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Abstract 
Contingent valuation (CV) surveys frequently employ elicitation procedures that return 
interval-censored data on respondents’ willingness to pay (WTP). Almost exclusively, CV 
practitioners have applied Turnbull’s self-consistent algorithm to such data in order to obtain 
nonparametric maximum likelihood (NPML) estimates of the WTP distribution. This paper 
documents two failings of Turnbull’s algorithm; (1) that it may not converge to NPML 
estimates and (2) that it may be very slow to converge. With regards to (1) we propose new 
starting and stopping criteria for the algorithm that guarantee convergence to the NPML 
estimates. With regards to (2) we present a smorgasbord of alternative NPML estimators 
and demonstrate, through Monte Carlo simulations, their performance advantages over 
Turnbull’s algorithm.  

 

Key words: Interval-censored data, Turnbull’s self-consistent algorithm, nonparametric 
maximum likelihood, contingent valuation 
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1. INTRODUCTION 

Increasingly, practitioners of contingent valuation (CV) employ elicitation techniques that do 
not directly identify a respondent’s willingness to pay (WTP) for the non-market good under 
consideration. Rather, many CV surveys collect WTP data in a format that only indicates a 
range of values within which a respondent’s precise WTP is contained. For example, a 
single-bounded (SB) dichotomous choice question records whether a respondent’s WTP is 
either above or below a particular value. Such data is said to demonstrate Type 1 interval-
censoring. Moreover, when the SB question is followed-up by a second dichotomous choice 
question, as is the case with the one-and-one-half-bounded (OOHB) and double-bounded 
(DB) question formats, a respondent’s WTP may also be recorded as falling in the interval 
between two particular values. Data of this kind demonstrates Type 2 interval-censoring.  

This paper concerns itself with the problem of estimating the population distribution of WTP 
from a CV survey recording interval-censored WTP data. In general, this distribution is the 
primary object of concern in CV studies since it is from this distribution that policy-relevant 
quantities such as the population mean and median WTP can be estimated. In particular, we 
consider estimation techniques that do not impose ad hoc parametric assumptions on the 
distribution of WTP. Such non-parametric or distribution-free techniques make no 
assumptions concerning the population distribution of WTP and can be used to derive a 
lower-bound approximation to the population’s expected WTP (Haab and McConnnell, 1997; 
Boman et al., 1999). 

When WTP data is not censored, the natural non-parametric estimator of the WTP 
distribution is provided by the empirical distribution function (EDF). The EDF is a step 
function that rises only at the WTP values reported by respondents in the sample. As will be 
shown subsequently, the equivalent function for censored data is the solution to a 
constrained maximum likelihood problem, generally referred to as the non-parametric 
maximum likelihood (NPML) problem. Like the EDF, NPML estimates of the distribution 
function return a step function that rises only (but not necessarily) at the values that bound 
respondents’ WTP intervals.  

Analysis of interval-censored WTP data requires an estimator that solves the NPML problem 
reliably and quickly; ‘reliably’ since we would like to be guaranteed that our estimator returns 
the unique NPML estimates of the distribution function and ‘quickly’ since certain estimation 
problems (e.g. bootstrapping confidence intervals for statistics derived from the non-
parametric WTP distribution or the application of distribution-free semi-parametric 
estimators) may require the NPML problem to be solved very many times. The key message 
of this paper is that, in general, the standard estimation method employed by CV 
practitioners to derive NPML estimates from interval-censored data, Turnbull’s self-
consistent (SC) algorithm, is neither reliable nor fast.   

In this journal, Haab and McConnell (1997) show that a closed-form solution to the NPML 
problem can be derived for the particular case of Type 1 interval-censoring resulting from SB 
dichotomous choice WTP data. Indeed, this closed-form solution is essentially the well-
known pooled adjacent violators algorithm (PAVA) (Ayer et al. 1955). However, as Haab and 
McConnell emphasise (p. 257), the NPML problem does not have a closed-form solution 
when WTP data is Type 2 interval-censored (as per data from OOHB or DB dichotomous 
choice questions). To solve the NPML problem with data of this type requires the application 
of iterative numerical techniques. 

As far as the author is aware, Carson and Steinberg (1990) were the first CV practitioners to 
calculate non-parametric estimates of the WTP distribution from Type 2 interval-censored 
data. The estimation procedure they applied was Turnbull’s SC algorithm. In fact, there are a 
whole variety of estimation methods that might be used to derive NPML estimates from 
interval-censored data. All the same, a comprehensive review of the CV literature reveals 
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that subsequent authors have chosen, almost without exception, to follow the lead of Carson 
and Steinberg and employed Turnbull’s SC algorithm to analyse their data (e.g. Carson, 
Wilks and Imber, 1994; Carson et al., 1994; Huhtala, 1994, 2000; Carson and Mitchell, 1995; 
An and Ayala, 1996; Hutchinson et al., 2001; Scarpa, Willis and Garrod, 2001; Nunes and 
van den Bergh, 2004). Reliance on Turnbull’s SC algorithm appears to have been further 
entrenched by the fact that Hanemann and Kanninen (1999) direct practitioners to this 
algorithm in their influential review of CV data analysis. Unchallenged, Turnbull’s SC 
algorithm has firmly established itself as the estimator of choice in the environmental 
economics literature.  

One objective of this paper is to investigate whether Turnbull’s SC algorithm is deserving of 
its position of pre-eminence. As shall become clear, Turnbull’s algorithm is not without short-
comings. Indeed, it can be shown that Turnbull’s algorithm does not completely solve the 
NPML problem. Accordingly, estimates of the WTP distribution derived from Turnbull’s 
algorithm are not necessarily NPML estimates and consequently will not always possess all 
their desirable qualities. 

This ‘trouble with Turnbull’ has long been recognised outside the field of environmental 
economics (e.g. Gu and Zhang, 1993; Gentleman and Geyer, 1994; Mykland and Ren, 
1996; Wellner and Zhan, 1997). This paper builds on that previous research by investigating 
the conditions under which these problems with Turnbull’s algorithm might be encountered in 
actual estimation problems. Furthermore, a set of convergence criteria are proposed that 
guarantee the convergence of Turnbull’s algorithm to the NPML estimates. 

Regrettably, there is a further well-documented problem with Turnbull’s SC estimator; it has 
been shown that the estimator can be extremely slow to converge (Wellner and Zhan, 1997, 
Jongbloed, 1998, Zhang and Jamshidian, 2004). A second objective of this paper is to 
introduce a series of alternative estimators drawn from the mathematical programming 
literature. These include, sequential quadratic programming (Boggs and Tolle, 1995), an 
interior-point barrier method (Forsgren et al., 2002), a generalised Rosen estimator (Zhang 
and Jamshidian, 2004), the iterative convex minorant algorithm (Groenboom,1991) and 
hybrid algorithms that combine the last two estimators with a self consistent step (Wellner 
and Zhan, 1997; Zhang and Jamshidian, 2004). As far as the author is aware none of these 
estimators have been previously applied to the analysis of interval-censored WTP data. 
Moreover, the paper reports on a series of Monte Carlo simulations that compare the 
performance of these various estimators when applied to standard CV survey datasets. Our 
investigation confirms that Turnbull’s SC algorithm is frequently out-performed by these 
alterative estimators.  

The paper is organised as follows; section 2 describes the NPML problem that might be 
used to derive a nonparameteric estimate of the distribution of WTP when CV data is Type 2 
interval censored, section 3 describes Turnbull’s SC algorithm for solving the NPML 
problem, section 4 and 5 describe failings of Turnbull’s SC algorithm and introduce a series 
of alternative estimators, section 6 reports on a Monte Carlo experiment that compares 
these various estimators, section 7 summarises and provides some concluding remarks. 
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2. CV DATA AND THE NONPARAMERTRIC MAXIMUM LIKELIHOOD PROBLEM 

Broadly speaking the primary objective of a CV survey is to discover the value placed on 
changes in the provision of a non-market good. To this end, researchers survey a sample of 
individuals drawn from the population affected by the proposed changes. Using one of a 
number of elicitation methods, respondents are asked to reveal the value they would place 
on the changes described in the survey. In the main, respondents are asked their maximum 
WTP to avoid changes that are welfare decreasing or maximum WTP to achieve changes 
that are welfare increasing. 

Naturally, individuals in the population do not hold identical WTP values for the changes 
under consideration. Indeed, the usual assumption is that WTP can be regarded as a 
random variable, denoted C, whose distribution in the population can be characterised by 
some continuous cumulative distribution function; 

( ) ( )cCcF ≤= Pr   (1) 

The WTP values of the N respondents in the sample, ( )Nccc ,...,, 21 , are simply a selection of 
independent values drawn at random from this population distribution.  

The primary objective of many CV surveys is to use data on the sample’s WTP in order to 
recover an estimate of the population distribution F. Armed with such an estimate, the 
analyst can recover estimates of policy-relevant statistics such as the population’s mean and 
median WTP.  

