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Abstract 
For many industrialised nations environmental noise is emerging as a local pollutant of major 
concern. Incorporating such concerns into policy guidance tools such as social cost benefit 
analysis requires estimates of the monetised benefits of noise reduction. Using a two-stage 
hedonic pricing methodology we estimate a system of structural demand equations for 
different sources of transport-related noise. Our application applies state-of-the-art 
econometric techniques. In the first stage, we identify market segments using model-based 
clustering techniques and estimate separate hedonic price functions for each segment. We 
spatially smooth the data to account for omitted spatial covariates and employ a 
semiparametric estimator to allow flexibility in functional form. In the second stage, we 
control for nonlinearity of the budget constraint and identify demand relationships using 
techniques that account for problems of endogeneity and censoring of the dependent 
variable. We report welfare estimates for peace and quiet that we believe to be the first 
derived from property market data in a theoretically consistent manner. 
 
Keywords:  Noise valuation, hedonic pricing, model-based clustering, partial linear model, 
spatial autocorrelation, demand system, simultaneous-equation Tobit. 
JEL Classifications: Q51, C14, C21, C24 
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1. INTRODUCTION 
 
For many industrialised nations environmental noise is emerging as a local pollutant of major 
concern. In the European Union (EU), for example, it is claimed that around 20% of the 
population are exposed to environmental noise levels that scientists and health experts 
consider unacceptable (EC, 1996). Indeed, the Directive on the Assessment and 
Management of Environmental Noise requires member states of the EU to draw up “action 
plans” designed to reduce noise where necessary and to maintain environmental noise 
quality where it is good (EC, 2002).  
 
Of course, noise reduction measures are costly and establishing whether such measures are 
worthwhile requires comparison of these costs with the social benefits of a quieter 
environment. One framework within which this comparison can be made is social cost-
benefit analysis (SCBA). Attempts to integrate noise considerations into SCBA have been 
hampered, however, by the absence of monetary valuations of the welfare benefits of noise 
reductions. For example, the UK in common with many other EU member states and other 
industrialised countries, undertakes SCBA of transport projects but fails to include within its 
analysis monetarised estimates of the noise (dis)benefits of projects (Odgaard et al, 2005; 
Grant-Muller et al, 2001; Hayashi and Morisugi, 2000). Whilst there is an aspiration to 
include noise (dis)benefits in this analysis (HM Treasury, 2003, Annex 2; DfT, 2004a), no 
reliable figures are available for that purpose. 
 
This paper reports on research undertaken in the UK that attempts to estimate welfare 
values for the avoidance of transport-related noise in urban areas. Our research applies the 
method of hedonic pricing to property market data collected from the city of Birmingham in 
the UK. As is well known, hedonic pricing uses techniques of multiple regression to isolate 
implicit prices (i.e differences in the market price of property attributable to marginal 
differences in property characteristics). There already exists a large literature reporting on 
studies undertaken in various urban property markets that have identified implicit prices for 
noise (reviewed in Bateman et al., 2001).  
 
Like any market price, implicit prices for noise provide a monetary estimate of the welfare 
benefits of marginal changes in noise within that property market. However, like any market 
price, the implicit prices that arise in a property market reflect only the particular conditions of 
supply and demand that exist in that market. Accordingly, an implicit price for noise 
estimated in one urban area offers little indication of the benefits of changes in noise that are 
experienced in different urban areas. Far better would be to use the information provided by 
observations of households’ choices of noise exposure when faced by different implicit 
prices to identify the demand relationship for peace and quiet. Areas under such a demand 
curve provide valid approximations to the welfare benefits of non-marginal changes in noise 
exposure (Bartik, 1988) and, because they are based on underlying preferences and not 
market prices, indicate values that might be used in benefits transfer exercises.  
 
Unfortunately, estimating demand relationships from hedonic pricing data is a  theoretically 
and analytically challenging task.1 Indeed, this study is one of only a handful that have 
attempted to estimate demand relationships using the hedonic pricing method in a 
theoretically consistent manner (other examples include, Bajic, 1993, Cheshire and 
Sheppard, 1998, Palmquist and Isangkura, 1999, Boyle et al., 1999 and Zabel and Kiel, 
2000). Moreover, as far as the authors are aware it is the only study to estimate demand 
relationships for avoidance of transport-related noise pollution using property price data.  

                                                 

1 Haab and McConnell (2002) state that “With a few exceptions, researchers have abandoned any attempts to 
recover preferences, and work instead with the hedonic price function” (p. 251). 
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Our study, is unique in other ways. As briefly described in Section 3, our data is one of the 
largest and richest property market data sets yet compiled. We make use of numerous data 
sources to assemble details of the structural characteristics of properties and take 
advantage of the powers of geographical information systems (GIS) to construct variables 
that capture a diversity of features of properties’ locations. In particular, our data set contains 
measures of noise exposure from road, rail and aircraft traffic, such that our study is the first, 
of which we are aware, to investigate these three sources of noise pollution simultaneously. 
 
In addition, we investigate our data for evidence of market segmentation. To this end we 
apply techniques of model-based clustering, a statistically rich set of analytical tools that use 
the data itself to inform on the pattern of segmentation in the property market (Fraley and 
Raftery, 1998). These techniques have never previously been applied in this context and, as 
far as the authors can ascertain, neither have they been applied in any other field of applied 
econometrics.  
 
Furthermore, we contribute to the substantial literature on the specification of hedonic price 
functions. In particular, we combine the partial linear specification of Anglin and Gencay 
(1996) with the smooth spatial effects estimator of Gibbons and Machin (2003). Accordingly, 
we employ a specification in which variables that we believe a priori to be key determinants 
of market price enter the hedonic price function nonparametrically. Moreover, we account for 
the possibility of omitted spatial covariates by spatially smoothing the data. Finally, we 
correct the standard errors of our parameter estimates for spatial autocorrelation using a two 
stage generalised moments estimator suggested by Kelejian and Prucha (1999).  
 
Our demand analysis is also unique in that we estimate a demand system for more than one 
source of noise pollution. In so doing we, we correct the data for problems brought about by 
non-linearlity of the budget constraint and apply Amemiya’s generalised least squares 
estimator (Newey, 1987) to account for the endogeneity of implicit prices and the censoring 
of the quantity variable at the background level of urban noise.  
 
The paper is organised as follows. Section 2 discusses the hedonic pricing method.  Section 
3 provides a brief description of our data set. Section 4 describes our econometric approach 
to estimating hedonic price functions and deriving the implicit price of noise. Section 5 
reports on the results of this approach when applied to our data. Section 6 discusses our 
econometric approach to estimating demand relationships for peace and quiet. Section 7 
reports on the application of this estimating approach to our data. Section 8 describes the 
welfare estimates derived from our demand analysis and Section 9 provides some 
concluding remarks.  



 

 3

2. THE METHOD OF HEDONIC PRICING 
 
The problem with estimating a demand function for peace and quiet is that noise avoidance 
is not traded in its own market. Accordingly, we are unable to directly observe either market 
prices or associated levels of demand. Nevertheless, as first observed by Ridker (1967) and 
Ridker and Henning (1967), households reveal their preferences for the environmental 
quality of their residential location when purchasing a residence in the property market. Of 
course, properties are differentiated by more than just their exposure to noise. Indeed, 
property can be thought of as a multi-attributed commodity providing households with a 
variety of different services. Rosen (1974) endowed economists with a substantive 
theoretical framework within which to study market equilibria for such commodities. These 
equilibria are characterised by a market clearing price function, the hedonic price function 
(HPF), that relates the various attributes of a commodity to the price that commodity can 
fetch in the market. In the property market, for example, prices are determined by the 
qualities or characteristics of a property’s structure, environs and location.  
 
In the spirit of Rosen (1974) our estimation strategy involves two stages. In the first stage we 
estimate the market-clearing HPF; 

( )zPP =   (1) 

where z is a vector (with elements zk; k = 1, 2, …, K) of property attributes and P is the price 
that a property with those attributes commands in the market. For each household in a 
sample, therefore, the implicit price of a property attribute can be calculated from the HPF by 
evaluating ( )

kzk pzP ≡∂∂ z . As in the standard model of consumer choice, Rosen showed 
that utility maximising households will choose a residential location where the level of each 
property attribute is such that their marginal willingness to pay (MWTP) for each attribute just 
equals its implicit price. Accordingly, the second stage of the estimation procedure is to 
regress observed levels of residential noise exposure on calculated implicit prices in order to 
estimate a demand function for peace and quiet.   
 
There has been considerable debate as to whether the demand function can be identified 
using this two stage procedure using data from a single market (see Ekeland et al. 2002 for 
a detailed review). Whilst the literature on this subject has been voluminous and occasionally 
misguided the problem is in essence quite simple; to estimate a household’s demand curve 
one must have information on at least two points along its length, data from a single market 
provides just one.2 As a consequence, researchers attempting to identify demand functions 
for attributes must follow one of two avenues; either (1) impose structure on the model of 
household preferences and use the non-linearity of the HPF to afford identification (as per 
Ekeland et al., 2004) or (2) introduce exogenous price variation into the data by collecting 
observations from a variety of property markets each characterised by unique and differing 
HPFs (as per Brown and Rosen, 1982; Murray, 1982; McConnell and Phipps, 1987). In our 
application we follow the latter strategy.  
 
The process of recovering an estimate of the demand curve is further complicated by the 
fact that in hedonic markets, prices per unit of a characteristic are not necessarily constant. 
Under such circumstances, households effectively simultaneously choose the price and 
quantity of the property characteristic such that prices must be treated as endogenous in the 
estimation process. More fundamentally, when marginal prices are not constant the standard 
duality results of consumer theory no longer hold. In particular, Marshallian demand 
                                                 

2 Data from a single market provides no exogenous variation in price. Differences in observed choices must 
result solely from differences in demand shifters such that the price-quantity relationship cannot be identified. 
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functions do not necessarily manifest themselves as downward sloping curves relating 
prices to quantities. In our application, we follow the procedure proposed by Murray (1983) 
and Palmquist (1988) in which adjustments are made to the income argument in the demand 
relationship so as to estimate ‘pseudo’-Marshallian demand functions whose properties 
resemble those of standard Marshallian demand functions in a world of parametric prices. 
We discuss this estimation strategy in Section 6 and its implications for calculating welfare 
measures in Section 9. 
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3. THE DATA 
 
The research results presented in this paper are based on property purchases in the City of 
Birmingham. Birmingham is the UK’s second largest city with a large and diverse housing 
stock and an equally diverse population. The property market is highly developed and 
sufficiently active to ensure that competition amongst vendors, brokers and purchasers 
enforces a market rigour that obliges properties to sell at a firmly established market price.  
 
