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Abstract 
 
Recent advances in the theoretical understanding of equilibria in property 
markets predict that the equilibrium hedonic price function will typically be 
highly nonlinear. Rather than adopting progressively more flexible econometric 
specifications to deal with this nonlinearity we adopt an alternative estimation 
strategy based on a further insight provided by the theoretical literature. That 
insight is that in equilibrium the market may not be characterised by a 
continuum of properties over attribute space. Rather the market may well be 
lumpy, being well-provided with properties exhibiting certain combinations of 
characteristics and sparsely provided elsewhere. We test the predictions of two 
different models; one that suggests that the market will be characterised by 
clusters of properties with similar physical attributes, one that the market will be 
characterised by clusters of neighbourhoods exhibiting similar socioeconomic 
compositions. We identify clusters by applying techniques of model-based 
clustering which allow the data to inform on the nature and the number of 
clusters. Our estimation strategy for handling nonlinearity, therefore, is to avoid 
estimating the hedonic price function over the entire attribute space. Rather, we 
fit separate price functions for the properties in each cluster thereby forming 
local approximations to the hedonic price surface over the attribute area 
spanned by the properties in each cluster. Finally we test to see which 
partitioning of the data, either according to the attributes of properties or the 
socioeconomics of neighbourhoods, is capable of explaining more of the 
variability in the data. 
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1. Introduction 
 
In his seminal paper Sherwin Rosen (1974) endowed economists with a 
substantive theoretical framework within which to study market equilibria for 
differentiated commodities. Despite the generality of this theoretical framework 
attention has focused, to a large extent, on a particularly simple specification of 
the Rosen model that allows for a closed-form solution (e.g. Epple, 1987; 
Tauchen and Witte, 2001).  
Ekeland et al. (2002) designate this the Normal-Linear-Quadratic (NLQ) model; 
the Normal and Linear referring to the distributional and functional assumptions 
underpinning the model, the Quadratic to the shape of the equilibrium hedonic 
price function that forms the solution to the model. The constant curvature of 
this quadratic hedonic determines that the implicit price functions for each 
property attribute are themselves linear. Furthermore, as Heckman et al. (2003) 
demonstrate, the market equilibrium described by the NLQ model is 
characterised by a set of products exhibiting a range of differing attributes. 
Given the regularity of this formulation of the model, it is no surprise to 
discover that the density of properties boasting different combinations of 
property characteristics is found to follow a normal distribution. 
Hedonic analyses of data from property markets, the focus of this paper, have 
found little evidence to support the NLQ model as an adequate description of 
real world markets. Indeed, the received wisdom purports that empirical 
investigators can learn little from theory in their attempts to estimate hedonic 
price functions. 1 
However, recent years have witnessed renewed interest in the theoretical 
modelling of markets for differentiated goods. One set of models, typified by 
the work of Ekeland et al. (2002, 2003) and Heckman et al. (2002, 2003), have 
investigated the nature of the market equilibrium when some of the restrictive 
assumptions of the NLQ model are relaxed. In the context of the property 
market these models assume that households’ choices are determined by the 
attributes of the properties themselves. In a parallel theoretical literature, 
Nesheim (2002) investigates the nature of property market equilibria when 
households’ choices depend not on the characteristics of the properties 
themselves but on the characteristics of the equilibrium sets of people that 
choose to inhabit the neighbourhood in which those properties are located.  

                                           
1 Witness the papers by Halvorsen and Pollakowski (1981), Cassel and Mendelhsohn (1984), 
Blackley et al. (1984), Cropper et al. (1988) and Rasmussen and Zuehlke (1990) who all 
chose to introduce their papers by stressing that economic theory does not suggest an 
appropriate functional form for the empirical estimation of hedonic price functions. 
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In this paper, we examine these theoretical developments and observe that this 
literature throws up a number of important insights that may be of use in 
empirical applications. In particular, both sets of models predict that under all 
but the most contrived of assumptions, the equilibrium hedonic price will be far 
from quadratic. Rather the implicit price functions for property (or 
neighbourhood) attributes are shown to be generically nonlinear (Ekeland et al., 
2003). Furthermore, the models suggest that property markets in equilibrium 
may be characterised by lumpy provision in attribute space. The market may be 
well-provided with properties (or neighbourhoods) with certain combinations of 
attributes and sparsely provided elsewhere. 
In this paper we describe an application that exploits these insights. Using data 
from the City of Birmingham in the UK, we examine the attributes of properties 
and their neighbourhoods for evidence of clustering. The method by which we 
propose allocating properties to clusters is known as model-based clustering. In 
contrast to other clustering techniques model-based clustering provides a purely 
data driven methodology that simultaneously identifies the most appropriate 
clustering method and the most appropriate number of clusters into which the 
data should be partitioned (Fraley and Raftery, 1998). Following the two strands 
of the theoretical literature, we define two initial partitions of the data. In the 
first, we use attributes of properties to define clusters. In the second, we use the 
characteristics of the inhabitants of neighbourhoods to define clusters. 
If the data confirms the existence of clusters then by definition the properties 
within them must lie in close proximity in attribute space. By extension, these 
properties must also lie close to each other on the hedonic price surface. Rather 
than employing increasingly more general econometric specifications to capture 
the nonlinearity of the equilibrium hedonic price function, our estimation 
strategy is to avoid estimating the hedonic price function over the entire 
attribute space. Rather, we fit separate price functions for the properties in each 
cluster thereby forming local approximations to the hedonic price surface over 
the attribute area spanned by the properties in each cluster.  
Of course, if the parameters of the hedonic price function do not differ 
substantially over attribute space then such an estimation strategy will be 
inefficient. We test this hypothesis by establishing whether there are significant 
differences in the parameters of the hedonic price functions estimated for each 
separate cluster of properties. 
Furthermore, we are interested to ascertain whether the property characteristics 
model (Ekeland et al., 2002, 2003; Heckman et al., 2002, 2003) or the 
neighbourhood characteristics model Nesheim (2002) forms the better 
approximation to the processes generating the data. To this end, we take our two 
initial partitions of the data; one based on the characteristics of the properties, 
the second on the characteristics of the inhabitants of neighbourhoods. Within 
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each partitioning we follow our estimation strategy of fitting separate price 
functions for the properties in each cluster. Following Goodman and Dubin 
(1990) we then employ non-nested tests to compare the two empirical models of 
the property market.   
If the hedonic price function estimated using the property characteristics 
partitioning is found to statistically dominate those based on other partitions of 
the data, then the evidence indicates that the property characteristics model best 
reflects the processes at force in the market. Alternatively the hedonic price 
function estimated using the neighbourhood characteristics partitioning may be 
found to statistically dominate those based on other partitions of the data. In that 
case we might conclude that the neighbourhood characteristics model best 
reflects the processes at force in the market. 
The rest of this paper is organised as follows. In Section 2 we briefly review the 
theoretical literature. In section 3 we discuss model-based clustering, our 
approach to defining clusters in the data. Section 4 describes the data collected 
from the City of Birmingham in the UK that is used in this study. Section 5, 
reports the results of the model-based clustering. Section 6 describes the results 
of the econometric exercise of fitting hedonic price functions to the different 
partitions of the data. Finally, Section 7 reports on the application of non-nested 
tests designed to answer the question of whether real world data best resembles 
a model in which households’ property decisions are primarily driven by the 
attributes of properties themselves or by the characteristics of the inhabitants of 
neighbourhoods in which properties are located.  
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2. Models of Hedonic Markets 
 
Rosen (1974) envisaged a market in which heterogeneous suppliers and 
heterogeneous consumers interact so as to establish an equilibrium maintained 
by an equilibrium hedonic price function. For example, in the property market, 
the focus of attention of this paper, households with differing preferences for 
the characteristics of properties interact with landlords differing in their costs of 
transforming the characteristics of their properties. An equilibrium is attained 
when the market settles on a hedonic price schedule that ensures households 
(within their limited budgets) cannot increase their utility by choosing a 
different property and landlords cannot increase their profits by increasing the 
property’s rent or changing its characteristics. 
Whilst the theoretical framework is quite general, attention tends to have 
focused on a particularly simple specification of the Rosen model designated 
the NLQ model (examined by Tinbergen, 1956, Epple, 1987 and Tauchen and 
Witte, 2001, amongst others). The NLQ model assumes that the heterogeneity 
of households and landlords is normally distributed in the population, imposes 
linear demand and supply functions and thereby provides a closed-form 
solution in the shape of a simple quadratic equilibrium hedonic price function 
with linear implicit prices. Heckman et al. (2003) show that in equilibrium the 
NLQ model predicts that a range of properties exhibiting different combinations 
of attributes will be provided to the market in equilibrium. Moreover, the 
density of these properties in attribute space is found to follow a normal 
distribution.  
In a series of recent papers, Ivar Ekeland, James Heckman, Rosa Matzkin and 
Lars Nesheim (Ekeland et al., 2002, 2003; Heckman et al., 2002, 2003) have 
investigated the nature of the market equilibrium when some of the restrictive 
assumptions of the NLQ model are relaxed. Since, these problems no longer 
provide closed-form solutions, numerical methods are used to approximate the 
hedonic price function and characterise the market in equilibrium. Their 
analysis reveals that even minor perturbations from the assumptions of the NLQ 
model disrupt the neat simplicity of the equilibrium solution.  
For example, Ekeland et al. (2003) abandon the assumption of normally 
distributed heterogeneity within the populations of households and landlords. 
Instead they model heterogeneity as the mixture of two different normal 
distributions. Naturally, the greater the degree of mixing, the further the 
distribution of heterogeneity strays from normal. Ekeland et al. (2003) discover 
that when the distribution of heterogeneity is non-normal, the market 
equilibrium is no longer characterised by a quadratic hedonic price function 
with linear implicit prices. Rather, the greater the degree of mixing, the greater 
the degree of non-linearity observed in the implicit price functions. Imposing 
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economically reasonable restrictions (i.e. positive implicit prices, only positive 
quantities of attributes demanded and supplied) only serves to exaggerate the 
nonlinearity of implicit prices. Indeed as Ekeland et al. (2003) prove in the 
context of the NLQ model, the implicit price schedules of the equilibrium 
hedonic price function are generically nonlinear. 
Heckman et al. (2003) also examine the equilibrium density of properties 
exhibiting different levels of attributes. In the NLQ model, this density follows 
a normal distribution. They observe that as the distribution of heterogeneity is 
made increasingly non-normal, the density of properties in attribute space 
follows suit. 
Heckman et al. (2003) extend their investigation by examining models in which 
the quadratic specifications of the household utility and landlord cost functions 
are replaced with higher order polynomials. Again, the increased flexibility of 
these specifications precipitates increasing nonlinearity in the implicit price 
schedules of the equilibrium hedonic price function. What is more, in these 
more flexible models, the equilibrium density of properties in attribute space is 
far from normally distributed. Indeed, in the cases illustrated in Heckman et al. 
(2003) the density of supply exhibits many modes; that is, in equilibrium there 
exists clusters of properties exhibiting similar combinations of attributes, whilst 
properties with other combinations of attributes are sparsely represented in the 
equilibrium market. As Heckman et al (2003) point out, “the model is capable 
of generating equilibria in which there are nearly gaps in the range of products 
marketed”. 
In a parallel theoretical literature. Nesheim (2002) investigates the nature of 
property market equilibria in which households choose where to live based on 
their willingness to pay for locational quality. In particular, he concerns himself 
with neighbourhood effects. That is, a model where households’ valuations of 
properties depend not on the characteristics of the properties themselves but on 
the characteristics of the equilibrium sets of people that choose to inhabit the 
neighbourhood in which that property is located.  
Paralleling the work of Ekeland et al. (2003), Nesheim finds that in all but the 
simplest cases, the curvature of the equilibrium hedonic price schedule is highly 
nonlinear. Indeed, Nesheim reports that for certain parameter values, a kinked 
price function is required in order to attain an equilibrium.  
Similarly, Nesheim (2002) finds that in equilibrium the property market may be 
characterised by lumpy provision. Neighbourhoods boasting high and low levels 
of quality are relatively more common than those at intermediate levels. 
Moreover, Nesheim (2002) shows that households will sort themselves across 
the urban area such that the traits of households within a neighbourhood are 
likely to be less varied than those of the population as a whole. Indeed, the more 
correlated a trait is with WTP for locational quality, the more homogenous 
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neighbourhoods are likely to be in this trait and the greater will be the 
differences in the average level of this trait across neighbourhoods. 
Clearly, once one moves outside the contrived realm of the NLQ model, 
theoretical investigations of hedonic property markets provide descriptions of a 
rich and varied urban landscape. The property characteristics models are 
capable of generating equilibria in which there exist clusters of properties 
exhibiting similar combinations of attributes, whilst properties with other 
combinations of attributes are sparsely represented. Likewise in the 
neighbourhood characteristics models, households are shown to sort themselves 
across the urban space such that neighbourhoods with residents showing 
particular combinations of characteristics may be well-represented in the 
equilibrium market, whilst neighbourhoods with residents exhibiting other 
combinations may be relatively rare. In both the property characteristics and the 
neighbourhood characteristics models, the market equilibrium is maintained by 
a hedonic price function that may be highly nonlinear and quite possibly kinked.  
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3. Identifying Clusters in Property Market Data 
 
3.1 Submarkets versus clusters of properties with similar attributes 
There is a long-established literature on the existence and identification of 
housing submarkets within an urban area that bears some resemblance to the 
work presented here (e.g. Straszheim, 1973, 1974; Ball and Kirwan, 1977; 
Schnare and Struyk, 1976; Sonstelie and Portney, 1980; Goodman, 1978; 
Michaels and Smith, 1990; Allen et al., 1995; Wolverton et al., 1999; Goodman 
and Thibodeau, 1998, 2003). However, contrary to the argument advanced in 
this paper, these papers motivate the existence of clusters of properties 
exhibiting different pricing structures through imperfections in the market 
mechanism. For example, Goodman and Thibodeau (2003) state that “due to 
either supply-or demand-related factors, the normal arbitrage that would be 
expected to equalize prices both within and across metropolitan areas may work 
either slowly, or not at all”. Likewise Can (1992) states that “… varying 
attribute prices … indicate the presence of independent price schedules, thus the 
existence of a segmented market. The presence of geographic submarkets 
violates the assumption of a long-run equilibrium in urban housing markets 
since there will be independent hedonic price schedules within a single 
metropolitan area reflecting the demand and supply structures of submarkets.” 
Of course, the theoretical literature described in the introduction paints a quite 
different picture of the mechanisms at work in property markets. In particular, it 
shows that differences in prices across urban areas are not the result of market 
imperfection or disequilibrium, but rather are an integral part of the price 
mechanism establishing equilibrium in the property market. The Nesheim 
(2002) model for example predicts that identical properties in different 
neighbourhoods can command radically different prices depending on the 
characteristics of the inhabitants of that neighbourhood. Likewise the models 
described by Ekeland et al. (2003) allow for the fact that properties in the same 
neighbourhood may command radically different implicit prices for attributes 
depending on the characteristics of the particular property. 
Within the housing submarket literature, therefore, the definition of submarkets 
has tended to be dominated by the identification of property or neighbourhood 
characteristics that define market barriers. For instance Goodman and 
Thibodeau (2003) suggest that racial discrimination may produce separate 
submarkets for those of different ethnic origin, or that distinct sub-populations 
of households with strong preferences for either newly constructed properties or 
for historic properties may segment property markets according to the ages of 
properties. 
In this application, however, partitioning of the data is not motivated by the 
supposed existence of different market segments but by the prediction of the 
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theoretical models that property markets in equilibrium may be characterised by 
lumpy provision in attribute space. That is, that the market may be well-
provided for certain combinations of property or neighbourhood characteristics 
and sparsely-provided elsewhere. 
The existence of such clusters of properties is distinct from the notion of market 
segmentation. As such, our approach to identifying clusters is not shackled by 
the need to provide a formal definition of the process driving market 
segmentation or to formally define the property or neighbourhood 
characteristics by which such segments should be delineated. Rather in this 
paper, the data itself is used to inform on the pattern of clustering in the 
property market. The method by which we propose allocating properties to 
clusters is known as model-based clustering.  
Clustering techniques have seen some application to the classification of 
properties into submarkets, notably Abraham et al. (1994), Goetzmann and 
Wachter (1995), Hoesli and MacGregor (1995), Bourassa et al. (1999), Day et 
al. (2003) and Day (2003). Though, since this literature is predicated by the 
existence of barriers to the attainment of market equilibrium, these papers do 
not provide a coherent justification for the use of data driven clustering 
techniques. Furthermore, these studies all use relatively simple clustering 
algorithms that provide no independent statistical indication of the nature or 
number of clusters to be found in the data. 
 