When the CV survey returns each respondent’s precise WTP, ci ( )Ni ...,,2,1= , one 
particularly appealing estimate of F is provided by the empirical distribution function (EDF);  

( ) ( )∑
=

=
N

i
ic

N
cF

1

1ˆ δ  where ( )






 ≤
=

otherwise0

if1 cc
c

i

iδ   (2)  

As is well known, as the size of the random sample tends to infinity then the EDF 
constructed from the sample will tend, with probability one, to the underlying CDF of the 
population (a result known as the Glivenko-Cantelli Lemma). 

Unfortunately, the procedure of simply asking respondents what they are willing to pay, the 
so-called open-ended (OE) question format, has been criticised on the grounds that it 
presents respondents with an overly complex cognitive task (Boyle and Bishop, 1988; 
NOAA, 1993) and may provide incentives for strategic responses (Hoehn and Randall, 1987; 
Carson, Groves and Machina, 1999). Accordingly, over recent years attention has focused 
on various question formats that elicit WTP responses by asking respondents one or more 
dichotomous choice questions. In designing such elicitation formats practitioners specify a 
number of money amounts, commonly termed bid amounts, that it is believed span the 
range of WTP to be found in the population. Assuming WTP to be non-negative, we can 
denote each of the M bid amounts Bm such that,  

∞=<<<<<<= +− 11210 ...0 MMM BBBBBB    (3) 

The single-bounded (SB) dichotomous choice elicitation format (Bishop and Heberlein, 
1979) randomly assigns a single bid amount to each individual in the sample and 
respondents are asked to indicate whether they would or would not pay this amount. 
Accordingly, the SB dichotomous choice format identifies whether a respondent’s WTP is in 
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the interval below that bid amount [ )kBB ,0  or above that bid amount [ ]1, +Mk BB . Such data 
is said to be subject to Type 1 interval-censoring. The double-bounded (DB) and one-and-
one-half bounded (OOHB) dichotomous choice elicitation formats (Hanemann, Loomis and 
Kanninen, 1991; Cooper, Hanemann and Signorello 2002) present respondents with up to 
two different and not necessarily adjacent bid amounts. Data from such techniques identifies 
whether a respondent’s WTP is in the interval below the lowest bid amount that they have 
been offered [ )lBB ,0 , above the highest bid amount that they have been offered 

[ ]1, +Mh BB or in the interval between the two bid amounts [ )hl BB , . For convenience we 
shall indicate the lower bound of this interval for individual i as 

iLB  and the higher 

bound
iHB . Data of this type is said to be subject to Type 2 interval-censoring. 

When CV surveys collect interval-censored WTP data, the EDF as defined in (2) cannot be 
calculated and other estimation strategies must be adopted. One possible approach is to 
assume that F can be described by some parametric distribution function. Of course, such 
assumptions are essentially ad hoc such that the asymptotic convergence properties that 
characterise the EDF will not hold for parametric specifications in which an incorrect 
distributional assumption is made. Moreover, estimates of mean and median WTP based on 
such assumptions may be highly sensitive to the particular choice of parametric distribution 
(Ready and Hu, 1995; Haab and McConnell, 1997; Kerr, 2000)1. Accordingly, attention has 
focussed on distribution-free methods for estimating F. Since distribution-free estimates of F 
make no ad hoc assumptions concerning the population distribution of WTP, estimates of 
mean and median WTP derived from such approaches are to be preferred. Indeed, the 
central tendency measure from distribution-free estimates of F can be shown to be a lower-
bound approximation to the population’s expected WTP (Haab and McConnnell, 1997; 
Boman et al., 1999). 

For interval-censored data, the problem of deriving a distribution-free estimate of F can be 
reduced to one of maximising a likelihood function subject to certain constraints. 
Accordingly, the estimates of F derived from solving this problem are termed nonparametric 
maximum likelihood estimates.  

Assume, for now, that we knew the form of the population distribution function. Then the 
probability of observing an individual from this population indicating that their WTP lay in the 
interval between iLB and iHB  is given by; 

[ ] ( ) ( )iLiHiHiiL BFBFBcB −=<≤Pr  i = 1, 2, …, N  (4) 

Furthermore, the probability of observing a particular set of responses in a random sample of 
N individuals from the population is given by the likelihood function; 

( ) ( )∏
=

−=
N

i
iLiH BFBFL

1

   (5) 

To provide a more generic presentation of the likelihood function we require some notation. 
First we need to be able to refer to the intervals between the amounts in the bid design (3). 

                                                 

1 In contrast, Giraud et al. (2001) fit four parametric models to their data; logit, probit, Weibull and log-logit. 
They are unable to calculate a mean WTP value from the log-logit model, but find that estimates of mean WTP 
from the other three distributions do not differ significantly provided they first truncate the estimated 
distributions at zero and the highest bid level. 
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As such, we label these various intervals m = 1 to M such that interval m is the interval 
defined by [ )mm BB ,1− . Following An and Ayala (1996) we call these basic intervals to 
distinguish them from the WTP intervals defined by an individual’s upper and lower bounds 
and the equivalence classes that we shall define subsequently. Further we define an 
indicator variable dim that records whether an individual’s WTP interval includes the mth basic 
interval. That is; 



 ≤≤

= −

otherwise0
 if1 1 ii HmmL

im

 BB,BB
d  m = 1, 2, …, M+1;  i = 1, 2, …, N  (6) 

With this notation the likelihood function (5) can be expressed; 

( ) ( )[ ]∏ ∑
=

+

=
− 








−=

N

i

M

m
mmim BFBFdL

1

1

1
1   (7) 

Simplifying notation such that ( ) mm FBF =  (m = 0, 1, …, M+1) with F0 = 0 and FM+1 = 1, and 
taking logs gives the log likelihood function; 

[ ]∑ ∑
=

+

=
− 







−=

N

i

M

m
mmim FFdL

1

1

1
1lnln   (8) 

Of course, we do not know the probability distribution of WTP. Indeed, the challenge facing 
the analyst is to estimate this distribution function based on data provided by the CV survey. 

It is clear from Equation (8) that for a particular set of data, the value of the log likelihood is 
determined solely by the values taken by the M probabilities, Fm (m = 1, 2, …, M). 
Consequently, the maximally flexible specification of the log likelihood is one in which each 
of the Fm (m = 1, 2, …, M) are treated as parameters. That is to say, the problem can be 
reduced to the finite dimensional problem of estimating the value of M probabilities.  

As a matter of fact, the problem can be further reduced since the sample data may not 
provide information that allows us to independently estimate each of the Fm (m = 1, 2, …, M). 
For example, imagine that there are no respondents in our sample with WTP intervals 
spanning a particular basic interval of the bid design, let us say interval k. In that case dik = 0 
for all respondents, and the data provides no evidence of probability mass falling into the kth 
basic interval. As a result, the maximum likelihood estimate for Fk will be identical to that for 
Fk-1 such that Fk need not be estimated. Likewise, if each respondent in the sample states a 
WTP interval that either spans or does not span both of two (or more) consecutive basic 
intervals then the distribution of probability mass within those basic intervals is irrelevant to 
the maximisation problem. Accordingly, the basic intervals can be combined into one interval 
and intervening values of Fm need not be estimated. Indeed as described by Goetghebeur 
and Ryan (2000) the only intervals that are relevant to the maximisation problem are those 
defined by the lower bound of one observation’s WTP interval and the upper bound of 
another (possibly the same) observation’s WTP interval, such that no other observation’s 
lower or upper bound falls within that interval. Such intervals are termed equivalence 
classes. Equivalence classes are the basic building blocks of the maximum likelihood 
estimator. They determine the intervals within which the maximum likelihood estimate of the 
probability distribution can, but not necessarily does, attribute probability mass.  

The 1+M  basic intervals defined by the bid design can be maintained, aggregated or 
discarded to form J equivalence classes. Notice that the construction of equivalence classes 
ensures that at least one observation falls entirely within the first equivalence class and that 
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at least one observation falls entirely within the Jth equivalence class. Denote the bid level at 
the start of the first equivalence class B0 and that at the end of each of the J equivalence 
classes by Bj (j = 1, 2, … , J). Then the indicator variable can be reformulated accordingly; 



 ≤≤

= −

otherwise0
 if1 1 ii HjjL

ij

 BB,BB
d

 j = 1, 2, …, J;  i = 1, 2, …, N (9) 

Further let di represent the J vector of ones and zeros indicating which equivalence classes 
are spanned by individual i’s WTP interval. Further, stacking the id ′  (i = 1, 2, …, N ), let d be 
the N by J vector representing the data in the sample. If we denote the cumulative probability 
density function at the beginning of the first equivalence class by F0, that at the end of the Jth 
equivalence class FJ, and gather those at the end of the intervening 1−J  equivalence 
classes into the vector F with elements Fj (j = 1, 2, … , J − 1), then the log likelihood of the 
maximum likelihood problem can be written; 

( ) [ ]

1...0
:Subject to

ln|ln   Max

210

1 1
1

=≤≤≤≤=









−= ∑ ∑

= =
−

J

N

i

J

j
jjijF

FFFF

FFdL dF

 (10) 

Here the constraints ensure that the NPML estimates define a valid cumulative probability 
distribution function; that is, they ensure that it is a positive, monotonically increasing 
function that has a maximal value of unity. Solving this problem provides the nonparametric 
maximum likelihood (NPML) estimates of the distribution function. We shall denote the 
solution by the 1−J  vector MLF̂  with elements ML

jF̂  (j = 1, 2, … , J − 1).  

