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Abstract 
 
Previous work on hedonic price functions tends to have focused on one of a 
number of specification and estimation issues; namely, market segmentation, 
choice of functional form, multicollinearity or spatial autocorrelation. The 
purpose of this paper is to bring together these various strands to provide a 
comprehensive modelling approach. In particular we use a combination of 
factor analysis and cluster analysis to define market segments and reduce 
collinearity in the data. We adopt Robinson’s semiparametric specification of 
the hedonic price function and account for spatial autocorrelation using Kelejian 
and Prucha’s generalized moments estimator. The modelling approach is 
applied to a large and extremely detailed dataset for the City of Birmingham 
constructed from multiple data sources and compiled with the use of GIS. The 
focus of this application is the identification of implicit prices for noise 
pollution from road, rail and air traffic sources.  
 
Key words: Hedonics, market segmentation, factor analysis, clustering, 
partially linear model, spatial autocorrelation 
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1. Introduction 
 

The hedonic price function describes the relationship that exists between a 
property’s characteristics (denoted by the vector of values z) and the price at 
which it sells in the market (which we denote P). The function can be written in 
the very general form; 
 

  P = P(z)       (1)  
 

Clearly, the researcher is faced by a number of important questions in 
specifying an econometric model that could be used to estimate (1). In brief, we 
identify four major issues that must be addressed; 
 
Data Issues: Often the objective of a hedonic valuation study is to establish how 
property prices differ in response to differences in environmental quality. In the 
Birmingham case study presented here, for example, the objective is to establish 
the impact of transport related noise pollution. To tease out this relationship 
requires controlling for the myriad other determinants of property prices. Chief 
amongst these are size and structural characteristics, though proximity to 
amenities and the socioeconomic composition of neighbourhoods are also 
known to be significant determinants of a property’s market price1.   
 
Fortunately, the development of geographically referenced datasets that can be 
manipulated with GIS (Geographical Information Systems) has greatly 
enhanced the ability of researchers to generate datasets containing variables that 
describe the locational characteristics of properties. In contrast to years gone 
past, the problem faced by researchers is not one of lack of data but one of data 
surfeit. Section 2 of this paper describes just such a dataset for the City of 
Birmingham. 
 
Faced by an embarrassment of data riches, regression analysis is confounded by 
problems of interpretability and collinearity. Section 3 describes the application 
of factor analytical techniques to the plethora of variables describing the 
socioeconomic characteristics of property neighbourhoods. In essence, this 
procedure seeks to identify major dimensions of association between variables 
such that a smaller set of variables (factors) can be defined that approximate the 
variation shown in the original data. A number of goals are achieved by this 
procedure (1) the dimensionality of the regression problem is reduced, (2) the 

                                                 
1 Whilst it would be inappropriate to list offenders, hedonic valuation studies that fail to 
control for this myriad potential determinants must answer to the criticism of omitted variable 
bias. 
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factors are orthogonal by design such that collinearity amongst the original 
variables is no longer a problem and (3) the factors describe the fundamental 
dimensions of difference and similarity underlying the original variables and 
hence are much easier to interpret in a regression analysis. 
 
Market Segmentation: There are a number of theoretical and empirical reasons 
why accounting for market segmentation is both a desirable and necessary step 
in hedonic analysis. In particular, if a house price dataset contains data from 
more than one market segment then it is likely that the hedonic price functions 
for each segment are quite different. Failing to differentiate between these 
different submarkets may seriously bias estimates of the true hedonic price 
functions. Section 4 of this paper describes the application of a technique 
known as Cluster Analysis that is used to divide the data into various property 
submarkets. 
 
Functional Form: Economic theory offers the researcher little guidance on the 
specific functional form of (1). On the whole, the less explicit the researcher is 
in specifying the relationship between the characteristics data and property 
prices, the less likely it is that the model will be misspecified. In Section 5 we 
describe a semiparametric model developed by Robinson (1988) which imposes 
relatively few assumptions on the relationship between prices and property 
characteristics.  
 
Spatial Correlation: Despite the best efforts of the researcher, there still exists 
the possibility that important characteristics may be missing from the data set. 
For example, the proximity of an abattoir would inevitably deflate the price of 
neighbouring properties. Unfortunately, our data set does not contain 
information on the location of abattoirs and as a result the properties in the area 
will show prices that are lower than we might expect given their other 
characteristics. The regression error term for these properties will be unusually 
large and negative. In general, the existence of unmeasured similarities between 
properties in close proximity will result in correlation of error terms. In Section 
6 we describe an estimation technique developed by Kelejian and Prucha (1999) 
that exploits this spatial correlation in order to improve our estimates of the 
hedonic price function.  
 
Finally, Section 7 provides details of the regression results, providing estimates 
of the parameters of the hedonic price function for each of the property 
submarkets. 
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2.  Data 
 
Hedonic valuation is a data intensive technique. The success or failure of a 
study hinges upon the quality of the data upon which it is based. In general, 
researchers require information on the selling price of properties, the structural 
characteristics of those properties, indicators of each property’s proximity to 
(dis)amenities, descriptors of the socioeconomic characteristics of property 
neighbourhoods and data on the environmental quality of each property 
location. 
 
The case study described in this paper is from the City of Birmingham in the 
UK. Records of all property sales in Birmingham during 1997 were obtained 
from the databases of the UK Land Registry2. These records indicated selling 
prices, dates of sales and full property address for each residential property 
transaction. Initially, each property address was matched to an entry in the 
Ordnance Survey ADDRESS-POINT database providing a unique grid 
reference for each postal address in the UK (Ordnance Survey; 1996). 
Subsequently, each property grid reference was matched with a building outline 
on OS Land-Line.Plus (Ordnance Survey, 1996).  
 
The Valuation Office Agency (VOA) provided property characteristics data. 
The VOA is an executive agency of the Inland Revenue, one of whose main 
functions is to value property for taxation purposes. In order to perform this 
function, the VOA maintains a database describing the structural characteristics 
of every residential property in England.3 Amongst other details, the VOA 
provided data on the number of bedrooms and bathrooms in each property, total 
floor area, the property’s age, whether the property was a bungalow or house 
(flats are not included in the analysis), whether the property was detached, semi-
detached, in a terrace or at the end of a terrace, whether the property had central 
heating and access to off-road parking. Furthermore, the VOA classifies 
properties according to age and style of construction into one of around 30 
property types called Beacon Groups. This information was also recorded as it 
provides a useful additional indication of property quality that cannot be 
determined from size and age alone.  
 

                                                 
2 The Land Registry database is not publicly accessible information for England and Wales. 
However, the UK Department for Transport (DfT), who funded this study, arranged access 
for the purposes of this research. 
3 Unfortunately, the VOA data sources are currently held as paper records. Consequently, the 
process of matching addresses to the structural characteristics of each property required 
laborious trawling through ranks of filing cabinets. 
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The rest of the data set was constructed with the aid of GIS. OS Land-Line.Plus 
provided details of the garden area (plot area minus building area) and aspect of 
each property. Various data sources were used to identify (dis)amenities 
including schools, shops4, railway stations and industrial sites. These were 
located using OS ADDRESS-POINT and straight line distances, car travel times 
and walking distances calculated from each property to each (dis)amenity using 
OS Land-Line.Plus. When considering the accessibility of properties to shops, 
any measure based on proximity to only one facility might have disadvantages. 
For example, a property 200m from ten shops is likely to be perceived as having 
better accessibility than another property 200m from one shop. As a result, 
measures for access to shops were constructed using a weighted sum of 
distances to all shops. This is a common procedure in accessibility studies and 
formalises to: 

 

∑
=

−=
J

j

d
ji

ijeA
1

δα      (2) 

   
Where, Ai is accessibility at property i, αj is the attractiveness of shop j, dij is the 
walking distance in kilometres between property i and shop j, δ exponent for 
distance decay and J is the number of shops in the region. Here we set δ = 2 
(such that a shop 100m from the property receives a weight over 6 times that of 
a shop at 1km distance and shops at over 2km distance receive almost no weight 
at all) and αj = α = 1 (such that all shops are considered equally attractive). This 
shop accessibility variable is illustrated in Figure 1. 
 
A similar procedure was used when considering accessibility to primary 
schools. Recent research suggests that selection procedures for primary school 
intake that favour local residents can considerably inflate house prices around 
high performing schools (Gibbons and Machin, 2001).5  For each primary 
school in the Birmingham area an estimate of school quality was calculated as 
the percentage of pupils achieving Level 4 or above in Science, Mathematics 

                                                 
4 Specifically businesses registered as “Delicatessens”, “Grocers”, “Newsagents” or 
“Supermarkets”. 
5 As Gibbons and Machin (2001) argue, the issue is thought less important for secondary 
schools that typically draw from much wider catchments. Also, high educational achievement 
at primary school level may be a pre-requisite for admission to selective secondary schools. 
For example, the five selective Grammar Schools of King Edward the Sixth in Birmingham 
make offers “ … solely on the basis of performance in the entrance test. Special allowances 
are not made for brothers or sisters or distance from the school.” (quote taken from the 
Grammar Schools of King Edward VI in Birmingham web site -  
http://www.kingedwardthesixth.org/eligibility.htm) 
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and English (the level expected of 11 year olds).6 A primary school accessibility 
index was constructed using (2) with the weight αj set to this measure of school 
quality and δ = 1. 
 
 
Figure 1:  Shop accessibility scores for a selection of properties in the 

data set 
 

 
 
Data on the socio-economic composition of property neighbourhoods were 
drawn from the 1991 UK census provided by the Office for National Statistics 
(ONS). To preserve confidentiality census data is published as averages over 
small areas known as enumeration districts (EDs) (Openshaw, 1995). In 
Birmingham, on average, this consists of data for 191 households. The census 
provides a myriad of information on the socioeconomic characteristics of the 
population living in each ED. As we shall discuss in the Section 3, census data 

                                                 
6 This information was obtained for 1997 from the Department for Education and 
Employment website (http://www.dfee.gov.uk/performance/primary_97.htm). 
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are ideal for constructing indicators of the attributes of the neighbourhood in 
which a property is located. 
 