Details of the selling price, sale date and full address for each residential property 
transaction during 1997 were obtained from the databases of the UK Land Registry. Details 
of the structural characteristics of each property were obtained from the Valuation Office 
Agency (VOA). Amongst other details, the VOA provided data on the number of bedrooms 
and bathrooms in each property, total floor area, the property’s age, whether the property 
was a bungalow or house (flats are not included in the analysis), whether the property was 
detached, semi-detached, in a terrace or at the end of a terrace and whether the property 
had central heating and access to off-road parking. Furthermore, the VOA classifies 
properties according to age and style of construction into one of around 30 property types 
called Beacon Groups that provide an additional indication of property quality.  
 
Addresses were geolocated using a GIS. Subsequently GIS datasets were used to provide 
details of the garden area and to calculate straight line distances, car travel times and 
walking distances from each property to (dis)amenities including the central business district, 
primary schools, shops, railway stations, industrial sites and landfills. To further refine the 
accessibility measures, an index was constructed that combined the walking-distance 
proximity of local primary schools with measures of school quality. Figure 1 illustrates values 
for this index for properties in the dataset for one location in the study area. A similar index 
was constructed to describe proximity to local commercial centres based on the quantity and 
proximity of shops.  
 
Figure 1: Primary School accessibility scores for a selection of properties  

 
Using a GIS, data on land uses and the location and orientation of each property was 
combined with information on the landscape topology and building heights to calculate 
indices describing the views available from each property. View indices were constructed for 
recreational parkland and water surfaces.  
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Data pertaining to each property’s exposure to daytime road, rail and air traffic noise 
measured in decibels LEQ were provided by the Department of Environment Food and Rural 
Affairs. 
 
Data on the socioeconomic composition of property neighbourhoods were drawn from the 
1991 UK census provided by the Office for National Statistics (ONS). The smallest area over 
which census data is provided by the ONS is an enumeration district (ED). Birmingham is 
divided into 1,940 EDs, with each ED containing an average of 191 households. EDs are 
gathered into larger scale political units known as wards of which Birmingham contains 39. 
The hierarchy of these administrative areas in illustrated in Figure 2. 
 

Figure 2: Hierarchy of administrative areas in Birmingham 

 
Census data provides hundreds of variables describing the socioeconomic characteristics of 
the households inhabiting each ED. We condense this excess of neighbourhood attributes 
into a more manageable set of indices using factor analysis. Following standard procedures 
we retain four factors that are interpreted as measuring the increasing; (1) wealth of 
households (2) presence of inhabitants from ethnic minorities (3) age of inhabitants, (4) 
presence of households with children. 
 
 
Complete data records were successfully compiled for some 10,848 residential property 
transactions in Birmingham in 1997. A summary of the variables used in the analysis is 
provided in Appendix A.  



 

 7

4. FIRST STAGE: ECONOMETRIC MODEL  
 
It is almost universally acknowledged that urban property markets are not homogenous 
entities. Rather they are composed of a collection of distinct but related market segments. 
Watkins (2001) argues that segmentation of the market arises from the fact that households 
tend to fall into distinct “consumer groups” whilst the housing stock comprises a variety of 
distinct “product groups”. The matching of consumer groups to product groups gives rise to 
segmentation of the market whilst the differing conditions of supply and demand within each 
segment mean each is characterised by a unique HPF. Following Bajic (1993), we introduce 
price variation into the second stage estimation procedures by identifying market segments 
and fitting separate HPFs to each segment.  
 
Our intention in this study is to identify segments as groups of properties with similar 
structural attributes inhabited by households with similar socioeconomic characteristics. One 
data-driven process by which such groups might be identified is known as cluster analysis 
(see Jain et al., 1999 for a recent review of this set of techniques). Indeed techniques of 
cluster analysis have previously been applied to the classification of properties into market 
segments; notably by Abraham et al. (1994), Goetzmann and Wachter (1995), Hoesli et al. 
(1997) and Bourassa et al. (1999). However, these studies use relatively simple clustering 
algorithms that provide no independent statistical indication of the nature or number of 
clusters to be found in the data. In this research we take advantage of recent advances in 
clustering techniques to answer both these important questions. In particular, we employ 
model-based cluster analysis (Banfield and Raftery, 1993; Fraley and Raftery, 1998).  
 
The starting point for any cluster analysis is to define a set of P variables by which the data 
is to be clustered. Each observation can then be represented by a point in the P-space 
defined by those variables. The objective of the analysis is to identify the various groups of 
observations that form distinct clusters in this P-space. The fundamental assumption of 
model-based clustering is that each data point is drawn from a population of such points 
constituting all the members of the cluster. Moreover, the location, size and shape of this 
underlying population can be approximated by a probability distribution.3 The data observed 
by the researcher is the composite of data points drawn from a finite number of such 
clusters.  
To formalise, each P-dimensional data point x arises from a super population comprising a 
mixture of M populations, MCCC ,,, 21 K , in some proportions Mπππ ,,, 21 K  respectively, 
where; 

( )Mjj

M

j
j ,,2,10and1

1
K=≥=∑

=

ππ   (2) 

If we assume that each population, Cj, can be modelled as a p-dimensional Gaussian 
distribution with mean vector jµ  and covariance matrix jΣ , then the probability density 
function (pdf) of an observation x is of the form; 

                                                 

3 Assuming a Gaussian distribution, for example, would imply that clusters are ellipsoidal. It would also assume 
that the likelihood of observing data points belonging to a particular cluster is greater near the mean location of 
that cluster than at its periphery. 
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where ( )Mθθθθ ,,, 21 K=  is the vector of parameters associated with the assumed 
distributions of the M clusters, ( )Mππππ ,,, 21 K=  is the vector of mixing proportions, 

( )jjf θx |  is the pdf of cluster Cj which is given the specific p-dimensional Gaussian form 

denoted ( )jj
p
j Σµx ,|φ . Thus, in the Gaussian case jθ  comprises the elements of the 

vector jµ , which determine the mean location of each cluster in p-space, and the distinct 

elements of the covariance matrices jΣ , which determine the geometric proportions of each 
cluster.  
 
As described by Fraley and Raftery (1998), given some initial assumption concerning the 
number of clusters, equation (3) allows one to formulate a likelihood function for the 
clustering problem. Moreover, the location and shape parameters describing each cluster 
that maximise this likelihood can be estimated using a simple EM algorithm. In addition, the 
number of clusters best characterising the data can be identified by comparing models 
assuming different numbers of clusters using Bayes Information Criteria (BIC). Since we 
suspect that geographical location will play an important role in determining market segment 
membership, we make use of a procedure suggested by Posse (2001) and post-process the 
clustering classification to take account of the spatial information. 
 
We estimate separate HPFs for each cluster identified in the data. Following standard 
practice (e.g. Allen et al., 1990) we assume that the properties in a cluster form a separate 
market segment if the HPF for that cluster differs significantly from those of the other 
clusters.  
 
Unfortunately, economic theory provides little guidance as to how to specify the functional 
form of HPFs. Indeed, recent research simulating market-clearing HPFs using hypothetical 
data reveals that under all but the most contrived of assumptions, the equilibrium HPF will 
tend to be highly non-linear (Heckman et al., 2003). Nesheim (2002) even reports that for 
certain parameter values, a kinked price function is required in order to attain equilibrium. 
Moreover, it is widely recognised that location, or at least attributes of location, plays a major 
role in determining property prices. Even with the advances in data collation provided by 
developments in digital data manipulated in GIS, it seems unlikely that any data set will be 
sufficiently comprehensive to capture every aspect of location that might induce correlation 
in prices over space. Accordingly, our regression function must allow for non-linearities in 
known covariates and for the possibility of omitted spatial covariates. 
 
Anglin and Gencay (1996) were the first to apply Robinson’s (1988) partial linear model 
(PLM) in order to introduce flexibility into the functional form of hedonic equations. In the 
PLM part of the model is specified parametrically whilst the rest is estimated using non-
parametric techniques. We allow for non-linearities by including in the nonparameteric part of 
the model those variables that we believe a priori to be key determinants of market price.  
 
Gibbons and Machin (2002) also exploit the PLM, but to account for omitted locational 
covariates. They include the coordinates of each observation in the nonparametric part of 
the model in what they label their smooth spatial effects estimator.  
 



 

 9

Here we combine the specifictions of Anglin and Gencay (1996) and Gibbons and Machin 
(2002) by including both location coordinates and property characteristics in the 
nonparametric part of the PLM. Our specification is as follows;  
 

( ) iiiii εqP ++= cxβz ,ln    (4) 

 
where zi is a k-vector of regressors whose influence on property price is determined by the 
parameters β, whilst xi is a p-vector of regressors and ci is the two-dimensional vector of 
coordinates whose joint influence on prices is determined by the unknown function ( )⋅q . 
 
Robinson shows that the model in (4) can be rewritten as; 

[ ] [ ]( ) iiiiiii εEPEP +−=− βcxzzcx ,|,|lnln   (5) 

suggesting that β can be estimated in a two-step procedure; 
 
• First, the unknown conditional means [ ]iiPE cx ,|ln  and [ ]iiE cxz ,|  are estimated 

using a non-parametric estimation technique. 
• Second, the estimates are substituted in place of the unknown functions in (5) and 

ordinary regression techniques employed to estimate β. 
 