3.2 Model-based cluster analysis 
The basic aim of cluster analysis is to sort observations into a classification 
based on a set of P variables defining the characteristics of each observation. A 
common starting point is to define each observation as a point in P-space whose 
location is determined by how highly that observation scores for each variable. 
Clearly, observations holding similar values for the different variables will be 
located close to each other in this P-space. Clusters can be identified as 
concentrations of observations falling into the same region of this P-space. 
Individual observations can be classified according to their proximity to 
different clusters. 
In recent years a number of new approaches to identifying clusters in data have 
been proposed.2 One approach that has shown particular promise is that of 
model-based clustering (McLachlan and Basford, 1988; Banfield and Raftery, 
1993; Fraley and Raftery, 1998; Fraley and Raftery, 2002a). This clustering 
approach has been successfully applied to a variety of data problems across a 
broad range of disciplines. For example, in the biological sciences to analyse 
                                           
2 For a review of recent advances see Fasulo (1999) and Jain et al. (1999). 
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gene expression data (e.g. Ghosh and Chinnaiyan, 2002; McLachlan et al., 
2002; Yeung et al., 2001), in ecology to study community composition (e.g. Ter 
Braak et al., 2003), in atmospheric sciences to study circulation patterns (e.g. 
Smyth, 2000; Smyth et al., 1999), in astronomy to classify gamma ray bursts 
(e.g. Mukherjee et al, 1998) and in various fields for image analysis (e.g. Gopal 
and Hebet, 1998; Campbell et al, 1999; Wehrens et al., 2003). In contrast, 
model-based clustering techniques are relatively unknown in economic analysis. 
As far as the authors are aware this is the first application of these techniques in 
this field 
The fundamental assumption of model-based clustering is that each data point is 
drawn from a population of such points constituting all the members of the 
cluster. Moreover, the location, size and shape of this underlying population can 
be approximated by a probability distribution. Assuming a Gaussian 
distribution, for example, would imply that clusters are ellipsoidal. It would also 
assume that the likelihood of observing data points belonging to a particular 
cluster is greater near the mean location of that cluster than at its periphery. The 
data observed by the researcher is the composite of data points drawn from a 
finite number of such clusters.  
To formalise, each P-dimensional data point x arises from a super population 
comprising a mixture of M populations, MCCC ,,, 21 K , in some proportions 

Mπππ ,,, 21 K  respectively, where; 

( )Mjj
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If we assume that each population, Cj, can be modelled as a P-dimensional 
Gaussian distribution with mean vector jµ  and covariance matrix jΣ , then the 
probability density function (pdf) of an observation x is of the form; 
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where ( )Mθθθθ ,,, 21 K=  is the vector of parameters associated with the 
assumed distributions of the M clusters, ( )Mππππ ,,, 21 K=  is the vector of 
mixing proportions, ( )jjf θx |  is the pdf of cluster Cj which is given the 

specific P-dimensional Gaussian form denoted ( )jj
p
j Σµx ,|φ . Thus, in the 

Gaussian case jθ  comprises the elements of the vector jµ , which determine the 
mean location of each cluster in P-space, and the distinct elements of the 
covariance matrices jΣ , which determine the geometric proportions of each 
cluster. Given (2) The mixture model describing the pattern of clustering can be 
formalised into the likelihood function; 

( ) ( )∏ ∑
= =









=

N

i

M

j
jijjM fL

1 1
|,| θxπθX π   (3) 

where X is the N × P matrix of data by which the N observations are to be 
clustered. 
To allow for comparison of different assumptions concerning the geometric 
characteristics of the different clusters, Banfield and Raferty (1993) 
reparameterise each covariance matrix jΣ  using the eigenvalue decomposition;  

( )Mjjjjjj ,,2,1 K=′= DADΣ λ   (4) 

where Dj is the matrix of eigenvectors, λj is the first eigenvalue of jΣ , and Aj is 
a diagonal matrix with diagonal elements 0...1 21 >≥≥≥= pjjj ααα .  

The advantage of Banfield and Raferty’s decomposition is to isolate different 
geometric properties of each cluster into different components. Hence λj 
determines cluster volume, Dj cluster orientation and Aj other properties of the 
cluster shape. Thus imposing the restriction ( )Mjj ,,2,1 K== λλ  enforces 
equality of volume across all clusters. Similarly, imposing the restriction 

( )MjIj ,,2,1 K==A , where I is the P-dimensional identity matrix, 
generates strictly spherical clusters. Clearly differing combinations of 
restrictions imply different imposed similarities between clusters. As we shall 
see shortly, the great advantage of model-based clustering is that it provides a 
formal framework in which such restrictions can be compared. 
For now, imagine that the number of clusters, M, in the data is known. Also 
imagine we know to which of these clusters each data point belongs. In that 
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case Equation 3 can be reformulated as the complete-data log likelihood as 
follows; 

( ) ( )[ ]∑ ∑
= =

=
N

i

M

j
j

p
jjijM dL

1 1
|ln,ln θxπθ φπ   (5) 

where ( )jjjjj DAµθ ,,,λ=  (j = 1, 2, …, M) and ijd  (i =1, 2, …, N;  j = 1, 2, 
…, M) are indicator variables whose value is 1 if observation i belongs to 
cluster Cj and 0 otherwise. 
Of course, we do not know the provenance of each data point; from the 
researcher’s point of view the dij are missing data. As Celeux and Govaert 
(1995) describe, this motivates a simple application of the EM algorithm 
(Dempster et al., 1977).  
The E-step of the algorithm calculates; 

[ ] ( )
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( )MmdEd
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jij
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ˆ|ˆ
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where imd  is the expected value of the indicator variable for membership of 
cluster m conditional on the data and current parameter estimates denoted θ̂  and 
π̂  with cluster specific components jθ̂  and jπ̂  respectively. 

In the M-step, imd  replaces imd  in the complete-data log-likelihood (Equation 
5), which is then maximised with respect to the parameters. Solution of this 
maximisation problem provides simple closed forms for the mean cluster 
locations and mixing probabilities; 

( )∑
∑

=

= =≡==
N

i
imm

m
m

m

N

i
iim

m MmdN
N
N

N

d

1

1 ,,2,1;ˆ;ˆ Kπ
x

µ  (7) 

Estimating the elements of the covariance matrix mΣ̂ , in the M-Step, depends 
on the particular parameterisation. Further details of these computations using 
the eigenvalue decomposition in (Equation 4) can be found in Celeux and 
Govaert (1995). The E-step and M-step are iterated until convergence of the 
parameters.  
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The value *
imd  of imd  that maximises (Equation 5) gives the conditional 

probability that observation i belongs to cluster Cm. A maximum likelihood 
classification of the data can be derived by associating each observation with 
the cluster to which it is most likely to belong. That is, observation i is classified 
as belonging to cluster Cm if ** max ijjim dd = . Furthermore, *max1 ijj

d−  gives a 

measure of the uncertainty associated with each observation’s classification 
(Bensmail et al., 1997) 
As is clear from Equations 6 and 7, the EM algorithm decomposes the problem 
of maximising the mixture model log-likelihood (Equation 3) into a series of 
relatively simple calculations. As described by Fraley and Raftery (2002a), this 
simplicity comes at a cost. In particular, the conditions under which the 
algorithm can be proven to converge to a local maximum do not always hold for 
mixture models. Nonetheless, Fraley and Raftery (2002a) indicate that EM 
estimation has been applied with considerable success in this context. 
Furthermore, the rate of convergence of the algorithm may be very slow and 
may encounter difficulties if there are a large number of clusters or the data is 
ill-conditioned. As with all maximisation problems, the chances of reaching a 
satisfactory solution are greatly enhanced by initialising the algorithm with 
reasonable starting values, a subject we shall return to discuss shortly.  
One limitation of the model as presented so far is that it assumes that all data 
points belong to a cluster. A more general model would allow for the presence 
of noise or outliers. Banfield and Raftery (1993) suggest that data points 
belonging to the noise could be modelled as being draws from a homogeneous 
Poisson process. That is, having removed observations belonging to clusters, the 
distribution of the remaining data points is one in which the expected number of 
“noise” observations in any location in the P-space defined by the clustering 
variables is identical.  
The existence of “noise” observations adds an extra component to the mixture 
distribution of Equation 2. That is there is a constant V1 density of observations 
over the entire P-space where V is the volume of that space. In this case the 
likelihood function can be rewritten; 

( ) ( )∏ ∑
= =
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
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1 1

0 |,| θxπθX ππ  (8) 

If an observation belongs to the noise it contributes V1 to the mixture 
likelihood, if it belongs to one of the clusters it contributes a Gaussian term. The 
estimation of the mixing proportion for the Poisson process, π0, is easily 
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achieved within the EM procedure discussed previously (Fraley and Raftery, 
1998, 2002a, 2002b). 
 
3.3 Model selection 
One problem that remains is how to choose between clustering solutions 
allowing different numbers of components and differing parameterisations of 
cluster shapes. In contrast to other clustering algorithms, the probabilistic basis 
of model-based clustering provides a framework within in which these 
comparisons can be made.  
A Bayesian approach to model selection is to choose the model that is most 
likely a posteriori. Given that a priori all models are considered equally likely, 
this amounts to comparing the integrated likelihood of the different models. 
Unfortunately, even for relatively simple Gaussian mixture models this integral 
has no closed form. An alternative then, is to use penalized likelihood methods 
that approximate the integrated likelihood. One such method is the Bayesian 
Information Criterion (BIC) (Schwartz, 1978); 

( ) ( )NυLBIC gggg
** log,ln2 −= θπ   (9) 

where g indexes the particular model being evaluated, *
gπ  and *

gθ  are the 
maximum likelihood estimates of π  and θ  respectively and gυ  are the total 

number of independent parameters in *
gπ  and *

gθ . If a BIC statistic is calculated 
for two different models, the difference between their BICs is what will indicate 
the superiority of one model over the other. If the difference is large enough, 
one can be reasonably certain that one model gives a better fit than the other. A 
standard convention for calibrating BIC differences is that differences of less 
than 2 correspond to weak evidence, differences between 2 and 6 to positive 
evidence, differences between 6 and 10 to strong evidence, and differences 
greater than 10 to very strong evidence. 
Whilst, the regularity conditions necessary for the BIC to approximate the 
integrated likelihood do not hold for finite mixture models (Titterington et al., 
1985), a growing weight of theoretical and empirical evidence supports the use 
of the BIC in this context (Leroux, 1992; Keribin, 1998; Roeder and 
Wasserman, 1997; Campbell et al., 1999; Dasgupta and Raftery, 1998; Fraley 
and Raftery, 1998, 2002; Stanford and Raftery, 2000).3 

                                           
3 Other approaches to model comparison include the approximate weight of evidence (AWE) criterion 
employed by Banfield and Raftery (1993), the NEC, an entropy criterion proposed by Biernacki et al. (1999), a 
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The approach followed here then is that outlined in Fraley and Raftery (1998). 
In the first instance select a range for M, the number of clusters. Then select a 
series of parameterizations of the covariance matrix by applying one or more 
equality restrictions to Equation 4. For each value of M and each 
parameterization, use the EM algorithm to calculate the maximum likelihood 
estimates of the model parameters. Compute the BIC for each model. The 
model providing the highest value of the BIC is then selected.  
In large datasets, the BIC tends to favour models with many clusters (Posse, 
2001). Thus we follow the example of Posse (2001) who suggests “picking a 
good candidate in the region where the rate of change of the BIC drops 
significantly”. 
 
3.4 Initialisation of the EM Algorithm 
Since the likelihood surface is typically characterised by many local maxima, 
finding appropriate starting values for the EM algorithm is a very important 
issue (Biernacki et al., 2003, compare various initialisation strategies). One 
approach is to derive starting values through a two-step methodology (Fraley 
and Raftery, 1998). First the data must be partitioned in to those observations 
that are thought to fall into the clusters and those that are thought to be part of 
the noise. Second, using just the denoised data, observations are given an initial 
allocation to clusters using hierarchical clustering techniques.  
In particular, Fraley and Raftery (1998) propose initialisation of the denoised 
data using model-based hierarchical clustering (Banfield and Raftery, 1993) 
with an unconstrained covariance matrix. Here each observation begins in a 
cluster of its own and at each stage a pair of clusters are merged so as to 
maximise a log-likelihood function (see Banfield and Raftery, 1993, for details). 
Each step in the hierarchical clustering defines a unique number of clusters until 
in the final step all observations are tied together in one cluster. The output from 
this hierarchical clustering can be illustrated as a dendrogram revealing the 
association between observations. 
To categorise the observations into M partitions, a section can be taken through 
the dendrogram at the level isolating M clusters. Fraley and Raftery (1998) 
propose using this categorisation to provide starting values for the cluster 
membership indicators ( )MjNidij ,,2,1;,,2,1 KK == . These, in turn, can 
replace the conditional probabilities (Equation 5) to feed into the initial M-Step 
of the EM iteration. 

                                                                                                                                   
bootstrap approach followed by McClachlan (1987) and the cross-validated likelihood approach of Symthe 
(2000). Comparisons of some of these different approaches can be found in Pan et al. (2002) and Biernacki and 
Govaert (1999). 
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One shortcoming of this approach is the onerous computing requirements of 
hierarchical clustering methods. In particular, the initial step of agglomerative 
hierarchical methods requires a measure of distance to be calculated between 
each observation in the data. As a result computing time and storage 
requirements are at least quadratic in the number of observations. Consequently, 
hierarchical clustering of large datasets may prove unfeasible. 
Two basic approaches have been forwarded to overcome these constraints. 
Banfield and Raftery (1993) propose clustering a subsample of the data then 
using discriminant analysis to classify the remaining observations (see also 
Maitra, 2001; Wehrens et al., 2003). Alternatively, Posse (2001) suggests an 
approach that takes into account all of the observations in the dataset. Rather 
than beginning the hierarchical agglomeration from the set of singleton clusters, 
Posse (2001) proposes initially categorising observation into a smaller number 
of well-defined clusters. Provided the initial clustering is efficient, such that it 
only groups observations that would naturally fall into the same cluster at a 
relatively early stage in the hierarchical agglomeration, this approach should 
result in a similar classification as that achieved through a hierarchical 
clustering of the entire dataset. 
Here we adopt the Posse (2001) approach that draws on graph theoretic 
approaches to clustering. In particular, Posse (2001) suggests generating 
clusters from the minimum spanning tree (MST) of the data. A spanning tree is 
a graph that connects all the data points in P-space such that there is only one 
path connecting each pair of data points. The MST is the spanning tree in which 
the total length of the connections or edges joining each point is at a minimum. 
Posse’s (2001) approach involves two steps in which the MST is first “peeled” 
and then “pruned”. The peeling step involves trimming out the longest edges of 
the MST. In effect this divides the well-separated groups in the dataset into 
discrete clusters whilst also isolating observations on the periphery of clusters 
that would not be assigned to a cluster until late on in the hierarchical 
agglomeration. The pruning step involves dividing the surviving connected 
observations in the MST into small groups each of roughly the same size. These 
groups should consist of close neighbours that would have been merged early 
on in the hierarchical clustering. Observations that are connected after peeling 
and pruning are given the same classification and this acts as the partition from 
which the hierarchical clustering is initiated. 
To determine which edges in the MST are considered sufficiently long to 
warrant “peeling”, Posse (2001) proposes the use of plots comparing the 
observed distribution of the longest edge lengths in the data with those that 
would be expected if the data had come from a single Gaussian population. To 
this end, Posse (2001) extends a theorem of Penrose (1998) that describes the 
expected distribution of edge lengths in the MST if data points were drawn from 