Using a procedure outlined in (Lake et al., 2000) data on land uses and the 
location and orientation of each property (taken from OS.Land-Line Plus) was 
combined with information on the landscape topology (extracted from 
OS.Land-Form PROFILE) and building heights to calculate indices of the views 
available from the front and back of each property. For example indices were 
constructed for visible road surface, recreational park land and water surfaces. 
 
Finally, road traffic and rail traffic noise data was provided by the Birmingham 
1 project (DETR, 2000). This project produced a traffic flow model predicting 
the number of vehicles travelling along the city’s roads from data on the 
frequency and destination of vehicle journeys made in the Birmingham urban 
area. Naturally, the use of a traffic flow model introduces an element of 
uncertainty into the accuracy of the data for a property’s road traffic noise 
exposure. We assume that mismeasurement, if it exists, is random but will 
account for this using instrumental variable estimation techniques. The aircraft 
noise level at each property was identified by digitising a 1999 aircraft noise 
contour map of Birmingham International Airport. This map displayed aircraft 
noise levels in 3dB steps. Each property was assigned a noise level by 
interpolating linearly between the contours. All noise measurements are in 
decibels LEQ. 
 
A complete description and list of the variables used in the hedonic analysis are 
provided in Appendix A. Complete data records were successfully compiled for 
some 10,889 residential property transactions in Birmingham in 1997. 
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3.  Defining Neighbourhood Characteristics 
 
The properties in the study area came from 3,005 different EDs in Birmingham, 
and for each ED our dataset contained details of some 18 neighbourhood 
attributes. These are listed and described in the first two columns of table 2. Not 
surprisingly, many of these attributes are highly collinear. For example, the 
percentage of households not owning cars exhibits high positive correlation 
with the percentage of households that do not own their own property 
(correlation coefficient of .70) and high negative correlation with the percentage 
of households that own two cars (correlation coefficient of -.76).  
 
Whilst each of these neighbourhood attributes might have a bearing on property 
prices, the presence of such collinearity creates a problem for researchers. As is 
well known, parameters estimated on highly collinear regressors are difficult to 
interpret. Parameter estimates may have implausible magnitude or, in the worst 
case, the wrong sign. Interpretation is further confounded by the fact that 
individual parameters may exhibit high standard errors and consequently low 
significance levels. 
 
Moreover, it is not clear that each of these neighbourhood attributes will be 
independently capitalised into the property market. More likely, households in a 
market will consider more general indications of the characteristics 
neighbourhood of a property, the wealth of the area, its ethnic composition, the 
stage of life of its inhabitants etc. 
 
As a result, we condensed the excess of neighbourhood attributes into a more 
manageable set of indices. Each index picked out a major dimension of 
difference or similarity between property neighbourhoods. For example one 
index indicated the wealth of a neighbourhood, effectively combining the 
myriad attributes that are indicators of wealth/poverty into one dimension. 
Subsequently, property neighbourhoods were scored along each dimension. In 
our example, poor neighbourhoods generated low scores on the wealth 
dimension, whilst affluent neighbourhoods generated high scores. The 
procedure by which dimensions are identified and property neighbourhoods are 
scored along these dimensions is known as factor analysis. 
 
We do not intend presenting the intricacies of factor analysis here. For a highly 
accessible text on the subject see Lindeman et al., (1980). In essence, the 
procedure seeks to identify major dimensions of association between variables 
(in our case the attributes of neighbourhoods) such that a smaller set of 
variables can be defined that approximate the variation shown in the original 
data. These dimensions are called factors and one can define as many factors as 
there are variables in the original data. 
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Table 1 details the first eight factors for the neighbourhood attribute data. The 
second column in this table provides the eigenvalue of each factor. The third 
column indicates the percentage of the variation in the data explained 
exclusively by that factor. If the attributes were not correlated then each factor 
would explain 1/Mth of the variation (where M is the number of attributes in the 
factor analysis) and each eigenvalue would take a value of one. If the attributes 
were all perfectly correlated then the first factor would explain 100% of the 
variation with an eigenvalue of M. The fourth column provides the cumulative 
sum of this explained variation. 
 
From Table 1 it can be seen that the first factor alone explains over 40% of the 
variation in the neighbourhood attribute data. This indicates that many of the 
attributes are highly correlated (positively or negatively) with a single 
underlying factor. Notice that successive factors explain progressively less of 
the remaining variation.  
 
 
Table 1:  Variation explained by the first ten factors of the Enumeration 

District neighbourhood attributes (estimated using Iterated 
Principal Factors) 

 

Factor Eigenvalue Variation Explained 
by Factor 

Cumulative 
Explained Variation 

1 7.28 .43 .44 
2 3.24 .20 .63 
3 1.79 .11 .74 
4 1.21 .25 .81 
5 0.95 .30 .87 
6 0.65 .11 .91 
7 0.55 .15 .94 
8 0.39 .17 .97 

 
 
The question now is which of the factors should be taken as capturing the main 
dimensions of difference and similarity expressed in the neighbourhood 
attribute data. A good rule of thumb is to ignore factors with eigenvalues less 
than one as these dimensions explain less of the variation in the data than the 
dimensions defined by the original attributes themselves. This procedure leads 
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us to focus on the first 4 factors. As such, our constructed indices explain 
around 81% of the variation in the neighbourhood attribute data. 
 
One of the arts of factor analysis is the interpretation of factors. Interpretation of 
factors is the process of describing the underlying dimension of similarity or 
difference between the neighbourhood attributes captured by a factor. Table 2 
describes the (orthogonally rotated) loadings of the first four factors. A large 
positive loading indicates that high values of the original attribute are associated 
with high values of the factor. Similarly a large negative loading indicates that 
high values of the original attribute are associated with low values of the factor. 
The loadings in Table 2 suggest fairly obvious interpretations for the four 
factors. We suggest the following; 
 
Factor 1: Wealth 

This factor is very distinct and describes the general level of wealth of 
neighbourhoods. Not surprisingly, the factor is highly positively correlated 
with car ownership and being in the maximum earning bracket age range 
between 35 and 49. Conversely the factor is strongly negatively associated 
with lack of access to cars, unemployment, low home ownership and one 
parent families. 

 
Factor 2: Ethnicity 

The second factor also has a clear interpretation. This factor loads heavily on 
four attributes; the three attributes describing the ethnic composition of 
neighbourhoods and the attribute describing the degree of over-crowding in 
households. Since the loadings on all these four attributes are positively 
signed, high scores on this dimension reflect the increasing presence of 
members of the ethnic minorities in neighbourhoods. 

 
Factor 3: Adult Age Composition 

This fourth factor picks out a dimension defining the age composition of 
neighbourhoods. It loads negatively on young adults that is those in the age 
groups 18 to 24 and 25 to 34 but loads positively on adults in older gener-
ations, that is, age groups of 50 to 64 and older than 65. EDs scoring highly 
on this factor will be characterised by neighbourhoods with relatively older 
adult populations. 

 
Factor 4: Family Composition 

The final factor loads heavily on just three attributes those describing the 
percentage of households with children and the percentage of the ED 
populations in age groups 0 to 10 and 11 to 17. EDs that score highly on this 
factor are characterised by having a relatively large number of households 
with children. Notice the distinction here with the composition of adult ages 
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as described by the third factor. Clearly, it is possible to have EDs exhibiting 
the same distribution of adult age ranges but which differ according to the 
degree to which those adults have children.  
 
 

Table 2:  Neighbourhood attributes and rotated factor loadings 
 
Attribute Attribute Description Factor 1 Factor 2 Factor 3 Factor 4

No car   % households with no access to a car -0.96 +0.15 -0.07 +0.09 

Two cars %  two-car households +0.85 -0.21 +0.09 +0.02 

Unemployment % working age residents uemployed -0.79 +0.35 -0.13 +0.19 

Non-owners % residents not owning their home -0.89 -0.08 -0.03 +0.05 

One-parent 
families % lone parent households -0.72 -0.10 -0.27 +0.38 

Low Social Class  % residents in lower social classes -0.44 +0.17 -0.02 +0.09 

Families % households with children -0.10 +0.38 +0.12 +0.80 

Age 0 to 10  % residents under 10 years old -0.39 +0.30 -0.33 +0.74 

Age 11 to 17 % residents aged 11 to 17 +0.18 +0.54 +0.16 +0.68 

Age 18 to 24 % residents aged 18 to 24 -0.30 +0.33 -0.62 -0.16 

Age 25 to 34 % residents aged 25 to 34 -0.15 -0.06 -0.85 -0.09 

Age 35 to 49 % residents aged 35 to 49 +0.80 -0.30 +0.00 +0.11 

Age 50 to 64 % residents aged 50 to 64 +0.27 -0.04 +0.57 -0.43 

Age > 65  % residents over the age of 65 -0.22 -0.35 +0.64 -0.48 

Over Crowding % households with > 1 person per 
room -0.30 +0.76 -0.04 +0.37 

Non White % ethnically non-white residents -0.23 +0.92 -0.14 +0.19 

Black % ethnically black (African or 
Caribbean) residents -0.48 +0.40 -0.29 +0.10 

Asian % ethnically Asian residents -0.08 +0.94 -0.04 +0.20 

 
 
The final step in a factor analysis is to define a score for each ED for each 
factor. Using the factor loadings a regression-like equation is calculated, the 
parameters of which indicate how greatly each attribute contributes to each 
factor. Given the attributes of each neighbourhood, the equation can be used to 
determine how highly a neighbourhood scores on each factor. In effect, 
neighbourhoods that exhibit high values for attributes that load positively on a 
factor receive high scores for that factor whilst neighbourhoods that that exhibit 
high values for attributes that load negatively on that factor receive low scores.  
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As shall be described subsequently, the factors can be used as proxies for the 
original attributes in regression analysis. Further, in the next section we employ 
the factors as indicators of the socioeconomic characteristics of property 
neighbourhoods in order to identify property submarkets. 
 