The NPML estimates will be unique provided the log likelihood ( )dF |ln L  is strictly concave 
a property that follows if the Hessian of the log likelihood is negative definite. To form the 
Hessian we note that the 1−J  elements of the gradient vector, g, are given by; 

( )

( )
( )

∑∑
∑ =

+

=

=
−

+ −
=

−

−
=

∂
∂

=
N

i i

ikik
N

i
J

j
jjji

ikki

k
k

dd

FFd

dd
F

Lg
1

1

1

1
1

1ln
η

 (k = 1, 2, … , J − 1) 

   (11) 

where ( )∑ = −−=
J

j jjiji FFd
1 1η , and the elements of the  1−J  by 1−J  Hessian matrix, H, 

are given by; 

( )( )
∑
=

++ −−
−=

∂∂
∂

=
N

i i

ihihikik

hk
kh

dddd
pp
LH

1
2

11
2 ln

η
 

 (k = 1, 2, … , J − 1; h = 1, 2, … , J − 1)  (12) 

Following the development in Gentleman and Geyer (1994), the Hessian, can be 
decomposed into the two matrices, −d  (the N by 1−J  matrix formed by first differencing d) 
and A, the N by N diagonal matrix with elements 21 iη− , according to; 
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−−′= AddH   (13) 

which is a simple quadratic form. Since A is negative definite, H will be of full rank and the 
NPML estimates will be unique provided; 

rank( −d ) = 1−J   (14) 

which is guaranteed by the manner in which the J equivalence classes have been 
constructed. 

Since the objective function is concave and the constraints are linear, (10) is an example of 
a concave program. Accordingly, we formulate the Langrangian function; 

[ ] ( ) ( )1ln 1
1

100
1 1

1 −−−+−







−= ∑∑ ∑

=
−

= =
− J

J

j
jjj

N

i

J

j
jjij FFFFFFdG λµλ  (15) 

where λ0, λ1 and µj (j = 1, 2, … , J) are Lagrange multipliers, and derive the following Khun-
Tucker conditions describing the first-order necessary conditions for a maximum; 

1. Primal Constraints: 

00 =F , 1=JF , 01 ≥− −jj FF  (j = 1, 2, … , J) (15a) 

2. Dual Constraints: 

0≥jµ  (j = 1, 2, … , J)  (15b) 

3. Complementary Slackness: 

( ) 01 =− −jjj FFµ  (j = 1, 2, … , J)  (15c) 

4. Gradients of Lagrangian: 

011 λµα −=+   (15d) 

1λµα =+ JJ   (15e) 

11 ++ +=+ jjjj µαµα  (j = 1, 2, … , J − 1)  (15f) 

where; 

( )
∑
∑=

=
−−

=
N

i
J

k
kkik

ij
j

FFd

d

1

1
1

α  (j = 1, 2, … , J)  (16) 

The unique NPML estimates MLF̂  will simultaneously comply with conditions (15a to f). 
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3. NPML ESTIMATION USING TURNBULL’S SELF-CONSISTENT ALGORITHM 

In the case of Type 1 interval censored data, the NPML problem in (15) can be shown to 
have a simple closed form solution. Indeed, Haab and McConnell (1997) demonstrate this 
solution and apply it to SB dichotomous choice WTP data. In contrast, no closed form 
solution exists for Type 2 interval-censored data. Accordingly, NPML estimates of the WTP 
distribution from  OOHB or DB dichotomous choice data, requires the application of iterative 
numerical techniques. One such approach, and that which has seen almost blanket 
application in the CV literature, is that suggested by Turnbull (1974, 1976). For reasons that 
shall become clear shortly, Turnbull’s approach is called a self-consistent (SC) algorithm 
(Efron, 1967).  

To motivate this method of estimation consider the Kuhn-Tucker conditions (15a-f). The 
primal constraints, (15a), simply restate the montonicity requirements. They ensure that the 
cumulative probability distribution function is monotonically increasing and that the 
probability masses within each equivalence class sum to one. That is to say; 

( ) 1
1

1 =−∑
=

−

J

j
jj FF   (17) 

Moreover, the nullity of the gradient of the Lagrangean, (15d), (15e) and (15f), informs us 
that at a maximum; 

λλλµα ==−=+ 10jj  (j = 1, 2, … , J) (18) 

Multiplying (18) through by ( )1−− jj FF  gives; 

( ) ( ) ( )111 −−− −=−+− jjjjjjjj FFFFFF λµα  (j = 1, 2, … , J)  (19) 

Enforcing the complimentary slackness condition (15c) requires ( ) 01 =− −jjj FFµ , such that 
summing the J equations of (19) and simplifying using (17) provides; 

( ) λα =−∑
=

−

J

j
jjj FF

1
1    (20) 

Notice that our manipulations have employed the Khun-Tucker conditions relating to the 
primal constraints, complementary slackness and vanishing gradients, but not those 
pertaining to the dual constraints (15b).  

Before, completing the derivation of Turnbull’s algorithm let us consider for a moment the 
term ( )1−− jjj FFα  that appears in (20). Expanding using (16) reveals; 

( ) ( )
( )

( )∑∑
∑ ==

=
−

−
− =

−

−
=−

N

i
ij

N

i
J

k
kkik

jjij
jjj

FFd

FFd
FF

11

1
1

1
1 Fδα  (j = 1, 2, … , J)   (21) 

The ratio in the middle expression of (21) defines a conditional probability; the likelihood that 
individual i’s WTP lies in the jth equivalence class, given estimates of the population 
distribution of WTP. These conditional probabilities, labelled ( )Fijδ  (j = 1, 2, … , J; i = 1, 2, 
…, N), have an intuitive interpretation. Imagine we wished to count the number of individuals 
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in the sample whose WTP was contained in each of the equivalence classes. Since an 
individual’s WTP interval might span several equivalence classes, the contribution of that 
observation to the counts must somehow be divided between that set of equivalence 
classes. The ( )Fijδ  (j = 1, 2, … , J; i = 1, 2, …, N) represent just such a division. Indeed, in 
the absence of specific information, the fraction of each observation allotted to each 
particular equivalence class is determined by our estimates of the population distribution of 
WTP across that set of equivalence classes. The dependence of each fraction on our 
estimates of the population distribution of WTP is made explicit by expressing ( )Fijδ  (j = 1, 
2, … , J; i = 1, 2, …, N) as a function of F. 

Summing these probabilities over all individuals in the sample, as in the right hand 
expression of (21), gives the expected number of individuals with WTP in equivalence class 
j. Since, all individuals must have a WTP that lies in at least one of the equivalence classes, 
summing these expectations over all j will simply give the number of individuals in the 
sample, N. Accordingly, we derive an explicit solution for (20); 

( ) ( ) NFF
J

j

N

i
ij

J

j
jjj ==−= ∑∑∑

= ==
−

1 11
1 Fδαλ    (22) 

Substituting this result into the rhs of equations (18), multiplying through by ( )1−− jj FF  and 
rearranging reveals; 

( )
1

1
−

= +=
∑

j

N

i
ij

j F
N

F
F

δ
 (j = 1, 2, … , J) (23) 

Since (15a) dictates that 00 =F  we can solve for Fj  (j = 1, 2, … , 1−J ) recursively deriving 
the general expression; 

( )∑∑
= =

=
j

k

N

i
ikj

N
F

1 1

1 Fδ  (j = 1, 2, …, J – 1) (24) 

These are Turnbull’s self-consistency equations and any set of Fj satisfying (24) are termed 
self-consistent (SC) estimates of the NPML problem. We denote such a set of estimates by 
the 1−J  vector SCF̂  with elements SC

jF̂ (j = 1, 2, … , J − 1). In particular, notice from (24) 
that the Fj appear on both the left-hand and right-hand sides of the 1−J  self consistency 
equations. For this set of equations to hold, therefore, it must be the case that, given the 
data, the vector of probabilities, F, predict themselves. It is in this sense that the vector SCF̂  
is said to be a self-consistent estimate. Moreover, observe the similarity between the self-
consistency equations (24) and the empirical distribution function (2). Rather than calculating 
the cumulative proportion of individuals with WTP less than or equal to Bj, the self-
consistency equations calculate the cumulative proportion of individuals with expected WTP 
of that amount or less. 