 

 16

a single standard P-dimensional Gaussian distribution. In particular, the 
theorem states that for the standard Gaussian distribution, the probability of 
observing the lth longest edge in the MST to have length el, is given by the lth 
order Gumbel distribution once el has been suitably centred and scaled. More 
formally; 
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Thus, the quantities ( ),111 NN beaGu −=   ( ),222 NN beaGu −=   …, 
( )NNNNN beaGu −=  are identically (though not independently) distributed 

according to the uniform distribution in the interval [0,1].4 
However, if the data are not in fact drawn from a single standardised Gaussian 
population the ul-sequence will not show this pattern. As Posse (2001) 
describes, if separate clusters are present in the data, the ordered sequence of 
edge lengths given by el will tend to be longer than expected for early elements 
in the sequence. Similarly, if clusters are not homogenous but are elongated in 
some dimension then early values of the edge length sequence el will also be 
longer than expected. As a consequence, in either or both of these cases, the 
observed ul-sequence will be characterised by initial values close to 1 before 
decreasing rapidly towards 0. 
Posse (2001) suggests that the number of edges to be peeled should be 
determined by plotting both the ul-sequence and the el-sequence. These plots 
should reveal the point at which the ul-sequence stabilises around 0 and the 
point at which the rate of decay in the el-sequence drops significantly. Posse 
                                           
4 Note that the ul-equence can be easily calculated since for l > 7 the Gl distribution is accurately approximated 
by the Gaussian distribution with mean lll 21ln +−=µ  and standard deviation ( ) 2121 −−− llσ . Further, Posse 
(2001) notes the slow rate of convergence of the limit in Equation (10) and provides second order corrective 
terms for aN and bN obtained from Monte-Carlo simulations. As acknowledged by the author, there is a small 
error in Posse’s (2001) Equation (6) where the Monte Carlo correction term should in fact be subtracted from bN 
rather than added.  
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(2001) indicates that a suitable choice for the number of edges to peel is the 
largest of these two quantities. 
The Posse procedure, partitions the data into a large number of well-defined 
small clusters. Observations falling into these clusters will be located close to 
each other in P-space. As such, a hierarchical clustering of these initial clusters 
should be little different from a hierarchical clustering based on the individual 
data points. 
Thus far, our discussion of the initialisation of the EM algorithm for model-
based clustering has failed to deal with the issue of denoising the data; that is, 
which data points are ascribed to the noise and which are included in the 
hierarchical clustering used to identify an efficient initial partitioning of the 
denoised data into clusters. Fraley and Raftery (1998) use a nearest neighbour 
denoising procedure proposed by Byers and Raftery (1998). In effect this 
procedure assumes that the data can be viewed as a mixture of two homogenous 
poisson processes with different intensities. The data in the clusters is drawn 
from the process with the greater intensity and hence will tend to be closer to its 
neighbours. In contrast data in the noise will be drawn from the less intense 
process and will be more distant from its neighbours. The procedure works by 
allocating an observation to the noise or the clusters according to its proximity 
to its neighbours.  
Here we propose an alternative procedure for allocating observations to the 
noise based on Posse’s (2001) procedure for peeling and pruning the MST. 
During peeling and pruning the longest edges of the MST are trimmed thereby 
isolating well-observations in the dataset. Consequently, we allocate all 
observations that have been isolated into single observations cluster following 
the application of the Posse procedure to the noise. The remaining observations 
are allocated to the denoised data and classified using hierarchical clustering. 
Subsequently, the data is recombined and the partitioning of the data into noise 
and separate clusters is used to initialise the EM algorithm for model based 
clustering.  
 
3.5 Geographic smoothing 
One last issue remains to be resolved. We might expect that for properties, 
geographical location will play an important role in determining submarket 
membership. Unfortunately directly including locational variables in a cluster 
analysis when observations are spread reasonably homogeneously across space, 
tends to result in a large number of clusters that are nearly circular when 
spatially mapped (Fovell, 1997). As a result we follow Posse (2001) and post-
process the clustering classification to take account of the spatial information.  



 

 18

Here we adopt a very simple rule. The six closest observations in geographical 
space to each observation are identified. These seven observations are examined 
and their classification noted. If the majority of these observations favour one 
classification and this differs from the classification of the target observation 
then the probabilities of belonging to these two different clusters (as given by 
the respective values of *

imd ) are compared. Only if the target observation is less 
that twice as likely to belong to its current classification is the classification 
switched. This spatial smoothing rule is applied to all observations and the 
process iterated until no observations change classification. 
 
3.6 Overall clustering strategy 
The clustering strategy followed in this paper, therefore, follows a number of 
steps; 
1. Construct the MST. In our application the MST is constructed using Prim’s 

(1957) algorithm. To account for different scaling in the P clustering 
variables, inter-point distance is measured using a Mahalanobis metric. 

2. Peel and prune the MST. Data points that are isolated in single-observation 
clusters following peeling and pruning of the MST are allocated to the noise. 
Data ponits that are connected in multiple-observation clusters are given the 
same classification and this classification acts as the partition from which the 
hierarchical clustering is initiated.  

3. Perform an agglomerative model-based hierarchical clustering on the 
denoised data, starting from the initial partition determined in step 2 

4. Determine the number of clusters, M, and a parameterisation for the cluster 
covariance matrices.  

5. Perform a model-based clustering of the data using the EM algorithm. The 
EM algorithm is initiated with observations allocated to the noise or clusters 
according to the rule in step 2. For observations that are not part of the noise, 
initial cluster membership is determined from the hierarchical clustering in 
step 3. 

6. Calculate the BIC for this model 
7. Repeat steps 4 to 6 for various numbers of clusters and parameterisations of 

the cluster covariance matrices. 
8. Plot the values of the BIC for the different models and select the model with 

the largest value of the BIC or choose a good candidate model as that giving 
the highest value for the BIC in the region where the rate of change of the 
BIC drops significantly. 
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3.7 Software 
Software implementing the MST initial partition has been written by the authors 
in the GAUSS programming language. This code has subsequently been 
verified through comparison and with Christian Posse’s original code designed 
to interface with the S-PLUS software package.  
The model-based clustering (both hierarchical and EM) and BIC calculation 
have been implemented using Fraley and Raftery’s (2002) MCLUST package 
designed to interface with either S-PLUS or R. The MCLUST software is 
available over the internet at http://www.stat.washington.edu/mclust.  
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4. The City of Birmingham Dataset 
Hedonic valuation is a data intensive technique. The success or failure of a 
study hinges upon the quality of the data upon which it is based. In general, 
researchers require information on the selling price of properties, the structural 
characteristics of those properties, indicators of each property’s proximity to 
(dis)amenities, descriptors of the socioeconomic characteristics of property 
neighbourhoods and data on the environmental quality of each property 
location. 
The case study described in this paper is from the City of Birmingham in the 
UK. Records of all property sales in Birmingham during 1997 were obtained 
from the databases of the UK Land Registry5. These records indicated selling 
prices, dates of sales and full property address for each residential property 
transaction.  
The Valuation Office Agency (VOA) provided property characteristics data. 
The VOA is an executive agency of the Inland Revenue, one of whose main 
functions is to value property for taxation purposes. In order to perform this 
function, the VOA maintains a database describing the structural characteristics 
of every residential property in England.6 Amongst other details, the VOA 
provided data on the number of bedrooms and bathrooms in each property, total 
floor area, the property’s age, whether the property was a bungalow or house 
(flats are not included in the analysis), whether the property was detached, semi-
detached, in a terrace or at the end of a terrace, whether the property had central 
heating and access to off-road parking. Furthermore, the VOA classifies 
properties according to age and style of construction into one of around 30 
property types called Beacon Groups. This information was also recorded as it 
provides a useful additional indication of property quality that cannot be 
determined from size and age alone.  
Addresses were geolocated using a GIS. Subsequently GIS datasets were used 
to provide details of the garden area and aspect of each property and to calculate 
straight line distances, car travel times and walking distances from each 
property to (dis)amenities including schools, shops7, railway stations and 
industrial sites. 
 

                                           
5 The Land Registry database is not publicly accessible information for England and Wales. However, the UK 
Department for Transport (DfT), who funded this study, arranged access for the purposes of this research. 
6 Unfortunately, the VOA data sources are currently held as paper records. Consequently, the process of 
matching addresses to the structural characteristics of each property required laborious trawling through ranks of 
filing cabinets. 
7 Specifically businesses registered as “Delicatessens”, “Grocers”, “Newsagents” or “Supermarkets”. 
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When considering the accessibility of properties to shops, any measure based on 
proximity to only one facility has disadvantages. For example, a property 200m 
from ten shops is likely to be perceived as having better accessibility than 
another property 200m from one shop. As a result, measures for access to shops 
were constructed using a weighted sum of distances to all shops. This is a 
common procedure in accessibility studies and formalises to: 

∑
=

−=
J

j

ijd
ji eA

1

δα  (11) 

Where, Ai is accessibility at property i, αj is the attractiveness of shop j, dij is the 
walking distance in kilometres between property i and shop j, δ exponent for 
distance decay and J is the number of shops in the region. Here we set δ = 2 
(such that a shop 100m from the property receives a weight over 6 times that of 
a shop at 1km distance and shops at over 2km distance receive almost no weight 
at all) and αj = α = 1 (such that all shops are considered equally attractive). This 
shop accessibility variable is illustrated in Figure 1. 
A similar procedure was used when considering accessibility to primary 
schools. Recent research suggests that selection procedures for primary school 
intake that favour local residents can considerably inflate house prices around 
high performing schools (Gibbons and Machin, 2003).8 For each primary school 
in the Birmingham area an estimate of school quality was calculated as the 
percentage of pupils achieving Level 4 or above in Science, Mathematics and 
English (the level expected of 11 year olds).9 A primary school accessibility 
index was constructed using (9) with the weight αj set to this measure of school 
quality and δ = 1. Figure 2 presents the primary school quality/accessibility 
variable is depicted for a region of the study area.  

                                           
8 As Gibbons and Machin (2001) argue, the issue is thought less important for secondary schools that typically 
draw from much wider catchments. Also, high educational achievement at primary school level may be a pre-
requisite for admission to selective secondary schools. For example, the five selective Grammar Schools of King 
Edward the Sixth in Birmingham make offers “ … solely on the basis of performance in the entrance test. 
Special allowances are not made for brothers or sisters or distance from the school.” (quote taken from the 
Grammar Schools of King Edward VI in Birmingham web site http://www.kingedwardthesixth. 
org/eligibility.htm) 
9 This information was obtained for 1997 from the Department for Education and Employment website 
(http://www.dfee.gov.uk/performance/primary_97.htm). 



 

 22

Figure 1: Shop accessibility scores for a selection of properties  

 

Figure 2: Primary School accessibility scores for a selection of properties  

 



 

 23

Using a procedure outlined in (Lake et al., 2000) data on land uses and the 
location and orientation of each property was combined with information on the 
landscape topology and building heights to calculate indices of the views 
available from the front and back of each property. For example indices were 
constructed for visible road surface, recreational park land and water surfaces. 
Finally, road traffic and rail traffic noise data was provided by the Birmingham 
1 project (DETR, 2000). The aircraft noise level at each property was identified 
by digitising a 1999 aircraft noise contour map of Birmingham International 
Airport. This map displayed aircraft noise levels in 3dB steps. Each property 
was assigned a noise level by interpolating linearly between the contours. All 
noise measurements are in decibels LEQ. 
Data on the socioeconomic composition of property neighbourhoods were 
drawn from the 1991 UK census provided by the Office for National Statistics 
(ONS). For the purposes of this research we recognise two levels of 
neighbourhoods. The smallest area over which census data is provided by the 
ONS is an enumeration district (ED). Birmingham is divided into 1,940 EDs, 
with each ED containing an average of 191 households. EDs are gathered into 
larger scale political units known as wards. Birmingham contains 39 wards such 
that each ward comprises an average of 50 EDs and 9,500 households. The 
organisation of these spatial units are shown in Figure 3. 
The census provides a myriad of information on the socioeconomic 
characteristics of the population living in each ED. As we shall discuss in the 
Section 3, census data are ideal for constructing indicators of the attributes of 
the neighbourhood in which a property is located. 
Descriptions of the variables used in the hedonic analysis are listed in Table 1. 
Complete data records were successfully compiled for some 10,848 residential 
property transactions in Birmingham in 1997. Further examination of the data 
lead to the exclusion of another 57 observations for various reasons. For 
example, 16 adjoining properties along one road were sold within a few months 
of each other at prices well below the apparent market rate. Examination of 
recent aerial photographs of this area provided an explanation; the houses had 
since been demolished to make way for a road widening scheme. The final data 
set used in this analysis consists of 10,791 observations. 
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Figure 3: Hierarchy of administrative areas in Birmingham 
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Table 1: Data Descriptions 

Variable Mean Std. Dev. Min Max 

Sale Price (£) 58,986 36,099 11,000 645,003 

Structural Characteristics     

Floor Area (m2) 102.6 32.7 42 645 

Garden Area (m2) 226.1 208 0 5,164 

Garage (proportion) 0.436 0.496 0 1 

Central Heating (proportion) 0.728 0.268 0 1 

Age (decades) 6.1 2.76 0 11 

WCs (proportion)     

One 0.794 0.404 0 1 

Two 0.196 0.397 0 1 

Three 0.009 0.094 0 1 

> Three 0.001 0.029 0 1 

Bedrooms (proportion)     

One 0.005 0.069 0 1 

Two 0.172 0.377 0 1 

Three 0.716 0.451 0 1 

Four 0.083 0.276 0 1 

Five 0.016 0.127 0 1 

> Five 0.007 0.084 0 1 

Storeys (proportion)     

One 0.021 0.145 0 1 

Two 0.954 0.209 0 1 

Three 0.021 0.143 0 1 

> Three 0.003 0.058 0 1 

Construction Type (proportion)     

Detached Bungalow 0.013 0.111 0 1 

Semi-Detached Bungalow 0.008 0.090 0 1 

End Terrace Bungalow 0.000 0.022 0 1 

Terrace Bungalow 0.000 0.017 0 1 

Detached House 0.116 0.320 0 1 
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Variable Mean Std. Dev. Min Max 

Semi-Detached House 0.396 0.489 0 1 

End Terrace House 0.115 0.319 0 1 

Terrace House 0.352 0.478 0 1 

Beacon Group (proportion)     

1. Unrenovated cottage pre 1919 0.000 0.019 0 1 

2. Renovated cottage pre 1919 0.001 0.027 0 1 

3. Small “industrial” pre 1919 0.040 0.195 0 1 

4. Medium “industrial” pre 1919 0.226 0.418 0 1 

5. Large terrace pre 1919 0.006 0.078 0 1 

8. Small “villa” pre 1919 0.020 0.138 0 1 

9. Large “villas” pre 1919 0.009 0.093 0 1 

10. Large detached pre 1919 0.003 0.058 0 1 

19. Houses 1908 to 1930 0.011 0.103 0 1 

20. Subsidy houses 1920s & 30s 0.140 0.347 0 1 

21. Standard houses 1919-45 0.257 0.437 0 1 

24. Large houses 1919-45 0.016 0.124 0 1 

25. Individual houses 1919-45 0.000 0.022 0 1 

30. Standard houses 1945-53  0.045 0.207 0 1 

31. Standard houses post 1953 0.190 0.392 0 1 

32. Large houses post 1953 0.032 0.177 0 1 

35. Individual houses post 1945 0.001 0.038 0 1 

36. “Town Houses” post 1950 0.004 0.062 0 1 

Sale Date (proportion)     

