1992) and Bell and Bockstael (2000), for example, simply try a variety of distances and find 
evidence of spatially correlated residuals in all cases.  

Alternatively, a more thorough appreciation of the nature of spatial dependence in regression 
residuals can be obtained through construction of the spatial correlogram. In the hedonic 
analysis of property markets, Dubin (1988, 1992, 1998) constructs spatial correlograms for 
residuals by taking the average correlation in residuals at progressively larger separation 
intervals or distance classes. In this paper we propose a more sophisticated approach 
inspired by the paper of Ellner and Seifu (2002). Here we employ a test of spatial 
autocorrelation of regression residuals known as Moran’s I statistic (Cliff and Ord, 1972). We 
calculate Moran’s I statistic for residuals at progressively larger separation intervals. Since 
the distribution of I under a null hypothesis of no spatial autocorrelation is known, it is 
possible to establish statistically the separation interval at which correlation of the residuals 
is no longer a feature of the data. 

Of course, having identified spatial autocorrelation in regression residuals, the researcher is 
faced by the troublesome task of deciding how to proceed. As described in Section 4 of this 
paper, there are, in essence, three routes that may be followed. One approach is to assume 
that one has data on all relevant determinants of property prices and that spatial 
autocorrelation of the residuals is merely an artefact of a mis-specified model. Under this 
assumption the prognosis is that respecifying the model will solve the problem. A second 
approach is to assume that the true model is the model at hand but that autocorrelation 
among the disturbances is due to spatial dependence in the process generating the 
nuisance. Again the proscribed course of action is to model that nuisance process and 
thereby alleviate the symptoms of spatial autocorrelation of residuals. Models of this type we 
describe as Spatial Error Dependence models. SED models have become increasingly 
popular in applied work in the hedonic analysis of property markets, chiefly because of 
advances in the ease with which models of this type can be estimated (Kelejian and Prucha, 
1999; Bell and Bockstael, 2000). 

The final approach and that championed here is to accept that there are spatial features 
influencing property prices that are not observed by the researcher. Whilst many of these 
features might be the subtle nuances of location that might adequately be handled by 
modelling of the nuisance process, others may be substantive spatial features whose 
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absence from the model is likely to induce missing variable bias in the parameter estimates. 
For example, properties located close to an abattoir are likely to exhibit considerably deflated 
market prices. If proximity to abattoirs is not included as a regressor in the estimated 
hedonic price function then one might conclude that the model is misspecified and that the 
parameter estimates are unreliable. 

In a non-spatial setting the presence of omitted variables presents an almost insurmountable 
obstacle to the researcher. However, as pointed out by Gibbons and Machin (2003) and 
Gibbons (2003), where the omitted variables can reasonably be expected to be features of 
geographical space, a course of action suggests itself. That course of action is to account for 
the missing covariates by spatially smoothing the data using a nonparametric kernel 
regression procedure. That is, for each property the influence of its particular location on its 
price can be estimated as the distance-weighted average of the prices of other properties in 
its neighbourhood. The hedonic price function can then be estimated by linear regression 
using the deviations of observed prices and regressors from their expected values at each 
location. Gibbons and Machin (2003) call this a Smooth Spatial Effects (SSE) estimator. 

A question that remains is over what spatial area the data should be smoothed. As Gibbons 
and Machin (2003) point out, this amounts to deciding upon the bandwidth for the kernel 
used to smooth the data. A larger bandwidth will account for spatial processes operating 
over a wider area, a smaller bandwidth will account for more localised phenomena. Gibbons 
and Machin (2003) choose a bandwidth motivated by the concern that spatially smoothing 
the data over too small an area will impact upon the parameter estimate for the variable that 
forms the focus of their study (namely, proximity to primary schools). Here we adopt an 
alternative procedure suggested for use in another context by Ellner and Seifu (2002).  

Construction of the spatial correlogram for the regression residuals provides a statistical 
indication of the area over which spatial correlation is a feature of the data. We assume that 
our regression model lacks covariates that operate so as to influence property prices over 
this spatial scale. Our choice of spatial smoothing bandwidth is motivated by the desire to 
remove the impacts of these missing covariates. The procedure outlined by Ellner and Seifu 
(2002) involves repeated estimation of the SSE model using progressively larger 
bandwidths. At each iteration, Moran’s I statistic is calculated to assess the degree of 
autocorrelation in the residuals over the spatial scale identified by the correlogram. The 
optimal bandwidth is selected as that bandwidth at which the computed value of I matches 
its expectation under the hypothesis of uncorrelated residuals. Ellner and Seifu term this the 
Residual Spatial Autocorrelation (RSA) criterion. 

The rest of this paper is organised as follows. In Section 2 we introduce the data set that 
forms the focus of our empirical application. In Section 3 we describe Moran’s I statistic as a 
measure of spatial autocorrelation in regression residuals. We also describe the use of 
Moran’s I in the construction of the spatial correlogram and apply this procedure to the data. 
In Section 4 we briefly describe models used to account for the spatial autocorrelation of 
residuals and introduce the smooth spatial effects estimator. In Section 5 we apply the RSA 
criterion of Ellner and Seifu (2002) to the data in order to choose the optimal region over 
which to spatially smooth. We compare the recommendations of this procedure with that of 
cross-validation; an alternative procedure frequently used to select bandwidths. Finally, we 
apply statistical tests to determine whether the parameters of the SSE differ significantly 
from a SED model that does not account for omitted spatial covariates. 
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2. THE DATA 
Hedonic valuation is a data intensive technique. The success or failure of a study hinges 
upon the quality of the data upon which it is based. In general, researchers require 
information on the selling price of properties, the structural characteristics of those 
properties, indicators of each property’s proximity to (dis)amenities, descriptors of the 
socioeconomic characteristics of property neighbourhoods and data on the environmental 
quality of each property location. 

The case study described in this paper is from the City of Birmingham in the UK. Records of 
all property sales in Birmingham during 1997 were obtained from the databases of the UK 
Land Registry1. These records indicated selling prices, dates of sales and full property 
address for each residential property transaction.  

The Valuation Office Agency (VOA) provided property characteristics data. The VOA is an 
executive agency of the Inland Revenue, one of whose main functions is to value property 
for taxation purposes. In order to perform this function, the VOA maintains a database 
describing the structural characteristics of every residential property in England.2 Amongst 
other details, the VOA provided data on the number of bedrooms and bathrooms in each 
property, total floor area, the property’s age, whether the property was a bungalow or house 
(flats are not included in the analysis), whether the property was detached, semi-detached, 
in a terrace or at the end of a terrace, whether the property had central heating and access 
to off-road parking. Furthermore, the VOA classifies properties according to age and style of 
construction into one of around 30 property types called Beacon Groups. This information 
was also recorded as it provides a useful additional indication of property quality that cannot 
be determined from size and age alone.  

Addresses were geolocated using a GIS. Subsequently GIS datasets were used to provide 
details of the garden area and aspect of each property and to calculate straight line 
distances, car travel times and walking distances from each property to (dis)amenities 
including schools, shops3, railway stations and industrial sites. 

When considering the accessibility of properties to shops, any measure based on proximity 
to only one facility has disadvantages. For example, a property 200m from ten shops is likely 
to be perceived as having better accessibility than another property 200m from one shop. As 
a result, measures for access to shops were constructed using a weighted sum of distances 
to all shops. A similar procedure was used when considering accessibility to primary 
schools. Recent research suggests that selection procedures for primary school intake that 
favour local residents can considerably inflate house prices around high performing schools 
(Gibbons and Machin, 2003).4 For each primary school in the Birmingham area an estimate 
of school quality was calculated as the percentage of pupils achieving Level 4 or above in 

                                           
1 The Land Registry database is not publicly accessible information for England and Wales. However, the UK 
Department for Transport (DfT), who funded this study, arranged access for the purposes of this research. 
2 Unfortunately, the VOA data sources are currently held as paper records. Consequently, the process of 
matching addresses to the structural characteristics of each property required laborious trawling through ranks of 
filing cabinets. 
3 Specifically businesses registered as “Delicatessens”, “Grocers”, “Newsagents” or “Supermarkets”. 
4 As Gibbons and Machin (2001) argue, the issue is thought less important for secondary schools that typically 
draw from much wider catchments. Also, high educational achievement at primary school level may be a pre-
requisite for admission to selective secondary schools. For example, the five selective Grammar Schools of King 
Edward the Sixth in Birmingham make offers “ … solely on the basis of performance in the entrance test. 
Special allowances are not made for brothers or sisters or distance from the school.” (quote taken from the 
Grammar Schools of King Edward VI in Birmingham web site http://www. 
kingedwardthesixth.org/eligibility.htm) 
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Science, Mathematics and English (the level expected of 11 year olds).5 A primary school 
accessibility index was constructed using (2) with the weight αj set to this measure of school 
quality and δ = 1. Figure 1 presents the primary school quality/accessibility variable is 
depicted for a region of the study area.  

Using a procedure outlined in (Lake et al., 2000) data on land uses and the location and 
orientation of each property was combined with information on the landscape topology and 
building heights to calculate indices of the views available from the front and back of each 
property. For example indices were constructed for visible road surface, recreational park 
land and water surfaces. 

Finally, road traffic and rail traffic noise data was provided by the Birmingham 1 project 
(DETR, 2000). The aircraft noise level at each property was identified by digitising a 1999 
aircraft noise contour map of Birmingham International Airport. This map displayed aircraft 
noise levels in 3dB steps. Each property was assigned a noise level by interpolating linearly 
between the contours. All noise measurements are in decibels LEQ. 

 

Figure 1:  Primary School accessibility scores for a selection of properties  
in the data set 

 
 

Data on the socio-economic composition of property neighbourhoods were drawn from the 
1991 UK census provided by the Office for National Statistics (ONS). For the purposes of 
this research we recognise two levels of neighbourhoods. The smallest area over which 
census data is provided by the ONS is an enumeration district (ED). Birmingham is divided 
into 1,940 EDs, with each ED containing an average of 191 households. EDs are gathered 
into larger scale political units known as wards. Birmingham contains 39 wards such that 
each ward comprises an average of 50 EDs and 9,500 households. The organisation of 
these spatial units are shown in Figure 2. 

                                           
5 This information was obtained for 1997 from the Department for Education and Employment website 
(http://www.dfee.gov.uk/performance/primary_97.htm). 
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The census provides a myriad of information on the socioeconomic characteristics of the 
population living in each ED. As described in Day et al. (2004) these variables were 
subjected to a factor analysis that identified six major dimensions of difference or similarity in 
the socioeconomic composition of the households inhabiting each ED. The scores for these 
six factors are included as regressors in the empirical application described below. These 
scores can be interpreted as capturing (1) increasing age of the population of an ED, (2) 
increasing proportion of households with children in an ED, (3) increasing poverty of 
households in an ED, (4) increasing proportion of Asian households in and ED, (5) 
increasing proportion of black households in and ED and (6) increasing levels of skills of 
inhabitants of an ED (as defined by educational levels, employment status and occupation). 

 

Figure 2:  Hierarchy of administrative areas in Birmingham 
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Descriptions of the variables used in the hedonic analysis are listed in Table 1. Complete 
data records were successfully compiled for some 10,848 residential property transactions in 
Birmingham in 1997. Further examination of the data lead to the exclusion of another 57 
observations for various reasons. For example, 16 adjoining properties along one road were 
sold within a few months of each other at prices well below the apparent market rate. 
Examination of recent aerial photographs of this area provided an explanation; the houses 
had since been demolished to make way for a road widening scheme. The final data set 
used in this analysis consists of 10,791 observations. 