As expounded by Turnbull (1976) and, in the context of WTP data, by An and Ayala (1996), 
the format of (24) suggests a simple estimation method; 

1. Select initial parameter estimates )0(F , conforming with the primal constraints, such 
that; 
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1...0 )0()0()0()0(
210 =≤≤≤≤= JFFFF  

2. Use )0(F  to calculate the expected observation fractions in each equivalence class 
according to; 

 ( ) ( )
( )∑

=
−

−

−

−
= J

k
kkik

jjij
ij

FFd

FFd

1

)0(
1

)0(

)0(
1

)0(
)0(Fδ    (j = 1, 2, … , J; i = 1, 2, …, N).  (E) 

3. Obtain new parameter estimates using the standard EDF calculation according to; 

( )∑∑
= =

=
j

k

N

i
ikj N

F
1 1

)0()1( 1 Fδ  (j = 1, 2, … , 1−J )   (M) 

4. Return to step 2 replacing )0(F  with )1(F  

5. Stop when the absolute value of the change in parameters from one iteration to the 
next, falls below a given tolerance level, ε, for all the parameters. That is, the 
parameters are said to have converged when;  

( ) ε<−+

−=

)()1(

1,...2,1
 max t

j
t

j
Jj

FF   (25) 

where t is a counter denoting iterations of the algorithm. 

6. The resulting vector of probabilities are self-consistent estimates, SCF̂ . 

Notice, that initialising the algorithm from starting values, )0(F , that conform with the 
monotonicity constraints (15a),  ensures that in Step 2 each ( ))0(Fijδ   (j = 1, 2, … , J; i = 1, 

2, …, N) is nonnegative. In turn, in step 3 )1(
jF  (j = 1, 2, … , 1−J  ), the updated parameter 

estimates, also conform with the monotonicity constraints. Indeed, we are guaranteed that 
the primal constraints will not be violated at each subsequent iteration of the algorithm. 

As Turnbull (1976) points out, the SC algorithm can be viewed as an EM algorithm 
(Dempster et al., 1977). In this case, the observed data are incomplete insomuch as each 
observation indicates the range of equivalence classes but not the particular equivalence 
class within which a respondent’s WTP is contained. The E-step of the algorithm (step 2 
above) calculates the expected value of the complete data conditional on a set of initial 
parameter estimates and the M-step of the algorithm (step 3 above) maximises the log 
likelihood of this expected data so as to provide a new set of parameters estimates. The 
properties of the EM algorithm are well-established. In particular, Dempster et al. (1977) 
show that at each iteration of the EM algorithm, the objective function is monotonically 
increasing. That is to say, we can be certain that ( )( ) ( )( )dFdF |ln|ln 1 tt LL ≥+  for each step 
of Turnbull’s algorithm. Moreover, Nettleton (1999) building on the work of Wu (1983), 
provide theorems that prove that the sequence of iterations of Turnbull’s algorithm will 
converge to a fixed point; that is to a set of self-consistent estimates.  
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4. TROUBLES WITH TURNBULL: CONVERGENCE TO NPML ESTIMATES 

A fundamental question remains to be addressed; are a set of self-consistent estimates, 
SCF̂ ,  resulting from the convergence of Turnbull’s algorithm necessarily the unique set of 

NPML estimates, MLF̂ , that we seek? 

Recall that the self-consistency equations (24) are derived directly from the Khun-Tucker 
conditions characterising the NPML problem (15a-f). As a matter of fact, in deriving the self- 
consistency equations we made use of only five of those six conditions (15a,c-f). Since, by 
definition, the unique NPML estimates, MLF̂ , must also conform to these five conditions, 
they must be self-consistent estimates. However, in general, the reverse is not true. Indeed, 
as illustrated by Gu and Zhang (1993), there may be several parameter vectors SCF̂  fulfilling 
the self-consistency equations, only one of which is the NPML solution vector MLF̂ . 

In particular, observe that the derivation of the self-consistency equations did not involve 
enforcing the dual constraints; that is, non-negativity of the Lagrange multipliers 0≥jµ  (j = 
1, 2, … , J)  (15b). Accordingly, there may exist locations in the parameter space at which 
the parameter estimates fulfil the self-consistency equations but are characterised by one or 
more negative Lagrange multipliers. Such self-consistent estimates will not be the maximum 
likelihood estimates that we seek. 

Of course, the complimentary slackness conditions (15c) intimate that non-zero values for 
Lagrange multipliers must be associated with locations where one of the montonicity 
constraints are binding (i.e. where SC

j
SC
j FF 1

ˆˆ
−=  for some j). These alternative self-consistent 

locations must, therefore, be found on one of the boundaries of the feasible parameter 
space. As pointed out by Gentleman and Geyer (1994), such locations must represent 
maxima with respect to the log likelihood along that boundary, but are not stationary points 
of the log-likelihood in general. Moreover, since the Lagrange multiplier at this location is 
negative, moving away from such a location into the interior of the feasible parameter space 
must increase the log-likelihood.  

Observe Figure 1 which displays the log-likelihood surface for a hypothetical dataset with 
fifteen observations defining three equivalence classes (J = 3). We wish to find the NPML 
estimates of the probability density function for this data. By construction of equivalence 
classes, it must be the case that the probability density function at the lower bound of the 
first equivalence class, F0, is equal to zero and that at the upper bound of the third 
equivalence class F3, is equal to one. Accordingly, our problem reduces to a two-
dimensional problem of finding values of F1 and F2 (the probability density function at the 
upper bound of the first and second equivalence classes respectively) that maximise the log-
likelihood for this data. 

The left-hand panel of Figure 1 shows a three-dimensional relief of the log-likelihood surface 
for this data. A contour line representation of the same surface is shown in the right-hand 
panel. Notice that the monotonicity constraints on the probability density function 
( 10 3210 =≤≤≤= FFFF ) restrict the feasible space to an area above the off-diagonal in 
the unit square.  
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Figure 1: NPML and SC locations on the log-likelihood surface; three-dimensional and 
contour representations of a hypothetical two parameter problem  

 

As foreseen, the log-likelihood is strictly concave with a maximum at the point labelled A 
where F1 = 0.2857 and F2 = 0.75. Indeed, this is a self-consistent location to which Turnbull’s 
algorithm will converge when initiated from most starting parameters within the feasible 
space. However, observe location B on the likelihood surface where F1 = F2 = 0.5333. This 
location represents a maximum with respect to the boundary of the feasible region imposed 
by the constraint 21 FF ≤ . Location B is also a self-consistent location and, as we shall see, 
Turnbull’s algorithm will converge to this location when initiated from particular feasible 
starting parameters.  

Table 1 documents some pertinent statistics regarding characteristics of the two self-
consistent locations, A and B. The final column lists the values of the Lagrange multipliers 
which can be calculated easily by deriving the following expression from the manipulation of 
(18) and (22); 

jj N αµ −=  (j = 1, 2, … , J) (26) 

Notice that location A is the unconstrained maximum of the log-likelihood function. 
Accordingly, the gradient vector is zero and, since none of the constraints are binding, each 
Lagrange multiplier is also zero. In contrast, at location B the gradients are not zero and the 
Lagrange multiplier associated with the second constraint ( 21 FF ≤ ) is negative. Whilst it can 
easily be verified from Table 1 that location B satisfies each of the Kuhn-Tucker conditions 
from which the self-consistency equations are derived, it violates the dual constraints and, 
therefore, cannot be a constrained maximum of the log-likelihood function. 

 

 

 

 

 

 

A 
A B 

B 
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Table 1: Characteristics of self-consistent locations A and B  

Equivalence 
Class 

(j) 

Probability 
(Fj) 

Gradient 
(gj) 

Alpha 
(αj) 

Lagrange 
Multiplier 

(µj) 

Location A:  

1 0.2857 0 15 0 

2 0.7500 0 15 0 

3 1  15 0 

Location B:  

1 0.5333 -6.9643 15 0 

2 0.5333 6.9643 21.9643 -6.9643 

3 1  15 0 
 

The existence of multiple SC locations in the feasible parameter space has long been 
recognised by authors outside the field of environmental economics. (e.g. Gu and Zhang, 
1993; Gentleman and Geyer, 1994; Mykland and Ren, 1996; Wellner and Zhan, 1997). 
Indeed, Mykland and Ren (1996) report the results of a simulation exercise that indicate that. 
in a moderate sample size, the NPML location is a better estimator of the true population 
probability distribution function than an arbitrarily selected SC location (that is not the NPML 
location).2 Moreover, this ‘trouble’ with Turnbull’s algorithm has been advanced by certain 
authors as a reason to prefer alternative estimators that unfailingly converge to the NPML 
estimates (Wellner and Zhan, 1997). 

As a matter of fact, the problem is not as troubling as it might at first appear. Consider Figure 
2. Using the same data as that illustrated in Figure 1, the three panels show the steps taken 
by Turnbull’s SC algorithm from three different initial parameter vectors, C1, C2 and C3. 

