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Abstract

When the asset market is incomplete, competitive equilibria are con-
strained suboptimal, and there is scope for Pareto improving interventions.
Price regulation, which operates anonymously, on market variables, can be
such a Pareto improving policy, even when the welfare effects of rationing
are taken into account.

Key words: incomplete asset market, fix-price equilibria, Pareto improve-
ment.
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1 Introduction

When the asset market is incomplete, competitive equilibrium allocations
generically fail to satisfy the criterion of constrained Pareto optimality which
recognizes the incompleteness of the asset market. Geanakoplos and Polemar-
chakis (1986) showed that, generically, there exist reallocations of portfolios
that yield Pareto improvements in welfare after prices in spot commodity
markets adjust to attain equilibrium; Citanna, Kajii and Villanacci (1998)
developed the general method for the determination of improving interven-
tions.

Expansions of the asset market do not necessarily lead to Pareto improve-
ments: Hart (1975) gave an example of financial innovation that leads to a
Pareto deterioration; Cass and Citanna (1998), Elul (1995) and Hara (1997)
identified conditions for Pareto improving financial innovation.

The failure of constrained optimality casts doubt on non-intervention with
competitive markets.

Nevertheless, apart from informational requirements, Kajii (1994) argued
that the heterogeneity of individuals and the requirement of anonymity may
interfere with improving interventions.

Citanna, Polemarchakis and Tirelli (2001) showed that the taxation of
trades in assets can generically implement a Pareto improvement; but it
requires that the number of individuals not exceed the number of traded
assets.

An alternative to the reallocation of asset portfolios or the taxation of
trades in assets is the direct regulation of prices in spot commodity markets.
An intervention in spot market prices is not an intervention in individual
choice variables but in market variables. As such, it satisfies the requirement
of anonymity.

To address the issue of Pareto improving price regulation, one needs a
notion of equilibrium that allows for trading at non-competitive prices. An
extension of the fix-price equilibrium of Drèze (1975) serves this purpose;
alternative specifications, in Barro and Grossman (1971), Bénassy (1975) or
Younès (1975) should not affect the argument.

Laroque (1978, 1981) showed that the behavior of fix-price equilibria in
the neighborhood of competitive equilibria is particularly complicated. There
are robust examples for which, at regulated prices close to competitive prices,
there are no fix-price equilibria close to competitive equilibria. Here, one
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considers the class of economies, evidently restrictive, that satisfy conditions
sufficient for the local uniqueness of fix-price equilibria; a robust example,
which satisfies the stronger conditions in Schulz (1983), yields globally unique
fix-price equilibria.

Pareto improving price regulation is generically possible; the deviation of
prices from their competitive equilibrium values can be chosen independently
of the state of the world 1 as long as the number of commodities exceeds the
number of individuals.

The conditions under which the result holds, that the number of instru-
ments (contingent commodities) exceed the number of objectives (individu-
als), imply that the result complements the one of Geanakoplos and Pole-
marchakis (1986) and Citanna, Polemarchakis and Tirelli (2001).

Antecedents of this result are the argument in Polemarchakis (1979),
where fixed wages that need not match shocks in productivity may yield
higher expected utility in spite of the loss of output in an economy of over-
lapping generations; and the argument in Drèze and Gollier (1993), which
employs the capital asset pricing model to determine optimal schedules of
wages that differ from the marginal productivity of labor. Kalmus (1997)
gave an example of Pareto improving price regulation.

Of serious concern are the informational requirements needed to deter-
mine, even compute, improving interventions. In the case of price regulation
they involve knowledge of marginal utilities of income and excess demands
for commodities across states. Geanakoplos and Polemarchakis (1990) and
Kübler, Chiappori, Ekeland and Polemarchakis (2001) are only first steps
towards an analysis of the informational requirements of active policy.

2 The economy

The economy is that of the standard two-period general equilibrium model
with numéraire assets and incomplete asset markets. Assets exchange before
and commodities after the state of the world realizes.

States of the world are s ∈ S = {1, . . . , S} and commodities are l ∈ L =
{1, . . . , L + 1}. At state s, commodity (L + 1, s) is numéraire. Assets are
a ∈ A = {1, . . . , A + 1}. Asset A + 1 is numéraire. The payoffs of assets are

1John Geanakoplos insisted on this point.
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denominated in the numéraire commodity, (L + 1, s), at every state of the
world.

A bundle of commodities at a state of the world is xs = (. . . , xl,s, . . . ,
x(L+1),s); across states of the world, x = (. . . , xs, . . .). A portfolio of assets is
y = (. . . , ya, . . . , yA+1).