As has been demonstrated the factors capture a good proportion of the variation 
shown in the original neighbourhood attributes. Moreover, the nature of their 
construction ensures that the factor scores are orthogonal overcoming the 
problem of collinearity in the original set of attributes. 
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4.  Market Segmentation  
 
A housing market will be typified by a unique hedonic price schedule 
determined by the particular characteristics of the households and housing stock 
that make up that market (for a more detailed discussion see Day, 2001). 
Property prices in two different markets may be determined by very different 
hedonic price functions. Hence a primary concern for hedonic researchers is to 
ensure that data are drawn from a single property market.  
 
Whilst many hedonic researchers have taken data from a single urban 
conurbation as representing data from one market, there is much evidence to 
suggest that property markets are segmented within one urban area. Indeed, 
property valuation experts from the VOA in Birmingham suggested that a 
number of such market segments are identifiable in the City of Birmingham. 
 
Various circumstances may precipitate segmentation of the property market. 
Straszheim (1975, p.28) states that “variation in housing characteristics and 
prices by location is a fundamental characteristic of the urban housing market”. 
Indeed, geographic location may well define market segments; consider how 
important a property’s postcode can be in determining its market price. 
 
Furthermore, other characteristics of properties might drive or contribute to 
market segmentation. Schnare and Struyk (1976) argue that segmentation will 
result whenever household’s demand for a particular locational, structural or 
neighbourhood characteristic is highly inelastic and when this preference is 
shared by a relatively large number of other households. Basu and Thibodeau 
(1998) identify a number of dimensions that might characterise market 
segmentation; 
 

• structure type: households may wish to purchase a property of a certain 
type. For example, the market might segment between households 
looking to purchase houses with gardens and those looking to purchase 
flats or maisonettes. 

 
• structural characteristics: households may have strong preferences for a 

particular property characteristic. For example, segmentation might result 
if certain households only consider buying period properties with 
“original features” whilst others only consider purchasing modern homes. 

 
• Neighourhood characteristics: households may have strong preferences 

for localities providing certain amenities. For example, certain 
households may desire proximity to transport links or good quality 
schooling whilst others find no advantage in such proximity. Similarly, 
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households may segment along income or racial lines particularly if 
households prefer to live in areas of relatively homogenous socio-
economic characteristics. 

 
Since, segmentation seems likely to pervade property markets, it is fortunate 
that statistical techniques are available to test for segmentation.  Put simply, if it 
is suspected that the house prices used in a hedonic study may come from a 
segmented market then rather than estimating one hedonic price function, 
researchers can estimate a separate function for each suspected market segment. 
It is possible to test whether the separate functions are sufficiently similar to 
count as one market or whether they are significantly different and should be 
treated separately. 
 
Evidence from the hedonic literature using this sort of test has returned 
ambivalent results. For example Butler (1980) tested to see whether a national 
housing market existed by comparing data from 36 cities in the USA. Though 
he concluded that the market in the sale and purchase of houses could not be 
considered a single market, he found it impossible to reject the possibility that 
the house rental market was a single national market. Smith and Huang (1995) 
surveyed hedonic pricing studies carried out between 1967 and 1988 and 
concluded that the estimated hedonic price functions differ across cities due to 
differences in local conditions. Other researchers have investigated the 
possibility that segmentation exists in the housing market within a single urban 
area. Straszheim (1974), for example, found that geographical segmentation was 
a feature of the housing market in San Francisco. On the other hand, Ball and 
Kirwan (1977) found that clusters of different housing types in the Bristol area 
did not result in separate submarkets with different hedonic prices.  
 
Other studies include those by Straszheim (1973), Schnare and Struyk (1976), 
Sonstelie and Portney (1980), Goodman (1978) Michaels and Smith (1990) and 
Allen et al., (1995). Each of these studies have applied different rules by which 
properties in an urban area are allotted to a particular submarket. Criteria 
include, locational or political boundaries, characteristics of households (e.g 
income and race), property types and classifications based upon the judgement 
of estate agents. Here we suggest an approach that makes no a priori 
assumptions concerning the criteria defining submarkets, rather the data itself is 
used to suggest the pattern of market segmentation. 
 
The procedure used to group properties into submarkets is known as cluster 
analysis. Cluster analysis divides a dataset into groups (clusters) of observations 
that are similar to each other. There are two basic approaches to cluster analysis, 
partitioning methods and hierarchical methods. With both methods, the 
researcher determines the P characteristics that are to be used to cluster the 
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observations. Here we follow the reasoning of previous researchers and choose 
characteristics reflecting three criteria that might generate segmentation of 
properties into submarkets; 
 
• Geographic Location as defined by each properties grid reference (longitude 

and latitude) 
 
• Property Type as defined by each properties floor and garden area 
 
• Socioeconomic Characteristics of Neighbourhoods as defined by the four 

factors indicating neighbourhoods relative wealth, ethnicity, adult age 
composition and family composition 

 
Each observation then can be plotted in P-space according to how highly it 
scores on each of these P characteristics. Clearly, observations holding similar 
values for the different characteristics will be located close to each other in this 
P-space. 
 
With partitioning methods the researcher decides upon the number of clusters a 
priori. Let us denote this number of clusters k. The partitioning algorithm seeks 
to find k locations in P-space, known as medoids, such that the sum of the 
distances between each observation and its nearest medoid is minimised. Once 
the k medoids have been determined the observations are partitioned into 
clusters by assigning each observation to its nearest medoid. 
 
Hierarchical methods work in a somewhat different manner. With a bottom-up 
approach, each observation is initially considered as a small cluster by itself. As 
a first step the two observations lying closest together are merged into a new 
cluster. At each subsequent step, the two nearest clusters are combined to form 
one larger cluster. Clusters are merged until one large cluster remains 
containing all the observations. The final result is a hierarchy of association 
appearing much like an inverted tree. The tree can be plotted in order to 
determine which branches of the hierarchy should be treated as separate 
clusters. 
 
The advantage of hierarchical methods is that they do not impose any a priori 
assumptions on the pattern of association in the observations. The drawback 
with these methods, however, is that they are computationally burdensome with 
large data sets. Indeed, in this case, the sheer size of the data set precludes the 
use of hierarchical cluster analysis.7 
                                                 
7 Though current research by the authors is investigating recent developments in model-based 
hierarchical clustering (Posse, 2001) that may allow their application to this dataset. 
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As a result, the researchers have been forced to determine the number of 
clusters a priori. The choice of the number of clusters has been decided through 
an iterative investigation of the data. Initially advice was sort from the valuation 
officers at the VOA who confirmed the researchers suspicions that the property 
market in the City of Birmingham contained a number of submarkets defined by 
location, property type and socioeconomic characteristics. Using cluster 
analysis various partitions of the properties in the sample have been attempted 
ranging from four submarkets (the number identified by the VOA as the 
minimum number of submarkets necessary to reflect the complexity of the 
property market in Birmingham) through to ten submarkets. The results 
presented here are for an eight submarket partitioning of the data. This division 
resulted in submarkets that were readily interpretable, conformed to the 
Valuations Officers understanding of the Birmingham property market and 
returned hedonic price functions with parameters that conformed to a priori 
expectations.  
 
Tables 3 and 4 present summary statistics that can be used to compare the 
characteristics of the properties in the eight submarkets. Figure 2 plots the 
spatial location of properties in the different submarkets. We use the data and 
maps to interpret and describe the eight submarkets. 
 
 
Table 3: Average attribute values for eight submarket division of 

Birmingham property market (structural characteristics) 
 

Sub-
market

Price  
(£) 

Floor 
Area (m2)

Garden 
Area (m2)

Property Age 
(years before 

1997) 

% 
Detached 
Houses 

% 
Terraced 
Houses 

1 35,976 106 117 88 0.03 0.76 
2 54,151 98 128 74 0.05 0.62 
3 93,154 114 361 46 0.38 0.03 
4 49,238 93 180 66 0.05 0.33 
5 73,017 107 263 59 0.18 0.18 
6 51,471 94 197 58 0.05 0.30 
7 43,138 91 197 62 0.02 0.37 
8 175,391 216 973 71 0.68 0.03 

Total 59,160 103 227 65 0.12 0.35 
 



 16 

Table 4: Average attribute values for eight submarket division of 
Birmingham property market (socioeconomic characteristics) 

 

Sub-
market 

Wealth 
Factor 

Ethnicity 
Factor 

Adult Age-
Composition 

Factor 

Family-
Composition 

Factor 
1 -0.28 2.32 -0.01 0.69 
2 0.08 -0.01 -1.69 -1.13 
3 1.27 -0.41 0.19 0.44 
4 0.33 -0.14 -0.52 -0.39 
5 0.96 -0.29 -0.12 0.29 
6 -0.15 -0.52 0.28 -0.03 
7 -0.56 -0.43 0.38 0.23 
8 0.77 0.04 0.34 -0.27 

Total -0.21 0.04 -0.14 0.03 
 
 
Submarket 1: Ethnic, inner-city 
Submarket 1 is concentrated in the inner-city, forming a distinct ring 
surrounding Birmingham City centre. Consisting mostly of turn of the century 
terraced houses, the defining feature of this submarket is the high concentration 
of residents from the ethnic minorities. Perhaps unsurprisingly, this submarket 
is also characterised by relative poverty, a wide range of adult ages and a high 
level of households with children. 
 
Submarket 2:  Young, first-time buyers without children  
In the main, properties in submarket 2 are concentrated in a band to the south of 
the city centre, located relatively close to the inner-city with an especially strong 
concentration around the University and Hospital complex. Properties are 
similar in size and type to those in submarket 1 but on average command a 
selling price almost £20,000 greater. The defining feature of this submarket is 
that it comprises neighbourhoods inhabited by young adults without children.  
 
Submarket 3: Northern Suburbs, Affluent 
Properties in this submarket are found in the north and western city suburbs 
mostly in the sort-after Sutton Coldfield area of the City. Properties in this 
submarket are amongst the most expensive in Birmingham (average price 
£93,000), they are large mostly detached (38%) or semi-detached with 
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expansive gardens. Not surprisingly, the submarket is characterised by very 
wealthy households, with relatively older, white adults, many with families. 
 