1st Quarter (Jan. to Mar.) 0.214 0.410 0 1 

2nd Quarter (Apr. to June) 0.247 0.431 0 1 

3rd Quarter (July to Sept.) 0.287 0.452 0 1 

4th Quarter (Oct. to Dec.) 0.252 0.434 0 1 

Neighbourhood Characteristics     

Poverty Factor -0.375 0.855 -1.934 2.363 

Sills Factor 0.180 1.000 -1.398 4.198 

Age Factor 0.055 0.807 -3.216 3.143 

Family Factor -0.029 0.842 -3.198 3.791 
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Variable Mean Std. Dev. Min Max 

Asian Factor -0.045 0.942 -1.131 5.152 

Black Factor -0.240 0.750 -2.016 8.214 

Locational Characteristics     

Proximity to City Centre (secs) 1,313 478 208 3,187 

Proximity and Quantity of Shops 2.276 1.273 0.07 9.56 

Proximity and Quality of Primary 
Schools 0.602 0.177 0.15 0.97 

Walking time to Rail Station (secs) 1,846 1,013 21 5,525 

Walking time to a Park (secs) 900 558 3 3,425 

Driving time to Airport (secs) 2,388 655 602 4,386 

Proximity to A-Type Industrial 
Processes (m) 2,463 1,821 21 10,204 

Proximity to B-Type Industrial 
Processes (m) 814 528 10 3,333 

Proximity to Land Fill sites (m) 947 608 10 3,472 

Wards (proportion)     

Acock's Green 0.039 0.194 0 1 

Aston 0.015 0.122 0 1 

Bartley Green 0.018 0.131 0 1 

Billesley 0.027 0.162 0 1 

Bournville 0.038 0.191 0 1 

Brandwood 0.022 0.147 0 1 

Edgbaston 0.020 0.139 0 1 

Erdington 0.029 0.168 0 1 

Fox Hollies 0.028 0.165 0 1 

Hall Green 0.041 0.198 0 1 

Handsworth 0.016 0.125 0 1 

Harborne 0.036 0.186 0 1 

Hodge Hill 0.024 0.154 0 1 

King's Norton 0.016 0.125 0 1 

Kingsbury 0.010 0.101 0 1 

Kingstanding 0.022 0.146 0 1 

Ladywood 0.014 0.118 0 1 
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Variable Mean Std. Dev. Min Max 

Longbridge 0.023 0.150 0 1 

Moseley 0.024 0.152 0 1 

Nechells 0.019 0.136 0 1 

Northfield 0.028 0.164 0 1 

Oscott 0.026 0.158 0 1 

Perry Barr 0.033 0.180 0 1 

Quinton 0.024 0.152 0 1 

Sandwell 0.027 0.163 0 1 

Selly Oak 0.044 0.205 0 1 

Shard End 0.020 0.138 0 1 

Sheldon 0.021 0.144 0 1 

Small Heath 0.028 0.164 0 1 

Soho 0.018 0.134 0 1 

Sparkbrook 0.013 0.111 0 1 

Sparkhill 0.020 0.142 0 1 

Stockland Green 0.028 0.166 0 1 

Sutton Four Oaks 0.038 0.191 0 1 

Sutton New Hall 0.044 0.206 0 1 

Sutton Vesey 0.039 0.194 0 1 

Washwood Heath 0.028 0.164 0 1 

Weoley 0.017 0.130 0 1 

Yardley 0.024 0.154 0 1 

Environmental Characteristics     

Views of Water (weighted m2) 0.480 7.543 0 348 

Views of Parkland (weighted m2) 6.290 36.83 0 664 

Road Traffic Noise (dB) 49.8 9.4 31.6 75.8 

Rail Traffic Noise (dB) 36.8 12.6 0 74.7 

Aircraft Noise (dB) 4.8 16.0 0 69 
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5. Application of cluster analysis strategy to the City of Birmingham 
dataset 

 
The theoretical discussion in the introduction describes the predictions of two 
models of property markets. In the first model, typified by the work of Ekeland 
et al. (2003), households choose a property based on the attributes of properties 
themselves. The model predicts that for certain parameter values, the market 
will be characterised by distinct clusters of properties exhibiting similar levels 
of attributes.  
In contrast, Nesheim (2002) presents a model in which households choose 
properties based on the characteristics of the other households in the 
neighbourhood. Nesheim’s model predicts that households will sort themselves 
spatially according to socioeconomic characteristics. Again, the model suggests 
that for certain parameter values the market will be characterised by the 
existence of distinct clusters of (not necessarily spatially contiguous) similar 
neighbourhoods; that is, neighbourhoods that are composed of a set of 
households exhibiting similar socioeconomic profiles. 
In this section we attempt to identify clustering of these two different forms by 
applying model-based clustering techniques to the City of Birmingham dataset. 
 
5.1 Choice of clustering variables 
The first step in the cluster analysis is to choose the set of P variables defining 
the characteristics of each observation.  
One exceedingly practical consideration in making this choice is that model-
based clustering, as applied here, requires the clustering variables to be 
continuous. Examination of the data descriptions in Table 1 reveals that the 
majority of variables detailing the structural characteristics of properties are 
discrete. That is, they are binary variables indicating the presence or absence of 
a particular feature. Indeed, once the discrete variables have been eliminated, 
we are left with only three candidates; floor area, garden area, and property age. 
Fortunately, between them these three variables capture a substantial proportion 
of the variability in the structural characteristics of properties. Witness the fact 
that a simple linear regression of log sales price on log floor area, log garden 
area and property age, returns an R2 statistic of .52. That is, on their own, these 
three variables explain some 52% of the variation in property prices. Adding in 
the remaining 46 discrete structural covariates only elevates the R2 statistic to 
0.63. In terms of property prices, therefore, the three variables of floor area, 
garden area, and property age capture the majority of variability that can be 
accounted for by the structural attributes of properties. We contend that this is 
because the structural features of properties are highly correlated (e.g. number 
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of beds, WCs and storeys with a property’s floor space; beacon group with a 
property’s age and floor space; property type with a property’s floor space and 
garden size) such that combinations of these three variables provide a 
reasonably precise description of the different structural types available in the 
property market.  
In contrast, in defining the socioeconomic characteristics of neighbourhoods we 
are faced with a surfeit of candidate variables. The census data provides literally 
hundreds of variables describing the socioeconomic characteristics of the 
households inhabiting each enumerator district. As a result, we adopt a simple 
two-step procedure that condenses the excess of neighbourhood attributes into a 
more manageable set of indices or factors. In the first step, variables from the 
census data are grouped into five categories. These categories are as follows; 
variables describing the age composition of inhabitants of an ED, variables 
describing the family composition of households in an ED, variables describing 
the wealth of households in an ED, variables describing the ethnicity of 
inhabitants of an ED, and variables describing the education and employment of 
inhabitants of an ED. In the second step, the variables in each category are 
subjected to a factor analysis. A summary of the factor analysis is provided in 
Table 2. Following standard practice, for each group of variables, only factors 
with eigenvalues greater than one are retained. In all but one case, this results in 
the retention of only one factor for each category. As can be surmised from the 
third column of Table 2, on the whole, the retained factors capture the greater 
portion of the variability in the variables included in each category. The factors 
are rotated to aid interpretation and those variables with loadings greater than 
|0.50| are listed in the final column of Table 2. The loadings suggest meaningful 
interpretations for the dimensions captured by each factor. These interpretations 
are summarised in the first column of Table 2. The final step is to define a score 
for each ED for each factor. In effect, EDs that exhibit high values for attributes 
that load positively on a factor receive high scores for that factor whilst 
neighbourhoods that exhibit high values for attributes that load negatively on 
that factor receive low scores. 
The six factor scores are used as summary variables describing the major 
features of the socioeconomic characteristics of property neighbourhoods for 
use in the model-based clustering. Again the six factors describing the 
socioeconomic are found to be major determinants of property prices. A simple 
linear regression of log property price against the six factors returns and R2 
statistic of 0.57. 
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Table 2: Factor analysis of census data describing the socioeconomic 
characteristics of enumerator districts 

Factor Name & Description Eigenvalue
s (>1) 

Percent 
Variance 
Explained

Variable Loadings 
(>|0.50|) 

I. Household Age Composition (Using 5 variables): 

1.76 61 % Age 18-24 -0.72 a. AGE FACTOR: Increasing 
Age of Inhabitants   % Age 25-34 -0.64 

   % Age 50-64 0.59 

   % Age > 65 0.63 

II. Family Composition (Using 4 variables): 

2.66 81 % Young 
Family 0.86 

  % Old Family 0.82 

b. FAMILY FACTOR: 
Increasing Proportion of 
Households with Children 

  % Age 0-10 0.78 

   % Age 10-17 0.80 

III. Wealth of Households (Using 4 variables): 

3.18 97 % No car 1.00 c. POVERTY FACTOR: 
Increasing Poverty of 
Households   % Two cars -0.85 

   % Unemployed 0.85 

   % Local 
Authority 
Housing 

0.85 

IV. Ethnicity (Using 6 variables): 

3.00 56 % Pakistani 0.96 d. ASIAN FACTOR: 
Increasing Proportion of 
Asians Households   % Bangladeshi 0.67 

   % White -0.75 

1.13 21 % Caribbean 0.89 e. BLACK FACTOR: 
Increasing Proportion of Black 
Households   % African 0.77 

V. Education and Employment (Using 15 variables): 

2.97 34 % professional 0.61 f. SKILLS FACTOR: 
Increasingly Skilled 
Households   % diploma 0.73 

   % degree 0.83 
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5.2 MST initial partition 
The data contains 10,791 property observations. Using the three clustering 
variables of floor area, garden area and property age, the MST for the property 
attributes data was constructed using Mahalanobis distances. The top two 
graphs in Figure 4 plot the first 400 elements of the el-sequence and ul-sequence 
calculated from the edge lengths of this MST. Likewise, there are 1,940 EDs in 
the City of Birmingham. Again the MST for the six factors describing the 
socioeconomic composition of inhabitants of these EDs has been constructed 
using Mahalanobis distances. The el-sequence and ul-sequence for the edge 
lengths of this MST are reproduced in the lower two plots in Figure 4. 
 
Figure 4: The el-sequence and ul-sequence of the Minimal Spanning Tree 
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The el-sequence plots for both MSTs show the expected pattern. A few 
observations are well-separated from the others and have comparatively large 
edge lengths in the MST but the rate of change in the sequence of ordered edge 
lengths declines rapidly. 
In both cases the ul-sequence plots show clear evidence of clustering. If the data 
had been drawn from a single standardised Gaussian population then we would 
expect to see no discernible pattern in the ul-sequence. Rather, in both cases we 
see that the longer edge lengths of the MST exceed the lengths that might be 
expected through chance whilst the shorter edge lengths of the MST are 
somewhat shorter than might be expected.  
To determine which edges in the MST are considered sufficiently long to 
warrant “peeling”, Posse (2001) proposes identifying the edge length at which 
the ul-sequence stabilises around 0 and at which the rate of decay in the el-
sequence has dropped significantly. Since edges longer than this length separate 
observations that are more distant from each other than might be expected, 
Posse suggests an initial partitioning of the MST that breaks these edges.  
From Figure 4 it is clear that the rate of decline of the el-sequence reduces 
significantly after the first 75 to 125 longest edge lengths in the case of the 
property attribute MST and after the first 20 to 25 longest edge lengths in the 
case of the neighbourhood attributes MST. Likewise, the ul-sequence stabilises 
around zero shortly after the 350th longest edge length for the property attribute 
MST and after the 20th longest edge length for the neighbourhood attribute 
MST. Following Posse’s (2001) proposition, therefore, we choose to peel the 
first 350 longest edges of the property attribute MST and the first 30 longest 
edges of the neighbourhood attribute MST. 
As detailed in Table 3, we subsequently “prune” the MSTs so as to form a large 
number of roughly equal sized clusters. In the case of the property attributes 
data, the average number of observations in a cluster following pruning is 3.48. 
Similarly the average cluster size for the neighbourhood attribute is 3.41. 
Furthermore, the Posse procedure isolates 765 property observations and 161 
neighbourhood observations into clusters of their own. Since these singleton 
clusters are likely to be well-separated from other observations they are taken as 
an initial indication of observations that do not belong to any cluster but are part 
of the noise.  
 
5.3 Model based clustering of properties with geographical smoothing 
Clusters derived from the MSTs are used to initialise the model-based clustering 
algorithms. For both data sets, a variety of models corresponding to different 
numbers of clusters and different cross-cluster restrictions on the cluster 
covariance matrices have been estimated. BIC values for a selection of these 
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models are presented in Figure 5. The three covariance models described in the 
figure performed significantly better than other possible parameterisations. 
Indeed, no other model estimated returned BIC scores that would register on 
these graphs.10 

Table 3: Initial Partition of the data set using the MST procedure suggested 
by Posse 

 Property Attribute 
Clustering 

Neighbourhood 
Attribute Clustering 

Num. Obs 10,791 1,940 

Num. Peel 350 30 

Num. Prune 2,500 400 

Num. Clusters 3,100 569 

Num. Singletons 765 161 

Avg. Obs. per Cluster 3.48 3.41 

Max. Obs. per Cluster 6 6 
 
The BIC scores for the neighbourhood attribute clustering reveal the 
unconstrained model, in which different clusters may differ in size, shape and 
orientation, outperforms the other models. The BIC reaches a maximum at a 
model containing seven clusters and following Fraley and Raftery (1998) this 
model is selected as the one best describing the patterns of clustering in the 
data. 
For the property attribute data the picture is less clear. A model in which the 
shape of each cluster is constrained to be equal performs only marginally less 
well than the unconstrained model. Also, there is no single maximum for the 
BIC scores. Rather, the BIC scores for models with progressively larger 
numbers of clusters tend to increase but a progressively slower rate. This pattern 
is not uncommon in large data sets where the BIC tends to prefer partitions with 
many clusters (Posse, 2001). Here we follow the suggestion of Banfield and 
Raftery (1993) taken up by Posse (2001) and choose the 6 cluster unconstrained 
model as this gives a particularly high value for the BIC in the region where the 
rate of change of the BIC drops significantly. 
 

                                           
10 This observation indicates that traditional approaches to clustering such as Ward’s (1963) method may be 
inappropriate since this method is equivalent to restricting the covariance matrices to be spherical but with 
differing volumes (Fraley and Raftery, 1998). 
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Finally, the spatial smoothing algorithm was applied to the two clustering 
solutions. In the case of the neighbourhood attribute partitioning the 
classification stabilised after 4 iterations, with some 154 EDs having changed 
classification. In the case the property attribute partitioning the classification 
stabilised after 3 iterations once 642 properties had changed classification. 

Figure 5: BIC scores for clustering models assuming different numbers of 
clusters and different parameterisations of the covariance matrices 
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Tables 4 and 5 present summary statistics that report the number of observations 
and the means of selected variables for each cluster. Figures 6 and 7 plot the 
locations of the properties in the different clusters for the two partitionings of 
the data. 
In general the neighbourhood clusters are readily interpretable. Clusters 1, 3, 4 
and 5 pick out neighbourhoods that are populated, in the main, by ethnically 
white inhabitants. Of these Cluster 1 identifies relatively poor neighbourhoods, 
with low-skilled inhabitants. These neighbourhoods tend to be located to the 
south and west of the city but not in the city centre nor in the relatively affluent 
north-eastern suburbs. Cluster 4 comprises middle income neighbourhoods that 
are averagely skilled and relatively old. Clusters 3 and 5 pick out wealthy 
neighbourhoods with highly skilled inhabitants. These neighbourhoods tend to 
be in suburban locations with especially high concentrations in the desirable 
north-eastern region of the city. 
In contrast, Clusters 6 and 7 define neighbourhoods whose inhabitants come 
mainly from the ethnic minorities. Whilst these neighbourhoods share the same 
inner city locations and are characterised by relative poverty and low-skilled 
inhabitants, they remain ethnically distinct. Cluster 6 defines neighbourhoods 
that are majority black, Cluster 7 neighbourhoods that are majority Asian. 
Perhaps unsurprisingly, average adult ages in these neighbourhoods are 
relatively low whilst, especially in the Asian neighbourhoods, there are a 
relatively large number of households with children. 
Cluster 2 is somewhat more difficult to interpret. The population is ethnically 
diverse and comprised almost exclusively of young adults without children. 
Whilst the inhabitants of these neighbourhoods are relatively skilled they are 
only moderately wealthy. We surmise that these neighbourhoods are those 
inhabited by young professionals. The geographic distribution of properties in 
this Cluster accords with this interpretation. Neighbourhoods in Cluster 2 are 
located outside the inner city, but within easy commuting distance of the city 
centre. Further, a particularly large concentration of neighbourhoods in this 
cluster can be found to the south and west of the city centre, located around the 
University and Hospital complex. 
Finally only a very few neighbourhoods cannot be assigned to one of the 
clusters and fall into the noise category.  
The clusters identified by partitioning according to the age, floor space and 
garden size of properties are also readily interpretable. 
Cluster 1 picks out modern developments. Indeed, 87% of properties in this 
cluster fall into Beacon Group (BG) 31 defined as standard houses built post 
1953. These properties tend to be provided with gardens and cover a range of 
sizes and construction designs; some detached, some semi-detached and some 
terraced. Notice from Figure 6 that properties in this cluster are widely 



 

 37

dispersed over the cityscape reflecting recent planning trends that have 
encouraged infilling rather than expansion of the urban area.  