Figure 2: Location of iterations of Turnbull’s SC algorithm from various starting 
parameters to convergence (ε = 10-5) 

 

                                                 

2 As a matter of fact Mykland and Ren (1996) consider data subject to a slightly different censoring scheme than 

that considered here, though their results will apply equally to interval-censored data.  
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Notice that when the starting parameters are well away from the boundary of the feasible 
parameter space (C1) the algorithm finds its way reasonably directly to the NPML estimates 
(location A). When the algorithm is initiated from a location comparatively close to the 
boundary (C2), the algorithm may require relatively more iterations but still converges to the 
NPML estimates. Indeed, in order to force Turnbull’s algorithm to converge on a SC location 
along a particular boundary (location B), a set of starting parameters must be selected that 
are arbitrarily close to that boundary of the feasible space (C3).  

The reason for this observed pattern is clear. As we have shown, the log-likelihood function 
is concave and the feasible space is delineated by a set of monotonicity constraints that 
define a convex set (indeed, a finitely-generated convex cone). As a consequence, at every 
location in the feasible parameter space, barring the NPML location, there exists a direction 
in which the log-likelihood is increasing. Moreover, a property of Turnbull’s algorithm (and 
more generally EM algorithms) is that the log-likelihood function is non-decreasing with each 
iteration. Accordingly, even at locations arbitrarily close to a SC location such as B, the 
algorithm will continue to clamber uphill to the NPML estimates at the summit.3  

Be that as it may, around SC locations, Turnbull’s algorithm takes arbitrarily small steps. 
Accordingly, if the algorithm arrives close to such a location then the step length may fall 
below the tolerance limit defining convergence, ε, and the iterations may cease. It turns out, 
that the algorithm will only arrive at an SC location that is not the NPML location under two 
circumstances. First, if the iterations are initiated from very close to that SC location itself. 
Second, if the iterations are initiated from any other location that is very close to the 
boundary upon which the SC location is situated.4  

This characterisation suggests two possible solutions to this problem with Turnbull’s SC 
algorithm. First, one should avoid choosing starting parameters close to the boundary of the 
feasible parameter space. Indeed, Turnbull (1976) himself indicates that starting parameters 
should be strictly in the interior of the parameter space, that is; 

1...0 )0()0()0()0(
210 =<<<<= JFFFF    (27) 

Second, one might adopt a convergence criterion that does not depend on step length. In 
particular, we would like to confirm that a candidate location conforms to the Kuhn-Tucker 
conditions (15a-f). Wellner and Zhan (1997) propose a set of stopping criteria that check 
compliance of the candidate solution with the complementary slackness and gradient 
conditions. Of course, such criteria do not protect against SC locations that are not the 
NPML estimates. Accordingly, we propose broadening Wellner and Zhan’s stopping criteria 
to ensure that a candidate solution also complies with the dual constraint conditions 

                                                 

3 More formally, this property follows from Corollary 1 of Theorem 2 proved by Nettleton (1999) for the 
specific case in which the objective function is globally concave. 
4 In the latter case it matters how many observations lie wholly within the equivalence class defined by the 
constraint boundary (i.e. equivalence class j for the boundary defined by the constraint jj FF ≤−1 ). When there 
are very few observations wholly within equivalence class j and the starting parameters are such that the 
difference between )0(

jF and )0(
1−jF  is close to zero, then the expected number of observations in equivalence 

class j, calculated in the E-step of Turnbull’s algorithm, will also be close to zero. In turn, the absolute 
difference in the values of )1(

jF and )1(
1−jF , estimated in the M-step of Turnbull’s algorithm, will itself be very 

small. In such situations, the algorithm may take numerous iterations to struggle away from that boundary, in 
which time it may skirt close to the SC location at the maximal value of the log likelihood along that boundary.  
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stipulating non-negativity of the Lagrange multipliers.5 Our proposed stopping criteria are as 
follows; 

ε<∑
−

=
j

J

j
j gF ˆˆ

1

1

  (28a)   ε<∑
−

=

1

1

ˆ
J

j
jg   (28b)     

εµ <jˆ   if  jµ̂ < 0 (j = 1, 2, …, J)  (28c) 

where jF̂  (j = 1, 2, … , 1−J ) is a candidate solution, jĝ  (j = 1, 2, … , 1−J ) and jµ̂  (j = 1, 
2, … ,J)  are respectively the gradients (11) and Lagrange multipliers (26) calculated at that 
location and ε is some small value. The first criteria (28a) is derived by subtracting the J 
complementary slackness equations (15c) from one another, observing from (11), (16) and 
(15f) that jjjjjg µµαα −=−= ++ 11  (j = 1, 2, … , 1−J ) and noting that at the NPML 

location 01 =µ  and 0=Jµ .6 The second criteria (28b) is derived by observing that the 
gradient conditions (15f) indicate that at a maximum, 211 +++ −= jjj g µµ  (j = 1, 2, … , 1−J ) 
and that this relationship can be recursively replaced in the first of the gradient conditions 
and the resulting expression simplified by setting 01 =µ , 0=Jµ  and 121 g=−αα . The 
third criteria (28c) simply checks that the dual constraints are not contravened.  

As pointed out by Gentleman and Geyer (1994) all of the quantities in (28) are calculated 
during the self-consistent step. Moreover, at each iteration, the three criteria may be 
evaluated sequentially, if one of the criteria is not met then the candidate solution can be 
rejected without the other criteria being tested. Accordingly, the stopping criteria in (28) add 
little computational effort to each self-consistent step and, provided the algorithm is initiated 
from a strictly interior location in the parameter space, guarantee convergence of Turnbull’s 
SC to NPML estimates. 

                                                 

5 In essence, a comprehensive set of convergence criteria such as these is anticipated by Gentleman and Geyer 
(1994) and underpins Mykland and Ren’s (1996) proposal that the algorithm should be restarted from alternative 
initial values if non-negativity of the Lagrange multipliers cannot be confirmed for a candidate solution. 
6 The latter two equalities following from the observation that the construction of equivalence classes dictates 
that at least one observation falls entirely within the first equivalence class and that at least one observation falls 
entirely within the Jth equivalence class. Consequently, the NPML estimates must attribute positive probability 
mass to the first and Jth equivalence classes such that complementary slackness requires µ1 = µJ = 0. 
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5. TROUBLES WITH TURNBULL: SPEED OF CONVERGENCE AND ALTERNATIVE 
ESTIMATORS 

A number of estimation problems require that NPML estimates are calculated very many 
times. For example, one might wish to employ bootstrapping methods in order to determine 
nonparametric confidence intervals for the NPML estimates themselves or for the lower-
bound mean WTP estimate calculated from them. Similarly, certain semiparametric 
estimators (e.g. that proposed by Huang and Wellner, 1996), that investigate the influence of 
covariates on the nonparameteric distribution of WTP, require repeated calculation of NPML 
estimates. The time demands of such procedures are often prohibitive such that great stock 
is placed on the use of estimators that converges rapidly. Regrettably, there is extensive 
evidence indicating that Turnbull’s algorithm can be extremely slow to converge (e.g. 
Wellner and Zhan, 1997, Jongbloed, 1998, Zhang and Jamshidian, 2004).  

Whilst CV practitioners have relied almost exclusively on Turnbull’s SC algorithm in order to 
solve the NPML problem for Type 2 interval censored data, an abundance of alternative 
estimators have been developed in other fields of research to solve the same problem. A 
further objective of this paper is to introduce to practitioners of contingent valuation a series 
of alternative NPML estimators drawn from the extensive mathematical programming 
literature. As we shall detail in the following section, certain of these estimators converge 
much more rapidly than Turnbull’s algorithm when applied to typical contingent valuation 
data sets. 

5.1 Sequential Quadratic Programming 

Sequential Quadratic Programming (SQP) is perhaps the most widely applied method for 
solving constrained optimisation problems like the NPML problem (see Boggs and Tolle, 
1995 for a discussion of the history and development of SQP). SQP consists of a family of 
iterative algorithms in which a simpler sub-problem involving a quadratic approximation to 
the objective function is solved at each iteration. Indeed, SQP methods can be regarded as 
the extension of Newton and Newton-like methods to constrained optimisation. 