The payoffs of an asset across states of the world are Ra· = (. . . , Ra,s, . . .)
′;

at a state of the world, payoffs of assets are R·s = (. . . , Ra,s, . . .); across states
of the world, the asset payoff matrix is R = (. . . , Ra·, . . .).

The asset payoff matrix has full column rank, and the numéraire asset
has positive payoffs: RA+1· > 0.

Individuals are i ∈ I = {1, . . . , I}. A utility function, ui, that satisfies
standards conditions of continuity, monotonicity, quasi-concavity and, when
required, smoothness and boundary behavior on the domain of non-negative
bundles of commodities and the endowment, ei, a strictly positive bundle,
describe an individual.

The utility functions and consumption sets of individuals as well as the
matrix of asset payoffs do not vary. The allocation of endowments, ω =
(. . . , ei, . . .), identifies an economy, and the set of economies coincides with
the strictly positive orthant of the commodity space; a property holds gener-
ically if it holds for an open set of economies of full Lebesgue measure.

Prices of commodities at a state of the world are (. . . , pl,s, . . . , 1); across
states of the world, p = (. . . , ps, . . .) À 0; the price of the numéraire commod-
ity at a state of the world is pL+1,s = 1; the domain of prices of commodities
is P . Prices of assets are q = (. . . , qa, . . . , 1); The price of the numéraire asset
is qA+1 = 1. The domain of prices of assets is Q.

It is often convenient to truncate prices of commodities and prices of
assets by deleting the prices of the numéraires. Commodities or assets other
than the numéraire are Ľ or Ǎ;. the domain of prices of commodities or
assets other than the numéraires is P̌ or Q̌.

At arbitrary terms of trade, a competitive equilibrium, typically, does
not exist. In commodities and assets other than the numéraire, rationing
on net trades, uniform across individuals, serves to attain market clearing.
Rationing in the supply (demand) of commodities other than the numéraire
is z ≤ 0 (z ≥ 0). Rationing in the supply (demand) of assets other than the
numéraire is y ≤ 0 (y ≥ 0).
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At prices and rationing (p, q, z, z, y, y), the budget set of an individual is

βi(p, q, z, z, y, y) =





(x, y) :

qy ≤ 0,
ps(xs − ei

s) ≤ Rs·y, s ∈ S,
zl,s ≤ xl,s − ei

l,s ≤ zl,s, (l, s) ∈ Ľ × S,

y
a
≤ y ≤ ya, a ∈ Ǎ





;

his optimization problem is to choose a utility maximizing consumption bun-
dle and asset portfolio, di(p, q, z, z, y, y), in his budget set.

An individual is effectively rationed in his supply (demand) for a commod-
ity or an asset if he could increase his utility when the rationing constraint
in the supply (demand) of that commodity or asset is removed. There is
effective supply (demand) rationing in the market for a commodity or an
asset if at least one individual is effectively rationed in his supply (demand)
for this commodity or asset. At a competitive equilibrium, there is neither
effective supply rationing nor effective demand rationing in the market for
any commodity or asset. In this sense, a competitive equilibrium is a special
case of a fix-price equilibrium.

Definition 1 (Fix-price equilibrium) A fix-price equilibrium at prices
(p, q) is a pair ((x∗, y∗), (z∗, z∗, y∗, y∗)), such that

1. for every individual, (xi∗, yi∗) ∈ di(p, q, z∗, z∗, y∗, y∗),

2.
∑I

i=1 xi∗ =
∑I

i=1 ei and
∑I

i=1 yi∗ = 0,

3. for every l ∈ Ľ, if for some i′ xi′∗
l,s − ei′

l,s = z∗l,s, then for all i ∈ I
xi∗

l,s − ei
l,s < z∗l,s, while if for some i′ xi′∗

l,s − ei′
l,s = z∗l,s, then for all i ∈ I

xi∗
l,s − ei

l,s > z∗l,s,

4. for every a ∈ Ǎ, if for some i′ yi′∗
a = y∗

a
, then for all i ∈ I yi∗

a < y∗a,
while if for some i′ yi′∗

a = y∗a, then for all i ∈ I yi∗
a > y∗

a
.

At prices (p, q), fix-price equilibria exist — Herings and Polemarchakis
(1998) gives a proof.

A sign vector,
r = (r1,1, . . . , rL,S, r1, . . . , rA),
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describes the state of markets at a fix-price equilibrium. If there is effective
supply rationing in the market for a commodity or an asset, the associated
component of the sign vector is -1, if there is effective demand rationing it is
+1, and if there is no effective rationing it is 0.