Indeed, Robinson shows that the resulting parameter estimates are asymptotically 
equivalent to those that would be derived if the true functional form of q(·) were known and 
could be used in the estimation.  
 
We estimate the quantities [ ]iiPE cx ,|ln  and [ ]iiE cxz ,|  using non-parametric kernel 
regression with a multivariate Gaussian kernel. We fix the bandwidth for the elements of ci to 
a prespecified value, b, such that each observation is spatially smoothed over the same 
circular area. We adopt a bandwidth matrix for xi that is proportional to the sample 
covariance matrix of x and estimate this proportion, h, using cross-validation. Finally, we use 
a two-step adaptive kernel estimation procedure that, in the second step, employs an 
observation-specific proportion, hi, calculated to allow for differences in the density of the 
data in the region of each observation. 
The data can be expressed as differences from the spatially smoothed conditional 
expectations; that is [ ]iiiii PEPPy cx ,|lnln~ln~ −==  and [ ]iiii E cxzzz ,|~ −= . Stacking 

the iy~ data to form the N × 1 matrix Y~  and the iz~ vectors to form the N × k matrix Z~  allows 
the parameters to be estimated according to; 

( ) YZZZβ ~'~~'~~ 1−
=   (6) 

Despite the use of a spatial smoothing estimator, the possibility remains that a variety of 
features of each property’s location are not captured by the model. Since these features are 
held in common by properties in close proximity, it is possible that the regression residuals 
will exhibit spatial correlation.  If this is so then (6) will return inefficient estimates of the 
model parameters and biased estimates of the parameters’ standard errors. 
In our application we find clear evidence of spatial autocorrelation in our regression 
residuals. For simplicity, we assume that this spatial error dependence takes the form; 

uWεε += ρ   (7) 
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where ε is the [N × 1] vector of random error terms with mean zero, W is an N × N weighting 
matrix, ρ is the error dependence parameter to be estimated and u is the usual N × 1 vector 
of random error terms with expected value zero and variance-covariance matrix σ2I. Notice 
that 0=ρ  implies uε =  and there is no spatial dependence in the data. The association 
between one property and another is captured by the weighting matrix, W. The diagonal 
elements of W are zero, whilst the off-diagonal elements that represent the potential spatial 
dependence between observations, are non-zero only if properties are closer than some 
predetermined distance, d. In our application we adopt a binary weights matrix in which the 
wij

th element of W is initially set to one if the ith and jth property are located within d metres of 
each other, otherwise that element is set to zero.  
 
Following Bell and Bockstael (2000) we employ a generalised moments (GM) estimator 
developed by Kelejian and Prucha (1999) to estimate the model with spatial error 
dependence. This is a two step estimator. The first step recovers a consistent estimate of 
the spatial correlation parameter, ρ̂ , whilst the second step estimates the parameters of the 
HPF by reformulating (6) as the feasible generalised least squares (FGLS) estimator; 

( ) ( )( )( ) ( ) ( )( ) YWIWIZZWIWIZβ ~ˆˆ'~~ˆˆ'~ˆ 111 −−− −′−−′−= ρρρρ  (8) 

Since we include the noise variables in z, the implicit price of noise for each observation can 
be calculated as;  

[ ] [ ]( )( )
( )

k

kk

zi

ziiiiiz

P

EPEp

β

β

ˆˆlnexp

ˆˆ,|,|lnexp

=

−+= βcxzzcx
  (9) 

where 
kz

β̂ is the parameter estimated on the noise variable zk.  
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5. ESTIMATION OF IMPLICIT PRICES FOR NOISE  
 
We apply techniques of model-based clustering so as to identify groups (clusters) of 
properties in the multidimensional space defined by each property’s floor area, garden area 
as well as the four factors indicating the relative wealth, ethnicity, adult age composition and 
family composition of the property’s neighbourhood. Our analysis provides evidence for the 
existence of eight clusters in the data. Inspecting the property and neighbourhood 
characteristics of the observations in each cluster reveals that each delineates a distinct and 
readily interpretable market segment. A summary of these market segments is provided in 
Table 1. 
 

Table 1: Characteristics of Birmingham market segments 

Market Segment Property 
Size Income Ethnicity Children 

1.  Low-Income, White Small Low White Many 
2.  Low-Income, Ethnic Small Low Ethnic Many 
3.  Middle-Income, Young, No 

Children Small Medium Mixed Few 

4.  Middle-Income, White  Small Medium White Some 
5.  Middle-Income, Ethnic Medium Medium Ethnic Some 
6.  High-Income, Large Properties Large High Mixed Few 
7.  High-Income, Small Properties Small High White Some 
8.  High-Income, Medium Properties Medium High White Many 

 
We partition the data according to the clustering classification and seek to estimate separate 
HPFs for each partition. We include in the regression analysis all of the variables described 
in the appendix In particular, our measures of noise exposure from road, rail and air traffic 
are taken as dB in excess of 55dB LEQ, a threshold commonly regarded as a measure of 
background noise in urban areas Along with spatial coordinates, we include in the 
nonparametric part of the specification variables describing each property’s floor area, 
garden area, construction age and sale date. The spatial smoothing bandwidth, b, was set to 
a distance approximating the radius of a ward.  
 
We examined the residuals from regressions of the smoothed data (Equation 6) for outliers 
and found concentrations of observations in the extreme left hand tail of the error 
distributions. Many of these ‘under-priced’ properties have apparently sold outside the 
market and therefore off no information on the HPF for that market.4 After individual 
investigation we trimmed 1.9% of the observations from the data and re-estimated (6). We 
examined the residuals from this regression for evidence of spatial correlation over an area 
roughly equating to that of an ED. In all eight cases Moran’s I statistic (Cliff and Ord, 1972) is 
large enough to reject the null hypothesis of no spatial dependence between residuals with 
greater than 95% confidence. A robust test proposed by Kelejian and Robinson (1992) 
supports this conclusion. Accordingly we apply the GM estimator (8) to estimate the 
parameters of the HPFs.  
 
Subsequently, we test to see whether the HPFs from the different partitions of the data can 
be regarded as statistically different functions using a series of pairwise Wald tests. In each 
case, the test statistics are significant at a greater than 95% level of confidence. The results 
imply that different price structures characterise the property markets of the different data 
                                                 

4 For example, a whole row of properties were sold within a few months of each other at prices well below the 
apparent market rate. Examination of recent aerial photographs provided an explanation; the houses had since 
been demolished to make way for a road widening scheme 
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partitions and we take this as evidence to support our contention that we have identified 
separate market segments through the technique of cluster analysis (as per Allen et al. 
1995) . 
 
Table 2 provides some summary statistics and a selection of the parameter estimates from 
the HPFs for the different market segments.5 The final three rows of the table list the number 
of observations in each market segment, N, the number of parameters in each market 
segment regression, K, and the unadjusted R2 statistic for each regression (calculated 
according to the procedure suggested by Anglin and Gencay, 1996). Based on a comparison 
of this statistic, it appears that the models perform reasonably well for all six middle and high 
income market segments (segments 3 to 8) but rather less will in the two low income market 
segments (segments 1 and 2).  
 
Parameter estimates for the first two variables are taken from the nonparametric part of the 
regression models. Technically, the values reported are not coefficients but averages of the 
slope of the hedonic function estimated nonparametrically for each observation. Since both 
floor area and garden area enter the regression function as logarithms, the quantities listed 
in the table for these variables can be interpreted as elasticities. Not surprisingly, property 
prices are increasing in floor area and garden area in each market segment. 

                                                 

5  Full  results can be found in Appendix B.  
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Table 2: Selected parameter estimates from the first stage Regressions 
Market Segment Variable 1 2 3 4 5 6 7 8 

ln (Floor Area) 0.287† 0.392† 0.304† 0.196† 0.347† 0.293† 0.386† 0.454† 
ln (Garden Area) 0.059† 0.077† 0.070† 0.062† 0.162† 0.172† 0.089† 0.123† 
Bedrooms 2  0.000 0.007 -0.028** -0.028 -0.035 -0.002 -0.030*** -0.045** 
WCs 2  0.034* 0.036* 0.034** 0.023 0.012 0.013 -0.011 -0.003 
Garage 0.043*** -0.027 0.064*** 0.068*** 0.071*** 0.031 0.026*** 0.056*** 
Detached House  -0.046 -0.083 0.051 0.154*** 0.087*** 0.161*** 0.124*** 0.113*** 
Wealth 0.103*** -0.001 0.056*** 0.129*** 0.114*** 0.161*** 0.065*** 0.084*** 
Ethnicity -0.101*** 0.048** -0.043** -0.111*** -0.045*** -0.147*** -0.085*** -0.100*** 
Primary School 0.113*** 0.125** 0.289*** 0.207*** 0.107* 0.076 0.074** 0.091* 
Landfill 5E-05*** -6E-05** -1E-05 4E-05** -4E-05** 1E-05 4E-05*** 3E-05* 
Road Noise (over 55dB) .0018  .0035* -.0053*** -.0028** -.0055*** -.0021 -.0018** -.0025** 
Rail Noise (over 55dB) -.0084* -.0068 -.0063* -.0135*** -0.0050 -.0049 .0001 -.0085** 
Aircraft Noise (over 
55dB) -.0160***  -.0154 .0032 .0339 -.0230 -.0064 .0033 

N 1484 1016 1523 1362 1058 424 2341 1432 
K 41 37 46 44 47 57 44 52 
R2 .552 .618 .751 .691 .778 .886 .679 .830 

†  Average nonparametric derivative. No significance estimated. 
*  Significant at 10% level of confidence 
**  Significant at 5% level of confidence 
*** Significant at 1% level of confidence 
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The next four rows of Table 2 report parameter estimates for dummy variables describing 
characteristics of properties. Roughly speaking the parameter estimates on these constants 
relate the percentage difference in a price of a property with this characteristic compared to 
the base case (see Halvorsen and Palmquist, 1980, for a more correct interpretation). For 
example, the variable “Bedrooms 2” compares the price of properties with two bedrooms to 
the base case; properties with three bedrooms. These estimates tend to behave as 
expected. The majority of coefficients are negatively signed, though only in market segments 
3, 7 and 8 is this statistically significant. Popular perception might suggest that this variable 
should be more important in determining property prices. Of course, in the models presented 
here, the overall size of the property is controlled for by including ‘floor area’ as a regressor 
in the nonparametric part of the model. Accordingly a variable indicating less bedrooms 
should really be interpreted as ‘less but bigger bedrooms’ and the relative unimportance of 
this variable seems more acceptable.  
 