To illustrate the application of a SQP method to the NPML problem, consider taking a Taylor 
series expansion of the log-likelihood function around the parameter estimates at iteration t, 

( )tF , in order to obtain the local quadratic approximation; 

( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )tttttttttt LL FFHFFgFFFF −
′

−+
′

−+≈ ++++ 1111

2
1lnln    (29) 

where ( )tg  and ( )tH  are respectively the vector of gradients (11) and the Hessian matrix 
(12) evaluated at ( )tF . The sub-problem at this iteration is to find ( )1+tF  that maximises (29) 
subject to the monotonicity constraints; ( ) ( ) ( ) 1...0 11

1
1

0 =≤≤≤= +++ t
J

tt FFF . In this context it is 
usual to reformulate those constraints as follows; 

( ) bAF ≥+1t  (30a)  ( ) 01 ≥+tF   (30b) 

where A is a 1−J  square matrix with each element of the main diagonal being -1, each 
element of the first upper diagonal being 1, and all other elements 0, whilst b is a 1−J  
vector of zeros with the value of the 1−J th element set to −1. The Khun-Tucker conditions 
characterising a maximum of this problem take the form; 

( ) ( ) ( ) ( ) ( )ttttt FHgAγFHν −+−= +1   (31a) 

( ) bAFs −= +1t
  (31b) 
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( ) 0,,,1 ≥+
jjj

t
j sνγF  (j = 1, 2, … , 1−J ) (31c) 

( ) 01 =+
j

t
j νF , 0=jj γs  (j = 1, 2, … , 1−J ) (31d) 

where γ  and ν  are both 1−J  vectors representing the Lagrange multipliers on the 
inequality constraints (30a) and non-negativity constraints (30b) respectively. Solving these 
first order necessary conditions for ( )1+tF  is made easy by observing that they are in the 
form of a linear complementarity problem (LCP) which seeks to find vectors w and z 
satisfying; 

qMzw +=   (32a)  

0,0 ≥≥ jj zw  (j = 1, 2, … , 1−J ) (32b) 

0=jj zw  (J = 1, 2, … , 1−J ) (32c) 

where w, z and q are all ( )12 −J  vectors with 
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 is a ( )12 −J  square vector. Numerous fast 

algorithms are available for solving the LCP (Cottle et al. 1992). In the empirical applications 
described in the next section we adopt a variant of the simplex algorithm.  

Typically, each iteration is augmented by a line search between ( )tF  and ( )1+tF
)

 (the vector 
of parameter estimates derived from solution of the LCP) in which a value for ( ) [ ]1,0∈tα , 
the step size, is chosen such that the objective function (or more generally some merit 
function) falls sufficiently from one iteration to the next. In the empirical applications in the 
next section, we employ a line search procedure suggested by Jongbloed (1998). The 
parameters are updated according to; 

( ) ( ) ( ) ( ) ( )( )ttttt FFFF −+= ++ 11 )
α   (33) 

and iterations are continued until convergence.  

Convergence results for SQP methods are well-established. Indeed, under appropriate 
assumptions, the iterative process should converge quadratically on a local maximum (see, 
for example, Theorem 3.1 in Boggs and Tolle, 1995). 

To provide a comparison of the solution paths followed by the SQP algorithm and Turnbull’s 
SC algorithm observe Figure 3. Once again, the log-likelihood surface illustrated in the 
various panels of Figure 3 is based on a hypothetical dataset consisting of fifteen 
observations defining three equivalence classes. In contrast to the data generating Figures 1 
and 2, however, the log-likelihood function reaches a maximum on the boundary of the 
feasible parameter space at a location at which F1= F2. Panel (a) of Figure 3 shows the 
vector of parameter values at each iteration of Turnbull’s SC algorithm. Observe that 
Turnbull’s algorithm remains strictly in the interior of the feasible parameter space and takes 
progressively shorter steps as it approaches the maximum. In contrast, Panel (b) shows the 
parameter values at each iteration of the SQP algorithm. Notice that the SQP algorithm hits 
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the boundary of the feasible parameter space after 3 iterations and makes its way to the 
maximum by working along this boundary.   

Figure 3: Convergence paths for iterations of various NPML estimators 

 

 

 

 

5.2 The Barrier Method 

Another solution method for optimising a constrained problem such as (10) is provided by 
the barrier method (one of a large class of solution methods known as interior point 
methods). As a result of theoretical developments which showed their potential speed 
(Karmarkar, 1984), this class of solution methods has been the focus of considerable 
attention in the optimisation literature over recent years (see Forsgren et al., 2002, for a 
discussion of the history and development of interior point methods). 

Whilst SQP progresses through simplifying the objective function and solving a sequence of 
constrained problems, the barrier method solves a sequence of unconstrained problems by 
modifying the objective function in such a way that the constraints cannot be violated. In 
particular, the demands of the constraints are captured by specifying a barrier function 
whose value tends to negative infinity as the parameter estimates approach the boundary of 
the feasible parameter space. At each iteration the barrier function is added to the objective 
function and the composite function maximised using standard methods of unconstrained 
optimisation.  

Adopting the popular logarithmic barrier specification results in a composite function for the 
NPML problem as follows; 

( )( ) ( ) ( ) ( )∑
=

−−+=
J

j
jj

tt FFLB
1

1lnln, µµ FF   (34) 

a) SC b) SQP c) Barrier Method 

d) ICM e) GR f) Hybrid SC-ICM 
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where ( )tµ  is a weighting parameter for iteration t.   

Iterations are initiated from a strictly interior point of the feasible parameter space. Choosing 
a ‘large’ initial value for µ ensures that the first iterate returns parameters that are well away 
from the boundary of the feasible space. At each iteration, the value for µ is systematically 
reduced such that the composite function ( )µ,FB  increasingly resembles the original 
objective function. Indeed, intuition suggests that estimates of F that maximise ( )µ,FB  for a 
sequence of positive µ values converging on zero, will be the NPML parameter estimates 
themselves. Indeed, given appropriate assumptions, the limit point of the parameter 
estimates from such a sequence can be shown to converge on the global solution to the 
constrained problem (see, for example, Theorem 3.8 in Forsgren et al., 2002). 

The convergence path for iterates of the barrier method are shown in Panel (c) of Figure 3. 
Notice how the iterates remain strictly within the feasible parameter space such that the 
algorithm approaches the maximising location on the boundary from the interior.  

5.3 Iterative Convex Minorant Algorithm 

Maximising the quadratic approximation to the NPML problem (29) indicates that a possible 
update at each iteration, t, is provided by;  

( ) ( ) ( ) ( )tttt gWFF
11~ −+ +=   (35) 

When ( )tW  is set equal to ( )tH−  this is simply a standard step in Newton’s method for 
unconstrained optimisation. As is well known, a whole class of Newton-like methods can be 
derived by setting ( )tW  equal to some other positive definite matrix. For example, if 

( ) IWW ==t , where I  is the identity matrix, then we have the method of steepest ascent.  

Of course, Newton-like methods do not guarantee that the parameters at each iterate will fall 
within the feasible parameter space. One solution to this problem is provided by the 
generalised gradient projection (GGP) method (Bertsekas, 1982). At each iteration, the 
parameter values indicated by a Newton-like step are projected back onto the feasible 
parameter space, denoted Ω, in the metric of W. That is to say, at each iteration the 
parameter updates are given by; 

( ) ( )( ) ( )( ){ }Ω∈−′−= +++ FFFWFFF
F

111 ~~minarg ttt   (36) 

Obviously, if ( )1~ +tF  is itself in the feasible space, then the GGP method will take a full 
Newton-like step.  

Pan (1999), showed that the iterative convex minorant (ICM) algorithm originally proposed 
by Groenboom (1991) and Groenboom and Wellner (1992) to solve the NPML problem was 
actually a GGP method. Specifically, the ICM algorithm is a GGP method in which 

( )tt DW −=)( , the diagonal matrix with the same diagonal elements as ( )tH− . In this special 
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case, the update in (35) and the projection in (36) reduce to a rather simple sequential 
calculation7.  

• To begin with, set the parameter updates to their unconstrained Newton-like updates; 
that is ( ) ( )11 ~ ++ = tt FF . Then, beginning with j = 1 check to see if these updates 
comply with the montonicity constraints.  

• If ( ) 01 <+t
jF  then update ( ) 01 =+t

jF  and move on to consider the next parameter. 

• If ( ) ( )11 ++ ≤ t
k

t
j FF  for 1...,,2,1 −++= Jjjk , then the Newton-like update does not 

violate the monotonicity constraints for this parameter and we can move on to 
consider the next parameter. 

• If the montonicity constraints are violated for ( )1+t
jF  then beginning with 1=k we 

create a new, ‘pooled’ update according to; 

( ) ( ) ( ) ( )( ) ( )∑∑
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where ( )t
llD  is the ( )ll , th element of ( )tD , and set ( ) ( )11 ++ = t

j
t

l FF  ( )kjjl ++= ,...,1 . 

After each pooling we check to see if the montonicity constraints now hold for ( )1+t
jF . 

If the constraints are still violated then the pool is expanded by incrementing k until 
montonicity with respect to ( )1+t

jF  is achieved and we can move on to consider the 
next parameter. 

• Finally, any ( )1+t
jF  ( )1,...,2,1 −= Jj  greater than unity is set equal to 1.  

Once again, the algorithm may be supplemented at each iteration with a line search between 
( )tF  and ( )1+tF . Indeed, Jongbloed (1998) proposes a particular criterion by which the step 

size might be selected and proves that the ICM algorithm when augmented with such a line 
search is globally convergent. We employ Jongbloed’s line search in our empirical 
application in the next section.  

Panel (d) of Figure 3 illustrates iterates of the ICM algorithm. The hollow circles illustrate 
how certain iterations result in Newton-like steps that fall outside the feasible parameter 
space. The dashed lines indicate the projection of such steps back onto the feasible space 
by the ICM algorithm. Notice from the final iteration that once at the maximising location the 
algorithm projects directly back onto itself.  