Table 1:  Data Descriptions 

Variable Mean Std. Dev. Min Max 

Sale Price (£) 58,986 36,099 11,000 645,003 

Structural Characteristics     

Floor Area (m2) 102.6 32.7 42 645 

Garden Area (m2) 226.1 208 0 5,164 

Garage (proportion) 0.436 0.496 0 1 

Central Heating (proportion) 0.728 0.268 0 1 

Age (decades) 6.1 2.76 0 11 

WCs (proportion)     

One 0.794 0.404 0 1 

Two 0.196 0.397 0 1 

Three 0.009 0.094 0 1 

> Three 0.001 0.029 0 1 

Bedrooms (proportion)     

One 0.005 0.069 0 1 

Two 0.172 0.377 0 1 

Three 0.716 0.451 0 1 

Four 0.083 0.276 0 1 

Five 0.016 0.127 0 1 

> Five 0.007 0.084 0 1 

Storeys (proportion)     

One 0.021 0.145 0 1 

Two 0.954 0.209 0 1 

Three 0.021 0.143 0 1 

> Three 0.003 0.058 0 1 

Construction Type (proportion)     

Detached Bungalow 0.013 0.111 0 1 

Semi-Detached Bungalow 0.008 0.090 0 1 



8 

Variable Mean Std. Dev. Min Max 

End Terrace Bungalow 0.000 0.022 0 1 

Terrace Bungalow 0.000 0.017 0 1 

Detached House 0.116 0.320 0 1 

Semi-Detached House 0.396 0.489 0 1 

End Terrace House 0.115 0.319 0 1 

Terrace House 0.352 0.478 0 1 

Beacon Group (proportion)     

1. Unrenovated cottage pre 
1919 0.000 0.019 0 1 

2. Renovated cottage pre 
1919 0.001 0.027 0 1 

3. Small “industrial” pre 1919 0.040 0.195 0 1 

4. Medium “industrial” pre 
1919 0.226 0.418 0 1 

5. Large terrace pre 1919 0.006 0.078 0 1 

8. Small “villa” pre 1919 0.020 0.138 0 1 

9. Large “villas” pre 1919 0.009 0.093 0 1 

10. Large detached pre 
1919 0.003 0.058 0 1 

19. Houses 1908 to 1930 0.011 0.103 0 1 

20. Subsidy houses 1920s & 
30s 0.140 0.347 0 1 

21. Standard houses 1919-
45 0.257 0.437 0 1 

24. Large houses 1919-45 0.016 0.124 0 1 

25. Individual houses 1919-
45 0.000 0.022 0 1 

30. Standard houses 1945-
53  0.045 0.207 0 1 

31. Standard houses post 
1953 0.190 0.392 0 1 

32. Large houses post 1953 0.032 0.177 0 1 

35. Individual houses post 
1945 0.001 0.038 0 1 

36. “Town Houses” post 
1950 0.004 0.062 0 1 

Sale Date (proportion)     

1st Quarter (Jan. to Mar.) 0.214 0.410 0 1 
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Variable Mean Std. Dev. Min Max 

2nd Quarter (Apr. to June) 0.247 0.431 0 1 

3rd Quarter (July to Sept.) 0.287 0.452 0 1 

4th Quarter (Oct. to Dec.) 0.252 0.434 0 1 

Neighbourhood Characteristics     

Poverty Factor -0.375 0.855 -1.934 2.363 

Skills Factor 0.180 1.000 -1.398 4.198 

Age Factor 0.055 0.807 -3.216 3.143 

Family Factor -0.029 0.842 -3.198 3.791 

Asian Factor -0.045 0.942 -1.131 5.152 

Black Factor -0.240 0.750 -2.016 8.214 

Locational Characteristics     

Proximity to City Centre (mins) 1,313 478 208 3,187 

Proximity and Quantity of 
Shops 2.276 1.273 0.07 9.56 

Proximity and Quality of 
Primary Schools 0.602 0.177 0.15 0.97 

Walking time to Rail Station 
(mins) 1,846 1,013 21.05 5,525 

Walking time to a Park (mins) 900 558 3.17 3,425 

Driving time to Airport (mins) 2,388 655 602 4,385 

Proximity to A-Type Industrial 
Processes (m) 2,464 1,820 21.94 10,204 

Proximity to B-Type Industrial 
Processes (m) 814 527 10 3,333 

Proximity to Land Fill sites (m) 946 608 10 3,472 

Environmental Characteristics     

Views of Water (weighted m2) 0.480 7.543 0 348 

Views of Parkland (weighted 
m2) 6.290 36.831 0 664 

Road Traffic Noise (dB) 49.8 9.4 31.6 75.8 

Rail Traffic Noise (dB) 36.8 12.6 0 74.7 

Aircraft Noise (dB) 4.8 16.0 0 69 
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3. ASSESSING SPATIAL AUTOCORRELATION IN REGRESSION RESIDUALS 
In this section, we describe a procedure designed to assess the nature of spatial 
autocorrelation present in regression residuals. This procedure is illustrated through the 
estimation of hedonic price functions using the data set described in the last section. 
Drawing on the analysis in Day et al. (2004), the data is partitioned into seven clusters of 
properties. Each cluster of properties is defined by the similarity of the socioeconomic 
composition of the neighbourhoods in which those properties are located. For each cluster 
we estimate a simple linear regression; 

jjjj εβXP +=ln  Mj ...,,2,1=   

where j indexes clusters, jP  is the 1×jN  vector of property prices for data allocated to 

cluster j, jX  is the associated jj KN ×  regressor matrix, jβ  is the 1×jK  vector of 

parameters and jε  is the 1×jN  vector of regression residuals.  

Since it adds nothing to the discussion, let us simplify notation by dropping the cluster index, 
j. Further, to allow a more generic discussion let us replace the regressand Pln  with the 
nonspecific vector of dependent variables y, giving; 

εXβy +=   (1) 

Our null hypothesis is the absence of spatial autocorrelation in the regression residuals. That 
is we assume that;  

[ ] 0=εE  and  [ ] ( )NNE Iεε 2,~ σ0′  (2) 

In effect, the null is to assume that the regression residuals are distributed randomly across 
space. That is to say, any observed value of the regression residual could occur at any 
location with equal likelihood. In this case, ordinary least squares (LS) will return consistent 
and efficient estimates of the parameters of the model. 

The alternative hypothesis is that the regression residuals exhibit spatial autocorrelation. To 
test for such autocorrelation, the researcher must stipulate the nature of the possible spatial 
dependence by specifying an N × N weighting matrix, W. The diagonal elements of the 
weighting matrix are zero since, clearly, we are not concerned with testing the correlation of 
residuals with themselves. The off-diagonal elements of the matrix stipulate the potential 
spatial dependence between observations. Thus if the ijth element of the weighting matrix, 
wij, is zero, we are assuming that there is no correlation in the residuals of the ith and jth 
observations. Conversely if wij takes on a non-zero value we are assuming that there is 
correlation in the errors of these two observations. One commonly followed convention is to 
assume that observations separated by greater than some distance, d, are unrelated. So, if 
the ith and jth observation are separated by less than d, the wij

th element of W is initially set to 
a value of one, otherwise that element is set to zero. As we shall discuss shortly, the choice 
of d is of considerable importance.  

A number of test statistics have been devised to test for spatial autocorrelation in regression 
residuals. These include the extension to Moran’s I statistic (Moran, 1950) proposed by Cliff 
and Ord (1972), tests based on the Lagrange multiplier principle (e.g. Burridge, 1980; 
Anselin 1988) and a specification robust approach suggested by Kelejian and Robinson 
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(1992). Here we adopt the approach of Ellner and Siefu (2002) and employ Moran’s I 
statistic as our test of spatial autocorrelation. As Hepple (1998) describes, Moran’s I 
provides a general-purpose test capable of detecting most forms of spatial pattern.  

Let βXyε ˆˆ −=  be the regression residuals when β̂  is the LS estimator of β , then 
Moran’s I statistic is given by; 
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where N is the number of observations and ∑ ∑=
i j ijwS0 , the sum of all the elements in 

the weights matrix. 

The numerator in Equation (3) is a cross-products (covariance) term, while the denominator 
is a variance term. As such I behaves as a product-moment correlation, varying on the 
interval [-1,1], with 1 indicating perfect positive correlation of residuals and -1 indicating 
perfect negative correlation of residuals. The significance of non-zero I can be judged by 
comparison with the distribution of I under the null hypothesis of residuals that are randomly 
distributed over space.6 Cliff and Ord (1972, 1973) showed that in large samples, this 
distribution was approximately normal and developed formulas for its mean and variance 
(see Anselin and Hudak, 1992). The statistical and analytical power of the test has been 
confirmed by numerous Monte Carlo studies (e.g. Bartels and Hordijk, 1977; Brandsma and 
Ketellapper, 1979; Anselin and Rey, 1991). Whilst Hepple (1998) has developed the exact 
distribution of the I statistic, here we continue to use the Cliff-Ord normal approximation due 
to the comparative simplicity of its calculation.  

Our major concern in this section is the choice of an optimal value d to use in testing for 
spatial autocorrelation. That is, we wish to define a statistical procedure that indicates the 
area over which spatial autocorrelation of residuals is a feature of the data. As discussed in 
the introduction we assume that our regression model lacks covariates that operate so as to 
influence property prices over this spatial scale. 

To a greater extent, researchers in the hedonic literature have not concerned themselves 
with the choice of d. Indeed in testing for spatial autocorrelation, or for that matter modelling 
spatial autocorrelation, d is generally chosen in some ad hoc manner. For example, Bell and 
Bockstael (2000) choose a value of 600m since this is the average size of housing 
developments in the area. Likewise, Ihlanfeldt and Taylor (2001) choose a distance of 3 
miles since this is the smallest distance to guarantee that all observations have at least one 
neighbour and because “this distance seems sufficiently large to allow for almost any type of 
spatial dependence”.  

Here we make use of the correlogram, more familiar to economists for its application in times 
series econometrics. We calculate Moran’s I for a series of lag distances (or distance 

                                           
6 If we believe that the residuals are randomly distributed over space then the value of I in Equation (2) is only a 
single value out of a possible N! values that could be found if the residuals were randomly reallocated over 
observations and I recalculated. Indeed, if we were to graph the density of the N! possible values of I we would 
produce a distribution from which a standard error could be obtained. If the particular value of I is found to be a 
rare occurrence under randomisation then it can be inferred that some pattern of spatial autocorrelation exists in 
the data. 
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classes) from each point by specifying a weighting matrix that assigns a value of one to pairs 
of observations separated by a distance that falls within that class, and a value of zero 
otherwise. The resulting spatial correlogram illustrates the degree of autocorrelation at each 
lag distance. Dubin (1988, 1992, 1998) follows a similar procedure to construct spatial 
correlograms for residuals from hedonic price regressions for property market data. Here 
however, we adopt a more sophisticated approach inspired by the paper of Ellner and Seifu 
(2002). We plot on the same correlogram the expected value and the 95% confidence 
intervals of the distribution of Moran’s I under the null hypothesis of random distribution of 
residuals over space (using the formulas of Cliff and Ord, 1973). We take d as being the 
distance class at which the correlogram falls within the 95% confidence interval of random 
spatial distribution of residuals. 

Our procedure differs from that of Ellner and Seifu (2002) in that they do not calculate a 
correlogram. Rather they plot the value of I for weights matrices defined by progressively 
larger values of d. We prefer our approach since the presence of substantial autocorrelation 
at small values of d may dominate the value of Moran’s I statistic when calculated for more 
inclusive values of d. Thus the value of Moran’s I statistic may remain significant at larger 
values of d even if the more distant observations bought into the calculation by extending d 
are not actually correlated. 