The “WCs 2” variable compares property prices of ‘two-toileted’ properties with those in the 
base case with one toilet. Market segments 1, 2 and 3 each have significant positive 
coefficients though, once again, the general lack of significance of this variable may be 
ascribed to the high correlation between the number of toilets and overall size of a property, 
a feature for which we have already controlled.  
 
In contrast, the garage constant provides consistently positive and in the main highly 
significant parameters. Notably the only market segment in which the parameter estimate is 
negative, though not significant, is the inner-city market segment 2. This finding may reflect 
the fact that, in contrast to suburban locations, few properties in the inner city are provided 
with a garage (mostly having been built in the Victorian era) and that in this market segment 
less people have access to or requirement of their own vehicle. 
 
Parameter estimates for the ‘detached house’ constant show a similar pattern. The negative 
and insignificant parameters for market segments 1 and 2 reflect the fact that less than 1% 
of properties in these market segments are detached. Amongst the more affluent market 
segments being detached adds considerably to the selling price of a property. 
 
The variables describing the socioeconomic characteristics of neighbourhoods tend to be 
important in explaining variation in property prices. In Table 2 we present parameter 
estimates for the Wealth and Ethnicity factors. The impact of neighbourhood wealth is 
unequivocal. In all but one case the increasing wealth of the inhabitants of an area manifests 
itself in higher property prices. A more interesting pattern is revealed from the ethnicity 
variable. In seven of the eight market segments, the increasing presence of residents from 
ethnic minorities tends to decrease property prices. In contrast, the parameter on the 
ethnicity variable in market segment 2 (Black and Asian inner city), is positive and 
significant. Evidently in market segment 2 the increasing presence of residents from ethnic 
minorities impacts property prices favourably. Combining these two observations suggests 
that in the City of Birmingham the market rewards ethnic homogeneity. 
 
The variable for primary schools combines distance and school quality into a single index. 
High scores indicate increasing quality and/or ease of access. The results here corroborate 
anecdotal evidence and that of recent studies (Gibbons and Machin, 2003) suggesting that 
increasing primary school quality and proximity inflates property prices. Positive parameter 
estimates are returned for all of the market segments though one of these, market segment 
6, is not significant. Since market segment 6 is the high-income large property market 
segment this finding may simply reflect the relative lack of households with young children 
and/or the availability of alternative educational opportunities that reduce the perceived 
importance of state funded educational institutions. 
 
Results for the landfill site variable are more equivocal. In five of the market segments the 
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coefficients are, as expected, positive and four of these are statistically significant. However, 
two of the remaining market segments return negative and significant parameter coefficients. 
As we cannot support the implication that households in these market segments actually 
prefer to be near to a landfill site we have to conclude that other locational factors, not 
adequately controlled for by the models, are driving this result. 
 
Finally, let us consider the focus variables for this research project, those on transport-
related noise. Notice first that there are many more observations of properties suffering from 
road noise than there are rail noise. Indeed, the relative paucity of properties exposed to rail 
traffic noise suggests that it will be relatively more difficult to find a statistically significant 
relationship between property prices and rail traffic noise pollution. The same could be said 
of aircraft noise which is concentrated, to a large extent, in market segments 1, 4 and 7 
whose members include properties located in the East of the city near Birmingham 
International Airport. Indeed, in market segment 2 there are no properties exposed to aircraft 
noise.  
 
In accordance with prior expectations the majority of parameter estimates on road and rail 
noise pollution are negative. In contrast the estimates on the air noise variable are far more 
erratic. In particular, of the seven market segments in which implicit prices for air traffic noise 
have been estimated, three have coefficients that imply a positive  price for increasing noise. 
Of course, the coefficients estimated for some of the market segments are based on a very 
small sample of observations suffering from aircraft noise pollution. Amongst the three 
market segments which contain the majority of the properties exposed to aircraft noise 
(market segments 1, 4 and 7) our models the parameters have the expected sign in market 
segments 1 and 7 but not in market segment 4. 
 
One reason for the relatively poor performance of the aircraft noise variable may be our 
choice of econometric model. Unfortunately, air traffic noise is considerably less localised 
than that arising from either road or rail traffic. Indeed properties over a large area will 
experience very similar levels of air traffic noise. A short-coming of the modelling approach 
adopted in this research is that much of the influence of these wide-area spatial effects is 
diluted by spatial smoothing of the data. Indeed, econometric specifications not reported 
show that when spatial effects are not modelled, parameter estimates on air traffic noise fall 
into line with prior expectations. Nevertheless, the authors believe that spatially smoothing 
the data is a sacrifice worth making. In particular, considerable improvement is realised in 
the ability of the models to identify local-area spatial effects such as those resulting from 
road and rail traffic noise. 
 
Turning to the road noise variables, first observe that coefficients estimated for market 
segments 1 and 2 are positive. Whilst we are happy to accept that a price premium for 
peaceful environments may not exist in these two low-income market segments, it is 
implausible to conclude that households are actually willing to pay more for noisier 
properties. Clearly, some important aspect of the local environments in these two market 
segments is not captured by our specification of the HPF. This tallies with our observation 
that the econometric models of the HPF in these two market segments show the poorest fit 
to the data. 
The remaining market segments return negative road noise coefficients ranging from a value 
of -.0021 to a value of -.0053. In other words, our models indicate that a one decibel 
increase in road traffic noise can reduce the selling price of a property between 0.21% and 
0.53%. Encouragingly, five out of the remaining six market segments have coefficients that 
are significant at the 95% level of confidence.  
 
With regard to the rail noise coefficients, observe that on the whole the estimates are 
relatively larger in magnitude to those found to characterise road noise. On average the 
models indicate an NSDI of 0.67%. In all but one case, market segment 7, the rail noise 
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coefficients are negative.  
 
The results presented in Table 2 are generally pleasing. In the main, the coefficient 
estimates are of the correct sign and mostly have plausible magnitudes. The models reveal 
that a 1dB increase in road noise reduces property prices by between 0.21% and 0.53%, 
depending on market segment. The rail noise estimates are relatively larger in magnitude, 
indicating that on average a 1dB increase in rail noise will reduce property prices by 0.67%. 
We find little evidence of a relationship between air traffic noise and property prices. This 
finding is almost certainly a result of our econometric approach which tends to subsume 
wide-area spatial effects into other parameters of the model. 
For each household, we estimate the implicit price of each type of noise using Equation (9). 
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6. THE ECONOMETRIC MODEL: SECOND STAGE 
 
In the second stage we seek to estimate a demand system for ‘peace and quiet’. Notice that 
in this stage we invert the measure of noise so as to frame the analysis in terms of the good 
‘peace and quiet’ rather than the bad ‘noise pollution’. Moreover, the demand for ‘peace and 
quiet’ is assumed to be censored from above at the background urban noise level of 55dB. 
In addition, given the insignificant findings with regards to the implicit price of aircraft noise, 
we restrict our investigation to the estimation of demand equations for the avoidance of road 
and rail traffic noise.  
For the purposes of a demand analysis we would prefer our implicit prices to be expressed 
as annual rents. According to theory, if one assumes that housing rental and purchase 
markets operate perfectly, then a property’s purchase price will be equal to the discounted 
sum of the stream of future annual rents realisable from that property over its expected 
lifetime. It is mathematically convenient to assume that the expected lifetime of a property is 
infinite such that given some discount rate, τ,  implicit prices for property characteristics can 
be converted to implicit rents according to; 

ii zz pr ⋅= τ   (10) 

The key issue, to which we shall return in the next section, is determining τ; the rate of 
discount used by households when comparing property prices with property rents. 
Having invoked a two-stage budgeting hypothesis, the relevant argument in the demand 
relationship is not household income, but the household’s total expenditure in purchasing a 
property. Of course, nonlinearity in the HPF implies non-constant implicit prices such that 
this total expenditure does not trace out the usual linear budget constraint in property 
attribute space.  
 
Non-linearity of the budget constraint is a considerable problem for the estimation of 
Marshallian demand functions. First, since prices are not parametric to the consumer’s 
problem, households choice of residential location implies a simultaneous choice of both the 
price and quantity of property attributes. Accordingly, our demand function specification must 
account for the endogeneity of prices. Even more troublesome is the fact that when implicit 
prices are not constant a household’s choice of attribute levels will depend not only on 
marginal prices but on the parameters of the entire hedonic price function. Under these 
circumstances, even if one makes the standard assumptions concerning preferences, 
Marshallian demand functions do not necessarily manifest themselves as downward sloping 
curves in price quantity space (Palmquist, 1988).  
 
One well-established procedure for dealing with this problem is that proposed by Murray 
(1983) and Palmquist (1988) in which the set of implicit prices at the chosen bundle are used 
to linearise the budget constraint. In effect, the expenditure variable is adjusted so as to 
indicate the ‘virtual’ expenditure that would lead a household to the same choice of property 
if the prices of characteristics were constant and equal to the implicit prices at their chosen 
bundle. We include linearised rather than actual expenditure in the specification of the 
demand system and, as a result, the functions we estimate are ‘pseudo’-Marshallian 
demand functions. This estimation strategy has been applied previously in the context of 
hedonic models by Bajic (1993) and Boyle et al. (1999) amongst others. Moreover, we 
convert our linearised expenditure, y~  , argument into an annual equivalent, m~ , according 
to; 

ym ~~ ⋅= τ   (11) 

In theory, the implicit prices of all property attributes should enter the demand relationship for 
‘peace and quiet’. In practice this would require the inclusion of an impractically large 
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number of covariates. Consequently, we ignore cross-price effects for all attributes other 
than those relating to the noise environment.  
 