Table 4: Summary of neighbourhood attribute clusters reporting the 
number of EDs in each cluster and the mean values for the clustering 
variables 

Cluster Num Poor Skill Age Family Black Muslim

Cluster 1 424 0.500 -0.623 0.252 0.014 -0.290 -0.409 

Cluster 2 255 0.172 0.586 -0.804 -0.907 0.442 -0.297 

Cluster 3 328 -1.081 0.437 0.470 -0.370 -0.602 -0.399 

Cluster 4 148 0.226 -0.227 0.631 -0.259 -0.405 -0.349 

Cluster 5 309 -0.990 0.875 0.392 -0.274 -0.366 -0.374 

Cluster 6 256 0.915 -0.631 -0.458 0.550 1.470 0.023 

Cluster 7 214 0.646 -0.538 -0.668 1.538 -0.047 2.533 

Noise 6 -0.197 1.923 -1.706 -0.109 2.348 -0.142 
 
At the other extreme Cluster 2 is comprised almost exclusively of small turn-of 
the-century terraces with relatively small associated plots of land. 93% of these 
properties are classfied as BG 3 or 4, that is small or medium “industrial” 
properties built before 1919. In accordance with the historical development of 
the city, these properties encircle the city centre. 
Similarly, Cluster 3 identifies turn-of the-century properties located in a similar 
geographic region to those in Cluster 2. However, unlike Cluster 2 these are not 
exclusively small terraces. In fact, the properties in Cluster 3 are larger with 
more bedrooms and much larger gardens. Cluster 3 comprises properties 
constructed for the more affluent members of turn-of-the-century Birmingham 
society; properties that estate agents like to call “town houses” or “villas”. 
Clusters 4 and 5 identify standard mostly terraced or semi-detached properties 
with gardens. Notice in Figure 7 that the properties in Cluster 5 fall in a broad 
swathe that encircles the inner city. Indeed, these properties are part of the rapid 
expansion of Birmingham that took place between the wars. 97.5% of properties 
in this cluster are classified as BG 20 or 21, standard (frequently state-
subsidised) properties constructed in the 1920s and 1930s. Geographically, 
properties in Cluster 4 appear to comprise a final ring of development 
surrounding the properties built between the wars. Indeed, these properties 
comprise standard, post-war properties. Some 70% of properties in Cluster 5 are 
classified as standard houses constructed between 1945-53 (BG 30) or post 
1953 (BG 31).  
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Cluster 6 isolates the large properties in Birmingham. 86% of the properties in 
this cluster are detached or semidetached. They tend to have large gardens and 
are located in mainly suburban area with a large concentration in the desirable 
north-eastern region of the city. 
From the descriptive statistics it would appear that many of the 67 properties 
allocated to the noise are the extremely large properties. The properties in the 
noise are mostly detached and, on average, have the most bedrooms, floor space 
and garden area of any of the clusters. It appears that the clustering procedure 
has isolated this small number of seeming outliers from the larger groupings of 
more moderately proportioned properties in the data. 
 
Table 5: Summary of property attribute clusters reporting the number of 
EDs in each cluster and the mean values for the clustering variables and 
other variates 

Cluster Num Area Garden Age Beds %Terrace%Detached Price

Cluster 1 1,540 91.7 162.4 19.5 2.85 0.42 0.24 61,749

Cluster 2 2,324 95.2 84.1 93.7 2.7 0.95 0.00 38,916

Cluster 3 878 142 195.8 95 3.36 0.65 0.03 63,365

Cluster 4 1,176 97.5 266.8 49.5 2.95 0.31 0.06 57,064

Cluster 5 3,453 87.5 205.8 66 2.85 0.34 0.03 48,530

Cluster 6 1,353 136.8 506.7 57.3 3.46 0.06 0.46 107,734

Noise 67 276.3 1694.1 66.4 5.1 0.04 0.82 243,415



 

 

Figure 6: Geographical distribution of properties in clusters defined by neighbourhood soicioeconomics partitioning  

 



 

 

Figure 7: Geographical distribution of properties in clusters defined by property attributes partitioning  
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6. Estimation of Hedonic Price Functions by Cluster 
The theoretical models described in the introduction both predict that the 
hedonic price surface may be highly non-linear. As such, following the standard 
procedure and fitting a simple linear regression usually with log-transformed 
price as the dependent variable is unlikely to provide anything but a poor 
approximation to the true hedonic price function. A number of alternative 
estimation strategies suggest themselves.  
Foremost amongst these strategies is to adopt more flexible functional forms. 
There is a long established literature pursuing this line of reasoning. A number 
of researchers have investigated the use of parametric specifications such as the 
Box-Cox flexible functional form (e.g. Milon, Gressel and Mulkey, 1984; 
Blackley, Follain and Ondrich, 1984; Cassel and Mendelsohn, 1985; Cropper, 
Deck and McConnell, 1988; Gençay and Yang, 1996; Huh and Kwak, 1997; 
Cheshire and Sheppard, 1998) though as discussed by Ramussen and Zuehlke 
(1990) there are some theoretical difficulties with this approach.  
Even more flexible semiparametric approaches have been employed by a 
number of authors. Anglin and Gençay (1996) and Gençay and Yang (1996), for 
example, use a partially linear model to allow a subset of the variables to be 
included into the model specification in nonparametric form. 
In the extreme, some researchers have opted to estimate the whole hedonic price 
function by nonparametric regression (e.g. Pace 1993, 1995). The use of 
nonparametric regression allows the data to dictate the nature of the relationship 
between property characteristics and price. Unfortunately, it is evident that a 
large number of factors affect property prices and, as such, the approach will 
likely fall foul of the well-known curse of dimensionality. 
Rather than employing increasingly more general econometric specifications to 
capture the nonlinearity of the equilibrium hedonic price function, our 
estimation strategy is to avoid estimating the hedonic price function over the 
entire attribute space. Rather, we fit separate price functions for the properties in 
each cluster thereby forming local approximations to the hedonic price surface 
over the attribute area spanned by the properties in each cluster.  
For each of the two partitionings of the data we adopt the following set of 
simple linear regression functions; 

( ) jjjj eβXP +=ln  Mj ...,,2,1=  (12) 

where j indexes clusters, jP  is the 1×jN  vector of property prices for data 
allocated to cluster j, jX  is the associated jj KN ×  regressor matrix, jβ  is the 

1×jK  vector of parameters and je  is the 1×jN  vector of residuals that we 
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assume to have [ ] 0=jE e  and [ ] jNjjjE Iee 2σ=′ . We estimate the models 
using ordinary least squares (OLS). 
 
6.1 A discussion of the parameter estimates 
A selection of parameter results from these two sets of linear regressions are 
provided in Tables 5 and 6. Full details can be found in appendices A and B at 
the end of this paper. For want of space, we do not discuss all the results but 
highlight some of the more interesting findings. 
First, let us examine the partitioning based on the socioeconomic characteristics 
of neighbourhoods (Table 5). All in all, the parameters estimated for the 
structural characteristics of properties exhibit similar patterns for all seven 
clusters. Not surprisingly the two structural attributes describing the overall 
dimensions of properties, floor area and garden area, are highly significant in all 
clusters; the bigger the property the more it sells for, all else equal. Furthermore, 
in clusters where the presence of a garage and/or central-heating makes a 
statistically meaningful difference, it is always to make those properties more 
valuable.  
For all clusters the parameter estimated on the age variable is negative, though it 
is only statistically significant at over a 90% level of confidence in two of the 
seven clusters. Accordingly, all else equal, properties lose market value with 
age. Of course, a fuller appreciation of differences in property values brought 
about by construction date would have to consider the parameters estimated on 
the eighteen Beacon Group dummy variables (to be found in the appendices) 
since these also isolate important aspects of a properties age and design.  
The set of dummy variables indicating the number of bedrooms possessed by a 
property shows a similar pattern across all clusters. Compared to the baseline 
case of a three-bedroom house, properties boasting more or fewer bedrooms 
tend to command higher prices in the market. The most statistically significant 
premium is for five-bedroomed properties. Of course, this is under the 
important caveat that all else, including floor area, is held equal.  
With regards to the number of storeys over which a property is divided, there 
appears little to distinguish properties with one storey from the baseline case of 
a two-storied property. Again, to see the full picture one would need to consider 
the full set of dummy variables for construction type (to be found in the 
appendices) which include three variables indicating types of bungalow. In 
nearly all cases, and in all cases that make a statistically meaningful difference, 
properties with three or four stories command lower market prices than a two-
storied property. It appears that the market values short, fat properties more 
highly than tall, skinny ones. In a similar vein, the dummy variables on 
construction type shown in Table 5 reveal that in all clusters, detached 
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properties are valued more highly than semi-detached properties which are in 
turn valued more highly than terraced properties.  
In all seven clusters, there is clear evidence of prices changing over the course 
of the study year (1997). Prices appear to have risen between 3% and 8% 
(depending on cluster) between the first and third quarter of the year, remaining 
stable in the final quarter. 
In contrast to the structural characteristics, the influence of neighbourhood 
characteristics on property prices displays a number of interesting contrasts 
across clusters. As might be expected, property prices are depressed if the area 
in which the property is located is relatively poor, are inflated if the 
neighbourhood is inhabited by relatively highly skilled households. Perhaps not 
so predictably but also showing a consistent pattern across clusters we find that 
property prices tend to be higher in neighbourhoods with relatively older 
inhabitants but lower when the neighbourhood has a proportionately larger 
population of households with children.  
In contrast, observe the parameter estimates on the Asian and Black factors. In 
the first five clusters, clusters whose populations appear to be majority white, 
neighbourhoods with larger Black or Asian contingents are characterised by 
lower priced properties. However, a different pattern emerges for Cluster 6, the 
cluster isolating neighbourhoods with mainly Black communities. Here the 
parameter estimates on the Asian and Black factors take the opposite sign; 
properties in neighbourhoods containing proportionately more Black or Asian 
households command significantly greater market prices. A similar pattern can 
be seen in Cluster 7, the cluster isolating majority Asian neighbourhoods. In this 
cluster, properties in neighbourhoods with proportionately more Asian 
households are significantly more expensive. Without wishing to over-elaborate 
the significance of this result, the implication is that within clusters properties in 
racially homogeneous neighbourhoods tend to be more highly valued than those 
in ethnically diverse neighbourhoods. 
Consider now the locational characteristics of properties with respect to their 
proximity to amenities and disamenities. The parameters on the proximity to the 
city centre present a somewhat confused pattern, being negative and significant 
for some clusters, positive and significant for others. For example, proximity to 
the city centre deflates property prices in clusters 1 and 6 (the poor ethnically 
white and ethnically black clusters respectively) whilst inflating prices in 
clusters 3 and 7 (the wealthy and Asian clusters respectively). Since, proximity 
to the city centre does not induce a coherent influence on property prices across 
all clusters it seems likely that this variable is proxying for other features of the 
urban geography that are not captured by the model.  
The patterns displayed by the parameters on the shops variable, which provides 
an indication of the size and proximity of local commercial centres, are again 
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somewhat complex. The model indicates that in clusters 1 and 6 the (the poor 
ethnically white and ethnically black clusters respectively) property prices 
increase with proximity to shops though in clusters 3 and 7 (the wealthy and 
Asian clusters respectively) prices are reduced by proximity to shops. A 
possible, though not entirely coherent, explanation of these results is that within 
the less affluent socioeconomic clusters, proximity to shops is considered an 
advantage whilst amongst more affluent suburban groups differing shopping 
habits reduce the attractiveness of such convenience. 
The variable for primary schools combines distance and school quality into a 
single index. High scores indicate increasing quality and/or ease of access. The 
results here corroborate anecdotal evidence and that of recent studies (for 
example, Gibbons and Machin, 2003) suggesting that increasing primary school 
quality and proximity inflates property prices. Whilst the parameters for all 
clusters are positive, those in the ethnic minority socioeconomic clusters 
(clusters 6 and 7) are not significant. 
Some fairly general patterns emerge with regards to the other locational 
variables. Proximity to railway stations and parks tend to have little influence 
on property prices. In the clusters where these locational characteristics make a 
difference, they act so as to decrease property prices with increasing proximity. 
Whilst, these locational features could nominally be considered as amenities, it 
appears that other issues, perhaps including security and noisy activity, may 
detract from the benefits of proximity to either a railway station or park. Where 
significant, proximity to Type-A industrial processes and proximity to landfill 
sites act so as to reduce property prices. In contrast, proximity to the airport and 
proximity to Type-B industrial processes act so as to increase prices. 
In accordance with prior expectations all the parameter estimates on road and 
rail noise pollution are negative and in the majority of cases are statistically 
significant. A similar pattern emerges for estimates of the parameter on the 
aircraft noise pollution variable, though here only one parameter estimate is 
statistically significant and another is positive (though not significant at a 90% 
level of confidence). Unfortunately, air traffic noise is considerably less 
localised than that arising from either road or rail traffic. Indeed properties over 
a large area will experience very similar levels of air traffic noise. A short-
coming of the modelling approach adopted in this research is that much of the 
influence of these wide-area spatial effects will be subsumed into the locational 
constants indicating ward membership (parameter estimates for these ward 
constants can be found in the appendices). 
Parameter estimates for the model based on partitioning the data according to 
the attributes of the properties are displayed in Table 6. Conclusions concerning 
the impact of structural attributes on property prices for this partitioning of the 
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data are broadly similar to those for the partitioning based on the socioeconomic 
composition of neighbourhoods.  
 
Table 6: A selection of parameters from hedonic price equations for 
clusters defined by partitioning according to the socioeconomics of 
neighbourhoods 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7

Constant 8.9067*** 8.2327*** 8.7047*** 8.4688*** 8.3764*** 8.4239*** 8.9403***

Structural Characteristics:       

Floor Area 
(log) 0.3827*** 0.3991*** 0.4383*** 0.3612*** 0.4879*** 0.3864*** 0.3670***

Garden 
Area (log) 0.0838*** 0.1662*** 0.0973*** 0.1005*** 0.0940*** 0.1393*** 0.1446***

Garage 0.0448*** 0.0579*** 0.0550*** 0.0350* 0.0524*** 0.0607*** 0.0369 

Central 
Heating  0.0464* 0.0653* 0.0577** -0.0283 0.1032*** 0.0828** -0.0716 

Age -0.0148** -0.0067 -0.0096 -0.0058 -0.0204*** -0.0091 -0.0106 

WCs         

One b b b b b b b 

Two 0.0243* -0.0399** 0.0315** -0.0059 0.0297** -0.022 -0.0244 

Three 0.0198 0.2056** -0.0112 -0.022 0.1304*** 0.0222 0.0075 

Four . 0.8627*** -0.2295* . 0.4666** . . 