In the application described here we estimate two specifications of the regression model in 
(1). In the first, the regressor matrix, X, includes the multiplicity of structural, neighbourhood, 
environmental and locational variables listed in Table 1. The correlograms for this 
specification are plotted in Figure 3. In the second specification we include a set of locational 
constants. The constants indicate in which of the 39 wards each property is located (see 
Figure 2). As discussed in the introduction, these wide-area locational constants constitute a 
crude attempt to capture spatial variation in property prices that is not accounted for by the 
other regressors included in the hedonic analysis. The correlograms for this specification are 
plotted in Figure 3. 

The correlograms are calculated for 100m distance classes. In Figures 2 and 3 the value of 
Moran’s I (and it’s expectation and 95% confidence band under random distribution of 
errors) for a distance class is plotted at the upper limit of the class. The value for d, 
therefore, is taken as the upper boundary of the largest distance class to fall outside the 95% 
confidence bands such that the I statistics for successive distance classes fall consistently 
with these confidence bands. For example, in Figure 6 the last vertex of the correlogram for 
Cluster 6 to fall outside the 95% confidence bands is that for the 500m to 600m distance 
class. Subsequent distance classes return I statistics that are not significantly differently from 
what might be expected under random distribution of residuals. In this case, d is taken to be 
600m. Not all cases are as clear cut. The correlogram for Cluster 5 in Figure 3 dips into the 
95% confidence bands for the 300m to 400m distance class but subsequent classes return I 
statistics evidencing statistically significant spatial correlation. In this case d is taken to be 
greater than 1000m (the highest value plotted on the correlograms). 

Some details of the various regressions for the two specifications and values for d are 
reported in Table 2 (full regression results are reported in Appendices A and B at the end of 
this paper). It is immediately clear from these statistics, that including the locational 
constants considerably improves the specification of the model. For all seven partitions of 
the data the adjusted R2 statistic is seen to increase with the inclusion of the locational 
constants (ranging from a minimum increase of 1.4% to a maximum of 4%, with an average 
across all seven clusters of 2.5%). The final two columns of Table 2 report an F-test of the 
significance of the locational constants. In all cases, the locational constants prove to be 
highly significant. These findings must be treated with caution as the F-test is only 
appropriate if there is no spatial autocorrelation in the residuals. 

That spatial autocorrelation is present in the regression residuals is immediately evident from 
the correlograms in Figures 3 and 4. For all clusters in both specifications of the model the I 
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statistics indicate significant autocorrelation of the residuals over at least the first distance 
band (0 to 100m). Furthermore, comparing the correlograms in Figure 3 with those in Figure 
4 underscores the importance of including wide-area locational constants. In the models with 
no locational constants, spatial autocorrelation remains an important feature of the data even 
for remote distance classes. In Clusters 2, 5 and 7 for example, there is significant spatial 
correlation for the largest distance class plotted on the correlograms (900m to 1km).  

The introduction of the wide-area locational constants does much to improve matters. 
Indeed, examination of the correlograms in Figure 4 reveals that the introduction of wide-
area locational constants virtually eliminates autocorrelaion for distance classes greater than 
300m. However, for all clusters the correlograms reveal significant evidence of more 
localised autocorrelation of the regression residuals. 

 

Table 2:  Statistics from hedonic regressions for each cluster with and without 
spatial constants 

Regressions without 
locational constants 

Regressions with 
locational constants 

F-test of spatial 
constants 

Cluster N 

K Adj. R2 d  
(metres) K Adj. R2 d  

(metres) 
F-stat 

(df) p-value

Cluster 1 2261 64 0.685 900 96 0.709 200 6.69 
(32, 2165) <.0001 

Cluster 2 1258 63 0.777 >1000 90 0.817 300 10.66 
(27, 1168) <.0001 

Cluster 3 2173 63 0.776 500 96 0.791 300 5.44 
(33, 2077) <.0001 

Cluster 4 895 61 0.771 200 93 0.785 100 2.64 
(32, 802) <.0001 

Cluster 5 2018 63 0.751 >1000 97 0.779 200 8.27 
(34, 1921) <.0001 

Cluster 6 1207 60 0.810 800 85 0.836 200 8.34 
(25, 1122) <.0001 

Cluster 7 970 62 0.787 500 82 0.813 100 7.28 
(20, 888) <.0001 
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Figure 3:  Spatial correlograms for residuals from regressions not including spatial constants 
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Figure 4:  Spatial correlograms for residuals from regressions including spatial constants 
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4. LINEAR REGRESSION WITH SPATIALLY CORRELATED RESIDUALS 
The correlograms in Figure 4 reveal that the regression residuals are spatially correlated 
over a region of up to 300m. As such we can reject the model described by Equations (1) 
and (2). As described in the introduction three broad approaches to dealing with spatial 
autocorrelation have been proposed in the literature. We shall briefly review these in this 
section. 

The first approach is to assume that one has data on all relevant determinants of property 
prices and that spatial autocorrelation of the residuals is merely an artefact of 
misspecifcation of the functional form of the hedonic price equation. For example, Can 
(1990, 1992) argues that the model in (1) is misspecified because parameter estimates are 
not constant over the urban landscape. Rather they are assumed to drift over space as a 
function of a set of regressors describing characteristics of different locations. As such, Can 
partitions the regressors into two sets, the 1KN ×  matrix Z1 and the 2KN ×  matrix Z2. In 
Can’s specification Z1 comprises variables describing the socioeconomic composition of 
neighbourhoods whilst Z2 comprises variables describing the structural characteristics of 
properties. Can assumes that the parameters estimated on the Z2 regressors are not 
constant but vary according to the values taken by the regressors in Z1. This assumption 
results in what Can describes as the spatial expansion specification;  

( ) ili
l k

kiklk
k

kkii zzzy εγγβα ++++= ∑∑∑ 2101  Ni ...,,2,1=  (4) 

where i indexes property observations, iy  is ith element of y (e.g. the price of the ith 

property), kiz1  is the ith observation of the kth variable in the Z1 matrix, liz2  is the ith 
observation of the lth variable in the Z2 matrix and α, β and γ are the parameters to be 
estimated. 

A natural extension of the spatial expansion specification is proposed by Pavlov (2000). 
Again, Pavlov assumes that the coefficients of a linear hedonic function vary across the 
urban space. However, rather than specifying a functional relationship between the spatially 
varying coefficients and a set of locational variables, Pavlov allows the value of the 
coefficients to be determined by the data. The space varying coefficients are made functions 
of locations according to the space-varying coefficients (SVC) specification; 

( ) ( ) i
k

kiiikiiiii xccccy εβα ++= ∑ 2121 ,,  Ni ...,,2,1=  (5) 

where iα  is a space varying constant specific to the location of the ith observation as defined 

by its coordinates ( )iii cc 21 ,=c . Likewise, kiβ  is a space-varying coefficient specific to the 
location of the ith observation. An estimate of the coefficients at any particular location is 
made using weighted least squares. Only the m nearest observations to the location of 
interest receive non-zero weights in this regression. Greater weight is attributed to 
observations more proximal to the location of interest according to the Epanechnikov 
weighting scheme (Epanechnikov, 1969). The SVC method allows for both the intercept and 
the slope parameters of the hedonic price function to differ by location. However, this ability 
to handle spatial processes in the data comes at a cost. As Pavlov (2000) points out, the 
space-varying coefficients method lacks a theoretical inferential framework. Since the 
parameters of the hedonic vary continuously over space it is not possible to judge the 
statistical significance of any particular regressor in determining property prices. 
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Another respecification of the hedonic model that specifically accounts for spatial processes 
is the spatial autoregressive model. This model has been studied variously by Anselin 
(1989), Can (1992), Can and Megbolugbe (1997) and Gawande and Jenkins-Smith (2001). 
In the spatial autoregressive model the price of a property is deemed to be determined, in 
part, by the prices of neighbouring properties according to; 

εXβWyy ++= ρ   (6) 

where X, β and ε are defined as previously, W is the N × N spatial weighting matrix, y is the 
N × 1 vector of property prices, and ρ is the spatial autoregressive coefficient. Can (1990) 
argues that this specification has some merits since it mimics the actual workings of the 
property market in which estate agents appraise the value of a property according to both its 
own attributes and the price history of houses in the neighbourhood. 

A second approach is to assume that the true model is the model at hand but that 
autocorrelation among the disturbances is due to spatial dependence in the process 
generating the nuisances. We call approaches that make this assumption spatial error 
dependence (SED) models. The SED approach has become increasingly popular in applied 
work, chiefly because of advances in the ease with which models of this type can be 
estimated (Kelejian and Prucha, 1999; Bell and Bockstael, 2000). 

The consequence of a spatially dependent nuisance process is that the observations contain 
less information than if they had been independent. Indeed the statistical properties that are 
attributed to an estimator such as LS when errors are i.i.d. do not hold in this case. 
Nonetheless, the parameter estimates from the application of LS will not be biased, merely 
inefficient. In this case, the proscribed course of action is to model the nuisance process so 
as to obtain approximately the same quantity of information as provided by an independent 
set of observations.  

For example, we might assume that the autocorrelation follows the first order Markovian 
scheme; 

uWεε += λ   (7) 

or equivalently; 

( ) uWIε 1−−= λN   (8) 

where λ is the error dependence parameter and u is the usual N × 1 vector of random error 
terms with expected value zero and variance-covariance matrix σ2I. Notice that 0=λ  
implies uε =  and there is no spatial dependence in the data. This particular model has 
been studied by various authors including Pace and Gilley (1997), Kelejian and Prucha 
(1999), Bell and Bockstael (2000) and Leggett and Bockstael (2000). Along similar lines, 
Dubin (1988, 1992, 1998) and Basu and Thibodeau (1998) develop explicit models of the 
nuisance process and estimate the parameters of the nuisance process and the regression 
coefficients simultaneously using maximum likelihood.  

Of course, SED models impose considerable structure on the processes determining spatial 
correlation in regression residuals. For example, they assume isotrophy. That is they 
assume the same model of error dependence can be applied over all space. Furthermore, 
spatial autocorrelation of the regression residuals is induced by locational features 
influencing property prices that are not observed by the researcher. SED models assume 
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that these comprise the subtle nuances of location that might adequately be handled by 
modelling the nuisance process. Alternatively, the omitted spatial covariates may be 
substantive features whose absence from the model is likely to induce missing variable bias 
in the parameter estimates. 

In a non-spatial setting the presence of omitted variables presents an almost insurmountable 
obstacle to the researcher. However, as pointed out by Gibbons and Machin (2001, 2003) 
and Gibbons (2002, 2003), where the omitted variables can reasonably be expected to be 
features of geographical space, a course of action suggests itself. Gibbons and Machin 
(2003) propose the smooth spatial effects (SSE) estimator which they specify as;  

( ) iiii qy εcβx ++=  Ni ...,,2,1=  (9) 

where xi is the vector of observed regressors for the ith observation, ( )iii cc 21 ,=c  is the 

coordinates vector establishing the location of the ith observation in space and ( )⋅q  is some 
unknown function. In effect, the specification in (9) replaces the unobserved spatial 
covariates with an element that is a function of location. The influence of these unobserved 
covariates on property prices is determined by the unknown function ( )⋅q . Since the 

influence of ( )⋅q  on property prices is handled nonparametrically the SSE presents an 
extremely flexible approach to dealing with unobserved spatial covariates. 