Our econometric analysis seeks to estimate two separate demand equations; one for peace 
and quiet from road traffic noise a second for peace and quiet from rail traffic noise. In 
general form, we express these two relationships as;  

( )

( )s
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,~,,~

,~,,~
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2111
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=

∗

∗

  (12) 

We denote equations and variables pertaining to road noise by the subscript 1 and those 
pertaining to rail noise by the subscript 2. Furthermore, ∗

kq  (k = 1, 2) is the quantity of peace 
and quiet; ( )⋅kq~  (k = 1, 2) is the pseudo demand relationship, rk (k = 1, 2) are the 
annualised implicit prices for peace and quiet, m~  is linearised annual expenditure on 
property services and s is a vector of socioeconomic demand shifters. 
To maintain simplicity we estimate (12) as a linear demand system. That is; 

kikikikikiki uuq +=++=∗ δZγXβY 1  ( )Nik ,,1;2,1 K==  (13) 

For reasons that shall become clear shortly, we have gathered together the implicit prices, r1 
and r2, and the natural logarithm of expenditure, ( )m~ln , for household i into the 1 × 3 vector 
Yi. Moreover, we have redesignated the vector of socioeconomic demand shifters (s) for 
household i as the vector X1i. In addition, the explanatory variables of the demand function 
for household i can be gathered together into the vector [ ]iii 1, XYZ =  whilst the parameters 
of the demand functions can be gathered together in the vector [ ] ( )2,1, == kkkk γβδ . 
Finally, kiu  is an unobservable household specific random term capturing elements of the 
demand relationships not accounted for in the model specification. 
 
Whilst the linear specification in (13) contravenes restrictions implied by economic theory we 
regard the linear demand function as a reasonable approximation.6 Our choice of functional 
form is also driven by pragmatic considerations. In particular, our data suffer from both 
censoring and endogeneity and we note that techniques for dealing with these difficulties are 
well developed for linear regression.  
One such difficulty is that our data is heavily censored from above with many households 
choosing properties at the corner solution imposed by the existence of an urban background 
level of noise.7 Our dependent variable, therefore, is of the form;  
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Unfortunately, in the presence of censoring, standard approaches to the estimation of a 
                                                 

6 Several econometric specifications have been developed that seek to explicitly impose the restrictions implied 
by economic theory. One example of such a specification is the almost ideal demand system (AIDS) of Deaton 
and Muellbauer (1980), a specification which was employed by Sheppard and Cheshire (1998) and Palmquist 
and Isangkura (1999) in their demand analyses based on hedonic data.  
7 Specifically, that in only 2,723 households choose locations enduring road traffic noise above the urban 
background level (taken as 55dB), whilst only 379 choose locations enduring rail traffic noise above the urban 
background level. 
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linear function such as (13) will return biased and inconsistent estimates of the model 
parameters. To progress, we impose the assumption that the error term kiu is distributed 

normally with mean zero and constant variance 2
kσ . Furthermore, we assume that the error 

terms are uncorrelated across households that is; 

 ( ) 0,cov =kjki uu  ( )2,1;;,,2,1, =≠= kjiNji K   (15) 

Under these assumptions, one might estimate the parameters of the demand relationships 
using Tobit regression. However, in our case, a further difficulty is introduced by the fact that 
implicit prices are endogenous. Moreover, the cross-price terms are also endogenous as is 
linearised expenditure (m~ ) since this is calculated using these same implicit prices. 
Accordingly, the own-price, cross-price and expenditure variables making up the vector Yi 
are endogenous to the choice problem whilst the socioeconomic demand shifters in the 
vector X1i are considered exogenous. 
The most general technique for handling endogenous variables is the method of 
instrumental variables (IV). The fundamental ingredient of any IV procedure is a set of 
instrumental variables. Crucially, each instrumental variable must be correlated with the 
endogenous variables in the model, but must be independent of those elements of the joint 
decision process (i.e. the simultaneous choice of quantity and price) that are not captured by 
the model. Here we assume that these uncaptured elements reflect specific characteristics 
of the household and their attitude to noise. As such we follow the suggestion of Cheshire 
and Sheppard (1998) and select as instrumental variables the values of rjk and jm~  chosen 
by other nearby households. We define “nearby” as proximity in a multidimensional space 
defined by geographic location, socioeconomic characteristics (i.e. neighbourhood factors) 
and property characteristics (i.e floor and garden area). Our matrix of instrumental variables 
consists of rjk and ( )jm~ln  for the three nearest neighbours to each observation and the 
squares of these values. We gather the instrumental variables for each household into the 
vector of exogenous regressors X2i. 
Now the reduced-form equations for the endogenous explanatory variables can be written as 
the set of three linear equations; 

iiiiii vΠXΠXvΠXY ++=+= 2211  ( )Ni ,,1K=  (16) 

Here, Yi is each household’s observed choice of road price, rail price and expenditure, Xi is 
the matrix containing all the exogenous variables (demand shifters, X1i, and instruments, X2i) 
and 1Π  and 2Π  are reduced form parameters which can be gathered together into the 
matrix Π . Finally, vi is a vector of disturbances. 
To construct reduced form demand equations we may substitute (16) into (13) giving; 
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where kkk γβΠα += 11 , kk βΠα 22 =  and kα  gathers together the vectors k1α and k2α .  

Amemiya (1979) suggested that one could estimate Π̂ , the reduced form parameters in 
(16), using OLS. Subsequently, it is possible to estimate the reduced form parameters of the 
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demand equations, kα̂ , by inserting the estimated residuals, iv̂  into (17) and applying Tobit 
regression techniques.  
Of course, our interest is not in the parameters of the reduced form equations, kα , but in the 
parameters of the structural demand equations ( )2,1=kkδ . However, Amemiya (1979) 
observed that kα  and kδ  are related through the equation; 

( ) ( )2,1== kD kk δΠα   (18) 

where ( ) [ ]1, IΠΠ ≡D  is the selection matrix made up of ones and zeros such that 

11 IXX ii = .  
If we knew the true values of the reduced form parameters kα  and Π  then it would be a 
simple task to retrieve kδ  using (18). Unfortunately, we only have estimates of the reduced 

form parameters, Π̂  and kα̂ . Since these estimates will not be exactly equal to the true 
values, Equation (18) can be reformulated as per Amemiya (1979) to give;  
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where ( ) ( )ΠΠαα −+−= ˆˆ βη kkk . Amemiya (1979) shows how kδ  can be estimated by 
applying generalised least squares to (19) in which the weighting matrix is constructed from 
a consistent estimator of the asymptotic covariance matrix of ( )( )Πα ˆˆ DN − .  To construct 
such a weighting matrix requires assumptions to be made concerning the disturbance terms 
of the reduced form equations for the endogenous explanatory variables (16) and those in 
the demand equations of (13). Amemiya assumes that conditional on the exogenous 
variables Xi, these disturbance terms are multivariate normal; 

( ) ( )kkiki Nu Σ0v ,~,  ( )2,1;,,2,1 == kNi K  (20) 

The actual form of the weighting matrix is beyond the scope of this discussion. The formulas 
can be found in Newey (1987). This procedure for estimating kδ  has become known as 
Amemiya Generalised Least Squares (AGLS). Amemiya (1979) and Newey (1987) show 
that these estimates of the structural parameters are more efficient than other possible 
estimators.  
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7. ESTIMATION OF DEMAND FUNCTIONS 
 
In estimating the demand relationships, there are a number of data issues with which we 
have had to contend. First, notice that the first stage hedonic regression returns results that 
allow for negative prices for peace and quiet (most notably in market segments one and 
two). Clearly, negative prices defy both theory and common sense; are we to believe that 
households are prepared to pay more for properties in noisier locations? As a result we treat 
these negative prices as the result of sampling error where the ‘true’ implicit prices for peace 
and quiet are in the region of zero. Accordingly we set these prices to a value of zero in the 
regression analysis. 
Second, we must decide upon a discount rate with which to annualise prices and 
expenditure. To this end we examined numerous Birmingham estate agent and letting agent 
listings in order to find pairs of similar properties being offered for rent and sale respectively. 
Properties were matched on a variety of features, namely location (to first 4 digits of the 
postcode), number of bedrooms, property type and construction age. Comparison of the sale 
price and rental price of matched properties provides an estimate of the required discount 
rate. This data from 2003 suggest a discount rate that equates to a value halfway between 
the mortgage rate and the base rate. Applying this simple rule of thumb to the Birmingham 
data from 1997 provides a discount rate of 6.78%.8 
Finally, our data lacks information on the specific characteristics of the households making 
the property purchases. Accordingly we use the factor scores describing the socioeconomic 
characteristics of all households in the property’s local neighbourhood as a proxy for each 
household’s actual characteristics.  
Applying the AGLS estimator to our data we estimate the parameters of the pseudo demand 
functions for rail and road noise and report those in Table 3. 
In accordance with expectations, the own-price terms in both pseudo demand equations are 
negative and highly significant. Interestingly, the two own-price coefficients are relatively 
close in value suggesting the slopes of the two pseudo demand curves are relatively similar. 
 
We expect the cross-price terms to be negative, reflecting the complementarity relationship 
that exists between ‘peace and quiet’ from different sources. That is to say, to attain a quiet 
environment, the household must purchase ‘peace and quiet’ from different sources of noise 
pollution in roughly similar quantities. Increases in the price of ‘peace and quiet’ from one 
particular source will not only reduce demand for ‘peace and quiet’ from that source but will 
also tend to reduce demand for ‘peace and quiet’ from other sources. The regression results, 
provide weak evidence supporting this hypothesis. In the rail demand equation the 
parameter on the road noise price is negative and significant at the 95% level of confidence. 
However, contrary to expectations, the parameter for rail noise price in the road demand 
equation is positive though not statistically significant. 
 