Submarket 4: Northern and Western Suburbs, Standard 
Submarket 4 is also located in the northern and western suburbs of Birmingham. 
Unlike submarket 3, however, few properties are located in the Sutton area and 
the properties and their gardens tend to be of a somewhat more standard size. 
Likewise, residents are moderately wealthy though they tend to be relatively 
young and many are without children. 
 
Submarket 5: Southern Suburbs, Affluent 
Properties in submarket 5 are located in the Southern suburbs of Birmingham. 
Whilst geographically distinct this submarket shows many similarities to 
submarket 3 boasting relatively large properties with substantial gardens. 
Residents are wealthy, generally white and many have families. Interestingly, 
properties in the southern market are significantly cheaper than their northern 
counterparts. In a similar vein, the residents are somewhat less wealthy and tend 
to be somewhat younger. 
 
Submarket 6: Southern Suburbs, Poor 
Properties in submarket 6 share much of the geographical range of those in 
submarket 5. In contrast to properties in that market, however, houses are 
relatively small with small gardens and sell at significantly lower prices. Indeed, 
many of the properties in this submarket were originally built as council 
housing. The submarket is characterised by mainly white and relatively poor 
residents.   
 
Submarket 7: Northern and Western Suburbs, Poor 
Submarket 7 shares the same geographical range as the submarket 4.  Indeed, 
structurally, properties in the two submarkets are relatively similar. Socio-
economically, however, the two submarkets are quite distinct. Residents of 
submarket 7 are the least wealthy in Birmingham and the most exclusively 
white. Households tend to be relatively young with families. Much of the 
property in this submarket was constructed as council housing and bears close 
resemblance to submarket 6, its southern equivalent.  However, properties in 
this submarket sell for significantly lower prices. Indeed, discussion with 
valuation officers at the VOA confirmed that the southern part of the city is 
considered a leafier, more desirable location than that occupied by equivalent 
properties in submarket 7. 
 
Submarket 8: Very Large Properties 
Geographically Submarket 8 is the least clearly defined of the eight submarkets. 
There are two main concentrations of properties in this submarket, one around 
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the fringes of Sutton Coldfield park in the north of the city and the other in a 
swathe to the south of the city located in wards such as Edgbaston and 
Harbourne. In contrast, structurally and socioeconomically this is the most 
clearly defined submarket. Properties in this submarket command the very 
highest prices in Birmingham (average £175,000) reflecting their size (average 
floor area 216m2) large gardens (average 973m2) and desirable location. Not 
surprisingly, residents tend to be wealthy, somewhat older than the Birmingham 
average with fewer children. 
 
 
Figure 2:  Locations of Properties in Different Submarkets 
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Submarket 7: Poor North & West 
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5.   Functional Form 
 
The objective of the empirical investigation of the Birmingham data set is to 
provide an empirical estimate of the hedonic price function P = P(z) (1). To do 
this it is necessary to define a regression equation that, in its most general form, 
can be written; 
 

( ) ( ) iii εhPg += z        (2) 
 
where Pi is the price of observation i, zi is a row vector of associated property 
characteristics and εi is an observation specific error term. The two functions 
g(·) and h(·) determine the exact nature of the relationship between the 
dependent variable (Pi) and explanatory variables (zi). To avoid complicating 
the notation unduly we ignore the fact that a separate regression equation must 
be estimated for each submarket. 
 
Our first task in estimating the parameters of the hedonic price function is to 
specify functional forms for g(·) and h(·). Unfortunately, economic theory 
provides little guidance on the nature of the relationship between property prices 
and property characteristics. Indeed, the choice of functional form for the 
hedonic price function has been an issue of some debate.  
 
In general, researchers have opted to define g(·) as the log transformation. We 
follow that convention here. That is, our empirical model regresses the natural 
logarithm of property price on some function of the explanatory variables. 
Using the log of property price has at least two advantages.  
 
• First, the distribution of property prices in a market tends to show 

considerable right skew. Such data distributions are often associated with 
heteroskedasticity and/or non-normality of errors, both of which complicate 
estimation.  

 
• Second, using a log transformation allows for readily interpretable 

coefficient estimates. For example, the coefficient on a regressor entered in 
simple linear form indicates the constant percentage response in property 
price to a unit increase in the regressor 

 
The regression model (2) can be rewritten as; 
  

( ) iii εhP += zln       (3) 
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Estimating a model such as (3) often requires the imposition of strong 
assumptions on the function h(·). For example, many studies assume that this is 
a linear function, giving rise to the familiar model; 
 

iii εP += γzln        (4) 
 
where γ is a column vector of parameters. 
 
Of course, little in economic theory would suggest that such a strong 
assumption is valid. As a result, considerable attention has been focused on the 
use of more flexible specifications. In particular, a number of researchers have 
investigated the use of the Box-Cox flexible functional form (e.g. Cropper, 
Deck and McConnell, 1988; Cheshire and Sheppard, 1998). Whilst, this 
approach allows the regression model to more accurately reflect the patterns of 
association inherent in the data, it also has a number of drawbacks (as discussed 
by Ramussen and Zuehlke; 1990).  
 
An alternative to increasing the degree of parameterisation of the regression 
model is to adopt a non-parametric regression approach. Here, the function h(·) 
is dictated entirely by the data ensuring the regression function is extremely 
robust to misspecification. Unfortunately, non-parametric estimation of h(·) is 
only realistic when there are only a small number of regressors in zi. When there 
are many regressors, non-parametric response coefficients may be very 
imprecise. 
 
An intermediate strategy is to employ a semiparametric form such as that 
proposed by Robinson (1988). Here part of the model is specified 
parametrically whilst the rest is estimated using non-parametric techniques. 
Robinson’s model is of the form  
 

( ) iiii εqP ++= xβzln       (5) 
 
where zi is a k-vector of regressors associated with a k-vector of parameters β, 
whilst xi is a p-vector of regressors whose influence on property prices is 
determined by the unknown function q(·). 
 
Robinson shows that the model in Equation 5 can be rewritten as; 
 

[ ] [ ]( ) iiiii εEPEP +−=− βxzzx ||lnln       (6) 
 
suggesting that β can be estimated in a two-step procedure; 
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• First, the unknown conditional means [ ]iPE x|ln  and [ ]iE xz |  are estimated 
using a non-parametric estimation technique. 

 
• Second, the estimates are substituted in place of the unknown functions in 

Equation (6) and ordinary regression techniques employed to estimate β. 
 
Indeed, Robinson shows that the resulting parameter estimates are 
asymptotically equivalent to those that would be derived if the true functional 
form of q(·) were known and could be used in the estimation. 
 
Robinson’s model was pioneered in the hedonic literature by Anglin and 
Gencay (1996) and has recently been employed by Gibbons and Machin (2002) 
and Gibbons (2002).  
 
In this case, the semiparametric specification has a number of advantages.  
 
• First, within any one submarket, the structural characteristics of a property 

are likely to be most important in determining a properties market price. The 
hedonic price model would be considerably more robust if these variables 
could be included in the unknown function q(·). Referring to the table of 
regressors in Appendix A see that the majority of these characteristics are 
defined as dummy variables. As Anglin and Gencay (1996) point out the 
inclusion of these dummy variables in q(·) would effect the scale but not the 
curvature of that function. A reasonable approximation, therefore, would be 
to include these dummy variables in the linear part of the model. Of the 
remaining structural variables, those defining a property’s floor area, garden 
area and age, provide a reasonably accurate picture of a properties structure 
(the age of a property proxying for both quality characteristics and 
architectural design).  

 
• Second, the variables of interest in this research project are those describing 

a property’s exposure to noise pollution. Including these in the linear part of 
the model allows for ease of interpretation of parameter estimates, simplifies 
the calculation of implicit prices and facilitates comparison of estimates with 
other studies. 

 
Accordingly the vector x entering the unknown function q(·) consists of the log 
of a property’s floor area, the log of a property’s garden area and the property’s 
age. Further, property prices in the UK have been reasonably volatile over 
recent decades. To account for price movements over the course of 1997 a 
continuous variable indicating the date of the property sale is included in the 
function q(·). The researchers believe that x is of sufficient dimension to capture 
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many of the important determinants of property price whilst not compromising 
the ability of non-parametric regression to return accurate estimates of the 
function q(·). The choice of variables to be included in the nonparametric 
function q(·) is summarised in Table 5. 
 
 
Table 5:  Variables included in nonparametric part of the hedonic price 

regression  
 

Variable Description 
Area Natural logarithm of property floor area in m2 

Garden Natural logarithm of garden size in m2 
Age Age of property in decades from 1997 

Sale Date Date of sale in days from 1st January 1997 
 
 
Following Anglin and Gencay (1996) [ ]iPE x|ln  and [ ]iE xz |  are estimated 
using non-parametric kernel regression. 
 
The kernel estimator of the density of the random vector x evaluated at xi is 
given by; 
 

( ) ( )∑
=

−=
N

j
ijHiH K

N
f

1

1ˆ xxx      (7) 

 
where ( ) ( ) ( )( )ijijH HKHK xxxx −=− −− 11.det  for some multivariate kernel 
function ( )uK  and for a given P x P vector of bandwidths, H.  
 