For a sign vector r, the set PQ(r) is the set of prices (p, q) ∈ P × Q,
for which there exists a fix-price equilibrium at prices (p, q) with state of
the markets r. For prices (p, q) ∈ P × Q, the set of fix-price equilibrium
allocations is D(p, q), and, for a sign vector r, the set of fix-price equilibrium
allocations with state of the markets r is D(p, q, r).

A neighborhood of α is Nα. If ((p∗, q∗), (x∗, y∗)) is a competitive equilib-
rium, the allocation (x∗, y∗) is locally unique as a fix-price equilibrium alloca-
tion if there exists a neighborhood N x∗,y∗ such that for every Nx∗,y∗ ⊂ N x∗,y∗

there exists a neighborhood Np∗,q∗ with D(p, q)∩Nx∗,y∗ a singleton for every
(p, q) ∈ Np∗,q∗ .

If a competitive equilibrium allocation is locally unique as a fix-price equi-
librium allocation, then, for prices close to competitive equilibrium prices,
there is exactly one fix-price equilibrium allocation close to the competitive
allocation.

For a locally unique competitive equilibrium allocation, for each sign vec-
tor r, the function (x̂r, ŷr) : N p∗,q∗ ∩PQ(r) → IRI(L+1)S+I(A+1) associates the
unique fix-price equilibrium allocation in N x∗,y∗ ∩ D(p, q, r) to (p, q).

Comparative statics require a differentiable form of local uniqueness.

Definition 2 (Differentiable local uniqueness) If ((p∗, q∗), (x∗, y∗)) is a
competitive equilibrium, the allocation (x∗, y∗) is differentiably locally unique
as a fix-price equilibrium allocation if it is locally unique and there is a neigh-
borhood Np∗,q∗ such that, for every sign vector r, the function (x̂r, ŷr)|Np∗,q∗∩
PQ(r) is differentiable.

Laroque and Polemarchakis (1978) proved, for a complete asset market,
that, generically, the set of fix-price equilibrium allocations can be repre-
sented by a finite number of continuously differentiable functions of prices.
Nevertheless, the results in Laroque (1978) and the examples in Madden
(1982) show that competitive equilibria need not be locally unique as fix-price
equilibria. Even though fix-price equilibrium allocations exist for all prices,
there may be robust local non-existence, and therefore local non-uniqueness
as a fix-price equilibrium, at competitive prices.
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Assumption 1 For endowments in Ω∗, an open set of full Lebesgue mea-
sure, if ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, then the competitive
equilibrium allocation is differentiably locally unique as a fix-price equilibrium
allocation.

By an argument similar to the one in the proof of Theorem 1, Laroque
(1981), Herings and Polemarchakis (1998) characterizes economies where
competitive equilibrium allocation are differentiably locally unique as a fix-
price equilibrium allocation.

Local uniqueness of fix-price equilibrium allocations at competitive equi-
libria is not too strong a requirement; it is less demanding than the re-
quirement of uniqueness of fix-price equilibrium allocations at prices in a
neighborhood of competitive prices, for which a sufficient condition is given
in Schulz (1983). This guarantees a certain degree of generality of the results.

The function (x̂, ŷ) associates the unique fix-price equilibrium allocation
in Nx∗,y∗ to (p, q) ∈ Np∗,q∗ . At a locally unique fix-price equilibrium,

vi(p, q) = ui(x̂i(p, q)), (p, q) ∈ Np∗,q∗

defines the indirect utility function of an individual; it is differentiable when
the fix-price equilibrium is differentiably locally unique

∂pl,s
vi(p∗, q∗) = −∂xL+1,s

ui(xi∗)(xi∗
l,s − ei

l,s), (l, s) ∈ Ľ × S.

The effect of a change in the spot market price of commodity (l, s) ∈ Ľ×S
is equal to minus the marginal utility of the numéraire commodity in state
s multiplied by the excess demand of commodity (l, s) at the competitive
equilibrium. Proposition 4.8 implies that the indirect welfare effects of a
change in prices, generated by the induced change in the rationing constraints
and individuals’ choices, equal zero.

Pareto improving price regulation

If the asset market is incomplete, A + 1 < S, generically, competitive equi-
librium allocations are not Pareto optimal.

Price regulation can Pareto improve on a competitive equilibrium ((p∗,
q∗), (x∗, y∗)) if there exist prices of commodities p such that a fix-price equi-
librium of commodities at prices of commodities and assets (p, q∗) Pareto
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dominates the allocation x∗. The ambiguity introduced by the possibility of
multiple fix-price equilibrium allocations at prices (p, q∗) is circumvented by
considering local variations at competitive equilibrium allocations that are
differentiably locally unique as fix-price equilibria.