Bedrooms        

One 0.0727 0.0675 0.0414 0.2473** 0.0351 0.3394 0.1957 

Two 0.007 -0.0013 0.0127 -0.0299 0.0152 -0.0062 0.0560** 

Three b b b b b b b 

Four 0.0278 0.0029 0.0165 0.0279 0.0407* 0.0677** 0.047 

Five 0.0452 -0.0609 0.1349*** 0.1474** 0.1459*** 0.1758*** 0.044 

Storeys        

One -0.07 -0.4751 -0.037 0.0449 0.1903*** 0.2255 0.1281 

Two b b b b b b b 

Three -0.0481 -0.2195*** -0.1069*** -0.0672 -0.1115*** -0.0166 0.0183 

Four -0.2106* -0.8875*** -0.4576*** -0.1522 -0.1909* -0.1956 -0.4995**

Construction Type       
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7

Detached 0.1396*** 0.1477*** 0.1220*** 0.1386*** 0.1087*** 0.0721*** 0.0884** 

Semi-Detchd b b b b b b b 

End Terrace -0.0887*** -0.0981*** -0.0440** -0.0493* -0.0780*** -0.0309 -0.1012***

Terrace -0.0795*** -0.0418* -0.0647*** -0.0407* -0.0917*** -0.0763*** -0.0833***

Sale Date        

1st Quarter  -0.0508*** -0.0313* -0.0564*** -0.0400** -0.0407*** -0.0716*** -0.0675***

2nd Quarter -0.0231* -0.017 -0.0224* -0.0495*** -0.009 0.0246 -0.0262 

3rd Quarter  b b b b b b b 

4th Quarter  -0.0039 -0.0094 0.0023 -0.0171 0.015 0.0269 -0.0101 

Neighbourhood Characteristics      

Poverty  -0.0871*** -0.0736*** -0.0648*** -0.1284*** -0.0471*** -0.1260*** -0.0483**

Skills 0.0628*** 0.0305*** 0.0524*** 0.0401** 0.0662*** 0.0055 0.0404** 

Age 0.0209*** 0.0303** 0.014 0.0264* 0.0098 0.0587*** 0.0404** 

Family  -0.0075 -0.0489*** -0.0205* -0.0255 -0.0106 -0.0248 -0.0506***

Asian  0.0137 -0.0482*** -0.0368*** -0.0697** -0.0118 0.0314** 0.0438** 

Black  -0.0254** 0.0046 -0.0517*** -0.0314 -0.0520*** 0.0269** -0.011 

Locational Characteristics       

City Centre 0.0001** -0.0001 -0.0001** -0.0001 0 0.0001* -0.0001* 

Shops 0.0230*** -0.0134 -0.0347*** -0.0023 0.0126 0.0271** -0.0363***

Primary 
Schools 0.0961** 0.1593*** 0.1089*** 0.1766*** 0.0942** 0.0134 0.0404 

Rail Station 0 0 0 0.0001*** 0.0000** 0 0 

Park 0 0 0.0000** 0 0 0 0 

Airport -0.0001*** -0.0001 0 0 -0.0001*** -0.0001** -0.0001 

A-Type 
Industry 0 0.0001*** 0 0.0000** 0.0000** 0 0 

B-Type 
Industry 0 -0.0001*** 0 -0.0001* 0 -0.0001*** 0 

Land Fill 0 0.0000** 0.0000** 0.0001*** 0.0000* 0.0000** 0 

Environmental Characteristics      

Water View  0.0055** -0.0001 0 0.0029 -0.0009 -0.0008 0.0002 

Parkland 
View 0 -0.0002 -0.0002 0 0.0002 0.0003 0 
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7

Road Noise -0.0004 -0.0002 -0.0024** -0.0037** -0.0038*** -0.0035** -0.0035* 

Rail Noise -0.0026 -0.0126* -0.0086** -0.0089** -0.0023 -0.0046 -0.0119**

Air Noise  -0.0906* -0.1413 0.0102 -0.0637 . . -0.0109 

K 96 90 96 93 97 85 82 

N 2261 1258 2173 895 2018 1207 970 

R2 0.721 0.830 0.800 0.807 0.790 0.847 0.829 

s2 0.0455 0.0471 0.0456 0.0382 0.0457 0.0514 0.0588 
b  Base case for a set of dummy variables 
* Significant at 10% level of confidence 
** Significant at 5% level of confidence 
*** Significant at 1% level of confidence 

 
In Table 6, parameters for the socioeconomic variables describe an almost 
identical pattern to that found with the socioeconomic partitioning of the data. 
Property prices are depressed if the area in which the property is located is 
relatively poor, are inflated if the neighbourhood is inhabited by relatively 
highly skilled households, tend to be higher in neighbourhoods with relatively 
older inhabitants but lower when the neighbourhood has a proportionately larger 
population of households with children. In all but cluster 2, prices tend to be 
driven down in neighbourhoods with higher proportions of Asian and/or Black 
households. Cluster 2, separates the inner city properties where the majority of 
Asian and Black residents of Birmingham are located. Within this cluster 
properties in neighbourhoods with proportionately more Asian of Black 
households are significantly more expensive. Again the data suggests that the 
market rewards ethnic homogeneity. 
With regards to locational characteristics, our conclusions concerning the 
impact on property prices from the proximity of (dis)amenities are little 
changed from those arrived at for the partitioning of the data according to the 
socioeconomic composition of neighbourhoods. One point of contrast concerns 
the variable describing the proximity and quality of primary schools. Notice that 
the parameter on primary schools is significant in cluster 2, the cluster which 
isolates the inner city properties. This contrasts with the results for the 
socioeconomic partitioning where properties in this cluster were divided 
between the Asian and Black socioeconomic clusters (clusters 6 and 7 of the 
socioeconomic partitioning) and were found not to be significant. In contrast, 
we find that the only cluster in which primary school proximity and quality does 
not exert a significant influence on property price is in cluster 6. Since this 
cluster identifies the large properties in the Birmingham property market this 
finding may simply reflect the relative lack of households with young children 
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and/or the availability of alternative educational opportunities that reduce the 
perceived importance of state funded educational institutions. 
Once again the parameters on road and rail noise pollution variables are 
negative for all clusters. However, as a general observation, these tend to show 
less significance in than was exhibited in the socioeconomic partitioning. 

Table 7: A selection of parameters from hedonic price equations for 
clusters defined by partitioning attributes of properties 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6

Constant 8.9319*** 8.6194*** 8.4596*** 8.0269*** 8.2942*** 8.5659***

Structural 
Characteristics:  

     

Floor Area (log) 0.2795*** 0.4408*** 0.3860*** 0.5532*** 0.4595*** 0.4090***

Garden Area 
(log) 0.0822*** 0.0659*** 0.1256*** 0.0766*** 0.0587*** 0.1667***

Garage 0.0762*** 0.0063 0.0349 0.0567*** 0.0416*** 0.0467** 

Central Heating 0.0185 0.0204 -0.008 0.0701** 0.0742*** 0.2206***

Age -0.0556*** -0.0131** 0.0149 -0.0116 -0.01 -0.0281***

WCs        

One b b b b b b 

Two -0.0216 0.0148 0.0268 0.0211 0.0037 -0.0027 

Three 0.0207 . 0.1565 . -0.032 0.0373 

Four -0.0882 . . . . 0.3829 

Bedrooms       

One -0.0434 0.1536 0.8127*** -0.0036 0.104 -0.4211***

Two -0.0117 -0.0006 -0.0607* 0.0131 0.006 0.0404 

Three b b b b b b 

Four 0.0552** 0.0891** 0.0114 0.0323 -0.0143 0.0224 

Five 0.2768*** 0.2126 0.0113 . 0.0546 0.0523* 

Storeys       

One 0.1283 . -0.3993 0.0474 -0.0201 -0.0447 

Two b b b b b b 

Three -0.1098** 0.0676 -0.1193*** -0.0598 -0.0684*** -0.1682***

Four -0.3953*** . -0.4555*** . . -0.0463 
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6

Construction Type      

Detached 0.1697*** -0.2648*** 0.1527** 0.0836*** 0.0611*** 0.1185***

Semi-
Detached b b b b b b 

End Terrace -0.0607*** -0.0531* -0.036 -0.0818*** -0.0474*** -0.1310***

Terrace -0.0760*** -0.0740*** 0.0019 -0.0764*** -0.0663*** -0.017 

Sale Date:       

1st Quarter  -0.0435*** -0.0756*** -0.0626** -0.0447*** -0.0363*** -0.0555***

2nd Quarter -0.0147 -0.0276** 0.0142 -0.0222 -0.0097 -0.0404**

3rd Quarter  b b b b b b 

4th Quarter  -0.0016 -0.0038 0.0283 0.0241 0.0039 -0.0237 

Neighbourhood Characteristics      

Poverty Factor -0.1069*** -0.0496*** -0.0719*** -0.1023*** -0.0756*** -0.0163 

Skills Factor 0.0078 0.0469*** 0.0742*** 0.0261** 0.0293*** 0.0582***

Age Factor 0.0173** 0.0261** 0.0385** 0.0126 0.0370*** 0.0522***

Family Factor -0.011 -0.0386*** -0.0074 -0.0035 -0.0051 -0.0084 

Asian Factor -0.011 0.0326*** -0.0441** 0.0316 0.0072 -0.0681**

Black Factor -0.0500*** 0.0190** -0.0346** -0.0217 -0.0431*** -0.0632***

Locational Characteristics      

City Centre 0 0.0001 -0.0002 0 0 -0.0001**

Shops 0.0048 0.0115* 0.0117 -0.0168 0.0105* -0.0350***

Primary Schools 0.1033** 0.0726* 0.2103** 0.1804*** 0.0897*** 0.0252 

Rail Station 0.0000** 0.0000** 0 0.0000** 0.0000*** 0.0000** 

Park 0 0 0.0001* 0.0000* 0 0 

Airport -0.0001** 0 -0.0001 -0.0001*** -0.0001*** -0.0001**

A-Type Industry 0 0.0000*** 0.0001** 0 0.0000** 0.0000***

B-Type Industry 0 0 0 0 0.0000*** 0 

Land Fill sites 0.0000** 0 -0.0001* 0.0001*** 0 0.0000***

Environmental Characteristics     

Views of Water  -0.0023 0 0.0003 -0.0029 0.001 0.0004 

Views of 
Parkland -0.0002 0 0.0001 -0.0001 0 0 

Road Noise -0.0024 -0.0022** -0.0052*** -0.0019 -0.0016* -0.0017 
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Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6

Rail Noise -0.0063* -0.0074** -0.0055 -0.0128** -0.0042 -0.0039 

Aircraft Noise 0.0092 . . -0.0072 -0.0123 -0.0095 

K 88 80 91 87 86 101 

N 1540 2324 878 1176 3453 1353 

R2 0.760 0.646 0.655 0.686 0.574 0.763 

s2 0.0387 0.0525 0.0772 0.038 0.0355 0.0486 
b  Base case for a set of dummy variables 
* Significant at 10% level of confidence 
** Significant at 5% level of confidence 
*** Significant at 1% level of confidence 

 
6.2 Comparison of the hedonic price functions across clusters 
The estimation strategy followed in this paper is to capture the nonlinearity of 
the equilibrium hedonic price function by fitting separate price functions for the 
properties in each cluster. We do not estimate the hedonic price function over 
the entire attribute space, rather we form local approximations to the hedonic 
price surface over the attribute area spanned by the properties in each cluster.  
Clearly, a question we would like to answer is whether this estimation strategy 
makes a difference. In particular, we need to test whether the hedonic price 
functions estimated for the different clusters differ from each other in 
statistically meaningful ways.  
We do this by carrying out a series of pairwise comparisons. For example, we 
may wish to test the hypothesis that the parameters of the hedonic price function 
estimated from the first cluster do not differ significantly from those estimated 
from the second cluster. That is, we wish to test the hypothesis that 21 ββ =  in 
the two linear regressions; 

( ) jjjj eβXP +=ln  2,1=j  (13) 

where jP , jX , jβ  and je  are defined as before but we also assume that je  
follows a multivariate normal distribution with mean zero and covariance 
matrix I2

jσ . 

In the special case in which we can assume that 2
2

1
2 σσ =  the stability of the 

parameters can be tested using a small sample test such as the Chow Test. This 
approach has been adopted by a number of previous authors in this field (e.g. 
Michaels and Smith, 1990; Allen et al., 1995). A quick glance across the values 
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for s2 (the OLS estimates of σ2) in Tables 5 and 6 indicates that the equality of 
error variances is unlikely to hold true in this case. Unfortunately, when 

2
2

1
2 σσ ≠  the Chow test is invalid (Toyoda, 1974). 

An alternative test is offered by the Wald statistic given by; 

( ) ( ) ( )21
1

22
2

11
2

21 bbΣΣbb −+′−=
−

ssW  (14) 

where jb  and 2
js  are the least squares estimates of jβ  and 2

jσ  respectively and 

jΣ  is ( ) 1−′′ jj XX . Nominally, this statistic has a chi-squared distribution with k 
degrees of freedom, where k is the number of parameters in common between 
the two models.11 In matter of fact, the actual significance level of the Wald 
statistic is larger than that given by the chi-squared distribution (Kobayahsi, 
1986). Unfortunately, the exact distribution of the test statistic is a complex 
function of the regressor variables and the error variances such that the exact 
significance level of a test score is almost impossible to obtain. However, 
Kobayashi (1986) shows that the distribution of kW  (that is, the Wald statistic 
divided by the number of regressors) is asymptotically bounded by the 
distribution of two F variates; ( )kNNkF 2, 21 −+  and ( )( ).,min, 21 kNkNkF −−  
The actual probability of observing a particular Wald statistic will lie between 
the bounds defined by these two variates. 
Tables 7 and 8 present a series of pairwise comparisons of parameters for the 
clusters defined by neighbourhood socioeconomics and property attributes 
respectively. To err on the side of conservatism, the Wald statistics are based 
upon contrasts in only the continuous parameters of the models (including the 
constant, garage and central heating dummy variables). The p-values presented 
in these tables are the upper bound of the range identified by Kobayashi. Again, 
these will tend to favour acceptance of the hypothesis of equality in parameters.  
Nevertheless, for all comparisons in both partitions, the test statistics are 
significant at a greater than 95% level of confidence12. In accordance with 
theory, there are significant between the prices that characterise the localities on 
the hedonic price surface isolated in the different clusters. 