In effect, the kernel density estimator counts the number of observations in the 
dataset in close proximity to xi. The density at xi is approximated by dividing 
this count by the number of observations in the dataset. Whether observations xj 
are considered close to xi is determined by the bandwidth matrix H. The larger 
the elements of the bandwidth matrix, the more observations are drawn into the 
count. Further the weight allotted to each observation in the count is determined 
by the kernel function K(u). The kernel function must be symmetric, 
continuously differentiable and integrates to unity. Moreover, most commonly 
used kernel functions allot greater weight to observations in close proximity to 
xi than those further away. 
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Here we use a matrix of bandwidths determined by S, the sample covariance 
matrix of x, such that; 

   2

1

SH h=         (8) 
 
for some positive scalar h. In this case, the argument to the kernel function can 
be written; 
 

( )ijh xxSu −=
−− 2

11       (9) 
 
Further, we employ a multivariate Gaussian Kernel of the form; 

 

( ) ( ) 





−= − uuu '

2
1exp2 2

P
K π      (10) 

 
As such the kernel density estimator of equation (7) can be written in the 
specific form; 
 

 ( ) ( ) ( )∑
=

−−− 




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2
1exp2det1ˆ uuSx π  (11) 

 
To generalise notation, let r represent the element whose conditional 
expectation we wish to estimate. In our case, therefore, r denotes any element of 
the z vector or the log of property price. Then the conditional expectations we 
wish to estimate are given by; 
 

 [ ]
( )

( )∫
∫=

dyrf

dyrfr
rE

i

i
i x

x
x

,

,
|       (12) 

 
Nadaraya-Watson kernel regression estimates (12) by replacing the numerator 
and denominator with their equivalent kernel density according to; 
 

 [ ]
( )

( )ih

N

j
ijh

ih f
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rE
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∑
=
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=      (13) 

 
A central issue in nonparametric estimation is the choice of bandwidth, h. The 
bandwidth parameter determines the degree of smoothing of the function 
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[ ]ih rE x|ˆ . Too large a value for h induces bias and too small a value results in 
imprecise estimates. 
 
Once again, following Anglin and Gencay (1998) we select bandwidths using a 
data driven technique known as cross-validation. As they point out, a seemingly 
natural way to select h is to choose the bandwidth that minimises the sum of 
squared residuals from the regression equation; 
 

( )( )∑
=

− −−=
N

i
ihii qPnMSE

1

21 ln xβz      (14) 

 
where the estimator of ( )ihq x  is given by; 
 

 ( )
( ) ( )

( )ih
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ih f
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Unfortunately, this procedure falls down because the objective function, MSE, 
reduces to zero for any h smaller than the closest two data points in the sample. 
For such values of h the conditional mean function given by ( )ihq x  puts all 
weight on the ith observation such that ( )ihq x  perfectly predicts lnPi. 
 
Accordingly, the criterion function in (15) cannot be used to decide upon the 
optimal bandwidth.  Rather researchers employ the cross-validation statistic;  
 

( )( )∑
=

− −−=
N

i
iihiiCV qPnMSE

1

2
,

1 ln xβz     (16) 

The cross-validation statistic avoids the problems of the raw MSE statistic by 
employing a conditional mean function ( )iihq x,  that is calculated by leaving out 
the ith observation; 
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The cross-validation procedure, therefore, is to carry out a grid search for 
optimal h. The regression equation (6) is re-estimated numerous times using 
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different values of h. For each value of h the cross-validation statistic is 
estimated using (16) and the h providing the minimum value for this statistic is 
chosen as the optimal bandwidth. 
 
Here we improve on the estimation procedure of Anglin and Gencay (1998) by 
using an adaptive kernel estimator. The motivation behind the adaptive kernel 
estimator is to improve estimation of the conditional expectation functions 

[ ]iPE x|ln  and [ ]iE xz |  by allowing the bandwidth to vary with the density of 
x. Thus where data is relatively sparse the adaptive kernel uses a relatively wide 
bandwidth, whilst when data is abundant the bandwidth is commensurately 
reduced. 
 
Adaptive kernel estimation requires a two-stage estimation procedure. First a 
pilot bandwidth, hp, is employed to estimate the density of x; ( )xphf̂ . Using this 
estimated density we calculate; 
 

( ) ρ

η
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−
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ih
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       (18) 

 
where η is a normalisation factor given by ( ) nfj jhp∑= xˆlnlnη  and ρ is a 

parameter taking a value between 0 and 1 chosen by the researcher. Here we 
select a value for ρ of 0.25.  
 
In the second stage, the adaptive kernel generalises (13) by using a new 
observation specific bandwidth parameter hj = hλj to estimate the conditional 
expectations. 
 
Given the cross-validated, adaptive kernel estimates of [ ]iPE x|ln  and 

[ ]iE xz | , we are still left with the task of estimating the semiparametric model; 
 

[ ] [ ]( ) iiiii εEPEP +−=− βxzzx ||lnln       (6) 
 
To maintain clarity, let us introduce some new notation. Let tilde indicate 
differences from nonparametric expectations, such that; 
 

[ ]iiii PEPPy x|lnln~ln~ −==   
and  

[ ]iii E xzzz |~ −= . 
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Consequently, Equation (6) simplifies to; 
 

iii εy += βz~~        (19) 
 
One possibility is to estimate (19) using ordinary least squares (OLS) according 
to the familiar formula; 
 

( ) YZZZβ ~'~~'~ 1−
=OLS        (20) 

 
where Z~  is the N x k matrix of data formed by stacking the iz~  vectors and Y~ is 
the N x 1 vector with elements iy~ .  
 
Mention has already been made of the suspicion that the road noise variable is 
measured with error. If this is the case then the OLSβ  will be biased and 
inconsistent (for a more detailed exposition see, for example, Davidson and 
MacKinnon; 1993). Typically, the parameter on the mismeasured variable will 
be biased towards zero and the other coefficients will be biased in unknown 
directions. 
 
The most general technique for handling such situations is the method of 
instrumental variables (IV). The fundamental ingredient of any IV procedure is 
a matrix of instrumental variables. We shall denote this N x l matrix of variables 
by M. Crucially, each variable in M must be independent of the measurement 
error in the road noise. Further, M must contain at least as many variables as Z 
such that l  ≥ k. In our case we construct M by dropping the road noise variable 
from Z and adding ten more variables (distance and inverse distance from 
properties to four different types of road and views of road surface from the 
front and back of properties). By combining the Z matrix that contains a 
mismeasured variable with the M matrix that does not, the IV estimator 
produces consistent parameter estimates. The IV estimator is given by; 
 

( ) ( ) YMMMMZZMMMMZβ ~~~~~'~~~~~~'~ 111 ′′




 ′′=

−−−IV    (21) 

 
where M~  is the matrix of deviations of M from their non-parametrically 
estimated local means.  
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6.  Spatial Correlation 
 
Up to this point, our statistical analysis of the hedonic price functions in the 
separate submarkets has ignored the spatial organisation of the data. In effect, 
we have assumed that the observations of property sales are independent such 
that we can glean no information on the selling price of a property from the 
selling price of other properties. Of course, this is hardly likely to be the case. 
Properties that are located near to each other in space are also likely to share 
common environmental, accessibility, neighbourhood and perhaps even 
structural characteristics. Even once we account for the values of known 
covariates, omitted variables are likely to induce spatial dependence among the 
errors.  
 
If hedonic residuals are spatially correlated, the parameter estimates from an 
OLS or IV regression will be inefficient and will produce biased estimates of 
the standard errors of the parameter estimates. In the case where the residuals 
are positively spatially correlated, as is to be expected with hedonic property 
price regressions, OLS or IV will underestimate the population residual 
variance and the resulting t-statistics will be biased upwards. Whilst OLS or IV 
parameter estimates remain unbiased, ignoring spatial autocorrelation may lead 
to erroneously high significance being attached to the influence of property 
attributes on selling prices.  
 
Over recent years, the existence of spatial autocorrelation has received a great 
deal of attention in the hedonic literature (e.g. Dubin, 1992; Can, 1992; Pace 
and Gilley, 1997; Basu and Thibodeau, 1998; Bell and Bockstael, 2000). In the 
main, researchers have focused on the spatial error dependence model. In our 
case this can be expressed as; 
 

εβZY += 0~~        (22) 
 where  uWεε += ρ       (23) 
 
where Y~ , Z~ are defined as before, 0β is the [K x 1] vector of “true” parameters 
(estimated by a consistent estimator such as IV) and ε is the [N × 1] vector of 
random error terms with mean zero. The nature of the spatial error dependence 
is defined by equation (22). Here W is an [N ×N] weighting matrix, ρ is the 
error dependence parameter to be estimated and u is the usual [N × 1] vector of 
random error terms with expected value zero and variance-covariance matrix 
σ2I. Rearranging (23) we find that; 
 

 ( ) uWε 1−−= ρI       (24) 
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which indicates that the error terms ε have a non-spherical variance-covariance 
matrix ( ) ( ) 112 −− ′−− WIWI ρρσ . Further, the error in the spatial error 
dependence model can be seen to be made up of two parts; a purely random 
element and an element containing a weighted sum of the errors on nearby 
properties. The association between one property and another is contained in the 
weighting matrix, W. The diagonal elements of the weighting matrix are zero 
since, clearly, the error for an observation cannot be used to explain itself. The 
off-diagonal elements of the matrix represent the potential spatial dependence 
between observations. Thus if the ijth element of the weighting matrix, wij, is 
zero, we are assuming that there is no correlation in the errors of the ith and jth 
observations. Conversely if wij takes on a non-zero value we are assuming that 
there is correlation in the errors of these two observations.  
 
The researcher must stipulate the nature of dependence between observations by 
defining the weights matrix in advance of estimation. Here we experimented 
with a variety of weights matrices but the final specification of (23) used a 
binary weights matrix in which it was assumed that properties separated by 
more than 300 metres were unrelated. The wij

th element of W, therefore, was 
initially set to one if the ith and jth property were located within 300m of each 
other, otherwise that element was set to zero. 
 
Following normal procedure, W was row standardised such that each row’s 
elements were made to sum to one. When W is row standardised, the product 
Wε equals ∑ j jijw ε , and has an intuitive interpretation; it is simply a vector of 

weighted averages of the errors of neighbouring observations. As Bell and 
Bockstael (2000) point out, row standardisation is undertaken to simplify 
estimation of the model. There is usually no underlying economic story support-
ing the procedure. Moreover, the spatial dependence parameter ρ estimated on a 
row standardised weights matrix must be interpreted with caution. In particular, 
ρ in this case is not directly equivalent to an autocorrelation coefficient. 
 
The characteristics of the weights matrices constructed for the property sales 
observations in the eight submarkets are detailed in Table 6. 
 