5.4 Generalised Rosen Algorithm 

The estimator proposed by Rosen (1960) for solving constrained optimisation problems is an 
early example of a class of estimators referred to as active set methods. Rosen’s algorithm 
                                                 

7 Groeneboom and Wellner (1992) describe how this computation has a graphical interpretation as the left 
derivatives of the greatest convex minorant of a cumulative sum diagram consisting of the points P0 = ( )0,0  and 
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, (j = 1, 2, … , 1−J ). 
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begins in the interior of the feasible parameter space and progresses in Newton-like steps. If 
a Newton-like step traverses the boundary of the feasible parameter space then the step is 
curtailed at the boundary. A subsequent line search between this location on the boundary 
and the iterate’s starting parameter values establishes whether the iterate makes the full 
step to the boundary or terminates somewhere in the interior of the parameter space. In the 
former case, the constraint defined by that boundary is added to the active set, Ψ. Since the 
constraints in Ψ are assumed to hold at a maximum, all subsequent iterates must move 
along, but not away from, the boundaries of the feasible region defined by the constraints in 
the active set. Similar to GGP methods, this is achieved by projecting each Newton-like step 
on to the null space of the set of active constraints.  

Moreover, if other constraints are violated in ensuing iterations, these too are added to the 
active set. Iterations continue until the change in the absolute values of the parameters from 
one iteration to the next falls below some critical level (as per 25). At that stage, the 
algorithm checks the Lagrange multipliers associated with the active constraints. If each the 
Lagrange multiplier is non-negative then the parameter estimates maximise the NPML 
problem. Alternatively, if one or more of the Lagrange multipliers are negative then the 
constraint associated with the smallest Lagrange multiplier is dropped from the active set 
and iterations are resumed. Global convergence of Rosen’s algorithm was established by Du 
and Zhang (1989). 

Rosen’s original algorithm assumed W equal to the identity matrix. In this case, the Newton-
like step reduces to the method of steepest ascent and at each iteration such steps are 
projected orthogonally on to the null-space of the constraints in the active set. Jamshidian 
(2004) proposed a generalisation of Rosen’s algorithm in which W is any positive definite 
matrix that can differ from iteration to iteration. In this case, projection of each Newton-like 
step onto the null-space of the active constraints is in the metric of W. Jamshidian (2002) 
proved that this algorithm was globally convergent.  

Zhang and Jamshidian (2004) have applied this generalised Rosen algorithm to the NPML 
problem.  Moreover, by selecting ( )tt DW −=)( , as in the ICM algorithm, they ensure that the 
projection is relatively simple to calculate.8 In particular, the NPML problem obliges 
parameter estimates to conform to the sequence of J constraints, 

1...0 )()()()(
1221 ≤≤≤≤≤≤ −−
tttt

JJ FFFF , then; 

• if the first m constraints are in the active set then 0)1( =+t
jF  (j = 1, …, m). 

• if the last m constraints are in the active set then 1)1( =+t
jF   (j = mJ − , …, 1−J ). 

• if the active set does not constrain jF  (i.e. the jth and ( )1+j th constraints do not hold) 

then its value is updated with a standard Newton-like step; ( ) ( ) ( ) ( )t
jj

t
j

t
j

t
j DgFF −=+1 . 

• if the kth to ( )mk + th constraints are in the active set, whilst the ( )1−k th and 
( )1++mk th constraints are not, then the 1+m  parameters constrained by this 
sequence of constraints are updated according to; 

                                                 

8 Zhang and Jamshidian (2004) present their GR algorithm in terms of the interval probabilities 1−−= jjj FFp  
(j = 1, 2, …, J). For continuity of exposition we present the same analysis in terms of jF .  
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Panel (e) of Figure 3 illustrates iterates of the GR algorithm with the hollow circles and 
dotted lines indicating projections. Notice how the first two steps of the GR algorithm are the 
same Newton-like steps as taken by the ICM algorithm9. The third iterate, however, steps 
outside the feasible parameter space and is curtailed at the boundary. The constraint 
defining this boundary is added to the active set and subsequent iterations are projected 
back onto this boundary until the algorithm converges. 

5.5 Hybrid Algorithms 

A final set of estimators comprise hybrid algorithms in which each step of the algorithm is 
augmented with a single self-consistency step. Wellner and Zhan (1997) proposed a hybrid 
ICM-SC algorithm and proved its global convergence. Panel (f) of Figure 3 illustrates iterates 
of the ICM-SC algorithm where each iteration is taken as a SC step followed by an ICM step. 
Notice the apparently rapid convergence of the hybrid algorithm. Likewise, Zhang and 
Jamshidian proposed a hybrid GR-SC algorithm in which each iteration involves a SC step 
followed by a GR step. In a similar vein, we commence iterations of our BM and SQP 
algorithms with a single SC step. Moreover, very occasionally, we observe that problems of 
machine precision prevent the SQP algorithm from finding an improving step when very 
close to a maximum.10 In such circumstances we find that nudging the algorithm with a 
single SC step precipitates rapid convergence.  

                                                 

9 Moreover,  both algorithm’s initial iterates closely resemble the full Newton steps made by the SQP algorithm. 
This will likely be the case when each observations’s interval spans relatively few equivalence classes such that 
the Hessian matrix of the NPML problem contains relatively  few non-zero off-diagonal elements  
 

10 In our simulation studies, we encounter this problem only in our across-interval censored data set and then in 
less than 1% of our bootstrap samples.  
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6. MONTE CARLO COMPARISON OF NPML ESTIMATORS 

Various authors have carried out simulation studies to compare the performance of different 
algorithms in solving the NPML problem for Type 2 interval-censored data. Jongbloed (1998) 
compares the ICM and SC algorithm and reports that the ICM algorithm massively 
outperforms Turnbull’s SC algorithm both in terms of the number of iterations and the 
computing time needed to attain convergence. Zhang and Jamshidian (2004) compare 
Turnbull’s SC algorithm with both naïve GR and ICM algorithms and hybrid GR-SC and ICM-
SC algorithms. In their simulations they find that Turnbull’s SC algorithm is by far the slowest 
to converge whilst the ICM and ICM-SC algorithms outperform the GR and GR-SC 
algorithms. Similarly, Wellner and Zhan (1997) compare the performance of Turnbull’s 
algorithm and the hybrid ICM-SC algorithm but in the context of doubly-censored data (a 
censoring pattern in which the data contains both Type 1 interval-censored and point 
observations). Again the hybrid algorithm is found to converge hugely faster than Turnbull’s 
SC algorithm. Moreover, the performance advantages of the hybrid algorithm are shown to 
increase with sample size. 

The simulated data sets used in these previous studies differ significantly from that returned 
by a typical dichotomous-choice CV survey. In particular, in the simulated data sets, a 
unique interval is randomly generated for each observation such that the NPML problem will 
tend to have a very large number of equivalence classes (i.e J will be very large). In contrast, 
each observation in a dichotomous-choice CV survey will indicate an interval whose upper 
and lower bounds will be drawn from the small number of bid amounts (typically less than 
10) stipulated in the survey design (see Section 2). Accordingly, the NPML problem for data 
from CV surveys will tend to have relatively few equivalence classes (i.e J will be small). 

The Monte Carlo experiments we describe here, therefore, represent the first comparison of 
the performance of the SC, ICM, GR and hybrid algorithms to a data generating process that 
resembles that for dichotomous choice CV data. Moreover, as far as we are aware, our 
experiments are the first to compare the performance of these estimators to that of the SQP 
and BM algorithms in the context of the NPML problem for Type 2 interval-censored data. 

Our experiments differ from previous studies in one further respect. Rather than randomly 
generating data from some know parametric distribution we choose to generate bootstrap 
samples from actual CV data sets. As described subsequently we make use of two different 
data sets, one from a DB dichotomous choice CV survey, the other from a OOHB 
dichotomous choice CV survey. In both cases we generate 1,000 bootstrap samples each 
containing 1,000 observations and record for each sample the number of iterations and 
computing time required to achieve convergence for each of the seven estimators described 
in the previous section. 

For each bootstrap sample the problem is first reduced by identifying equivalence classes. 
Moreover, since both surveys specify less than 10 bid amounts, the same sets of 
equivalence classes are spanned by numerous observations in each bootstrap sample. We 
take advantage of this by first aggregating the data into a series of counts recording the 
number of observations spanning each particular sequence of equivalence classes. All 
subsequent calculations use the aggregated data, reducing their computational requirements 
from order N to order s ( ∑ =

≤
J

j
js

2
) floating operations.11 Unlike previous simulation studies, 

therefore, the relative performance of the various algorithms should be independent of the 
sample size.  