Equation (9) is a specific example of a more general class of semiparametric models known 
as partially linear models. In that context, Robinson (1988) shows that (9) can be rewritten 
as; 

[ ] [ ]( ) iiiii εEyEy +−=− βcxxc ||   (10) 

suggesting that � can be estimated in a two-step procedure; 

• First, the unknown conditional means [ ]iyE c|  and [ ]iE cx |  are estimated using a 
nonparametric estimation technique.  

• Second, the estimates are substituted in place of the unknown functions in Equation (10) 
and ordinary regression techniques employed to estimate �. 

Indeed, Robinson shows that the resulting parameter estimates are asymptotically 
equivalent to those that would be derived if the true functional form of ( )⋅q  were known and 
could be used in the estimation. That is, estimating Equation (10) is asymptotically 
equivalent to knowing both the values taken by the missing spatial covariates and knowing 
how these covariates impact on property prices. 

In the hedonic literature, Robinson’s model has been employed in a slightly different context 
by Anglin and Gençay (1996). Both Gibbons and Machin (2003) and Anglin and Gencay 
(1996) employ the Nadaraya-Watson nonparametric estimator to determine the quantities 
[ ]iyE c|  and [ ]iE cx | . Notice that these quantities are simply the expected values of y 

and x at a particular location. In effect, the Nadaraya-Watson estimator calculates these 
expectations by taking the weighted average of the values of observations close to that 
location. Whether an observation is considered close to the location is determined by the 
bandwidth parameter b. The larger the value taken by b, the more observations are drawn 
into the calculation of the average. Further, the weight allotted to each observation in the 
calculation of the local average is determined by the kernel function. The kernel function 
must be symmetric, continuously differentiable and integrate to unity. Moreover, most 
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commonly used kernel functions allot greater weight to observations that are in close 
proximity to the location than to those that are further away. 

An alternative to the Nadaraya-Watson approach is to employ local linear estimators which 
offer significant gains especially at the boundaries of the data and when the data is not 
equally spaced (see Fan, 1992 or Hastie and Loader, 1993, for more detailed discussion). 
Furthermore, as we shall discuss shortly, our estimation strategy requires repeated 
nonparametric estimation of the quantities [ ]iyE c|  and [ ]iE cx | . Since nonparametric 
regression can be extremely time-consuming and computer-intensive, we employ fast 
implementation techniques as described in Fan and Marron (1994), Wand (1994) and 
Bowman and Azzalini (2003).  

In particular, we begin by summarising the density of observations over space by linearly 
binning onto the verteces of a regular spatial grid. In this application the margins of the cells 
of the grid are set to 150m. Likewise we summarize the values of y and each of the variables 
present in x by calculating their linearly weighted averages at each of the verteces of the 
grid. Furthermore, to take advantage of computational savings offered by the use of the fast 
Fourier transform (FFT) we choose to use a bivariate Gaussian kernel function. Given a 
choice of smoothing bandwidth b, the expected values of y and x are calculated at each 
vertex of the grid using local linear regression. Finally, the values at each particular property 
location are recovered by linearly interpolating from the values of the four most proximate 
verteces of the grid. Since the data set is relatively large, binning the data and employing 
FFT-based calculations was found to be many times quicker than employing a naïve 
implementation of local linear regression. 
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5. CHOICE OF SPATIAL SMOOTHING PARAMETER  
A question that remains is the choice of smoothing bandwidth, b. A larger bandwidth will 
account for spatial processes operating over a wider area, a smaller bandwidth will account 
for more localised phenomena. For example, observe Figures 5 and 6. These provide plots 
of [ ]iyE c| , that is the expected value of Pln  at a given location, for two different 
smoothing bandwidths. Notice first that in both cases, there is considerable variation in 
[ ]iyE c|  across the urban area. In particular, notice the substantial peak in the north-east 

section of the plots (that is, towards the back right of the cube in the figures). These peaks 
correspond to the desirable north-eastern suburbs of the City of Birmingham. Notice further 
that using a larger bandwidth as in Figure 5, results in a simpler, less convoluted surface 
than using a smaller bandwidth as in Figure 6. Notice that using a smaller bandwidth, as in 
Figure 6, brings to light possibly important local features of the data that had previously been 
masked by the use of the larger bandwidth. 

Gibbons and Machin (2003) choose a bandwidth motivated by the concern that spatially 
smoothing the data over too small an area will impact upon the parameter estimate for the 
variable that forms the focus of their study (namely, proximity to primary schools). Here we 
select a bandwidth using the Residual Spatial Autocorrelation (RSA) criterion suggested for 
use in a slightly different context by Ellner and Seifu (2002). 

The logic behind Ellner and Seifu’s procedure is very simple. In section 3 we discussed how 
spatial statistics could be used to assess optimal d; that is, the area over which spatial 
autocorrelation of residuals is a feature of the data. Having established that the residuals 
show evidence of spatial autocorrelation, we conclude that our regression model lacks 
covariates that operate so as to influence property prices over the spatial scale given by d. 
Consequently, the RSA procedure is to search across different smoothing bandwidths, b, 
and for each bandwidth calculate the degree of spatial autocorrelation of the residuals over 
an area d. Acceptable smoothing bandwidths are those for which we can reject the 
hypothesis of spatial autocorrelation in the residuals. 

Figure 7 plots the value of Moran’s I statistic for values of b at 25m intervals between 300m 
and 1,800m for each cluster. Also plotted in Figure 7 are the expected values of Moran’s I 
and the 95% confidence intervals for the statistic under the assumption of randomly 
distributed residuals. The optimal spatial smoothing bandwidth is chosen as that at which 
Moran’s I statistic is approximately equal to its expected value. This bandwidth is reported in 
Table 3 along with the upper and lower values for b at which it is still possible to reject the 
hypothesis of spatially autocorrelated residuals. 
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Figure 5:  Spatial smoothing with 1800m bandwidth (plotted on a 600m grid from the South-West) 
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Figure 6:  Spatial smoothing with 1200m bandwidth (plotted on a 600m grid viewed from the South-West) 
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Table 3:  Bandwidth choice using RSA and cross-validation criteria 

RSA Cross-Validation 
Cluster 

Optimal Lower 
Bound 

Upper 
Bound Optimal 

Cluster 1 550 425 725 1050 

Cluster 2 675 525 875 525 

Cluster 3 600 450 750 575 

Cluster 4 650 375 1800 1150 

Cluster 5 450 300 550 775 

Cluster 6 625 450 950 600 

Cluster 7 400 <300 850 1025 
 
A commonly applied alternative for choosing bandwidths is cross-validation. For example, 
this procedure was applied by Anglin and Gencay (1998) in choosing the degree of 
smoothing in their semiparametric estimator for a hedonic price model. As they point out, a 
seemingly natural way to select h is to choose the bandwidth that minimises the sum of 
squared residuals from the equation; 

( )( )∑
=

− −−=
N

i
ibii qynMSE

1

21 cβx  (11) 

where MSE stands for Mean Square Error. Of course we don’t know the true value of 
( )ibq c  but we can estimate it by applying local linear regression to the quantities 

( )βx ˆ
iiy − , where β̂  are the SSE estimates of the parameter values using a bandwidth of 

b. Unfortunately, there is a problem with such a procedure; for any b smaller than the closest 
two data points in the sample, the MSE reduces to zero. For such values of b the conditional 
mean function given by ( )ibq c  puts all weight on the ith observation such that ( )ibq c  
perfectly predicts yi. 

Accordingly, the criterion function in (11) cannot be used to decide upon the optimal 
bandwidth. Rather researchers employ the cross-validation statistic;  

( )( )∑
=

− −−=
N

i
iibiiCV qynMSE

1

2
,

1 cβx  (12) 
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Figure 7:  Moran’s I and cross-validation statistics for various spatial smoothing bandwidths by cluster 
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The cross-validation statistic avoids the problems of the raw MSE statistic by employing a 
conditional mean function ( )iibq c,  that is calculated by leaving out the ith observation. 

The cross-validation procedure, therefore, is to carry out a grid search for optimal b. 
Equation (10) is re-estimated numerous times using different values of b. For each value of b 
the cross-validation statistic is estimated using (12) and the b providing the minimum value 
for this statistic is chosen as the optimal bandwidth. The cross-validation statistics for 
bandwidths at 25m intervals between 300m and 1,800m for each cluster are plotted in 
Figure 7 and the optimal values recorded in the final column of Table 3. The cross-validated 
bandwidth can be demonstrated to be asymptotically optimal with respect to MSE (Härdle 
and Marron, 1985). 

Notice that in four of the clusters (2, 3, 4 and 6), the bandwidth selected using cross-
validation falls within the 95% confidence bounds of Moran’s I. That is, if we were to smooth 
the data in these clusters using the optimal cross-validation bandwidth we would find that we 
could reject the hypothesis of autocorrelation in the residuals over an area of radius d. In the 
remaining three clusters (1, 5 and 7) cross-validation indicates a higher value for b than 
would be chosen by selecting a bandwidth according to the RSA criterion. 

We test to see whether choosing the bandwidth through cross-validation rather than by the 
RSA criterion makes a difference. As pointed out by Gibbons (2001) sensitivity to bandwidth 
choice can be tested by the usual Hausman test for equivalence of parameters in alternative 
estimators. Denote by wβ̂  the estimator using the wider bandwidth that is consistent under 

both the null and the alternative hypotheses, and by nβ̂  the estimator using the narrower 
bandwidth that is fully efficient under the null but inconsistent if the null is not true. The 
Hausman statistic is given by; 

( ) ( ) ( )wnwnwn
H Var ββββββτ ˆˆˆˆˆˆ 1

−−−=
−

 (13) 

As Hausman (1978) shows, under the null hypothesis, the middle term in (13) (the variance 
matrix of the vector of differences between the parameters of the two estimators) 

asymptotically reduces to ( ) ( )wn VarAsyVarAsy ββ ˆ.ˆ. − . Of course, to make use of the 
Hausman result one must be able to consistently estimate the asymptotic variance matrices 
of the two sets of parameter estimates under the null. Unfortunately, in the presence of 
spatial autocorrelation of unknown form such an estimate is unavailable. Consequently, we 

apply a bootstrap procedure to estimate ( )wnVar ββ ˆˆ − . We sample with replacement from 
the unsmoothed data and re-estimate the SSE model using the bandwidths implied by first 
the RSA criterion and then cross-validation. For each bootstrap sample we calculate the 
difference between the two vectors of parameters. The desired variance matrix is estimated 
by calculating the empirical variance matrix of the differences resulting from 1,000 
replications of the bootstrap procedure.7 

The Hausman test statistics reported in Table 4 are based on a subset of the regression 
parameters. We do not include the parameters for locational constants in the tests since 
these prove to be somewhat unstable in the SSE model where much of their influence is 

                                           
7 Since we are estimating a variance matrix and not the tails of a distribution (as is usually the case with 
bootstrap procedures) we do not require a very large number of replications. Even with 1,000 replications the 
bootstrap took nearly 12 hours to run for each cluster on a PC with a 2.8 GHz Intel Pentium 4 processor with 
512 Mb of RAM. The bootstrap would have been unfeasible without the application of the fast local linear 
regression procedures described in Section 4. 
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obviated by spatial smoothing of the data. Furthermore, the model specification includes 
numerous sets of dummy variables detailing categorical descriptors of property attributes 
(e.g. numbers of bathrooms, bedrooms, storeys etc.). When particular categories in these 
dummy variable sets are poorly represented in the data, it may prove impossible to estimate 
all the parameters of the model for every bootstrap sample. The tests are based on all 
parameters that are successfully estimated for each iteration of the bootstrap. 