Even with a relatively restrictive 300 metre cut-off, the majority of properties 
are associated with other properties in the same submarket. In submarket 1, for 
example, only 7 properties out of the 1,395 observations were further than 300 
metres from another property in the sample. On average in this submarket, each 
property was located within 100 metres of 21 other properties in the sample, 
with at least one observation within 300m of 52 other properties in the sample. 
Notice that the number of associations in submarket 8 is somewhat lower than 
in the other submarkets. One explanation of this observation is that properties in 
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the affluent suburbs are more greatly dispersed than those in the other 
submarkets.  
 
 
Table 6:  Characteristics of the spatial weights matrices 
 

Characteristics of the Spatial Weights Matrix 

Submarket 
Obs. 

Average 
Associations 

per Obs. 

Maximum 
Associations

Number with 
no 

Associations 

1. Ethnic Inner City 1395 21.1 52 7 
2. First Time Buyers 1091 21 84 17 
3. Affluent, North 1268 12.9 42 15 
4. Standard, North 1859 17.1 48 19 
5. Affluent, South 1535 16 42 18 
6. Standard, South 1338 11.9 31 16 
7. White Poor 2066 14 41 30 
8. Very Affluent 303 2.1 7 65 
 
 
The spatial error dependence model can be estimated using maximum 
likelihood (ML) techniques in which the u vector is assumed to follow a 
multivariate normal distribution. However, for large samples this may be 
computationally prohibitive. Instead we follow Bell and Bockstael (2000) and 
use the generalised moments (GM) estimator developed by Kelejian and Prucha 
(1999). As Bell and Bockstael (2000) describe, whilst this estimator may not be 
as efficient as the ML estimator it possesses two advantages. First, the 
calculation of the estimator is fairly straightforward even with extremely large 
samples. And second, the GM estimator is consistent even when the error terms 
u are not normal.  
 
The GM estimator is based on our assumption that the error terms u are 
distributed ( )2,0 σIID . As Kelejian and Prucha (1999) show, this assumption 
allows us to construct the following three moment conditions; 
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where the third equality results from the fact that the diagonal elements of W are 
set to zero. 
 
Of course, the error term u is unobservable from a regression Y~  on Z~ . Rather, 
we must rewrite the moment conditions in (25) in terms of ε. Using (24) we get; 
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Under our assumptions, the IV estimator (21) provides consistent estimates of 
the error terms ε that we label ε̂ . To simplify notation we follow Bell and 
Bockstael (2000) and denote Wεε =&̂  and WWεε =&̂& . Thus from (26) we can 
build the following three-equation system; 
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where the data vectors GN and gN are defined as; 
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and ( )2,σρν N  is a [1 × 3] vector of residuals dependent on the parameters ρ 
and σ2. 
 
The system of equations in (27) can be solved by nonlinear least squares (NLS) 
in which the parameter estimates ρ̂  and 2σ̂  are defined as those values that 

minimise the sum of square residuals; ( ) ( )22 ,, σρνσρν NN
′

. 
 
Armed with a consistent estimate of the spatial correlation parameter, ρ̂ , the 
semiparametric IV model (21) can be re-estimated using feasible generalised 
least squares (FGLS) according to; 
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where βSP is a semiparametric IV estimator accounting for spatial error 
dependence.8 The estimator in (28) is calculated using code written by the 
consultants in the Gauss programming language. The calculations are made 
feasible even in relatively large sample sizes through the use of sparse matrix 
commands that take advantage of the relatively large number of zero elements 
in the weights matrix W. 

                                                 
8 New residuals could be estimated using βSP and the new solution for ρ recovered in order to 
iterate the FGLS estimator. However, this is not relevant for large samples and this approach 
is not followed here. 
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7.  Results 
 
To provide an indication of the degree of explanatory power achieved in the 
econometric analysis, observe Table 7. This presents the results of three 
auxiliary regressions carried out for each submarket. The first column reports 
the R2 statistic for a simple OLS regression of natural log of property price, 
ln(P), against X; the four variables to be contained in the nonparametric part of 
the final model (see Table 5) and a constant. Since one of the motivating factors 
behind including these variables (floor and garden area, proeprty age and sale 
date) in the nonparametric part of the model, we would hope to see these four 
variables explaining a large part of the variation in the dependent variable. The 
R2 statistic measures the proportion of the total variation in the dependent 
variable explained through the included regressors. 
 
For some of the submarkets, notably submarkets 3 and 5, the contention that the 
four variables play an important role in explaining property prices is well 
supported by the high R2 statistics. However, in other submarkets, these 
variables seem to have low explanatory power. This observation may well stem 
from the clustering procedure that is itself based, in part, on these variables.  
Within submarkets, such as submarket 7, the clustering process may have 
introduced relative homogeneity with respect to property floor area and garden 
size thereby reducing the importance of these variables in explaining differences 
in property prices within that submarket. 
 
The second column of Table 7 presents a simple linear OLS regression of all the 
variables used in the econometric analysis, that is the X and Z matrices. These 
models now contain around 64 variables compared to the 4 variables used to 
generate the R2 scores in the first column. As we would expect, in all 
submarkets, the explanatory power of the model improves dramatically.  The 
third column of Table 7 shows the same analysis but now uses the 
semiparametric model in which the influence of the four variables in the X 
matrix are accounted for using nonparametric regression techniques. Increasing 
the flexibility of the functional form by using the semiparametric estimator 
again results in significant gains in the explanatory power of the model. For 7 of 
the 8 submarkets the explanatory power of the model increases between 6% and 
9%. In one case, submarket 2, the increase in explanatory power is a massive 
20%.  
 
Though these results are presented for OLS models and not the IV models 
corrected for spatial dependence (where the interpretation of an R2 statistic is 
somewhat less clear) they tend to support the contention that the semiparametric 
model significantly increases the power of the model to describe variation in 
property prices. 
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Table 7:  Explanatory power of OLS specifications 
 

Submarket R2 Statistics 

 
OLS 

Nonparametric 
Variables only 

OLS 
All Variables 

OLS 
Semiparametric

1. Ethnic Inner City .401 .503 .571 
2. First Time Buyers .254 .459 .660 
3. Affluent, North .468 .689 .765 
4. Middle, North .261 .496 .556 
5. Affluent, South .474 .677 .749 
6. Middle, South .174 .571 .635 
7. White Poor .122 .444 .530 
8. Very Affluent .379 .630 .710 

 
 
Table 8 presents results for the detection and estimation of spatial error 
dependence. The Table presents the results of two tests9 and the estimated 
spatial dependence coefficient for each of the submarkets calculated using 
semiparametric IV regression residuals at the optimal (cross-validated) band-
width.  
 
The first test statistic is Moran’s I statistic (Cliff and Ord, 1972). This test is 
predicated on normal errors and tests the null hypothesis that there is no spatial 
dependence between error terms (that is, ρ = 0). The test statistic is 
asymptotically distributed as a standard normal variate. Clearly, the probability 
of the null being true is very low in each of the submarkets. The second test 
statistic is that proposed by Kelejian and Robinson (1992).  This test is valid 
even with nonnormal errors. The test statistic is chi-squared distributed with 
degrees of freedom given by the number of parameters in the model. Even with 
the robust test the results are conclusive, the null hypothesis of no spatial error 
dependence is rejected with over 99% confidence in each case. The spatial 
autocorrelation coefficient estimated for each submarket is reported in the final 
column of Table 8. 
 

                                                 
9 Computational details can be found in Anselin and Hudak (1992). 
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Table 8:  Spatial error dependence test statistics and correlation 
coefficient 

 
Submarket Test Statistics 

 Moran’s I Kelejian-Robinson 
 Stat Prob Stat Prob 

SAR 
Coef. (ρ) 

1. Ethnic Inner City 194.30 .000 .107 .000 .438 
2. First Time Buyers 1,392.59 .000 .228 .000 .510 
3. Affluent, North 102.37 .001 .056 .000 .217 
4. Standard, North 360.53 .000 .100 .000 .345 
5. Affluent, South 337.84 .000 .119 .000 .352 
6. Standard, South 231.55 .000 .121 .000 .307 
7. White Poor 397.87 .000 .121 .000 .359 
8. Very Affluent 225.90 .000 .191 .000 .175 

 
 
 
Table 9 highlights some of the results from the full model. The top part of the 
table picks out a handful of the parameter estimates for the eight submarkets. 
The final three rows of the table list the number of parameters in each 
submarket regression, K, the optimal bandwidth selected through cross-
validation, h, and the number of observations in each submarket, N. Notice that 
K is differs across the submarket models, since some variables (especially the 
dummy variables for property type or beacon group) showed no variation within 
certain submarkets. 
 
In all eight submarket models the dependent variable is the natural logarithm of 
property price. Thus the parameter estimate for a variable such as the ‘number 
of bedrooms’ can be interpreted as the percentage change in the price of a 
property from the addition of an extra bedroom, all else equal. Indeed, the 
‘number of bedrooms’ variable tends to behave as expected; all significant 
parameter estimates are positively signed and these indicate that an extra bed-
room increases a property’s price by between 2.5% and 5%. Popular perception 
might indicate that this variable should be more important in determining 
property prices. Of course, in the models presented here, the overall size of the 
property is controlled for by including ‘floor area’ as a regressor in the non-
parametric part of the model. As such the parameter estimates presented in 
Table 9, indicate the percentage increase in the price of a property for each extra 
bedroom, holding total floor area constant. Hence more bedrooms should really 
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be interpreted as ‘more but smaller bedrooms’ and the relative unimportance of 
this variable seems more acceptable.  
 
The variable indicating the number of toilets in a property has no significant 
impact on property prices, though, on the whole, the parameters tend to indicate 
a positive relationship between WCs and property value. Again, this lack of 
significance may be due to the fact that, in general, the number of bedrooms in a 
property will be highly correlated with the property’s overall size for which we 
have already controlled. Also, the use of a continuous variable (i.e one provid-
ing a count of the number of toilets in a property), may not have been the most 
appropriate choice of functional form once the data had been partitioned into the 
relatively homogenous submarket groupings. Rather, a dummy variable specifi-
cation may have proved more successful. 
 