Definition 3 (Pareto improving price regulation) Price regulation
can Pareto improve upon a competitive equilibrium, ((p∗, q∗), (x∗, y∗)), that is
locally unique as a fix-price equilibrium if there exists an infinitesimal varia-
tion in commodity prices, dp̌, such that

∑
(l,s)∈Ľ×S ∂pl,s

vi(p∗, q∗) dpl,s > 0, i ∈
I.

Uniform price regulation can improve upon a competitive equilibrium if
dp̌s = dp̌s′ , s, s′ ∈ S.

Generically, it is possible to make every individual better off by choosing
appropriate price regulations on the spot markets when asset markets are
incomplete. One needs at least as many instruments, LS, as individuals, I.

Uniform price regulation is effective when L ≥ I, which reflects again
that the number of instruments has to exceed the number of objectives.
This complements the constrained suboptimality result of Geanakoplos and
Polemarchakis (1986), which applies when 2L ≤ I ≤ L(S − 1) + 1.

Proposition 1 If the asset market is incomplete, and if LS ≥ I > 1, then,
generically, price regulation can improve upon any competitive equilibrium.
If L ≥ I > 1, then, generically, uniform price regulation can improve upon
any competitive equilibrium.

The proof of proposition 1 follows the approach developed in Geanakoplos
and Polemarchakis (1986) and Citanna, Kajii and Villanacci (1998); Herings
and Polemarchakis (1998) spells out the argument.

An example illustrates.

3 An example

There are two individuals, three states of the world, two commodities, and
two assets.
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The utility function of individual, i, has an additively separable represen-
tation, ui =

∑
s∈S πsu

i
s, with state dependent cardinal utility

ui
s(xs) = αi

s ln x1,s + βi
sx2,s, αi

s > 0, βi
s > 0,

and a strictly positive probability measure (π1, π2, π3) over the states of the
world; his endowment, ei = (ei

1, e
i
2, e

i
3), is strictly positive.

The payoffs of assets are R1· = (0, 1, 1)′, and R2· = (1, 0, 0)′; which al-
lows for the following interpretation: consumption at state of the world 1
is concurrent with the trade in assets, while the only asset available, traded
against consumption, is an indexed bond with state-independent payoffs.

The parameters in the utility functions of individuals and their endow-
ments are such that

π =
π1β

1
1

π2β1
2 + π3β1

3

=
π1β

2
1

π2β2
2 + π3β2

3

,

and, for γi
s = αi

s/β
i
s,

max
{
−e1

2,s +
γ1

se2
1,s−γ2

se1
1,s

e1
1,s+e2

1,s
: s = 2, 3,−πe2

2,1 + π
γ2
1e1

1,1−γ1
1e2

1,1

e1
1,1+e2

1,1

}

≤ min
{
πe1

2,1 + π
γ2
1e1

1,1−γ1
1e2

1,1

e1
1,1+e2

1,1
, e2

2,s +
γ1

se2
1,s−γ2

se1
1,s

e1
1,s+e2

1,s
: s = 2, 3

}
,

which eliminates equilibria at the boundaries of their consumption sets 2.
Fix-price equilibrium exists for all prices of commodities, p, and price of

the indexed bond q = 1/π. For individual i, γi
s/e

i
1,s ≤ γi′

s /ei′
1,s; there are four

2A possible choice of parameters is, for instance,

π1 = 1, π2 = π3 = 1
2 ,

α1
1 = β1

1 = 1, α1
2 = β1

2 = 4
3 , α1

3 = β1
3 = 2

3 ,

α2
1 = β2

1 = 1, α2
2 = β2

2 = 2
3 , α2

3 = β2
3 = 4

3 ,

e1
1 = (1, 1)′, e1

2 = (1, 1)′, e1
3 = (2, 1)′,

e2
1 = (1, 1)′, e2

2 = (2, 1)′, e2
3 = (1, 1)′.
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different cases: (i) 0 < ps ≤ γi
s/e

i
1,s, (ii) γi

s/e
i
1,s ≤ ps ≤ (γi

s + γi′
s )/(ei

1,s + ei′
1,s),

(iii) (γi
s + γi′

s )/(ei
1,s + ei′

1s
) ≤ ps ≤ γi′

s /ei′
1,s, and (iv) γi′

s /ei′
1,s ≤ ps.

Competitive equilibrium prices are given by p∗s = γ1
s+γ2

s

e1
1,s+e2

1,s
, s = 1, 2, 3, and

q∗ = 1
π
. Those prices belong to the intersection of cases (ii) and (iii).