Table 4:  Comparison of bandwidth choice using RSA and cross-validation 
criteria 

Hausman Test 
Cluster 

Statistic df p-value 

Cluster 1 65.72 52 0.067 

Cluster 2 46.74 48 0.525 

Cluster 3 60.03 52 0.208 

Cluster 4 31.09 46 0.955 

Cluster 5 75.93 50 0.010 

Cluster 6 40.31 48 0.777 

Cluster 7 29.94 47 0.975 
 

The Hausman test reveals that significant differences in the parameters can be discerned in 
only two of the clusters; Cluster 1 (at greater than 90% confidence) and Cluster 5 (at greater 
than 95% confidence). In general then, our data suggests that choosing a bandwidth using 
the RSA criterion does not result in parameter estimates that differ significantly from those 
estimated using a bandwidth selected using cross-validation. Nonetheless, we contend that 
the RSA criterion provides an intuitive criterion by which bandwidths can be selected and, 
through the elimination of spatial autocorrelation, permits statistical inference and testing to 
proceed using standard econometric tools whilst imposing little assumed structure on the 
model of the hedonic price function. 
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6. TESTING FOR OMITTED SPATIAL COVARIATES 
The analysis of the previous sections has determined that the regression residuals from LS 
estimation exhibit patterns of spatial autocorrelation. The final comparison we wish to make 
is between the SSE (selecting bandwidth using the RSA criterion) and the SED models. 
Under the assumptions of the SED model, LS returns unbiased parameters 

Our null hypothesis is that the spatial autocorrelation can adequately be described as a 
feature of the error generating process as is assumed by the SED model. The alternative 
hypothesis is that spatial autocorrelation in the residuals indicates locational covariates 
whose omission from the model is the source of omitted variable bias. If the null were true 
then we would not expect any substantive differences between the parameters from an LS 
estimator and the SSE estimator. Alternatively, if the SSE model captures the influence of 
substantive features of the spatial environment omitted from the regressor data, then we 
may expect to witness statistically significant differences between the parameters of the two 
models.8   

First observe the unadjusted R2 statistics for the two models reported in Table 5.9  

Table 5:  Unadjusted R2 statistics for the LS and SSE models 

Cluster R2 LS R2 SSE 

Cluster 1 0.721 0.760 

Cluster 2 0.830 0.864 

Cluster 3 0.800 0.827 

Cluster 4 0.807 0.838 

Cluster 5 0.790 0.834 

Cluster 6 0.847 0.868 

Cluster 7 0.829 0.853 
 

In all cases there is a considerable increase in explained variation with the SSE estimator 
when compared to the OLS estimator. On average the unadjusted R2 statistic increases by 
3.1%, ranging from a low of 2.1% in cluster 6 to a maximum of 4.4% in cluster 5. However, 
as Anglin and Gencay (1996) observe, it would be more appropriate to compare the adjusted 
R2 statistics for the two models, but this comparison is impossible to make as the effective 
degrees of freedom of the semiparametric SSE model is not known. Consequently, we 
perform a number of statistical tests to compare the two estimators. 

Our testing strategy is to compare the SSE model to the LS model under the null hypothesis 
that the LS model is correctly specified though there may remain spatial autocorrelation in 
the nuisance process. 

Following, Robinson (1988) and Anglin and Gencay (1996) we first apply the Hausman test.  

                                           
8 Appendix B provides full listings of parameter estimates for the LS estimator whilst full listings for the SSE 
estimator can be found in Appendix C. 
9 Following Anglin and Gençay (1996) we calculate the R2 statistic as yyyy ′′= ˆˆ2R  where each element of ŷ  

is given by [ ] [ ]( )βcxxc ˆ|ˆ|ˆˆ iiii EyEy −+=  (where a circumflex denotes an estimated quantity). 
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H Var ββββββτ ˆˆˆˆˆˆ 1
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−
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Once again, we are unable to use Hausman’s expression for the variance of the difference in 
the two parameter vectors since we do not have an easy way of computing the asymptotic 
variance matrix of the LS estimator when the residuals are spatially correlated. Instead we 
employ a bootstrap procedure as outlined in Section 5. The test statistic, Hτ  is 
asymptotically distributed chi-squared with degrees of freedom equal to the number of 
parameters estimated by both models.  

A second test is that proposed by Whang and Andrews (1993). Their test is based on the 
vector of sample moments; 

[ ] [ ]( )( ) [ ]( )ii

N

i
iiii EEyEy

N
cxxcxxcr |ˆ||1

1
−′−−−= ∑

=

β   (15) 

Clearly, if β̂  in (11) is replaced by SSEβ̂  then r will be a vector of zeros since (15) is simply 

the set of normal equations for the SSE estimator. Of course, under the null LSβ̂  should be 

approximately equal to SSEβ̂ . As such the Whang and Andrews test requires that β̂  in (15) 

be replaced by LSβ̂ . If the null holds then the moments in (15) should still approximate a 
vector of zeros. The test statistic is given by; 

rr 1ˆ −Φ′=WAτ  
 (16) 

where Φ̂  is a consistent estimator of the variance matrix of r under the null. Whang and 
Andrews (1993) show that WAτ  is asymptotically distributed chi-squared with degrees of 
freedom equal to the number of parameters estimated by the SSE model. Furthermore, 

Whang and Andrews (1993) give formulas for Φ̂  when the residuals are correlated. Here 

we prefer to bootstrap Φ̂  by resampling with replacement from the original data 1,000 
times, re-estimating the LS and SSE models and calculating r for each bootstrap sample. 

Our bootstrap estimate of Φ̂  is the empirical variance matrix of the 1,000 bootstrap 
estimates of r. 
As discussed in Section 5, the Hausman and Whang and Andrews test statistics are based 
on a subset of the regression parameters. Again we do not include the parameters for 
locational constants in the tests, nor can we include parameters that are not estimated for 
every bootstrap sample.  

The final test applied here is that of Li and Wang (1998). Similar to the Whang and Andrews 
test, the Li and Wang test statistic is based upon the residual from a “mixed” regression;  

SSE
i

LS
ii yu βx ˆˆ

0 −−= β  
 (17) 
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where LS
0β̂  is the estimated constant from the LS regression. Their test statistic is based 

upon a standardised kernel estimator of the moment condition [ ] ( )[ ]iiii fuEuE cc| , 

where ( )if c  is the spatial density of the observations.  

The test statistic is given by;  
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where ( )jibK cc −  is a kernel function. Li and Wang (1998) show that under the null the 

test statistic is distributed ( )1,0N . 

The results of these tests are presented in Table 6. All three tests support the same 
conclusion. In clusters 4, 6 and 7 we cannot reject the hypothesis that the LS model is 
correctly specified when compared to an SSE alternative. In these cases, one is safe to 
assume that the SED model provides be an effective model of the spatial processes in 
operation. This result is supported by the evidence of the correlograms in Figure 4 which 
show that evidence for spatial autocorrelation was weakest in these three clusters. 

Table 6:  Tests comparing LS null against SSE alternative 

Hausman Whang & Andrews Li & Wang 
Cluster 

Stat (df) p-value Stat (df) p-value Stat p-value 

Cluster 1 85.47 
(52) 0.002 112.74 

(51) 0.000 4.984 0.000 

Cluster 2 91.77 
(48) 0.000 136.80 

(48) 0.000 4.177 0.000 

Cluster 3 91.32 
(52) 0.001 95.81 

(52) 0.000 1.476 0.070 

Cluster 4 34.37 
(46) 0.896 51.00 

(44) 0.284 -1.463 0.928 

Cluster 5 98.41 
(50) 0.000 143.62 

(50) 0.000 5.505 0.000 

Cluster 6 37.52 
(48) 0.862 58.46 

(48) 0.143 -1.418 0.922 

Cluster 7 43.42 
(47) 0.621 58.03 

(47) 0.130 0.252 0.401 

 
In contrast, for clusters 1, 2, 3 and 5 we can unequivocally reject the null. In these cases all 
three tests support the conclusion that the LS model is incorrectly specified and that the SSE 
model returns significantly different parameter estimates. In short, these clusters show 
strong evidence of the presence of omitted spatial covariates. Applying a SED estimator to 
these data would provide biased estimates of the model parameters. 
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7. CONCLUSIONS 
Spatial autocorrelation of regression residuals is a common feature of many econometric 
models. For example, in this paper we find strong evidence for spatial autocorrelation in the 
regression residuals from a hedonic model that examines differences in property prices in 
the City of Birmingham in the United Kingdom.  

To gain a more thorough appreciation of the nature of spatial dependence in regression 
residuals we propose construction of a spatial correlogram plotting Moran’s I statistic for 
residuals at progressively larger separation intervals. Since the distribution of I under a null 
hypothesis of no spatial autocorrelation is known, it is possible to establish statistically the 
separation interval at which correlation of the residuals is no longer a feature of the data. In 
this case, we find that this separation interval differs between various subsets of the data, 
ranging from 100m to 300m. 

Over recent years, a substantial literature has arisen concerning itself with how best to 
estimate econometric models blighted by spatial autocorrelation. In general, the preferred 
approach has been to assume that spatial correlation in regression residuals is the 
consequence of some modelable process generating the nuisances. Maximum likelihood 
and general method of moments estimators have been proposed for such SED models.  

Of course, spatial autocorrelation of the regression residuals is induced by spatial features 
influencing property prices that are not observed by the researcher. The SED models 
assume that spatial autocorrelation is a consequence of an amalgam of the many subtle 
nuances of location and that this amalgam might adequately be regarded as a nuisance 
process.  

However, the possibility exists that the researcher fails to observe substantive spatial 
features whose absence from the model is likely to induce missing variable bias in the 
parameter estimates. Fortunately, where the omitted variables are expected to be features of 
geographical space, a course of action suggests itself. In particular, we employ the SSE 
estimator of Gibbons and Machin (2003) and Gibbons (2003). The SSE accounts for missing 
spatial covariates by nonparametrically smoothing the data over a proscribed area.  

In our application we spatially smooth the data using local linear regression. This approach 
offers significant gains over the Nadaraya-Watson smoother, especially at the boundaries of 
the data and when the data is not equally spaced. Furthermore, we adopt Ellner and Seifu’s 
(2002) RSA criterion in order to select the spatial smoothing bandwidth. The RSA criterion 
selects that spatial bandwidth which eliminates spatial autocorrelation from the regression 
residuals. We compare this to the bandwidth selected through the minimisation of the cross-
validation statistic, a selection criterion which has been shown to have some asymptotic 
optimality features (Härdle and Marron, 1985). In most cases we find that we cannot reject 
the hypothesis that the parameters from the SSE model using bandwidths suggested by the 
RSA criterion and cross-validation are equal. We contend that the spatial smoothing 
bandwidth for the SSE model should be selected using the RSA procedure. In particular, this 
procedure provides an intuitive criterion by which bandwidths can be selected and through 
the elimination of spatial autocorrelation, permits statistical inference and testing to proceed 
using standard econometric tools whilst imposing little assumed structure on the model of 
the hedonic price function. 