                                                 

11 Zhang and Jamshidian (2004) exploit similar computational gains in the somewhat simpler case of doubly 
censored data. 
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For each sample and each algorithm we use the same starting values, namely ( ) JjFj =0  (j 
= 1, 2, …, 1−J ) which conform to (27), and the same convergence criteria, namely (28a-c) 
with 410−=ε . The algorithms and bootstrap procedure were written in the GAUSS matrix 
programming language12 and the computations carried out on a Dell workstation with a 
2.8GHz Intel Pentium 4 processor and 512Mb of RAM. 

The first of the two data sets used in the analysis comes from a CV survey carried out in the 
Beijing metropolitan area of China in 1997 (Day and Mourato, 1998). The data consists of a 
sample of 829 responses to DB dichotomous choice questions eliciting WTP for surface 
water quality improvement in the Beijing region. The bid design used in this study is one 
commonly applied in DB dichotomous choice surveys. Each respondent is randomly 
allocated an initial bid amount, Bm ( Mm <<1 ) (in this survey there were 7 positive bid 
amounts such that M = 7). A “no” response to the initial bid amount precipitates a second 
dichotomous choice question asking the respondent to consider the next lowest bid amount 

1−mB , whilst a “yes” responses leads to a second question offering the next highest bid 
amount 1+mB . The consecutive nature of the bids used in this design leads to a particularly 
simple form of Type 2 interval-censored data. Observations are either below the lowest bid 
amount offered (left-censored), above the highest bid amount offered (right-censored) or 
contained entirely within an interval described by a single equivalence class. An and Ayala, 
(1996) describe this data pattern as regular interval-censoring. Moreover, the NPML 
estimates for this data describe an interior solution, though this will not necessarily be the 
case for each bootstrap sample. The results of the Monte Carlo experiments based on this 
data set are reported in Table 2.  

Table 2: Monte Carlo comparisons of NPML estimators applied to a contingent 
valuation dataset with regular-interval censoring (based on 1,000 bootstrap samples) 

No. of  Iterations Computing time (secs) 
Algorithm 

Mean s.d. Mean s.d. 

SC 44.6 4.65 0.0100 0.0007 

ICM 128.1 44.25 0.0390 0.0125 

ICM-SC 21.2 2.74 0.0117 0.0012 

GRF* 129.3 46.91 0.0480 0.0172 

GRF-SC 21.2 2.69 0.0130 0.0014 

SQP 5.8 0.84 0.0075 0.0007 

BM 5.2 0.39 0.0919 0.0216 

* In one case the GRF algorithm failed to converge after 10,000 iterations. This iterate is not 
included in the calculation of the bootstrap statistics. 

It is apparent from Table 2 that Turnbull’s SC algorithm performs rather well for this 
particular data configuration; a finding that is in sharp contrast to the simulation studies 

                                                 

12 The data reduction procedures, the SC algorithm and parts of the ICM algorithm are adapted from the 
“Nonparametric density estimator for CVM data” written by Olvar Bergland of the Agricultural University of 
Norway. The SQP algorithm contains a solver for the linear complementarity problem written by Rob Dittmar 
of the Federal Reserve Bank of St. Louis. The rest of the code was written by the author and is available on 
request.  
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reported in the literature. Indeed, of the various algorithms, only the SQP algorithm 
converges faster. Furthermore, it is apparent that naïve applications of the ICM and GRF 
algorithms perform considerably worse than their hybrid counterparts converging over 3 
times slower and requiring over 6 times more iterations. The poorest performance is 
recorded for the BM algorithm with convergence taking, on average, almost a tenth of a 
second.  

Overall, however, the algorithms converge pleasingly quickly. Indeed, whilst comparisons 
are difficult because of differences in convergence criteria, the convergence times reported 
in Table 2 are several orders of magnitude smaller than those reported for equivalent-sized 
data sets in Jongbloed (1998) and Zhang and Jamshidian (2004). It appears that the 
comparatively simple censoring mechanism generating this type of CV data coupled with the 
application of algorithms that take advantage of a relatively small number of equivalence 
classes, yields very considerable performance improvements in the solving of NPML 
problems. 

To put these results into perspective, applying the SQP algorithm to this data set would allow 
one to run a 1,000 iteration bootstrap procedure in just 7½ seconds. The comparative figure 
for application of the BM algorithm would be a little over 1½ minutes. 

The second data set used in this study, comes from a CV survey carried out in Norfolk in the 
UK in 2003 (Bateman et al., 2004). The data comprise a sample of 1,254 responses to a 
OOHB dichotomous choice question eliciting WTP for water quality improvements in the 
Norfolk Broads. The bid design for this survey paired together various combinations of 9 
positive bid amounts (M = 9). Importantly the two bid amounts in any pair were not 
necessarily consecutive amounts in the bid design. Each respondent was randomly 
allocated a particular pair and asked one or more dichotomous choice questions which 
identified their WTP interval as being below the lower bid amount (left-censored), above the 
higher bid amount (right-censored) or contained in the interval between the two bid amounts. 
In this case, individual WTP intervals could span more than one equivalence class. An and 
Ayala, (1996) describe this data pattern as across-interval censoring. What is more, the 
NPML estimates for this data set describe a corner solution in which MLML FF 65

ˆˆ = , though 
again, this will not necessarily be the case for each bootstrap sample. The results of the 
Monte Carlo experiments based on this data set are shown in Table 3. 

Table 3: Monte Carlo comparisons of NPML estimators applied to a contingent 
valuation dataset with across-interval censoring (based on 1,000 bootstrap samples) 

No. of  Iterations Computing time (secs) 
Algorithm 

Mean s.d. Mean s.d. 

SC 1120.2 1250.01 0.3309 0.4137 

ICM 42.7 5.31 0.0192 0.0019 

ICM-SC 15.7 1.52 0.0126 0.0009 

GRF 42.7 6.85 0.0229 0.0028 

GRF-SC 15.0 3.41 0.0136 0.0025 

SQP 5.2 1.03 0.0102 0.0015 

BM 5.2 0.36 0.0338 0.0041 
 

Whilst the SQP and hybrid algorithms still perform extremely well in solving the NPML 
problem for this second data set, the performance of Turnbull’s SC algorithm is much more 
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variable. On average Turnbull’s SC algorithm takes 32 times longer than the SQP algorithm 
to converge. In practical terms, that means waiting 5½ minutes to run a 1,000 iteration 
bootstrap procedure, a procedure that the SQP algorithm could complete in just 10 seconds. 
Of course, averaging the performance statistics conceals considerable underlying variability. 
All the same, closer inspection of the bootstrap statistics reveals that the fastest 
convergence time achieved by the SC algorithm (.0847 seconds) is still some 8 times slower 
than the average SQP convergence time. Moreover for over 5% of the bootstrap iterations, 
Turnbull’s SC algorithm took in excess of 1 second to converge. It appears that the 
comparatively poor performance of Turnbull’s algorithm reported in previous simulation 
studies is replicated for this particular across-interval censored CV data set. 
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7. SUMMARY AND CONCLUDING REMARKS 

A problem faced by CV analysts employing elicitation formats that return Type 2 interval-
censored data is how to estimate NPML estimates of the WTP distribution. One method for 
deriving such estimates that has received particular attention in the environmental 
economics literature is the SC algorithm proposed by Turnbull. This paper has set out to 
document the NPML estimation problem and to study in detail the properties of Turnbull’s 
estimator. Drawing on results well-documented in other fields of resarch we have shown that 
Turnbull’s estimator does not completely solve the constrained maximum likelihood problem 
that defines the NPML estimates. Accordingly, it is not guaranteed that self-consistent 
estimates derived from Turnbull’s algorithm will also be the unique NPML estimates. 
Nevertheless, in this paper we have characterised the problem and used our results to 
motivate a set of starting and stopping criteria (27 and 28 respectively) that ensure that 
Turnbull’s SC algorithm converges to the unique NPML estimates.  

Frequently, analysts may wish to calculate NPML estimates very many times, for example, in 
employing bootstrap procedure in order to determine nonparametric confidence intervals for 
the lower-bound mean WTP estimate calculated from NPML estimates. Unfortunately, 
numerous studies have reported that Turnbull’s SC algorithm converges very slowly for 
certain configurations of Type 2 interval-censored data. Accordingly, we describe a series of 
alternative estimators that might be used to solve the NPML problem and compare their 
performance to that of Turnbull’s SC algorithm using Monte Carlo experiments. Data for this 
purpose are drawn from two different CV surveys; one returning regular-interval censored 
data, the other returning across-interval censored data. As far as the author is aware, this is 
the first time these alternative estimators have been applied to CV data.  

The Monte Carlo experiments reveal that Turnbull’s SC algorithm performs reasonably well 
for the regular-interval censored data set but very poorly for the across-interval censored 
data set. In both cases, however, the SQP algorithm outperforms all the other algorithms, 
converging, on average, 30 times quicker than Turnbull’s SC algorithm in the case of the 
across-interval censored data set. The take home message from this paper is that the 
established reliance on Turnbull’s SC algorithm for estimating NPML estimates from Type 2 
interval-censored CV data is ill-founded. The investigations reported in this paper suggest 
that a simple SQP algorithm may prove a more reliable and faster alternative. 
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