The dummy variable indicating the presence of a garage is positive in all 
submarkets indicating that having a garage can add from 2% (submarket 2) to 
15% (submarket 8) to the value of a property. In six of the eight submarkets the 
garage parameter is statistically significant. Notably, the presence of a garage is 
significant in all of the suburban submarkets but is insignificant in the two 
submarkets (1 and 2) located mainly in the inner city. This might reflect, either 
paucity in the data with very few properties in these areas possessing garages or 
that in such areas less people have access to or requirement of their own vehicle. 
The parameters estimated on the ‘house floors’ and ‘detached house’ variables 
are unequivocal. A property is valued more highly the less floors it has (all else 
equal) and being detached adds between 7% and 18% to the selling price of a 
property depending on submarket. 
 

 

Table 9:  Selected parameter estimates from the semiparametric instrumental variables estimator accounting for 
spatial error dependence 

 
Submarket 

Variable 
1 2 3 4 5 6 7 8 

Bedrooms 0.026* -0.002 0.032** 0.036*** 0.024** 0.005 -0.024 0.002 

WCs 0.017 0.012 0.011 0.022 -0.004 -0.006 0.013 0.001 

Garage 0.033 0.020 0.036* 0.034*** 0.047*** 0.069*** 0.033*** 0.135** 

House Floors -0.147*** -0.083** -0.129* -0.093*** -0.133*** -0.159*** -0.068** -0.097 

Detached House 0.119* 0.163*** 0.112*** 0.103*** 0.110*** 0.062** 0.178*** 0.073 

Primary School 0.0087 0.120*** 0.161*** 0.203*** 0.042* 0.146*** 0.105*** 0.148 

View of Water -0.013 0.001 -0.0001 -0.0002 -0.004* 0.014*** 0.006** -0.001 

View of Park 0.0001 0.001** 0.0002 -0.0003 0.0001 -0.0001 0.0000 0.0003 

Wealth 0.170*** 0.142*** 0.225*** 0.142*** 0.195*** 0.160*** 0.145*** 0.207*** 

Ethnicity 0.031 -0.166*** -0.163*** -0.103*** -0.093*** -0.118** -0.040*** -0.291*** 

K 57 60 61 60 61 60 60 60 

h .39 .23 .36 .33 .31 .35 .31 .60 

N 1,395 1,091 1,268 1,861 1,536 1,338 2,097 303 
 
*   Significant at 10% level of confidence 
**  Significant at 5% level of confidence 
***  Significant at 1% level of confidence 
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The variable for primary schools combines distance and school quality into a 
single index. High scores indicate increasing quality and/or ease of access. The 
results here corroborate anecdotal evidence and that of recent studies (for 
example, Gibbons and Machin, 2001) suggesting that primary school quality 
and proximity are a very important determinant of property price. Only in 
Submarket 1, the ethnic inner city, and Submarket 8, the very affluent, is the 
primary school variable statistically insignificant. The latter probably indicates 
the lack of parents with young children amongst the very affluent, whilst the 
former might indicate that the ‘primary school’ variable is inappropriate to 
describe educational priorities amongst the mostly Asian members of 
Submarket 1. In particular, the variable takes no account of the presence of 
independent Muslim schools in the inner city Birmingham region. 
Unfortunately, the two view variables do not seem to add a great deal to the 
analysis. In all but a handful of cases the parameters on ‘views of water’ and 
‘views of parks’ are insignificant. 
 
The variables describing the socioeconomic characteristics of neighbourhoods 
(constructed in the factor analysis) tend to be important in explaining variation 
in property prices. In Table 9 we present parameter estimates for the Wealth and 
Ethnicity factors. Unsurprisingly, the increasing wealth of the inhabitants of an 
area tends to manifest itself in higher property prices. Whilst there is an issue of 
the direction of causality in this relationship we assume here that it is the 
presence of more affluent neighbours that increases the selling price of a 
property. In seven of the eight submarkets, the increasing presence of residents 
from ethnic minorities tends to decrease property prices. In contrast, the 
parameter on the ethnicity variable in Submarket 1 (the ethnic inner city), is 
positive; suggesting that for this submarket the increasing presence of residents 
from ethnic minorities increases selling prices of properties. Combined these 
two observations tend to suggest a preference for ethnic homogeneity amongst 
the residents of the City of Birmingham. 
 
Table 10 presents the results for the noise pollution variables. These are 
included in the hedonic price function in a piecewise linear fashion. That is, 
noise pollution is assumed to have no impact on property prices until it exceeds 
a threshold level of 55dB. This threshold is often taken as the “background” 
noise level in urban environments. Since the dependent variable is the log of 
property price, the coefficients represent the Noise Sensitivity Depreciation 
Index (NSDI). In other words, the coefficient gives the constant percentage 
response in property price to a one decibel absolute increase in noise pollution 
over 55dB.  
 
 

 

Table 10:  Noise pollution parameter estimates from the semiparametric instrumental variables estimator 
accounting for spatial error dependence 

 

Noise Variable 

Road Rail Air Submarket 

N Coef Imp Pr N Coef Imp Pr N Coef Imp Pr 

1 273 -.0043* -149.13 45 -.0107** -365.43 0   

2 283 -.0158*** -825.98 57 -.0139*** -725.86 0   

3 268 -.0035* -320.27 23 -.0043 -391.54 32 -.0066 -602.00 

4 676 -.0034** -160.60 72 -.0024 -112.65 45 -.0179 -856.53 

5 355 -.0067*** -4761 66 -.0046 -322.60 0   

6 299 -.0050** -248.80 31 -.0109 -537.11 0   

7 500 -.0042** -174.29 76 -.0085*** -357.79 375 -.0149*** -627.41 

8 117 -.0115** -1,885.84 9 -.0338* -5,560.79 2 -.0682 -11,236.00 
 
*   Significant at 10% level of confidence 
**  Significant at 5% level of confidence 
***  Significant at 1% level of confidence 
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As expected each submarket returns a somewhat different estimate for the 
coefficient on noise pollution. These differences will result from differences in 
the prevalence of noise pollution and the preferences of households in each 
submarket.  
 
Let us begin by examining the findings presented in Table 10. Here the results 
for each source of noise pollution (road, rail and air traffic) for each submarket 
are given in three columns. In each case, the first column is titled N and 
indicates the number of observations in that submarket registering a level of 
noise pollution (from that source) above the 55dB baseline. Notice how there 
are many more observations of properties suffering from road noise than there 
are rail noise. Indeed, the relative paucity of properties exposed to rail traffic 
noise suggests that it will be relatively more difficult to find a statistically 
significant relationship between property prices and rail traffic noise pollution. 
The same could be said of aircraft noise which is concentrated, to a large extent, 
in Submarket 7 located in the East of the city near Birmingham International 
Airport. Indeed, in four of the submarkets there are no properties exposed to 
aircraft noise. The second column for each noise source in Table 10 provides 
coefficient estimates and the third column implicit prices. 
 
Let us begin by discussing the parameter estimates. Notice first, that in 
accordance with prior expectations, all parameters on the three types of noise 
pollution in each of the eight submarkets have negative coefficients.  
 
Focusing on the road noise variables, observe that the parameters range from a 
value of -.0034 in Submarket 4 to a maximum of -.0158 in submarket 2. In other 
words, a one decibel increase in road traffic noise can wipe off between 0.3% 
and 1.6% of the selling price of a property, depending on submarket. 
Encouragingly, six of the eight submarkets have coefficients that are significant 
at the 95% level of confidence whilst the other two are significant at the 90% 
level of confidence. Reassuringly, these parameter estimates cover the range 
reported from studies in other markets (see Bateman et al., 2001 for a review).  
 
Turning to the rail noise coefficients, observe that on the whole the parameters 
are of a similar magnitude to those found to characterise road noise. Indeed, 
whilst the exact statistical tests have not been performed, the differences do not 
appear large enough to conclude that the two noise sources have a significantly 
different impact on property prices (though possible exceptions might be 
Submarket 1 and Submarket 7). Whilst all rail noise coefficients are negative, 
only four of the eight submarkets have parameters that are significantly different 
from zero at the 90% level of confidence. This result is presaged by the relative 
paucity of observations of properties exposed to rail traffic noise pollution. In a 
similar vein, the anomalously large parameter estimate in Submarket 8 is more 
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likely to be explained by the fact that this is based on only 9 observations rather 
than a substantive difference in the impact of rail noise in this submarket. 
 
The air noise coefficients perform the least convincingly with only one of four 
submarkets returning a statistically significant coefficient. Once again, the 
anomalously large coefficient on aircraft noise in submarket 8 probably reflects 
paucity of data. 
 
In general, however, the results presented in Table 10 are very pleasing. The 
coefficients are all correctly signed and mostly have plausible magnitudes. 
 
The implicit price of noise (i.e. the extra that must be paid for an identical 
property boasting one unit less noise pollution) is given by the partial derivative 
of the hedonic price function according to; 
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where zk is a noise variable. 
 
Since the empirical hedonic price function estimated here is of semi-log form, 
the implicit price for noise can be calculated according to the specific equation; 
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where 

kzβ̂ is the parameter estimated on the noise variable zk.  
 
Average implicit prices in each submarket have been calculated for the three 
noise variables and are presented in Table 10.  
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8.  Conclusions 
 
This paper has attempted to provide a “state of the art” empirical analysis of 
hedonic housing price data. The data set used in this estimation is perhaps the 
richest of its kind yet to be constructed for any property market. Issues of 
market segmentation have been addressed through the clustering of properties 
into eight submarkets identified according to similarities in their geographical 
location, property types and the socioeconomic composition of neighbourhoods.  
 
The analytical approach taken is one that introduces considerable flexibility into 
the specification of the empirical hedonic price function. In particular, the 
influence of key structural characteristics on properties is modelled nonparamet-
rically, whilst the influence of other property characteristics are captured using a 
traditional linear parametric form. Estimation of the parameters of the hedonic 
price function for each submarket is achieved through the following steps; 
 
1. Construct Data Matrices: The researcher selects the characteristics that 

will be included in the hedonic price model. From this list the researcher 
decides which variables will be included in the nonparametric and which in 
the parametric parts of the model. The variables in the nonparametric part of 
the model are grouped into the matrix X with typical row xi. In our case this 
consists of the four variables, log of floor area, log of garden size, age in 
decades and date of sale. 