Finally, we have applied statistical tests to determine whether the parameters of the SSE 
estimator differ significantly from those of a SED estimator. In cases where the correlogram 
of the regression residuals indicates that spatial autocorrelation is an important feature of the 
data, we find that we can clearly reject the hypothesis that the two estimators return the 
same parameter estimates. In these cases, we have strong evidence for the presence of 
substantive omitted spatial covariates, such that the application of an SED estimator would 
provide biased estimates of the model parameters. 
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Appendix A:  Parameters of hedonic price regressions excluding locational constants (LS) 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Constant 8.4851*** 7.8679*** 8.1762*** 8.3128*** 7.6377*** 7.9238*** 8.2710*** 

Structural Characteristics:        

Floor Area (log) 0.3804*** 0.4254*** 0.4623*** 0.4199*** 0.5455*** 0.4195*** 0.4221*** 

Garden Area (log) 0.0828*** 0.1681*** 0.1043*** 0.0911*** 0.0894*** 0.1498*** 0.1318*** 

Garage 0.0503*** 0.0579*** 0.0527*** 0.0430** 0.0457*** 0.0451** 0.0313 

Central Heating  0.0239 0.0013 0.0752*** -0.033 0.1386*** 0.0909** -0.0819** 

Age -0.005 0.0001 -0.0127* -0.008 0.0035 0.0021 -0.0098 

WCs         

One b b b b b b b 

Two 0.0221 -0.0397** 0.0454*** -0.0147 0.0334** -0.0317 -0.0214 

Three 0.0386 0.1677 -0.0138 0.0452 0.1056** -0.0661 0.0139 

Four . 0.6197* -0.2030* . 0.4440* . . 

Five . 0.1736 . . . . . 

Bedrooms        

One 0.0062 -0.0855 0.033 0.2299* 0.0658 0.1125 0.2077 

Two 0.0067 -0.005 0.0056 -0.0297 0.0154 -0.0196 0.0599** 

Three b b b b b b b 

Four 0.0319 0.0039 0.0008 0.0219 0.0336 0.0797*** 0.0556 

Five 0.0077 -0.0303 0.0905* 0.1743** 0.1161** 0.2038*** 0.0619 
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Six -0.2325** -0.0362 -0.0106 0.3477 0.3703*** 0.1266 0.034 

Seven 0.0924 -0.4692*** 0.5032** -0.0941 -0.4015** 0.163 0.4468* 

Eight . -0.1253 . 0.4468* -0.0352 . 0.3906 

Nine . . -0.1555 . . . . 

Storeys        

One -0.0273 -0.2675 -0.0095 0.1076* 0.1931*** 0.046 0.0904 

Two b b b b b b b 

Three -0.0582 -0.2184*** -0.0880** -0.055 -0.0975*** -0.0336 0.0179 

Four -0.1976* -0.9372*** -0.4144*** -0.1468 -0.1842 -0.306 -0.6345*** 

Five . . . -0.4005* -0.29 . -0.7839** 

Construction Type        

Detached Bungalow 0.1623 0.6566* 0.1512*** 0.0712 . . . 

Semi-Detached Bungalow 0.1663 . . . 0.0407 -0.0427 -0.1108 

End Terrace Bungalow . . . . . . . 

Terrace Bungalow 0.0305 . 0.0082 . . . 0.0862 

Detached House 0.1594*** 0.1717*** 0.1227*** 0.1479*** 0.1089*** 0.0536* 0.0682 

Semi-Detached House b b b b b b b 

End Terrace House -0.0891*** -0.1017*** -0.0331* -0.0436* -0.0668*** -0.0024 -0.1009*** 

Terrace House -0.0720*** -0.0355 -0.0634*** -0.0367 -0.0840*** -0.0642** -0.1032*** 

Beacon Group        
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

1. Unrenovated cottage pre 
1919 -0.2055 . . 0.0791 -0.3116 0.3689 . 

2. Renovated cottage pre 
1919 . 0.0174 0.3770* . 0.6351*** 0.1352 0.3305 

3. Small “industrial” pre 1919 -0.1129*** 0.0886 0.1503*** 0.1013* -0.0799* -0.1381** -0.1991*** 

4. Medium “industrial” pre 
1919 -0.0153 0.0186 0.0098 0.0209 -0.0707** -0.0562 -0.0763 

5. Large terrace pre 1919 -0.0142 0.0804 0.0043 -0.0029 -0.0375 -0.0203 -0.0861 

8. Small “villa” pre 1919 -0.0482 0.1066* -0.0196 0.0595 -0.0452 -0.1389 0.1326* 

9. Large “villas” pre 1919 0.0346 0.1315* 0.039 0.1847* -0.0535 0.2349*** 0.1346 

10. Large detached pre 
1919 0.3787* 0.018 0.2219*** 0.0779 0.2661* -0.0541 -0.3021 

19. Houses 1908 to 1930 0.0965** 0.0218 -0.0121 0.093 0.014 0.1491** 0.0644 

20. Subsidy houses 1920s & 
30s -0.0596*** -0.0533 -0.0647*** -0.0899*** -0.0161 -0.0101 -0.0847* 

21. Standard houses 1919-
45 b b b b b b b 

24. Large houses 1919-45 0.2196*** 0.0732 0.2029*** 0.1632** 0.1537*** 0.2395*** 0.088 

25. Individual houses 1919-
45 0.2847 . 0.1857 . -0.2497 0.0835 . 

30. Standard houses 1945-
53  -0.0626** -0.1043** -0.1269*** -0.0027 -0.0527* -0.1485*** -0.0686 
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

31. Standard houses post 
1953 0.0101 0.0857* -0.0049 -0.0013 0.0461 0.0622 0.0098 

32. Large houses post 1953 0.2506*** 0.2504*** 0.1400*** 0.1629** 0.1100** 0.1340** 0.1578* 

35. Individual houses post 
1945 0.5985*** 0.411 -0.1745 0.0926 0.0893 0.0523 . 

36. “Town Houses” post 
1950 -0.1964*** -0.2505 -0.1535 . -0.0365 -0.2151** -0.2501* 

Sale Date        

1st Quarter (Jan. to Mar.) -0.0552*** -0.0351* -0.0588*** -0.0357* -0.0358** -0.0686*** -0.0684*** 

2nd Quarter (Apr. to June) -0.0186 -0.0064 -0.019 -0.0545*** -0.0078 0.0396** -0.0246 

3rd Quarter (July to Sept.) b b b b b b b 

4th Quarter (Oct. to Dec.) -0.0084 0.0049 0.0034 -0.0284 0.0203 0.0399** -0.0221 

Neighbourhood Characteristics        

Poverty Factor -0.0816*** -0.0445*** -0.0637*** -0.1070*** -0.0186 -0.1373*** -0.0825*** 

Skills Factor 0.1009*** 0.1026*** 0.0901*** 0.0741*** 0.1376*** 0.0652*** 0.1060*** 

Age Factor 0.0181** 0.0336*** 0.0188** 0.0246** 0.0154* 0.0788*** 0.024 

Family Factor -0.0458*** -0.0967*** -0.0349*** -0.0457*** -0.0212** -0.0565*** -0.0984*** 

Asian Factor -0.0216** 0.001 -0.0167 -0.022 -0.0652*** 0.0423*** 0.0779*** 

Black Factor -0.0321*** -0.0245* -0.0793*** -0.0497** -0.0797*** 0.0039 0.0139 

Locational Characteristics        

Proximity to City Centre 0 0 0 0 0 0.0001* 0 
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Proximity and Quantity of 
Shops 0.0280*** -0.0252*** -0.0359*** -0.0014 0.011 0.0166 -0.0133 

Proximity and Quality of 
Primary Schools 0.1402*** 0.1734*** 0.1188*** 0.1412*** 0.1274*** 0.0826 0.1290** 

Walking time to Rail Station 0 0 0.0000** 0 0 0 0 

Walking time to a Park 0 0.0000** 0.0000** 0 0 0.0000* 0 

Driving time to Airport 0 0.0000*** 0 0.0000* 0 0.0000* 0.0000* 

Proximity to A-Type Industrial 
Processes 0 0 0.0000* 0.0000*** 0 0.0000** 0.0000** 

Proximity to B-Type Industrial 
Processes 0.0000** 0.0000** 0 0 -0.0001*** 0 0 

Proximity to Land Fill sites 0.0000** 0.0000* 0.0000*** 0.0001*** 0.0000*** 0 0.0000* 

Environmental Characteristics        

Views of Water  0.0058** -0.0012 -0.0002 -0.0005 -0.0011 -0.0034 0.0005 

Views of Parkland 0 -0.0003* -0.0002 0.0002 0 0.0004 0 

Road Traffic Noise -0.0004 0.0014 -0.0019* -0.0044*** -0.0038*** -0.0028* -0.0013 

Rail Traffic Noise -0.0029 -0.0071 -0.0057 -0.0140*** -0.0045 -0.0052 -0.0142** 

Aircraft Noise -0.0596 -0.1672 -0.0018 -0.0662 . . -0.0121 

K 64 63 63 61 63 60 62 

N 2261 1258 2173 895 2018 1207 970 

R2 0.694 0.788 0.783 0.789 0.759 0.819 0.801 
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Adj.R2 0.685 0.777 0.776 0.771 0.751 0.810 0.787 

s 0.222 0.2394 0.2207 0.2015 0.227 0.2441 0.2587 
b  Base case for a set of dummy variables 
* Significant at 10% level of confidence 
** Significant at 5% level of confidence 
*** Significant at 1% level of confidence 
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Appendix B:  Parameters of hedonic price regressions including locational constants (LS) 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Constant 8.9067*** 8.2327*** 8.7047*** 8.4688*** 8.3764*** 8.4239*** 8.9403*** 

Structural Characteristics:        

Floor Area (log) 0.3827*** 0.3991*** 0.4383*** 0.3612*** 0.4879*** 0.3864*** 0.3670*** 

Garden Area (log) 0.0838*** 0.1662*** 0.0973*** 0.1005*** 0.0940*** 0.1393*** 0.1446*** 

Garage 0.0448*** 0.0579*** 0.0550*** 0.0350* 0.0524*** 0.0607*** 0.0369 

Central Heating  0.0464* 0.0653* 0.0577** -0.0283 0.1032*** 0.0828** -0.0716* 

Age -0.0148** -0.0067 -0.0096 -0.0058 -0.0204*** -0.0091 -0.0106 

WCs         

One b b b b b b b 

Two 0.0243* -0.0399** 0.0315** -0.0059 0.0297** -0.022 -0.0244 

Three 0.0198 0.2056** -0.0112 -0.022 0.1304*** 0.0222 0.0075 

Four . 0.8627*** -0.2295* . 0.4666** . . 

Five . 0.372 . . . . . 

Bedrooms        

One 0.0727 0.0675 0.0414 0.2473** 0.0351 0.3394 0.1957 

Two 0.007 -0.0013 0.0127 -0.0299 0.0152 -0.0062 0.0560** 

Three b b b b b b b 

Four 0.0278 0.0029 0.0165 0.0279 0.0407* 0.0677** 0.047 

Five 0.0452 -0.0609 0.1349*** 0.1474** 0.1459*** 0.1758*** 0.044 
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Six -0.1925* -0.0346 0.0692 0.4663* 0.3435*** 0.1821** -0.0534 

Seven 0.1105 -0.3969*** 0.6348*** -0.2241 -0.5027*** 0.2726* 0.4141 

Eight . -0.0483 . 0.4797** -0.0843 . 0.2517 

Nine . . 0.0221 . . . . 

Storeys        

One -0.07 -0.4751 -0.037 0.0449 0.1903*** 0.2255 0.1281 

Two b b b b b b b 

Three -0.0481 -0.2195*** -0.1069*** -0.0672 -0.1115*** -0.0166 0.0183 

Four -0.2106* -0.8875*** -0.4576*** -0.1522 -0.1909* -0.1956 -0.4995** 

Five . . . -0.3947* -0.3526 . -0.5758* 

Construction Type        

Detached Bungalow 0.2031 0.8569*** 0.1771 0.1213 . -0.1787 . 