                                           
11 Parameters unique to one of the models being tested were dropped from the calculation of the statistic. 
12 Wald tests based on contrasts in all the parameters of the model are significant at a greater than 99% level of 
confidence for all comparisons. 
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Table 8: Wald test chi-squared statistics for differences between hedonic 
price functions for neighbourhood socioeconomic characteristics 
partitioning 

 
Wald Test Statistics  

(p-values – Kobayashi’s upper bound) 

Submarket 1 2 3 4 5 6 

2 118.917 
(0.000) 

     

3 78.426 
(0.000) 

65.259 
(0.000)     

4 74.288 
(0.000) 

54.36 
(0.001) 

55.508 
(0.001)    

5 41.065 
(0.024) 

72.541 
(0.000) 

43.228 
(0.014) 

74.035 
(0.000)   

6 50.252 
(0.002) 

65.859 
(0.000) 

86.774 
(0.000) 

65.997 
(0.000) 

48.79 
(0.003)  

7 70.708 
(0.000) 

64.644 
(0.000) 

50.467 
(0.003) 

73.952 
(0.000) 

55.005 
(0.001) 

49.07 
(0.003) 

 

Table 9: Wald test chi-squared statistics for differences between hedonic 
price functions for property attribute partitioning 

 
Wald Test Statistics  

(p-values – Kobayashi’s upper bound) 

Submarket 1 2 3 4 5 

2 152.083 
(0.000) 

    

3 96.017 
(0.000) 

70.865 
(0.000) 

   

4 54.575 
(0.001) 

86.429 
(0.000) 

52.873 
(0.001)   

5 92.327 
(0.000) 

95.03 
(0.000) 

55.162 
(0.001) 

60.795 
(0.000)  

6 132.302 
(0.0000 

125.608 
(0.0000 

44.997 
(0.010) 

68.651 
(0.000) 

101.968 
(0.000) 
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7. Comparison of Data Partitions 
The Wald tests carried out in the previous section confirm that the hedonic price 
function cannot be adequately approximated by a single linear regression. 
Rather partitioning the data and estimating a set of linear regressions one for 
each partition, reveals significant differences between the marginal prices of 
property attributes in different clusters. One further comparison needs to be 
made, that between the different partitions of the data. We wish to test which of 
the two partitionings of the data is better at isolating those regions of the 
hedonic price surface between which marginal prices differ significantly. 
In effect we have two competing economic theories that imply different linear 
regression models. For example, the set of Ma linear regressions estimated for 
the clusters defined by partitioning according to the attributes of properties is 
equivalent to the single linear regression; 
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 (15) 

or more succinctly; 

aaaa eβXy +=  (16) 

Likewise the set of Mb linear regressions estimated for the clusters defined by 
partitioning according to the socioeconomics of neighbourhoods could be 
represented by the single linear regression; 

bbbb eβXy +=  (17) 

Since the data for the model in (16) is partitioned differently to that in (17) it 
must be the case that neither model is a special case of the other.  
Goodman and Dubin (1990) were the first to propose the use of the J-test 
(Davidson and Mackinnon, 1981) in order to compare the two hypotheses 
defined by the specifications in (16) and (17). The J-test requires artificially 
nesting the two models by including the fitted values from one specification as 
an explanatory variable in the other. 
Consider first model a in which the data is partitioned according to the 
attributes of the properties themselves. Let us suppose that partitioning the data 
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in this way generates clusters that isolate those regions of the hedonic price 
surface between which the marginal prices of property characteristics differ 
markedly. In this case, we would expect the model in Equation (16) to fit the 
data very well. Imagine also, that the opposite is true of model b. That is, the 
partitioning defined by the socioeconomics of neighbourhoods does not isolate 
regions of the hedonic price surface characterised by markedly different 
marginal prices. We could test this hypothesis by artificially nesting the two 
models according to; 

aabbaaa eyβXy ++= )(ˆα  (18) 

where )(ˆ aby  is the 1×N  vector of fitted values from the linear regression in 
(17) with the observations reordered to conform with the arrangement of the 
observations in (16). 

Now if our hypothesis were correct then we would not expect )(ˆ aby , the fitted 
values from the socioeconomic partitioning of the data, to add significantly to 
the explanatory power of the model in (16). Indeed, a simple t-test of the single 
parameter αb, can be used as test of the hypothesis. If αb is not statistically 
different from zero then we can conclude that partitioning the data by the 
socioeconomics of neighbourhoods adds nothing to the model that is not already 
captured by partitioning the data according to the attributes of properties 
themselves. 
Of course we could also test the alternative hypothesis; that partitioning the data 
according to the attributes of the properties themselves adds nothing to our 
model of the hedonic price function that is not captured by partitioning the data 
according to the socioeconomic composition of neighbourhoods. To test this 
hypothesis we can artificially nest the two models according to; 

bbaabbb eyβXy ++= )(ˆα  (19) 

where )(ˆ bay  is the 1×N  vector of fitted values from the linear regression in 
(16) with the observations reordered to conform with the arrangement of the 
observations in (17). Again an insignificant t-test would allow us to accept the 
hypothesis that little is gained through partitioning the data according to 
property attributes that is not already accounted for through partitioning the data 
according to neighbourhood socioeconomic composition. 
The results of the pair of J-tests defined by the models in Equations (18) and 
(19) are recorded in Table 9.  
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Table 10: J-tests of alternative partitionings of data 

 Coefficient 
(s.e.) p-value 

H0: Neighbourhood Partition does not provide 
information beyond that already captured by 
Property Partition 

0.0566 
(0.0086) 0.000 

H0: Property Partition does not provide 
information beyond that already captured by 
Neighbourhood Partition 

-0.0064 
(0.0038) 0.088 

 
In this application, the J-test provides a clear conclusion. Including fitted values 
from the socioeconomics of neighbourhood partition in the model based on 
partitioning the data according to property characteristics significantly improves 
the fit of the model; αb is significantly different from zero at over the 99.9% 
level of confidence. In contrast including the fitted values from the property 
characteristics partition into the model based on partitioning according to the 
socioeconomics of neighbourhoods does not significantly improve the model; 
αa is not significantly different from zero at the 95% level of confidence.  
Modelling the hedonic price function by partitioning the data according to the 
socioeconomics of neighbourhoods statistically dominates models defined by 
partitioning the data according to the attributes of properties themselves. 
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8. Conclusion 
This paper has addressed the issue of estimating hedonic price equations when 
the hedonic price function is assumed to be highly nonlinear. Recent theoretical 
research has shown that such nonlinearity is likely to be a generic feature of the 
equilibrium hedonic price function. Furthermore, this theoretical work suggests 
that in equilibrium, the market may not provide a continuum of products. 
Rather, the equilibrium market may be characterised by clusters of properties 
exhibiting similar combinations of attributes whilst properties with other 
combinations of attributes may be sparsely represented. 
In this paper we describe an application that exploits these insights. Using 
model-based clustering we examine the property market for evidence of 
clustering. Two different sets of clustering variables are used. The first set 
defines attributes of the properties themselves, whilst the second set defines the 
socioeconomic composition of the neighbourhoods in which the properties are 
located. In both cases there is clear evidence of clustering. We describe the 
characteristics of these clusters and map their distributions. In both cases we 
find that the clusters define readily interpretable partitions of the market. 
In previous applications, researchers have addressed the issue of nonlinearity in 
the hedonic price function by allowing for more and more flexibility in the 
specification of their econometric model. Here we follow a different estimation 
strategy. First we note that properties categorised into the same cluster lie in 
close proximity to each other in certain dimensions of the attribute space. By 
extension, these properties must also lie close to each other in these dimensions 
on the hedonic price surface. We hypothesise that partitioning the data generates 
clusters that isolate regions of the hedonic price surface between which the 
marginal prices of property characteristics differ markedly.  
Thus, rather than employing increasingly more general econometric 
specifications to capture the nonlinearity of the equilibrium hedonic price 
function, our estimation strategy is to avoid estimating the hedonic price 
function over the entire attribute space. Rather, we fit separate price functions 
for the properties in each cluster thereby forming local approximations to the 
hedonic price surface over the attribute area spanned by the properties in each 
cluster. 
In the application described here, we find that the hedonic price function cannot 
be adequately approximated by a single linear regression. Rather partitioning 
the data and estimating a set of linear regressions, one for each partition, reveals 
significant differences between the marginal prices of property attributes in 
different clusters. Indeed, one of the advantages of this approach when 
compared to estimation strategies based on nonparametric regression, is that the 
parameters estimated on the various covariates can be examined for interesting 
contrasts across clusters. In the application described here, for example, we find 
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that the market tends to reward ethnic homogeneity within neighbourhoods. 
That is, in clusters whose properties are located in majority white 
neighbourhoods, property prices tend to be depressed the greater the proportion 
of ethnic minority households present in those neighbourhoods. Likewise, in 
clusters whose properties are located in majority ethnic minority 
neighbourhoods, property prices tend to be inflated the greater the proportion of 
ethnic minority households present in those neighbourhoods. 
Finally we test to see whether one of the two proposed partitionings can be said 
to provide a better description of the data in the model than the other. Using a J-
test we discover that partitioning the data according to the socioeconomic 
characteristics of neighbourhoods, statistically dominates a model in which the 
data has been partitioned according to the attributes of properties. It appears that 
differences in property prices can better be captured by looking at the 
differences that exist between socioeconomically differing neighbourhoods than 
by examining the differences that exist between different structural types of 
property. This lends a certain amount of credence to one of the estate agents 
fundamental laws; “Always buy the worst house in the best area, never the best 
house in the worst area”.  
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Appendix A: Parameters of Hedonic Price Equations for Neighbourhood Socioeconomic 
Characteristics Partitioning 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Constant 8.9067*** 8.2327*** 8.7047*** 8.4688*** 8.3764*** 8.4239*** 8.9403*** 

Structural Characteristics:        

Floor Area (log) 0.3827*** 0.3991*** 0.4383*** 0.3612*** 0.4879*** 0.3864*** 0.3670*** 

Garden Area (log) 0.0838*** 0.1662*** 0.0973*** 0.1005*** 0.0940*** 0.1393*** 0.1446*** 

Garage 0.0448*** 0.0579*** 0.0550*** 0.0350* 0.0524*** 0.0607*** 0.0369 

Central Heating  0.0464* 0.0653* 0.0577** -0.0283 0.1032*** 0.0828** -0.0716* 

Age -0.0148** -0.0067 -0.0096 -0.0058 -0.0204*** -0.0091 -0.0106 

WCs         

One b b b b b b b 

Two 0.0243* -0.0399** 0.0315** -0.0059 0.0297** -0.022 -0.0244 

Three 0.0198 0.2056** -0.0112 -0.022 0.1304*** 0.0222 0.0075 

Four . 0.8627*** -0.2295* . 0.4666** . . 

Five . 0.372 . . . . . 

Bedrooms        

One 0.0727 0.0675 0.0414 0.2473** 0.0351 0.3394 0.1957 

Two 0.007 -0.0013 0.0127 -0.0299 0.0152 -0.0062 0.0560** 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Three b b b b b b b 

Four 0.0278 0.0029 0.0165 0.0279 0.0407* 0.0677** 0.047 

Five 0.0452 -0.0609 0.1349*** 0.1474** 0.1459*** 0.1758*** 0.044 

Six -0.1925* -0.0346 0.0692 0.4663* 0.3435*** 0.1821** -0.0534 

Seven 0.1105 -0.3969*** 0.6348*** -0.2241 -0.5027*** 0.2726* 0.4141 

Eight . -0.0483 . 0.4797** -0.0843 . 0.2517 

Nine . . 0.0221 . . . . 

Storeys        

One -0.07 -0.4751 -0.037 0.0449 0.1903*** 0.2255 0.1281 

Two b b b b b b b 

Three -0.0481 -0.2195*** -0.1069*** -0.0672 -0.1115*** -0.0166 0.0183 

Four -0.2106* -0.8875*** -0.4576*** -0.1522 -0.1909* -0.1956 -0.4995** 

Five . . . -0.3947* -0.3526 . -0.5758* 

Construction Type        

Detached Bungalow 0.2031 0.8569*** 0.1771 0.1213 . -0.1787 . 

Semi-Detached Bungalow 0.1699 . 0.0075 . -0.0383 . -0.0694 

End Terrace Bungalow -0.0122 . . . . . . 

Terrace Bungalow . . . . . . 0.0827 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Detached House 0.1396*** 0.1477*** 0.1220*** 0.1386*** 0.1087*** 0.0721*** 0.0884** 

Semi-Detached House b b b b b b b 

End Terrace House -0.0887*** -0.0981*** -0.0440** -0.0493* -0.0780*** -0.0309 -0.1012*** 

Terrace House -0.0795*** -0.0418* -0.0647*** -0.0407* -0.0917*** -0.0763*** -0.0833*** 

Beacon Group        

1. Unrenovated cottage pre 
1919 -0.1371 . . 0.0228 -0.3349 -0.0215 . 

2. Renovated cottage pre 
1919 . 0.1031 0.3737* . 0.6604*** 0.2239 0.2426 

3. Small “industrial” pre 
1919 -0.1158*** 0.0321 0.1031** 0.0414 -0.0325 -0.0665 -0.1759*** 

4. Medium “industrial” pre 
1919 -0.0225 0.0257 -0.0485* -0.0053 -0.0259 0.0092 -0.0545 

5. Large terrace pre 1919 0.0134 0.0614 -0.0662 -0.1176 0.0702 0.029 -0.1293 

8. Small “villa” pre 1919 0.0092 0.0927 -0.0518 0.0416 0.0324 -0.0365 0.2134*** 

9. Large “villas” pre 1919 0.036 0.0955 0.0222 0.1769* -0.0274 0.1872** 0.1927** 

10. Large detached pre 1919 0.4524** -0.1677 0.2266*** 0.0403 0.4721*** -0.1772 -0.4598* 

19. Houses 1908 to 1930 0.1012** 0.072 -0.0585 0.0704 0.0748 0.1327** 0.1309* 

20. Subsidy houses 1920s & 
30s -0.0805*** -0.0919*** -0.0880*** -0.1278*** -0.0292 0.0157 -0.0545 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

21. Standard houses 1919-45 b b b b b b b 

24. Large houses 1919-45 0.2597*** 0.1120** 0.2021*** 0.1768** 0.1352*** 0.2615*** 0.1892** 

25. Individual houses 1919-
45 0.1885 . 0.0152 . -0.3234 0.1769 . 

30. Standard houses 1945-53 -0.0851*** -0.1605*** -0.1436*** -0.0127 -0.0845*** -0.0851* -0.0498 

31. Standard houses post 
1953 -0.0491 -0.0169 -0.0204 -0.0261 -0.0543 0.0304 -0.011 

32. Large houses post 1953 0.1536*** 0.1201* 0.1202*** 0.1581** 0.0157 0.1359** 0.1013 

35. Individual houses post 
1945 0.5353*** 0.4387* -0.214 0.0809 0.0312 0.0838 . 

36. “Town Houses” post 
1950 -0.2377*** -0.1489 -0.1329 . -0.2121 -0.2559*** -0.1947 

Sale Date        

1st Quarter (Jan. to Mar.) -0.0508*** -0.0313* -0.0564*** -0.0400** -0.0407*** -0.0716*** -0.0675*** 

2nd Quarter (Apr. to June) -0.0231* -0.017 -0.0224* -0.0495*** -0.009 0.0246 -0.0262 

3rd Quarter (July to Sept.) b b b b b b b 

4th Quarter (Oct. to Dec.) -0.0039 -0.0094 0.0023 -0.0171 0.015 0.0269 -0.0101 

Neighbourhood Characteristics        

Poverty Factor -0.0871*** -0.0736*** -0.0648*** -0.1284*** -0.0471*** -0.1260*** -0.0483** 

Skills Factor 0.0628*** 0.0305*** 0.0524*** 0.0401** 0.0662*** 0.0055 0.0404** 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Age Factor 0.0209*** 0.0303** 0.014 0.0264* 0.0098 0.0587*** 0.0404** 

Family Factor -0.0075 -0.0489*** -0.0205* -0.0255 -0.0106 -0.0248 -0.0506*** 

Asian Factor 0.0137 -0.0482*** -0.0368*** -0.0697** -0.0118 0.0314** 0.0438** 

Black Factor -0.0254** 0.0046 -0.0517*** -0.0314 -0.0520*** 0.0269** -0.011 

Locational Characteristics        

Proximity to City Centre 0.0001** -0.0001 -0.0001** -0.0001 0 0.0001* -0.0001* 

Proximity and Quantity of 
Shops 0.0230*** -0.0134 -0.0347*** -0.0023 0.0126 0.0271** -0.0363*** 

Proximity and Quality of 
Primary Schools 0.0961** 0.1593*** 0.1089*** 0.1766*** 0.0942** 0.0134 0.0404 

Walking time to Rail Station 0 0 0 0.0001*** 0.0000** 0 0 

Walking time to a Park 0 0 0.0000** 0 0 0 0 

Driving time to Airport -0.0001*** -0.0001 0 0 -0.0001*** -0.0001** -0.0001 

Proximity to A-Type Industrial 
Processes 0 0.0001*** 0 0.0000** 0.0000** 0 0 

Proximity to B-Type Industrial 
Processes 0 -0.0001*** 0 -0.0001* 0 -0.0001*** 0 

Proximity to Land Fill sites 0 0.0000** 0.0000** 0.0001*** 0.0000* 0.0000** 0 

Wards        

Acock's Green -0.2896** -0.0878 -0.2595*** 0.0285 -0.1522*** -0.128 0.0541 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Aston . -0.5673 -0.3934** . . -0.2820** -0.1593 

Bartley Green -0.1273 . -0.2058*** -0.1212 -0.1503* . . 