Demand for ‘peace and quiet’ is greater for households allocating greater virtual expenditure 
to the purchase of their property. As Blomquist (1989) observes, it does not necessarily 
follow that demand is increasing in actual expenditure though in numerous special cases this 
will also be true. In contrast to the similarity in own-price parameter estimates, the parameter 
estimate for expenditure is a great deal larger in the rail traffic noise equation. This indicates 
that the income elasticity of demand for ‘peace and quiet’ from rail traffic noise is greater 
than that for road traffic noise. It seems that wealthier households are increasingly more 
likely to choose environments free from rail traffic noise than from road traffic noise. 

                                                 

8 In employing this rule of thumb, we must assume a certain degree of myopia on behalf of house buyers. That 
is, households are assumed to calculate d based purely on current interest rates and not on the expected future 
values of these rates as would be more theoretically correct. In reality, this assumption is probably not too far-
fetched. 
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Table 3: Parameters of the pseudo demand functions for road and rail noise  
 Road Rail 

 Coefficient 
(Std. Err.) t-score Coefficient 

(Std. Err.) t-score 

Road Noise Price -0.419*** 
(0.100) -4.19 -0.399** 

(0.197) -2.03 

Rail Noise Price  0.104 
(0.071) 1.47 -0.446*** 

(0.140) -3.18 

Log Pseudo  
Expenditure 

7.649*** 
(2.614) 2.93 20.297*** 

(5.210) 3.90 

Ethnicity Factor 1.438*** 
(0.247) 5.81 0.729 

(0.501) 1.46 

Age Factor -1.506*** 
(0.430) -3.50 2.978*** 

(0.840) 3.55 

Family Factor 1.084*** 
(0.253) 4.28 0.535 

(0.497) 1.08 

Constant -52.735*** 
(19.431) -2.71 -124.726*** 

(38.432) -3.25 

Uncensored Obs: 2,723 379 
Censored Obs: 7,918 10,262 
*** Significant at 99% level of confidence 
** Significant at 95% level of confidence 
* Significant at 90% level of confidence 

 
 
We are cautious in interpreting the parameters of the socioeconomic variables since these 
are only proxies for each household’s actual characteristics. Reassuringly, the parameter 
estimates on the family composition factor are of the same sign and almost identical 
magnitude. These indicate that demand for noise avoidance is greater amongst households 
with young families. The ethnicity factor coefficient also takes the same sign in both 
equations indicating that households from the ethnic minorities demand relatively greater 
levels of ‘peace and quiet’, all else equal. However, for rail traffic noise at least, the 
parameter estimate is small in magnitude and statistically insignificant. The coefficient 
estimates for the adult age composition are the least easy to interpret. The estimates 
suggest that older households demand relatively more ‘peace and quiet’ from rail traffic 
noise but, conversely, relatively less ‘peace and quiet’ from road traffic noise. Since we have 
no particular theory to support these conflicting results we suggest that this is an appropriate 
juncture at which to execute “cautious scepticism”. 
 
We perform a number of specification tests on the models. Using both a familiar Hausman 
test and a test suggested by Smith and Blundell (1986), we find that for both demand 
functions the hypothesis that prices and expenditure are exogenous to the choice problem is 
clearly rejected. Moreover, we adopt the testing framework suggested by Weesie (2000) in 
order to test whether the two demand relationships can be considered as separate estimates 
of the same demand function for ‘peace and quiet’ from any source. We find that we can 
reject this hypothesis with a high level of confidence. and conclude that the demand function 
for ‘peace and quiet’ differs depending on whether the source of noise pollution is road traffic 
or rail traffic. 
Figure 3 depicts the estimated demand function for road traffic noise at the means of the 
data. Projecting the demand curve down below 55dB reveals that marginal WTP falls to zero 
at a noise level of 42.3dB with a 95% confidence interval ranging from 39.9dB to 44.7dB.  At 
first sight it is somewhat surprising that the confidence interval for the estimated demand 
curve narrows in the range below 55dB. As a matter of fact this is quite intuitive. The bulk of 
observations are for households facing relatively low prices and choosing properties below 
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55dB. Our confidence concerning the path of the demand curve is greatest where we have 
most data and becomes progressively less precise as we move away from the centre of the 
data. 
 
Figure 3: Road noise demand curve and its 95% confidence intervals 
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8. WELFARE ESTIMATES 
 
We estimate the benefits of an external change in the provision of ‘peace and quiet’ as areas 
under the pseudo demand curve and interpret these as approximating the exact welfare 
measure that would be given by areas under the compensated demand curve (Bartik, 1988). 
Table 4 reports welfare values for 1dB changes in noise pollution levels from road traffic and 
rail traffic (columns 3 and 5 respectively) calculated at the mean values of the covariate data. 
To calculate the welfare benefits from larger changes simply requires the relevant range of 
1dB changes to be summed. This is illustrated in columns 4 and 6 of Table 4 where the 
benefits of particular 5dB changes are listed. The welfare estimates are values per annum 
reported in 1997 prices.  
The mean values for road noise range from £31.49 per annum for a 1dB reduction from a 
56dB baseline to £88.76 per annum for the same change from a 80dB baseline. The 
equivalent values for rail noise are higher, ranging from £83.61 to £137.41 per annum. One 
possible explanation for this observation is that the common unit used to measure noise 
from these two sources (dBLEQ) conceals important differences in the characteristics of road 
and rail noise. 
 
 
Table 4: Welfare estimates for changes in noise exposure at means of covariate data 
(95% confidence interval range) 

Noise 
Change Welfare Change ( £ per Annum in 1997 prices) 

High Low Road Rail 
31.49 83.61 56 55 (24.84 to 52.52) (43.21 to 461.80) 
33.88 85.85 57 56 (26.51 to 57.26) (44.43 to 473.39) 
36.26 88.09 58 57 (28.18 to 61.97) (45.65 to 484.98) 
38.65 90.33 59 58 (29.81 to 66.64) (46.87 to 496.58) 
41.04 92.57 60 59 (31.48 to 71.31) 

 
 
 
 

181.32 
(140.90 to 
309.87) 

(48.08 to 508.17) 

 
 
 
 

440.45 
(228.24 to 
2,424.92) 

43.42 94.82 61 60 (33.14 to 75.97) (49.30 to 519.77) 
45.81 97.06 62 61 (34.81 to 80.64) (50.52 to 531.36) 
48.19 99.3 63 62 (36.48 to 85.31) (51.73 to 542.96) 
50.58 101.54 64 63 (38.15 to 89.97) (52.95 to 554.55) 
52.97 103.78 65 64 (39.82 to 94.77) 

 
 
 
 

240.97 
(182.41 to 
426.53) 

(54.17 to 566.14) 

 
 
 
 

496.49 
(258.67 to 
2,714.78) 

55.35 106.02 66 65 (41.49 to 99.57) (55.39 to 580.05) 
57.74 108.26 67 66 (43.16 to 104.37) (56.60 to 594.85) 
60.12 110.51 68 67 (44.82 to 109.17) (57.82 to 609.65) 
62.51 112.75 69 68 (46.50 to 113.97) (59.04 to 624.45) 
64.9 114.99 70 69 (48.16 to 118.77) 

 
 
 
 

300.62 
(224.12 to 
545.85) 

(60.26 to 639.25) 

 
 
 
 

552.53 
(289.10 to 
3,048.25) 
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67.28 117.23 71 70 (49.83 to 123.57) (61.47 to 654.04) 
69.67 119.47 72 71 (51.50 to 128.37) (62.69 to 668.84) 
72.05 121.71 73 72 (53.17 to 133.18) (63.91 to 683.64) 
74.44 123.96 74 73 (54.84 to 137.98) (65.12 to 698.44) 
76.83 126.2 

75 74 
(56.50 to 142.78) 

 
 
 
 
 

360.27 
(265.84 to 
665.88) 

(66.34 to 713.24) 

 
 
 
 

608.57 
(319.53 to 
3,418.20) 

79.21 128.44 76 75 (58.17 to 147.58) (67.47 to 728.03) 
81.6 130.68 77 76 (59.84 to 152.38) (68.52 to 742.83) 

83.98 132.92 78 77 (61.51 to 157.18) (69.57 to 757.63) 
86.37 135.16 79 78 (63.18 to 161.98) (70.62 to 772.43) 
88.76 137.41 80 79 (64.85 to 166.78) 

 
 
 
 

419.92 
(307.55 to 
785.90) 

(71.67 to 787.23) 

 
 
 
 

664.61 
(347.83 to 
3,788.16) 

 
Furthermore, Table 4 reports 95% confidence intervals for each of the reported welfare 
estimates. These are calculated using a non-parametric bootstrap procedure. It is 
immediately apparent that the 95% confidence intervals for the rail welfare estimates are 
considerably wider than those for the road welfare estimates. Of course, this is only to be 
expected given the fact that our dataset contains many fewer observations of exposure to 
rail traffic noise above the urban background level than is the case for road traffic noise. 
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9. CONCLUDING REMARKS 
 
The research summarised in this paper represents one of the most comprehensive hedonic 
pricing studies carried out to date. The majority of previous studies have attempted simply to 
identify the implicit price function for peace and quiet using property market data. Since that 
implicit price function is simply a reflection of the specific conditions of supply and demand 
that exist in a property market, these studies provide no basis for calculating transferable 
welfare values. 
 
In this research, we have attempted to go one step further and estimate demand functions 
for ‘peace and quiet’. Since these functions identify a household’s underlying preferences, 
that is, how they are prepared to trade-off between money and ‘peace and quiet’, they can 
be used as objects for transferring benefits across locations. As far as the authors are 
aware, the values presented in Table 4 are the first estimates of welfare values for peace 
and quiet derived from hedonic property market data in a theoretically correct manner.  
 
In proffering these values out to the policy-making community, however, we draw attention to 
a number of caveats. First, our data relate only to households that purchase properties. 
Accordingly, the demand relationships reflect only the preferences of households 
participating in the property-purchasing market.  
 