Semi-Detached Bungalow 0.1699 . 0.0075 . -0.0383 . -0.0694 

End Terrace Bungalow -0.0122 . . . . . . 

Terrace Bungalow . . . . . . 0.0827 

Detached House 0.1396*** 0.1477*** 0.1220*** 0.1386*** 0.1087*** 0.0721*** 0.0884** 

Semi-Detached House b b b b b b b 

End Terrace House -0.0887*** -0.0981*** -0.0440** -0.0493* -0.0780*** -0.0309 -0.1012*** 

Terrace House -0.0795*** -0.0418* -0.0647*** -0.0407* -0.0917*** -0.0763*** -0.0833*** 

Beacon Group        
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1. Unrenovated cottage pre 
1919 -0.1371 . . 0.0228 -0.3349 -0.0215 . 

2. Renovated cottage pre 
1919 . 0.1031 0.3737* . 0.6604*** 0.2239 0.2426 

3. Small “industrial” pre 1919 -0.1158*** 0.0321 0.1031** 0.0414 -0.0325 -0.0665 -0.1759*** 

4. Medium “industrial” pre 
1919 -0.0225 0.0257 -0.0485* -0.0053 -0.0259 0.0092 -0.0545 

5. Large terrace pre 1919 0.0134 0.0614 -0.0662 -0.1176 0.0702 0.029 -0.1293 

8. Small “villa” pre 1919 0.0092 0.0927 -0.0518 0.0416 0.0324 -0.0365 0.2134*** 

9. Large “villas” pre 1919 0.036 0.0955 0.0222 0.1769* -0.0274 0.1872** 0.1927** 

10. Large detached pre 
1919 0.4524** -0.1677 0.2266*** 0.0403 0.4721*** -0.1772 -0.4598* 

19. Houses 1908 to 1930 0.1012** 0.072 -0.0585 0.0704 0.0748 0.1327** 0.1309* 

20. Subsidy houses 1920s & 
30s -0.0805*** -0.0919*** -0.0880*** -0.1278*** -0.0292 0.0157 -0.0545 

21. Standard houses 1919-
45 b b b b b b b 

24. Large houses 1919-45 0.2597*** 0.1120** 0.2021*** 0.1768** 0.1352*** 0.2615*** 0.1892** 

25. Individual houses 1919-
45 0.1885 . 0.0152 . -0.3234 0.1769 . 

30. Standard houses 1945-
53  -0.0851*** -0.1605*** -0.1436*** -0.0127 -0.0845*** -0.0851* -0.0498 
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31. Standard houses post 
1953 -0.0491 -0.0169 -0.0204 -0.0261 -0.0543 0.0304 -0.011 

32. Large houses post 1953 0.1536*** 0.1201* 0.1202*** 0.1581** 0.0157 0.1359** 0.1013 

35. Individual houses post 
1945 0.5353*** 0.4387* -0.214 0.0809 0.0312 0.0838 . 

36. “Town Houses” post 
1950 -0.2377*** -0.1489 -0.1329 . -0.2121 -0.2559*** -0.1947 

Sale Date        

1st Quarter (Jan. to Mar.) -0.0508*** -0.0313* -0.0564*** -0.0400** -0.0407*** -0.0716*** -0.0675*** 

2nd Quarter (Apr. to June) -0.0231* -0.017 -0.0224* -0.0495*** -0.009 0.0246 -0.0262 

3rd Quarter (July to Sept.) b b b b b b b 

4th Quarter (Oct. to Dec.) -0.0039 -0.0094 0.0023 -0.0171 0.015 0.0269 -0.0101 

Neighbourhood Characteristics        

Poverty Factor -0.0871*** -0.0736*** -0.0648*** -0.1284*** -0.0471*** -0.1260*** -0.0483** 

Skills Factor 0.0628*** 0.0305*** 0.0524*** 0.0401** 0.0662*** 0.0055 0.0404** 

Age Factor 0.0209*** 0.0303** 0.014 0.0264* 0.0098 0.0587*** 0.0404** 

Family Factor -0.0075 -0.0489*** -0.0205* -0.0255 -0.0106 -0.0248 -0.0506*** 

Asian Factor 0.0137 -0.0482*** -0.0368*** -0.0697** -0.0118 0.0314** 0.0438** 

Black Factor -0.0254** 0.0046 -0.0517*** -0.0314 -0.0520*** 0.0269** -0.011 

Locational Characteristics        

Proximity to City Centre 0.0001** -0.0001 -0.0001** -0.0001 0 0.0001* -0.0001* 
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Proximity and Quantity of 
Shops 0.0230*** -0.0134 -0.0347*** -0.0023 0.0126 0.0271** -0.0363*** 

Proximity and Quality of 
Primary Schools 0.0961** 0.1593*** 0.1089*** 0.1766*** 0.0942** 0.0134 0.0404 

Walking time to Rail Station 0 0 0 0.0001*** 0.0000** 0 0 

Walking time to a Park 0 0 0.0000** 0 0 0 0 

Driving time to Airport -0.0001*** -0.0001 0 0 -0.0001*** -0.0001** -0.0001 

Proximity to A-Type Industrial 
Processes 0 0.0001*** 0 0.0000** 0.0000** 0 0 

Proximity to B-Type Industrial 
Processes 0 -0.0001*** 0 -0.0001* 0 -0.0001*** 0 

Proximity to Land Fill sites 0 0.0000** 0.0000** 0.0001*** 0.0000* 0.0000** 0 

Wards        

Acock's Green -0.2896** -0.0878 -0.2595*** 0.0285 -0.1522*** -0.128 0.0541 

Aston . -0.5673 -0.3934** . . -0.2820** -0.1593 

Bartley Green -0.1273 . -0.2058*** -0.1212 -0.1503* . . 

Billesley -0.0747 -0.0923 -0.1043** 0.0655 -0.0829* . . 

Bournville 0.0683 0.2489* -0.0475 0.078 0.0654 . . 

Brandwood -0.1095 0.1651 -0.1362** 0.0854 0.0599 0.056 . 

Edgbaston 0.0399 0.2047 -0.2538*** 0.118 0.1255* 0.5427*** 0.3242 

Erdington -0.2274** 0.0281 -0.1146*** 0.0413 -0.1196*** -0.0675 . 
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Fox Hollies -0.2115* . -0.2427*** 0.1233* -0.1544*** -0.1841* 0.1992 

Hall Green -0.1784 0.0166 -0.1187*** 0.0472 -0.0839** 0.122 0.1605 

Handsworth . -0.2885** -0.2472* . -0.2132*** -0.2763** -0.0937 

Harborne 0.0748 0.3169** 0.0817 0.1066 0.3960*** . . 

Hodge Hill -0.2692** . -0.2717*** 0.1024 -0.0918** -0.0024 . 

King's Norton -0.0621 . -0.0571 -0.0436 -0.0245 . . 

Kingsbury -0.2660** . -0.2635*** 0.0237 -0.0245 . . 

Kingstanding -0.1627 -0.1531 -0.1734*** -0.0853 -0.0694 0.0205 -0.2233 

Ladywood -0.084 0.1058 -0.3156*** 0.1636 -0.0301 -0.221 . 

Longbridge -0.1124 0.169 -0.1032 -0.0639 0.0824 . 0.4550*** 

Moseley . 0.155 -0.3543*** -0.3153** -0.0606 0.1903 0.3409** 

Nechells -0.3682*** -0.2002 -0.1422** 0.0916 -0.4287*** -0.7439*** -0.0714 

Northfield -0.0855 . -0.0881 0.0913 0.1691 . . 

Oscott -0.2088* -0.3334** -0.2240*** -0.2329** -0.1163** . . 

Perry Barr -0.1629 -0.2357* -0.2433*** -0.1577 -0.1565*** . . 

Quinton 0.0412 0.2236 -0.1776* -0.0967 0.0335 0.1068 . 

Sandwell -0.1557 -0.3896*** -0.2749*** -0.0042 -0.2002*** -0.0467 -0.1068 

Selly Oak 0.0982 0.2363 . 0.2023* 0.1423** . . 

Shard End -0.4113*** . -0.2220*** 0.118 -0.1345 -0.4445*** . 

Sheldon -0.2656** . -0.2177*** . 0.0045 -0.067 -0.0842 
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Small Heath -0.2866** 0.0406 . . -0.2047 -0.1810* -0.1147 

Soho . -0.3117** . . . -0.4080*** -0.2027 

Sparkbrook . 0.0503 . . . -0.1595 -0.0112 

Sparkhill -0.1936 0.0833 -0.058 0.2220* -0.0819 -0.0868 0.2269 

Stockland Green . . -0.2485*** -0.0557 -0.1976*** . . 

Sutton Four Oaks 0.0501 -0.1293 0.0659* 0.1483 0.0454 . . 

Sutton New Hall b b b b b b b 

Sutton Vesey -0.0638 . . 0.0936 -0.0472 0.1214 0.2678* 

Washwood Heath -0.3167*** . -0.3352*** 0.0473 -0.1505*** -0.2755** -0.4276 

Weoley -0.11 0.0734 -0.2655*** 0.0939 -0.0187 0.1514 0.1722 

Yardley -0.2692** -0.0777 -0.2097*** -0.0155 . -0.1086 0.0141 

Environmental Characteristics        

Views of Water  0.0055** -0.0001 0 0.0029 -0.0009 -0.0008 0.0002 

Views of Parkland 0 -0.0002 -0.0002 0 0.0002 0.0003 0 

Road Traffic Noise -0.0004 -0.0002 -0.0024** -0.0037** -0.0038*** -0.0035** -0.0035* 

Rail Traffic Noise -0.0026 -0.0126* -0.0086** -0.0089** -0.0023 -0.0046 -0.0119** 

Aircraft Noise -0.0906* -0.1413 0.0102 -0.0637 . . -0.0109 

K 96 90 96 93 97 85 82 

N 2261 1258 2173 895 2018 1207 970 

R2 0.721 0.830 0.800 0.807 0.790 0.847 0.829 
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Adj.R2 0.709 0.817 0.791 0.785 0.779 0.836 0.813 

s 0.2133 0.2169 0.2135 0.1955 0.2139 0.2267 0.2425 
b  Base case for a set of dummy variables 
* Significant at 10% level of confidence 
** Significant at 5% level of confidence 
*** Significant at 1% level of confidence 
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Appendix C:  Parameters of hedonic price regressions including locational constants (SSE estimator) 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Structural Characteristics:        

Floor Area (log) 0.3627*** 0.3321*** 0.4327*** 0.3594*** 0.4662*** 0.3757*** 0.3711*** 

Garden Area (log) 0.0829*** 0.1672*** 0.0935*** 0.1051*** 0.0836*** 0.1353*** 0.1329*** 

Garage 0.0402*** 0.0752*** 0.0450*** 0.0152 0.0366*** 0.0602*** 0.0516** 

Central Heating  0.0378 0.0491 0.0540* -0.0329 0.1259*** 0.0734* -0.0919** 

Age -0.0136* -0.0065 -0.0094 0.01 -0.0186** -0.0098 -0.0164 

WCs         

One b b b b b b b 

Two 0.0187 -0.0309** 0.0374*** -0.0177 0.0258** -0.0206 -0.0322 

Three 0.0583 0.1399 -0.0199 -0.0446 0.0768* -0.0203 -0.0577 

Four . 0.9636*** -0.2579** . 0.192 . . 