 
Variables in the parametric part of the model are grouped into the matrix Z 
with typical row zi. Since it is assumed that the road noise variable is 
measured with error a further matrix M is constructed. M consists of all the 
columns of Z bar the road noise variable but including the additional 
variables indicating straight line distance to different types of roads, the 
inverse of these distances and the area of road surface visible from the front 
and back of the property. 
 

2. Bandwidth Selection: Select the maximum and minimum value for the 
bandwidth of the nonparametric kernel. The cross-validation procedure will 
grid search across this range seeking the bandwidth that minimises the 
cross-validation statistic. Set the bandwidth, h, to the minimum value in this 
range.  

 
3. Adaptive Kernel: Using the bandwidth, h, calculate the density of x, at 

each observation in the data set according to (11). Then, using (18) calculate 
a new observation specific bandwidth hi that is adapted to the density of the 
data in the region of xi. 
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4. Nadarya-Watson Kernel Regression: Using Nadarya-Watson kernel 
regression, (12) and the bandwidth hi, estimate the expectations of Y, Z, and 
M conditional on the variables X. Strip these expectations from the data to 
form the matrices Y~ , Z~  and M~ representing differences from nonparametric 
means. 

 
5. Semiparametric Instrumental Variables Regression: Using IV regression 

(21) on the data matrices Y~ , Z~  and the instrument matrix M~ , estimate the 
parameters IVβ , which, according to our assumptions, should be a 
consistent estimator of the true parameters 0β . 

 
6. Spatial Dependence Parameter: Using the IV regression error terms 

estimate the spatial dependence parameter, ρ, using the General Method of 
Moments estimator defined by (27). 

 
7. Semiparametric Instrumental Variables Regression corrected for 

Spatial Error Dependence: Use the estimated spatial dependence 
parameter, ρ̂ , to estimate the parameters SPβ  according to (28). 

 
8. Cross-Validation: Using SPβ calculate the cross-validation statistic 

according to (16). Increment the bandwidth h by a small amount and repeat 
steps 3 to 7 until have grid-searched across the whole range of values 
selected in step 2. Select parameter estimates of SPβ  that minimise the 
cross-validation statistic. 

 
 
In general, the results of this semiparametric model are very pleasing. The main 
objective of the empirical research in this paper was to return estimates of the 
implicit price of noise from road, rail and air traffic. Pleasingly, the model 
generates coefficients on the noise variables that are all correctly signed and 
most have plausible magnitudes. Of the 20 noise parameters estimated in the IV 
model 13 are significant at the 10% level of confidence. 
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Appendix A: Variables used in the Regression Analysis 
 
Table A1: Structural variables included in the Hedonic Price Models  

Variable Code Description and a priori Expectations 
Floor Area (m2) Area Larger properties will command higher prices 

Garden Area (m2) Garden Properties with larger gardens will command higher prices 

Number of 
Bedrooms Bedrooms Properties with more bedrooms will tend to command 

higher prices. 

Number of WCs WCs Properties with more WCs will tend to command higher 
prices. 

Number of Storeys Storeys 
Given that two properties have the same floor area it is 
expected that those with less storeys will be preferred to 
those with more storeys. 

Garage Garage Properties with a garage will tend to command higher 
prices. 

Central Heating Central Heating Properties with central heating will tend to command 
higher prices. 

Age of property 
(decades) Age 

The relationship between property age and property price 
is not entirely clear. Older properties may be desired for 
their “character” and “original features”, more modern 
properties for their state of repair and more up-to-date 
facilities. What is clear, however, is that property age 
proxies for a number of property characteristics not least of 
which will be the architectural design of the house. 

Detached House 

Semi-Detached House 

End Terrace House 

 Terrace House 

Detached Bungalow 

Semi-Detached Bungalow

End Terrace Bungalow 

Property Type 

(Dummy 
Variables) 

 Terrace Bungalow 

In the models, semi-detached houses are taken as the 
baseline property type since all submarkets contain 
properties of this type. The coefficients estimated on the 
other property type dummy variables, reflect the relative 
difference in price between that property type and a semi-
detached house with exactly the same characteristics. 

In general, it is expected that houses will fetch more than 
bungalows. Moreover, properties will increase in value 
from terraces through end terraces and semi-detached 
properties through to detached properties. 

BG 1 (Unrenovated cottage 
pre 1919) 

BG 2 (Renovated cottage 
pre 1919) 

BG 3 (Small “industrial” 
pre 1919) 

BG 4 (Medium “industrial” 
pre 1919) 

BG 5 (Large terrace pre 
1919) 

Beacon Group 
(Dummy 
Variables) 

BG 8 (Small “villa” pre 
1919) 

In the models, BG 21 (standard houses built between the 
war) is taken as the baseline beacon group since all 
submarkets contain properties of this type. The coefficients 
estimated on the other beacon group dummy variables, 
reflect the relative difference in price between that 
properties of that beacon group and a property in beacon 
group 21 with similar characteristics.  

The beacon group data collected from the VOA provides a 
detailed categorisation of properties according to their age, 
size, architectural type and quality. As such, we would 
expect these dummy variables to be important descriptors 
that add significantly to the explanatory power of the 
model. 
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Variable Code Description and a priori Expectations 
BG 9 (Large “villas” pre 

1919) 

BG 10 (Large detached pre 
1919) 

BG 19 (Houses 1908 to 
1930) 

BG 20 (Subsidy houses 
1920s & 30s) 

BG 21 (Standard houses 
1919 to 1945) 

BG 24 (Large houses 1919 
to 1945) 

BG 25 (Individual houses 
1919 to 1945) 

BG 30 (Standard houses 
1945 to 1953) 

BG 31 (Standard houses 
post 1953) 

BG 32 (Large houses post 
1953) 

BG 35 (Individual houses 
post 1945) 

 

BG 36 ( “Town Houses” 
post 1950) 

 

 

 

Table A2: Neighbourhood variables included in the Hedonic Price Models  

Variable Code Description and a priori Expectations 

Wealth 
Wealth Factor 

Wealth Squared 

Increasing values for this factor indicate the increasing 
wealth of a properties neighbourhood. Properties in 
wealthier neighbourhoods are expected to command higher 
prices in the market. 

Ethnicity 
Ethnicity Factor 

Ethnicity Squared 

Increasing values for this factor indicate the increasing 
presence of members of ethnic minorities in a 
neighbourhood. The (perhaps unfortunate) expectation is 
that increasing ethnicity will reduce property prices.. 

Age Composition 
Age Composition 
Factor 

Age Composition Squared 

Increasing values for this factor indicate the increasing age 
of adults in a properties neighbourhood. It is expected that 
properties in neighbourhoods with generally older 
residents will command higher prices in the market. 

Family Composition Family 
Composition 
Factor Family Composition 

Squared 

Increasing values for this factor indicate the increasing 
presence of households with children in a neighbourhood. 
Properties in neighbourhoods with more families are 
expected to command lower prices in the market. 
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Table A3: Locational variables included in the Hedonic Price Models  
Variable Code Description and a priori Expectations 

CBD 
Proximity to City 
Centre (mins) 

CBD squared 

This variable measures the travel time by car from a 
property to the city centre. Since it is expected that this 
relationship may be non-linear both linear and squared 
terms are included. One likely result is that property prices 
will fall moving away from the city centre but at a 
declining rate. 

Local Centre Proximity to and 
Size of Local 
Centres Local Centre squared 

This variable uses a weighted average of inverse walking 
distances to general stores to measure the proximity to 
local centres that accounts for the size of the local centre. 
Expectations are similar to those for proximity to the city 
centre. 

Proximity to a 
Railway Station 
(inverse mins) 

Railway Station 

This variable measures the inverse of the walking distance 
from a property to the nearest railway station. It is 
expected that property values will be higher near to a 
transport network node such that a positive coefficient is 
anticipated. 

Proximity to a 
Park (inverse 
mins) 

Park 

This variable measures the inverse of the walking distance 
from a property to the nearest park. It is expected that 
property values will be higher near to a recreational areas 
such that a positive coefficient is anticipated. 

Proximity to A-
Type Industrial 
Processes (inv. m)

Industry A 

This variable measures the inverse of the straight line 
distance between each property and the nearest large scale 
industrial plant. Since such plants are assumed 
disamenities it is anticipated that this variable will have a 
negatively signed coefficient. 

Proximity to B-
Type Industrial 
Processes (inv. m)

Industry B 

This variable measures the inverse of the straight line 
distance between each property and the nearest medium 
scale industrial plant. Again it is anticipated that this 
variable will have a negatively signed coefficient. 

Proximity to Land 
Fill sites (inv. m) Land Fill 

This variable measures the inverse of the straight line 
distance between each property and the land fill site. 
Again, it is anticipated that this variable will have a 
negatively signed coefficient. 

Proximity and 
Quality of Primary 
Schools 

Primary School 

Using government published statistics, this variable 
provides a distance weighted average of the performance 
of nearby primary schools. Since parents may be attracted 
to locations near better primary schools, it is anticipated 
that this variable will have a positive coefficient.  

Central Region 

Northern Region 

Western Region 

Eastern Region 

Sutton Coldfield Region 

Region (dummy 
variables) 

Southern Region 

These dummy variables provide a high level spatial 
categorisation of properties by geographical location. 
Since different submarkets are located in different spatial 
regions, the baseline region varies across submarket 
models. 
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Table A4: Environmental variables included in the Hedonic Price Models  

Variable Code Description and a priori Expectations 

Road Traffic 
Noise (dB) Road Noise* 

Railway Traffic 
Noise (dB) Rail Noise 

Aircraft Traffic 
Noise (dB) Air Noise 

These variables measure decibels of noise above 55dB 
from different sources of noise pollution. The 55dB cut off 
reflects the fact that noise levels below this level are 
indistinguishable from “background” noise in an urban 
environment.  

Since noise pollution is a disamenity. We would expect 
properties exposed to greater levels of noise to command 
lower prices.  

 

 
 