Second, there is a degree of circularity in the estimation strategy of introducing price 
variation through the identification of market segments. In particular, we would like our data 
to provide evidence of how households with similar characteristics choose when faced by 
different price functions in separate markets. Unfortunately, the market segments are 
defined in part by the socioeconomic characteristics of households such that they comprise 
relatively distinct socioeconomic groupings. Accordingly, the degree of overlap in household 
types across market segments may be rather less than might be hoped. Rather better would 
be for the first stage analysis to be applied in a second urban area characterised by a similar 
socioeconomic mix of inhabitants as that in Birmingham. The combination of the output from 
that second study with the Birmingham study would bring together data from similar 
households choosing in distinct markets and would provide a far stronger basis for 
identification of the demand relationship. 
 
Finally a critical question for welfare analysis is the extent to which pseudo demand curves 
approximate compensated demand curves. This crucially depends on the size of income 
effects. If there are no income effects then the relationship between prices and quantities is 
not influenced by adjustments to expenditure. In this case, the pseudo demand curve will 
exactly replicate the compensated demand curve. As income effects become more 
pronounced, the pseudo demand curve will begin to differ from the compensated demand 
curve in ways that mirror the divergence between the ordinary demand curve and the 
compensated demand curve in a world of constant marginal prices. Theoretical work by 
Edlefsen (1981) and Blomquist (1989) has sought to describe the relationships that exist 
between the pseudo and ordinary demand functions when marginal prices are not constant. 
Unfortunately, there appears to be no theoretical research comparing the pseudo and 
compensated demand curves in a world of non-constant marginal prices to parallel that 
carried out by Willig (1976), Randall and Stoll (1980) and Hanemann (1991) in comparing 
the ordinary and compensated demand functions in a world of constant marginal prices. 
Accordingly, the authors are not in a position to indicate how closely the welfare estimates 
presented in Table 4 approximate the theoretically consistent values that would be derived 
from a compensated demand curve. 
 
That said, we have taken care in our application to address all the major theoretical and 
empirical difficulties that afflict estimation of demand relationships from property market data. 
Moreover, the results of our analysis are statistically significant and conform with theoretical 
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expectations. Finally, our welfare estimates are of a magnitiude that might be regarded as 
“reasonable”.  We believe that these features of our study should be taken as an indication 
of the validity and robustness of the procedures used in this analysis.  
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APPENDIX A: Data Descriptions 
Variable Mean Std. Dev. Min Max 
Sale Price (£) 58,986 36,099 11,000 645,003 
Structural Characteristics     

Floor Area (m2) 102.6 32.7 42 645 
Garden Area (m2) 226.1 208 0 5,164 
Garage (proportion) 0.436 0.496 0 1 
Central Heating (proportion) 0.728 0.268 0 1 
Age (decades) 6.1 2.76 0 11 
WCs (proportion)     

One 0.794 0.404 0 1 
Two 0.196 0.397 0 1 
Three 0.009 0.094 0 1 
> Three 0.001 0.029 0 1 

Bedrooms (proportion)     
One 0.005 0.069 0 1 
Two 0.172 0.377 0 1 
Three 0.716 0.451 0 1 
Four 0.083 0.276 0 1 
Five 0.016 0.127 0 1 
> Five 0.007 0.084 0 1 

Storeys (proportion)     
One 0.021 0.145 0 1 
Two 0.954 0.209 0 1 
Three 0.021 0.143 0 1 
> Three 0.003 0.058 0 1 

Construction Type  (proportion)     
Detached Bungalow 0.013 0.111 0 1 
Semi-Detached Bungalow 0.008 0.090 0 1 
End Terrace Bungalow 0.000 0.022 0 1 
Terrace Bungalow 0.000 0.017 0 1 
Detached House 0.116 0.320 0 1 
Semi-Detached House 0.396 0.489 0 1 
End Terrace House 0.115 0.319 0 1 
Terrace House 0.352 0.478 0 1 

Beacon Group (proportion)     
1. Unrenovated cottage pre 
1919 0.000 0.019 0 1 

2. Renovated cottage pre 
1919 0.001 0.027 0 1 

3. Small “industrial” pre 1919 0.040 0.195 0 1 
4. Medium “industrial” pre 
1919 0.226 0.418 0 1 

5. Large terrace pre 1919 0.006 0.078 0 1 
8. Small “villa” pre 1919 0.020 0.138 0 1 
9. Large “villas” pre 1919 0.009 0.093 0 1 
10. Large detached pre 
1919 0.003 0.058 0 1 

19. Houses 1908 to 1930 0.011 0.103 0 1 
20. Subsidy houses 1920s & 
30s 0.140 0.347 0 1 

21. Standard houses 1919- 0.257 0.437 0 1 
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Variable Mean Std. Dev. Min Max 
45 
24. Large houses 1919-45 0.016 0.124 0 1 
25. Individual houses 1919-
45 0.000 0.022 0 1 

30. Standard houses 1945-
53  0.045 0.207 0 1 

31. Standard houses post 
1953 0.190 0.392 0 1 

32. Large houses post 1953 0.032 0.177 0 1 
35. Individual houses post 
1945 0.001 0.038 0 1 

36.  “Town Houses” post 
1950 0.004 0.062 0 1 

Sale Date (proportion)     
1st Quarter (Jan. to Mar.) 0.214 0.410 0 1 
2nd Quarter (Apr. to June) 0.247 0.431 0 1 
3rd Quarter (July to Sept.) 0.287 0.452 0 1 
4th Quarter (Oct. to Dec.) 0.252 0.434 0 1 

Neighbourhood Characteristics     
Poverty Factor -0.375 0.855 -1.934 2.363 
Sills Factor 0.180 1.000 -1.398 4.198 
Age Factor 0.055 0.807 -3.216 3.143 
Family Factor -0.029 0.842 -3.198 3.791 
Asian Factor -0.045 0.942 -1.131 5.152 
Black Factor -0.240 0.750 -2.016 8.214 

Locational Characteristics     
Proximity to City Centre (mins) 1,313 478 208 3,187 
Proximity and Quantity of 
Shops 2.276 1.273 0.07 9.56 

Proximity and Quality of 
Primary Schools 0.602 0.177 0.15 0.97 

Walking time to Rail Station 
(secs) 1,846 1,013 21.05 5,525 

Walking time to a Park (secs) 900 558 3.17 3,425 
Driving time to Airport (secs) 2,388.215 655.134 602.19 4,386 
Proximity to A-Type Industrial 
Processes (m) 2,463.592 1,820.591 21.94 10,204 

Proximity to B-Type Industrial 
Processes (m) 814.103 527.842 10 3,333 

Proximity to Land Fill sites (m) 946.611 608.089 10 3,472 
Environmental Characteristics     

Views of Water (weighted m2) 0.480 7.543 0 348 
Views of Parkland (weighted 
m2) 6.290 36.831 0 664 

Road Traffic Noise (dB) 49.8 9.4 31.6 75.8 
Rail Traffic Noise (dB) 36.8 12.6 0 74.7 
Aircraft Noise (dB) 4.8 16.0 0 69 
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APPENDIX B: Parameter Estimates for Hedonic Price Functions 
Parameter Estimates by Submarket (p-values in brackets) Variable 1 2 3 4 5 6 7 8 

Nonparametric Variables: 
ln(Floor Area) 0.287 0.3919 0.3045 0.1957 0.347 0.2932 0.3864 0.4537 
ln(Garden 
Area) 0.0594 0.077 0.0705 0.062 0.1623 0.1719 0.0887 0.1231 

Age -0.009 -0.0059 -0.0082 -0.0054 -0.0208 -0.0046 -0.0076 -0.0218
Sale Date 0.0001 0.0002 0.0001 0.0001 0 0 0.0001 0.0002 
Structural Variables: 

Bedrooms 1 0.0473 
(.777) 

-0.0292 
(.906) 

0.0453 
(.784) 

-0.0281
(.692) 

-0.0557
(.792)  -0.065 

(.726) 
-0.4505
(.000) 

Bedrooms 2 0.0002 
(.993) 

0.0073 
(.695) 

-0.0283
(.025) 

-0.0285
(.104) 

-0.0356
(.225) 

-0.0018
(.982) 

-0.0297 
(.006) 

-0.0448
(.055) 

Bedrooms 3 base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

Bedrooms 4 -0.1018
(.196) 

0.0405 
(.408) 

0.0306 
(.399) 

0.0861 
(.001) 

0.0628 
(.032) 

0.0304 
(.447) 

0.0215 
(.534) 

0.0509 
(.000) 

Bedrooms 5  0.0422 
(.728) 

0.1771 
(.056)  0.0958 

(.068) 
0.013 
(.783) 

0.2714 
(.010) 

0.0682 
(.014) 

Bedrooms 6  -0.2501 
(.324) 

0.2627 
(.236)  0.001 

(.991) 
0.0076 
(.903)  0.172 

(.086) 

Bedrooms 7     -0.042 
(.860) 

-0.17 
(.069)  0.2138 

(.146) 

Bedrooms 8      0.0568 
(.582)   

Bedrooms 9      -0.262 
(.307)   

Bedrooms 10      -0.4596
(.131)   

Bedrooms 11      -0.265 
(.355)   

Bedrooms 12      0.4654 
(.228)   

WCs 1 base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

WCs 2 0.0336 
(.084) 

0.0356 
(.085) 

0.0339 
(.017) 

0.0234 
(.113) 

0.0117 
(.518) 

0.013 
(.661) 

-0.011 
(.262) 

-0.0026
(.810) 

WCs 3 0.0367 
(.828)  0.1113 

(.311) 
0.0559 
(.369) 

-0.0365
(.830) 

0.1252 
(.052) 

0.2219 
(.033) 

0.0317 
(.289) 

WCs 4    -0.0375
(.841)  -0.1734

(.238)   

WCs 5      0.0119 
(.962)   

Floors 2 base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

Floors 3 -0.0317
(.371) 

-0.0326 
(.781) 

-0.0388
(.336) 

-0.0747
(.035) 

-0.0397
(.431) 

-0.1833
(.003) 

-0.0377 
(.171) 

-0.2109
(.000) 

Floors 4   -0.1598
(.192)  -0.1974

(.034) 
-0.6347
(.000)  -0.4681

(.000) 

Floors 5   0.0281 
(.923)   -0.9616

(.000)   