Five . 0.394 . . . . . 

Bedrooms        

One 0.0574 -0.0211 0.0541 0.2716** 0.0733 0.2203 -0.025 

Two 0.0094 -0.0128 0.0217 -0.0105 0.0092 -0.0017 0.0533** 

Three b b b b b b b 

Four 0.0389* 0.0339 0.0203 0.0278 0.0553** 0.0552** 0.0458 

Five 0.0780* -0.0236 0.0970** 0.1448* 0.1599*** 0.1564*** 0.0479 
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Six -0.2504** -0.0125 0.0698 0.1617 0.2793*** 0.0808 -0.1179 

Seven 0.1054 -0.2475* 0.3495 -0.1789 -0.4030*** 0.1444 0.3967 

Eight . 0.0858 . 0.3422 0.0013 . 0.1812 

Nine . . -0.1097 . . . . 

Storeys        

One -0.111 0.3490*** -0.0582 0.0566 0.0949 0.0578 0.3675 

Two b b b b b b b 

Three -0.0353 -0.2155*** -0.1097*** -0.0656 -0.0776** -0.0206 0.0047 

Four -0.165 -0.8355*** -0.3608*** -0.0745 -0.1747 -0.1914 -0.5552*** 

Five . . . -0.4045** -0.234 . -0.6024* 

Construction Type        

Detached Bungalow 0.1694 . 0.2022*** 0.0677 0.099 . -0.2827 

Semi-Detached Bungalow 0.1563 -0.5017 . . . 0.126 -0.2649 

End Terrace Bungalow -0.0094 . . . . . . 

Terrace Bungalow . . 0.1702 . . . . 

Detached House 0.1367*** 0.1173*** 0.1223*** 0.1149*** 0.1130*** 0.0698*** 0.1110*** 

Semi-Detached House b b b b b b b 

End Terrace House -0.1051*** -0.0736*** -0.0495*** -0.0524** -0.0777*** -0.0136 -0.1303*** 

Terrace House -0.0944*** -0.0379* -0.0567*** -0.0585** -0.1012*** -0.0589** -0.1154*** 
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Beacon Group        

1. Unrenovated cottage pre 
1919 -0.082 . . 0.0164 -0.3308 -0.2744 . 

2. Renovated cottage pre 
1919 . 0.19 0.4129** . 0.6484*** 0.164 0.15 

3. Small “industrial” pre 1919 -0.1401*** 0.021 0.0944** -0.0055 -0.0289 -0.1207* -0.1614** 

4. Medium “industrial” pre 
1919 -0.0422 0.0117 -0.0502* -0.0531 -0.0572* -0.0184 -0.0265 

5. Large terrace pre 1919 -0.0189 0.0599 -0.0677 -0.1966 0.0968 0.053 -0.1649 

8. Small “villa” pre 1919 0.0048 0.0389 -0.0408 -0.0003 -0.0311 -0.098 0.2514*** 

9. Large “villas” pre 1919 0.0611 0.0915 0.045 0.1042 0.0016 0.2684*** 0.2272** 

10. Large detached pre 
1919 0.3673* -0.1821 0.1573* 0.025 0.0887 0.2041 -0.3399 

19. Houses 1908 to 1930 0.1376*** 0.0639 -0.0587 0.0744 0.0956* 0.1181* 0.2039** 

20. Subsidy houses 1920s & 
30s -0.0714*** -0.0495 -0.0538** -0.1217*** -0.0232 0.0242 -0.0165 

21. Standard houses 1919-
45 b b b b b b b 

24. Large houses 1919-45 0.2578*** 0.1332*** 0.2098*** 0.2744*** 0.1103** 0.2848*** 0.1516* 

25. Individual houses 1919-
45 0.2856 . 0.3533 . -0.0949 0.2182 . 

30. Standard houses 1945- -0.1016*** -0.1186** -0.1212*** -0.0009 -0.0923*** -0.0569 -0.0764 
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53  

31. Standard houses post 
1953 -0.0262 0.0189 -0.0067 0.0188 -0.0661* 0.0036 -0.0748 

32. Large houses post 1953 0.1095** 0.1046* 0.1254*** 0.1948** -0.0057 0.0992 0.0498 

35. Individual houses post 
1945 0.4179*** 0.273 -0.4998** 0.1312 0.0148 0.1124 . 

36. “Town Houses” post 
1950 -0.1819** -0.0425 -0.0281 . -0.1648 -0.2992*** -0.2767** 

Sale Date        

1st Quarter (Jan. to Mar.) -0.0534*** -0.0382** -0.0569*** -0.0414** -0.0482*** -0.0703*** -0.0705*** 

2nd Quarter (Apr. to June) -0.0280** -0.0226 -0.0209* -0.0422** -0.0205* 0.025 -0.022 

3rd Quarter (July to Sept.) b b b b b b b 

4th Quarter (Oct. to Dec.) -0.0006 -0.0083 -0.005 -0.0189 0.0167 0.0279 -0.0162 

Neighbourhood Characteristics        

Poverty Factor -0.0881*** -0.0430** -0.0646*** -0.1480*** -0.0396** -0.1096*** -0.0323 

Skills Factor 0.0210* 0.0118 0.0230* 0.0301 0.0305** 0.0131 0.0105 

Age Factor 0.0133 0.0353** 0.0086 -0.0199 0.0185 0.0537** 0.012 

Family Factor 0.0083 -0.0560*** -0.0206 -0.0412 0.0076 -0.0365* -0.0505** 

Asian Factor -0.0031 -0.0377* -0.0028 0.0027 -0.0516 0.0272 0.0236 

Black Factor -0.0032 -0.0132 0.0006 0.0179 -0.0450* 0.0157 -0.0025 

Locational Characteristics        
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Proximity to City Centre 0.0002** 0 0 -0.0002 0 0.0001 0 

Proximity and Quantity of 
Shops 0.0184 -0.0006 -0.0287** -0.0237 0.0101 0.0139 -0.0073 

Proximity and Quality of 
Primary Schools 0.1566*** 0.0999 0.1460*** 0.1481* 0.1498*** 0.018 0.1217 

Walking time to Rail Station 0 0 0 0 0 -0.0001 0 

Walking time to a Park 0 0 0 0 0.0001* 0 0 

Driving time to Airport -0.0002** -0.0001 -0.0001 0.0002 0 0 -0.0001 

Proximity to A-Type Industrial 
Processes 0 0.0001* 0 0.0001 0 0 0.0002 

Proximity to B-Type Industrial 
Processes 0 0.0001 0 0 0 -0.0001 -0.0001 

Proximity to Land Fill sites 0 0.0001 0.0001* 0.0001 0.0001 0 0 

Wards        

Acock's Green 1.5582 -1.2035 0.617 -2.6396 -3.2907 2.0884 -30.4681 

Aston . 0.0857 -0.0436 . . 2.7161 4,647.448 

Bartley Green 1.078 . 2.7871 -3.6536 -3.9907 . . 

Billesley 1.432 -1.0255 1.14 -2.67 -3.4591 . . 

Bournville 1.4856 -0.9024 1.1647 -3.0443 -3.3406 . . 

Brandwood 1.3945 -0.9102 1.0962 -2.8444 -3.2232 1.1456 . 

Edgbaston 0.2833 -1.3627 1.7834 -1.9179 -3.6108 0.389 -26.2427 
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Erdington 1.634 0.6445 0.2054 -0.2892 -0.6302 2.4806 . 

Fox Hollies 1.4164 . 1.922 -2.5354 -3.4242 1.9649 -29.8137 

Hall Green 1.419 0.02 2.0962 -2.676 -3.335 2.1434 . 

Handsworth . -0.6367 -0.5662 . -0.75 2.7422 4,647.558 

Harborne 0.9861 -1.0371 2.4572 -3.8086 -3.7257 . . 

Hodge Hill 1.6503 . 0.1127 -2.6101 -1.0371 4.3444 . 

King's Norton 1.3624 . 1.1851 -3.1194 -2.7419 . . 

Kingsbury 1.8315 . 0.074 0.2226 -0.578 . . 

Kingstanding 1.3201 0.7698 0.3603 -0.5309 -0.214 3.5735 4,647.727 

Ladywood . -1.2317 1.7089 -5.5353 -3.5308 2.59 . 

Longbridge 1.4468 -0.6193 1.3655 -3.5282 -1.7353 . -15323.77 

Moseley . -1.2053 1.4861 -2.836 -3.6227 1.822 -26.4718 

Nechells 1.5333 -0.9836 0.0469 -2.9615 -0.8741 2.1878 4,645.471 

Northfield 1.4186 . 1.227 -3.6237 -2.2074 . . 

Oscott 1.3238 0.8529 0.6805 -1.0281 -0.0447 . . 

Perry Barr 1.5363 1.1032 0.6431 -1.138 -0.2238 . . 

Quinton 1.2933 -0.9474 2.187 -3.7711 -3.6272 -27.3819 . 

Sandwell 2.0835 -0.1035 0.9237 0.0848 -0.2761 3.1684 4,646.502 

Selly Oak 1.4658 -0.9677 . -3.1897 -3.2682 . . 
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Shard End 1.5772 . 0.1567 -2.0472 -17.6935 4.931 . 

Sheldon 1.4995 . 0.6312 . -4.4502 2.0716 -30.7874 

Small Heath 1.7 -1.0106 . . -0.7566 2.0433 -27.7914 

Soho . -0.1601 . . . 2.6591 4,647.521 

Sparkbrook . -1.0953 . . . 1.7668 -27.3963 

Sparkhill 1.7329 -1.0899 2.138 -2.2247 -3.1955 2.149 -26.8326 

Stockland Green . . 0.3969 0.1092 -0.5616 . . 

Sutton Four Oaks . . 0.1087* 0.0299 -0.1252 . . 

Sutton New Hall b b b b b b b 

Sutton Vesey 1.8219 . . -0.2182 -0.7973 2.061 4,648.265 

Washwood Heath 1.605 . -0.0751 -2.7345 -0.891 3.4125 -26.2216 

Weoley 1.1882 -1.1806 2.255 -3.462 -3.2382 -33.5121 . 

Yardley 1.5651 -1.2513 0.6089 -2.6128 . 2.0667 -30.1466 

Environmental Characteristics        

Views of Water  0.0044 0.0004 0.0003 0.0021 0.0007 0.0004 0.0002 

Views of Parkland 0 -0.0001 -0.0002 0.0001 -0.0001 0.0004 0 

Road Traffic Noise 0.0002 0.0015 -0.0033*** -0.0028 -0.0041*** -0.0022 -0.003 

Rail Traffic Noise -0.0039 -0.0125* -0.0069* -0.0087** 0.0011 -0.0052 -0.0103* 

Aircraft Noise -0.0094 -0.024 0.0136 -0.1072 . . -0.0143 
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

K 93 88 95 92 96 84 79 

N 2261 1258 2173 895 2018 1207 970 

R2 0.760 0.864 0.827 0.838 0.834 0.868 0.853 

s2 0.039 0.038 0.039 0.032 0.036 0.044 0.050 

b 550 675 600 650 450 625 400 

h 200 300 300 100 200 200 100 

Moran’s I -0.016 -0.021 -0.015 -0.048 -0.016 -0.025 -0.025 

Probability of Moran’s I 0.987 0.953 0.932 0.961 0.915 0.956 0.941 
b  Base case for a set of dummy variables 
* Significant at 10% level of confidence 
** Significant at 5% level of confidence 
*** Significant at 1% level of confidence 

 