Billesley -0.0747 -0.0923 -0.1043** 0.0655 -0.0829* . . 

Bournville 0.0683 0.2489* -0.0475 0.078 0.0654 . . 

Brandwood -0.1095 0.1651 -0.1362** 0.0854 0.0599 0.056 . 

Edgbaston 0.0399 0.2047 -0.2538*** 0.118 0.1255* 0.5427*** 0.3242 

Erdington -0.2274** 0.0281 -0.1146*** 0.0413 -0.1196*** -0.0675 . 

Fox Hollies -0.2115* . -0.2427*** 0.1233* -0.1544*** -0.1841* 0.1992 

Hall Green -0.1784 0.0166 -0.1187*** 0.0472 -0.0839** 0.122 0.1605 

Handsworth . -0.2885** -0.2472* . -0.2132*** -0.2763** -0.0937 

Harborne 0.0748 0.3169** 0.0817 0.1066 0.3960*** . . 

Hodge Hill -0.2692** . -0.2717*** 0.1024 -0.0918** -0.0024 . 

King's Norton -0.0621 . -0.0571 -0.0436 -0.0245 . . 

Kingsbury -0.2660** . -0.2635*** 0.0237 -0.0245 . . 

Kingstanding -0.1627 -0.1531 -0.1734*** -0.0853 -0.0694 0.0205 -0.2233 

Ladywood -0.084 0.1058 -0.3156*** 0.1636 -0.0301 -0.221 . 

Longbridge -0.1124 0.169 -0.1032 -0.0639 0.0824 . 0.4550*** 

Moseley . 0.155 -0.3543*** -0.3153** -0.0606 0.1903 0.3409** 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Nechells -0.3682*** -0.2002 -0.1422** 0.0916 -0.4287*** -0.7439*** -0.0714 

Northfield -0.0855 . -0.0881 0.0913 0.1691 . . 

Oscott -0.2088* -0.3334** -0.2240*** -0.2329** -0.1163** . . 

Perry Barr -0.1629 -0.2357* -0.2433*** -0.1577 -0.1565*** . . 

Quinton 0.0412 0.2236 -0.1776* -0.0967 0.0335 0.1068 . 

Sandwell -0.1557 -0.3896*** -0.2749*** -0.0042 -0.2002*** -0.0467 -0.1068 

Selly Oak 0.0982 0.2363 . 0.2023* 0.1423** . . 

Shard End -0.4113*** . -0.2220*** 0.118 -0.1345 -0.4445*** . 

Sheldon -0.2656** . -0.2177*** . 0.0045 -0.067 -0.0842 

Small Heath -0.2866** 0.0406 . . -0.2047 -0.1810* -0.1147 

Soho . -0.3117** . . . -0.4080*** -0.2027 

Sparkbrook . 0.0503 . . . -0.1595 -0.0112 

Sparkhill -0.1936 0.0833 -0.058 0.2220* -0.0819 -0.0868 0.2269 

Stockland Green . . -0.2485*** -0.0557 -0.1976*** . . 

Sutton Four Oaks 0.0501 -0.1293 0.0659* 0.1483 0.0454 . . 

Sutton New Hall b B b b b b b 

Sutton Vesey -0.0638 . . 0.0936 -0.0472 0.1214 0.2678* 

Washwood Heath -0.3167*** . -0.3352*** 0.0473 -0.1505*** -0.2755** -0.4276 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 Cluster 7 

Weoley -0.11 0.0734 -0.2655*** 0.0939 -0.0187 0.1514 0.1722 

Yardley -0.2692** -0.0777 -0.2097*** -0.0155 . -0.1086 0.0141 

Environmental Characteristics        

Views of Water  0.0055** -0.0001 0 0.0029 -0.0009 -0.0008 0.0002 

Views of Parkland 0 -0.0002 -0.0002 0 0.0002 0.0003 0 

Road Traffic Noise -0.0004 -0.0002 -0.0024** -0.0037** -0.0038*** -0.0035** -0.0035* 

Rail Traffic Noise -0.0026 -0.0126* -0.0086** -0.0089** -0.0023 -0.0046 -0.0119** 

Aircraft Noise -0.0906* -0.1413 0.0102 -0.0637 . . -0.0109 

K 96 90 96 93 97 85 82 

N 2261 1258 2173 895 2018 1207 970 

R2 0.721 0.830 0.800 0.807 0.790 0.847 0.829 

s2 0.0455 0.0471 0.0456 0.0382 0.0457 0.0514 0.0588 
b  Base case for a set of dummy variables 
* Significant at 10% level of confidence 
** Significant at 5% level of confidence 
*** Significant at 1% level of confidence 



 

 

Appendix B: Parameters of Hedonic Price Equations for Property Attribute Partitioning 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 

Constant 8.9319*** 8.6194*** 8.4596*** 8.0269*** 8.2942*** 8.5659*** 

Structural Characteristics:       

Floor Area (log) 0.2795*** 0.4408*** 0.3860*** 0.5532*** 0.4595*** 0.4090*** 

Garden Area (log) 0.0822*** 0.0659*** 0.1256*** 0.0766*** 0.0587*** 0.1667*** 

Garage 0.0762*** 0.0063 0.0349 0.0567*** 0.0416*** 0.0467** 

Central Heating  0.0185 0.0204 -0.008 0.0701** 0.0742*** 0.2206*** 

Age -0.0556*** -0.0131** 0.0149 -0.0116 -0.01 -0.0281*** 

WCs        

One b b b b b b 

Two -0.0216 0.0148 0.0268 0.0211 0.0037 -0.0027 

Three 0.0207 . 0.1565 . -0.032 0.0373 

Four -0.0882 . . . . 0.3829 

Five . . . . . 0.2078 

Bedrooms       

One -0.0434 0.1536 0.8127*** -0.0036 0.104 -0.4211*** 

Two -0.0117 -0.0006 -0.0607* 0.0131 0.006 0.0404 

Three b b b b b b 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 

Four 0.0552** 0.0891** 0.0114 0.0323 -0.0143 0.0224 

Five 0.2768*** 0.2126 0.0113 . 0.0546 0.0523* 

Six 0.0806 -0.1611 0.0624 . . 0.0511 

Seven . . -0.1037 . . -0.0395 

Eight . . -0.4149 . . -0.0712 

Nine . . -0.5133* . . . 

Storeys       

One 0.1283 . -0.3993 0.0474 -0.0201 -0.0447 

Two b b b b b b 

Three -0.1098** 0.0676 -0.1193*** -0.0598 -0.0684*** -0.1682*** 

Four -0.3953*** . -0.4555*** . . -0.0463 

Five . . -0.7086*** . . -0.2824 

Construction Type       

Detached Bungalow 0.0918 . . 0.1858** . 0.1756*** 

Semi-Detached Bungalow -0.1722 . . . 0.1684** . 

End Terrace Bungalow -0.2379 . . . . 0.5389** 

Terrace Bungalow . . . . . . 

Detached House 0.1697*** -0.2648*** 0.1527** 0.0836*** 0.0611*** 0.1185*** 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 

Semi-Detached House b b b b b b 

End Terrace House -0.0607*** -0.0531* -0.036 -0.0818*** -0.0474*** -0.1310*** 

Terrace House -0.0760*** -0.0740*** 0.0019 -0.0764*** -0.0663*** -0.017 

Beacon Group       

1. Unrenovated cottage pre 
1919 . 0.0157 0.0739 -0.2473 . . 

2. Renovated cottage pre 
1919 . . 0.0873 0.5262** . 0.3516*** 

3. Small “industrial” pre 
1919 . -0.0458*** -0.0887 . 0.2271 0.0294 

4. Medium “industrial” pre 
1919 b b b b b b 

5. Large terrace pre 1919 . -0.3192 0.0271 . . 0.1018 

8. Small “villa” pre 1919 . 0.1162*** 0.0486 -0.0165 0.1986 -0.0999 

9. Large “villas” pre 1919 . . 0.0499 . . 0.1009* 

10. Large detached pre 1919 . . -0.2982* . . -0.0102 

19. Houses 1908 to 1930 . 0.0965 0.1787*** 0.1524 0.1675** -0.0186 

20. Subsidy houses 1920s & 
30s . 0.0524 -0.0571 0.0032 0.1088** -0.1699*** 

21. Standard houses 1919-45 . 0.1853*** -0.0717 0.0716 0.2073*** -0.1203*** 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 

24. Large houses 1919-45 . . -0.0338 0.4530*** 0.2834*** 0.0077 

25. Individual houses 1919-
45 . . . . . -0.2203 

30. Standard houses 1945-53 -0.287 . . -0.0253 0.1 -0.2545*** 

31. Standard houses post 
1953 0.5236*** . . -0.0163 . -0.2048*** 

32. Large houses post 1953 0.5639*** . . -0.2800** 0.4193*** -0.107 

35. Individual houses post 
1945 0.6099*** . . . . 0.1258 

36. “Town Houses” post 
1950 0.3640*** . . -0.1128 . . 

Sale Date       

1st Quarter (Jan. to Mar.) -0.0435*** -0.0756*** -0.0626** -0.0447*** -0.0363*** -0.0555*** 

2nd Quarter (Apr. to June) -0.0147 -0.0276** 0.0142 -0.0222 -0.0097 -0.0404** 

3rd Quarter (July to Sept.) b b b b b b 

4th Quarter (Oct. to Dec.) -0.0016 -0.0038 0.0283 0.0241 0.0039 -0.0237 

Neighbourhood Characteristics       

Poverty Factor -0.1069*** -0.0496*** -0.0719*** -0.1023*** -0.0756*** -0.0163 

Skills Factor 0.0078 0.0469*** 0.0742*** 0.0261** 0.0293*** 0.0582*** 

Age Factor 0.0173** 0.0261** 0.0385** 0.0126 0.0370*** 0.0522*** 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 

Family Factor -0.011 -0.0386*** -0.0074 -0.0035 -0.0051 -0.0084 

Asian Factor -0.011 0.0326*** -0.0441** 0.0316 0.0072 -0.0681** 

Black Factor -0.0500*** 0.0190** -0.0346** -0.0217 -0.0431*** -0.0632*** 

Locational Characteristics       

Proximity to City Centre 0 0.0001 -0.0002 0 0 -0.0001** 

Proximity and Quantity of 
Shops 0.0048 0.0115* 0.0117 -0.0168 0.0105* -0.0350*** 

Proximity and Quality of 
Primary Schools 0.1033** 0.0726* 0.2103** 0.1804*** 0.0897*** 0.0252 

Walking time to Rail Station 0.0000** 0.0000** 0 0.0000** 0.0000*** 0.0000** 

Walking time to a Park 0 0 0.0001* 0.0000* 0 0 

Driving time to Airport -0.0001** 0 -0.0001 -0.0001*** -0.0001*** -0.0001** 

Proximity to A-Type Industrial 
Processes 0 0.0000*** 0.0001** 0 0.0000** 0.0000*** 

Proximity to B-Type Industrial 
Processes 0 0 0 0 0.0000*** 0 

Proximity to Land Fill sites 0.0000** 0 -0.0001* 0.0001*** 0 0.0000*** 

Wards       

Acock's Green -0.0985** -0.2980*** -0.1735 -0.2238*** -0.1338*** -0.3068*** 

Aston -0.1998*** -0.4744*** -0.2 -0.2945* -0.3373*** . 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 

Bartley Green -0.0526 -0.5340** . -0.1370* -0.2129*** -0.1053 

Billesley -0.1131** -0.6512*** 0.2093 -0.0018 -0.0607 -0.0484 

Bournville 0.0687 -0.0984 0.1722 0.0723 0.0207 0.1982** 

Brandwood -0.0394 -0.1043 -0.0247 0.0477 -0.056 0.0407 

Edgbaston 0.1398** 0.0486 0.0294 0.1335 0.3624* 0.0787 

Erdington -0.1848*** -0.3205*** -0.1721 -0.1381*** -0.0773 -0.1442*** 

Fox Hollies -0.1697* -0.3561*** -0.2723** -0.2320*** -0.0689 -0.0807 

Hall Green -0.0787 -0.2242*** -0.1633 -0.1694*** -0.0329 -0.0237 

Handsworth -0.2831*** -0.5141*** -0.2026 -0.0984 -0.1776*** -0.1319 

Harborne 0.104 0.1831** 0.3256** 0.0684 0.0666 0.3190*** 

Hodge Hill -0.2725*** -0.2894*** -0.5603* -0.0917* -0.1560*** -0.0930* 

King's Norton -0.0365 0.0785 0.195 -0.0082 -0.0606 0.1458 

Kingsbury -0.0874* 0.0114 0.1579 -0.2104*** -0.1471*** -0.0318 

Kingstanding -0.0694 -0.6128** 0.16 -0.3544*** -0.2166*** -0.2141** 

Ladywood -0.1048 -0.2405*** 0.0595 0.0529 0.0634 -0.0252 

Longbridge 0.0882 . 0.2941 0.0402 -0.084 0.1962* 

Moseley -0.1062 -0.0388 0.0472 0.0526 -0.0069 0.0964 

Nechells -0.0133 -0.4448*** 0.1268 -0.0549 -0.0976 -0.3924** 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 

Northfield -0.0606 -0.1584* 0.1384 0.0003 -0.0464 0.0858 

Oscott -0.1006 . . -0.0478 -0.2653*** -0.0749 

Perry Barr -0.1452** -0.4767*** . -0.1237* -0.1902*** -0.2123** 

Quinton -0.0711 0.0591 0.3211* 0.0047 -0.0732 0.089 

Sandwell -0.0959 -0.5222*** -0.3727*** -0.1515** -0.2528*** -0.2675*** 

Selly Oak 0.0689 0.0528 0.0966 0.0408 0.0666 0.1404* 

Shard End -0.2729*** . -0.2846 -0.2451*** -0.2070*** -0.0312 

Sheldon -0.3771*** 0.0495 . -0.2283*** -0.1800*** -0.1985** 

Small Heath -0.6870*** -0.3508*** -0.0682 -0.1042 -0.1147* -0.0814 

Soho -0.2091*** -0.5691*** -0.3294** -0.2014 -0.2353*** 0.1125 

Sparkbrook -0.0528 -0.3781*** -0.107 . . 0.2386 

Sparkhill 0.0673 -0.2401*** -0.0182 0.0984 0.1890* 0.0937 

Stockland Green -0.1466** -0.4050*** -0.2686** -0.1826*** -0.1295*** -0.2040*** 

Sutton Four Oaks 0.1189** -0.0879 0.0258 0.0998* -0.0204 0.0198 

Sutton New Hall b b b b b b 

Sutton Vesey -0.054 -0.0491 -0.0267 0.0435 -0.0474 -0.0377 

Washwood Heath . -0.4153*** -0.1691 -0.3485*** -0.1846*** 0.0246 

Weoley -0.0086 -0.3608*** 0.1447 0.0239 -0.1183** 0.1101 



 

 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6 

Yardley -0.1448** -0.3017*** -0.1195 -0.2531*** -0.1809*** -0.1586*** 

Environmental Characteristics       

Views of Water  -0.0023 0 0.0003 -0.0029 0.001 0.0004 

Views of Parkland -0.0002 0 0.0001 -0.0001 0 0 

Road Traffic Noise -0.0024 -0.0022** -0.0052*** -0.0019 -0.0016* -0.0017 

Rail Traffic Noise -0.0063* -0.0074** -0.0055 -0.0128** -0.0042 -0.0039 

Aircraft Noise 0.0092 . . -0.0072 -0.0123 -0.0095 

K 88 80 91 87 86 101 

N 1540 2324 878 1176 3453 1353 

R2 0.760 0.646 0.655 0.686 0.574 0.763 

s2 0.0387 0.0525 0.0772 0.038 0.0355 0.0486 
b  Base case for a set of dummy variables 
* Significant at 10% level of confidence 
** Significant at 5% level of confidence 
*** Significant at 1% level of confidence 



 

 

 