Floors 6      -0.0817
(.748)   
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Parameter Estimates by Submarket (p-values in brackets) Variable 1 2 3 4 5 6 7 8 

Floors 7      0.6845 
(.755)   

Garage 0.0434 
(.001) 

-0.0272 
(.479) 

0.0636 
(.001) 

0.068 
(.000) 

0.071 
(.000) 

0.0312 
(.434) 

0.026 
(.000) 

0.0562 
(.000) 

Central 
Heating 

0.0837 
(.000) 

0.0161 
(.555) 

0.1005 
(.002) 

0.0797 
(.004) 

0.0155 
(.689) 

0.063 
(.586) 

0.0728 
(.002) 

0.2123 
(.000) 

Detached 
Bungalow 

0.4157 
(.071)   0.1045 

(.020) 
0.1052 
(.279) 

0.112 
(.240) 

0.089 
(.066) 

0.1498 
(.000) 

Semi-
Detached 
Bungalow 

-0.1725
(.291)   0.0558 

(.125) 
0.0071 
(.966)  0.1292 

(.043) 
0.033 
(.457) 

End Terrace 
Bungalow 

-0.0366
(.840)  -0.3607

(.196) 
-0.2221
(.273)   0.219 

(.770)  

Terrace 
Bungalow       0.063 

(.678) 
0.1464 
(.518) 

Detached 
House 

-0.0462
(.367) 

-0.0832 
(.623) 

0.051 
(.304) 

0.1545 
(.000) 

0.0866 
(.003) 

0.1606 
(.000) 

0.124 
(.000) 

0.1126 
(.000) 

Semi-
Detached 
House 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

base 
case 

End Terrace 
House 

-0.0573
(.000) 

-0.0841 
(.156) 

-0.0691
(.008) 

-0.1054
(.000) 

0.0001 
(.997) 

-0.2559
(.014) 

-0.0766 
(.000) 

-0.0657
(.023) 

Terrace 
House 

-0.0874
(.000) 

-0.1046 
(.053) 

-0.0799
(.001) 

-0.0859
(.000) 

-0.0056
(.818) 

-0.0158
(.806) 

-0.0829 
(.000) 

-0.044 
(.104) 

BG1   -0.0563
(.765) 

0.0929 
(.641)   0.0591 

(.699) 
-0.4009
(.030) 

BG2    0.3694 
(.052)  -0.0443

(.736)  0.4335 
(.018) 

BG3 -0.0614
(.269) 

-0.0632 
(.016) 

-0.0375
(.128) 

-0.0509
(.423) 

0.0019 
(.982)  0.0677 

(.226) 
-0.0262
(.880) 

BG4 0.0391 
(.289) 

base 
case 

base 
case 

0.1163 
(.005) 

base 
case 

0.089 
(.271) 

0.018 
(.496) 

0.1041 
(.002) 

BG5   -0.129 
(.277)  0.0774 

(.117) 
0.047 
(.631)  0.1492 

(.054) 

BG8 0.0978 
(.289) 

0.1497 
(.077) 

0.0148 
(.551) 

-0.0438
(.621) 

0.0644 
(.119) 

-0.2127
(.118) 

0.0746 
(.278) 

0.0948 
(.031) 

BG9  -0.1015 
(.675)   0.1622 

(.038) 
-0.0189
(.783)  0.1846 

(.000) 

BG10      -0.0609
(.439)  0.2077 

(.142) 

BG19 -0.8608
(.000)  -0.1435

(.117) 
0.2484 
(.006) 

0.1522 
(.024) 

-0.0598
(.501) 

0.1369 
(.030) 

0.0857 
(.003) 

BG20 base 
case 

0.0814 
(.353) 

0.0329 
(.419) 

-0.0969
(.004) 

0.0549 
(.170) 

-0.2742
(.041) 

-0.0688 
(.000) 

-0.0009
(.979) 

BG21 0.0885 
(.000) 

0.1886 
(.026) 

0.0363 
(.391) 

0.0316 
(.285) 

0.1122 
(.005) 

-0.0954
(.099) 

base 
case 

base 
case 

BG24   -0.1849
(.375)  0.2013 

(.026) 
base 
case 

0.1914 
(.008) 

0.1513 
(.000) 

BG25      0.2308 
(.080)   

BG30 0.0364 
(.267) 

0.0756 
(.755) 

-0.0452
(.776) 

-0.106 
(.000) 

0.1328 
(.041) 

-0.269 
(.049) 

-0.0216 
(.298) 

-0.0568
(.106) 
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Parameter Estimates by Submarket (p-values in brackets) Variable 1 2 3 4 5 6 7 8 

BG31 0.0701 
(.112) 

0.0826 
(.973) 

0.2336 
(.004) 

base 
case 

0.0771 
(.388) 

-0.2271
(.039) 

0.0406 
(.271) 

-0.1033
(.039) 

BG32 0.0798 
(.694)  0.4211 

(.000) 
0.1032 
(.017) 

0.2838 
(.011) 

-0.0036
(.964) 

-0.0058 
(.904) 

-0.019 
(.710) 

BG35      0.0362 
(.805)  0.0271 

(.760) 

BG36 0.0206 
(.858) 

0.0901 
(.971) 

0.0125 
(.916) 

-0.0825
(.290) 

-0.3153
(.027)   -0.2008

(.289) 
Neigbourhood  Variables: 

Wealth -0.1032
(.000) 

0.001 
(.976) 

-0.0561
(.002) 

-0.1291
(.000) 

-0.1137
(.000) 

-0.1614
(.000) 

-0.0646 
(.000) 

-0.084 
(.000) 

Ethnicity -0.1013
(.001) 

0.0479 
(.020) 

-0.0432
(.018) 

-0.1108
(.006) 

-0.0452
(.002) 

-0.1469
(.000) 

-0.0851 
(.001) 

-0.1001
(.004) 

Age -0.0057
(.722) 

0.0248 
(.330) 

0.0043 
(.699) 

0.0352 
(.002) 

0.0452 
(.006) 

0.0549 
(.001) 

0.0167 
(.045) 

0.0611 
(.000) 

Family -0.0331
(.004) 

-0.0267 
(.116) 

-0.0313
(.004) 

-0.0408
(.001) 

-0.0349
(.010) 

-0.028 
(.181) 

-0.01 
(.361) 

-0.0162
(.258) 

Environmental  Variables: 

Road Noise 0.0018 
(.165) 

0.0035 
(.070) 

-0.0053
(.000) 

-0.0028
(.046) 

-0.0055
(.002) 

-0.0021
(.445) 

-0.0018 
(.047) 

-0.0025
(.038) 

Rail Noise -0.0084
(.081) 

-0.0068 
(.168) 

-0.0063
(.063) 

-0.0135
(.001) 

-0.005 
(.316) 

-0.0049
(.729) 

0.0001 
(.974) 

-0.0085
(.039) 

Air Noise -0.016 
(.001)  -0.0154

(.279) 
0.0032 
(.467) 

0.0339 
(.125) 

-0.023 
(.904) 

-0.0063 
(.169) 

0.0033 
(.819) 

Park Views -1E-04 
(.517) 

0.0007 
(.038) 

-0.0001
(.495) 

0.0002 
(.283) 

-6E-05 
(.779) 

-0.0003
(.231) 

2E-05 
(.878) 

0.0003 
(.015) 

Water Views 0.0048 
(.036) 

-0.0188 
(.053) 

0.0003 
(.426) 

-0.0086
(.015) 

0.0047 
(.139) 

0.0019 
(.375) 

-0.0027 
(.304) 

0.0001 
(.805) 

Locational  Variables: 

CBD 6E-05 
(.153) 

0.0001 
(.260) 

-8E-05 
(.167) 

-8E-05 
(.054) 

-0.0002
(.000) 

-3E-05 
(.766) 

1E-06 
(.963) 

-7E-05 
(.063) 

Airport -7E-05 
(.059) 

-0.0001 
(.110) 

7E-05 
(.222) 

-7E-05 
(.095) 

0.0001 
(.029) 

-4E-05 
(.711) 

-8E-05 
(.003) 

-6E-05 
(.075) 

Landfill 5E-05 
(.005) 

-6E-05 
(.023) 

-1E-05 
(.686) 

4E-05 
(.012) 

-4E-05 
(.026) 

1E-05 
(.717) 

4E-05 
(.001) 

3E-05 
(.058) 

Industry A -1E-05 
(.418) 

5E-05 
(.028) 

4E-05 
(.031) 

1E-05 
(.270) 

2E-05 
(.257) 

3E-05 
(.308) 

1E-05 
(.079) 

2E-05 
(.027) 

Industry B -2E-05 
(.321) 

0.0001 
(.011) 

2E-05 
(.565) 

-4E-05 
(.030) 

7E-06 
(.799) 

-6E-05 
(.231) 

-2E-05 
(.065) 

-7E-05 
(.000) 

Park 1E-05 
(.444) 

-1E-05 
(.721) 

5E-05 
(.025) 

-3E-05 
(.061) 

2E-05 
(.444) 

0.0002 
(.000) 

-1E-05 
(.348) 

-1E-05 
(.480) 

Railway 
Station 

-1E-05 
(.228) 

6E-06 
(.775) 

-4E-05 
(.021) 

-6E-06 
(.545) 

-1E-05 
(.549) 

4E-05 
(.186) 

-1E-05 
(.065) 

-2E-05 
(.006) 

Shops 0.0191 
(.046) 

-0.0145 
(.103) 

0.025 
(.006) 

-0.0053
(.612) 

-0.0068
(.502) 

-0.0033
(.849) 

-0.0332 
(.000) 

-0.0467
(.000) 

Primary 
Schools 

0.1134 
(.009) 

0.1246 
(.049) 

0.2895 
(.000) 

0.2072 
(.000) 

0.1067 
(.077) 

0.0764 
(.482) 

0.0741 
(.013) 

0.0914 
(.073) 

K 41 37 46 44 47 57 44 52 
h .694 .551 .574 .918 .603 .752 .547 .538 
N 1484 1016 1523 1362 1058 424 2341 1432 
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