If γi
s/e

i
1,s ≤ ps ≤ (γi

s +γi′
s )/(ei

1,s +ei′
1,s), case (ii) , there is aggregate excess

demand for commodity 1, but individual i supplies the commodity, and trade
takes place, with individual i′ rationed on his demand of the commodity.
Equilibria obtain for z∗1,s = ei

1,s−γi
s/ps, xi∗

1,s = γi
s/ps, xi′∗

1,s = ei′
1,s +ei

1,s−γi
s/ps,

and yi′∗ = −yi∗. At s = 1, xi∗
2,1 = p1e

i
1,1 + ei

2,1 − γi
1 − (1/π)yi∗, xi′∗

2,1 = ei′
2,1 −

p1e
i
1,1+γi

1+(1/π)yi∗, yi∗ ≤ π(p1e
i
1,1+ei

2,1−γi
1), and yi∗ ≥ −π(ei′

2,1−p1e
i
1,1+γi

1).

At s = 2 or s = 3, xi∗
2,s = pse

i
1,s + ei

2,s− γi
s + yi∗, xi′∗

2,s = ei′
2,s− pse

i
1,s + γi

s− yi∗,
yi∗ ≥ −pse

i
1,s−ei

2,s+γi
s, and yi∗ ≤ ei′

2,s−pse
i
1,s+γi

s. The remaining parameters
of the rationing scheme are set so as not to be binding.

If (γi
s + γi′

s )/(ei
1,s + ei′

1,s) ≤ ps ≤ γi′
s /ei′

1,s, case (iii) there is aggregate
excess supply of commodity 1, and individual i supplies the commodity,
rationed by the demand of individual i′. Equilibria obtain for z∗1,s = ei′

1,s −
γi′

s /ps, xi∗
1,s = ei

1,s + ei′
1,s − γi′

s /ps, xi′∗
1,s = γi′

s /ps, and yi′∗ = −yi∗. At s = 1,

xi∗
2,1 = ei

2,1 − p1e
i′
1,1 + γi′

1 − (1/π)yi∗, xi′∗
2,1 = p1e

i′
1,1 + ei′

2,1 − γi′
1 + (1/π)yi∗,

yi∗ ≤ π(ei
2,1 − p1e

i′
1,1 + γi′

1 ), and yi∗ ≥ −π(p1e
i′
1,1 + ei′

2,1 − γi′
1 ). At s = 2

or s = 3, xi∗
2,s = ei

2,s − pse
i′
1,s + γi′

s + yi∗, xi′∗
2,s = pse

i′
1,s + ei′

2,s − γi′
s − yi∗,

yi∗ ≥ −ei
2,s+pse

i′
1,s−γi′

s , and yi∗ ≤ pse
i′
1,s+ei′

2,s−γi′
s . The remaining parameters

of the rationing scheme are set so as not to be binding.
The utility attained by each individual at a fix-price equilibrium is unam-

biguously determined by the prices of commodities. At prices p, the utility
of individual i at the fix-price equilibrium is vi(p) =

∑
s∈S πsv

i
s(ps), where,

if γi
s/e

i
1,s ≤ ps ≤ (γi

s + γi′
s )/(ei

1,s + ei′
1,s), case (ii), then

vi
s(ps) = αi

s ln(γi
s

ps
) + βi

s(pse
i
1,s + ei

2,s − γi
s),

vi′
s (ps) = αi′

s ln(ei′
1,s + ei

1,s − γi
s

ps
) + βi′

s (ei′
2,s − pse

i
1,s + γi

s),
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while, if (γi
s + γi′

s )/(ei
1,s + ei′

1,s) ≤ ps ≤ γi′
s /ei′

1,s, case (iii), then

vi
s(ps) = αi

s ln(ei
1,s + ei′

1,s − γi′
s

ps
) + βi

s(e
i
2,s − pse

i′
1,s + γi′

s ),

vi′
s (ps) = αi′

s ln(γi′
s

ps
) + βi′

s (pse
i′
1,s + ei′

2,s − γi′
s ).

Substitution of the competitive equilibrium prices in either case (ii) or
case (iii) gives the utility levels at the competitive equilibrium. The indirect
utility function is differentiable at competitive prices, and the derivative is
given by

∂psv
i(p∗) = πsβ

i
s

γi′
s ei

1,s−γi
sei′

1,s

γi
s+γi′

s
= −πsβ

i
s(x

i∗
s − ei

s),

∂psv
i′ (p∗) = πsβ

i′
s

γi
sei′

1,s−γi′
s ei

1,s

γi′
s +γi

s
= −πsβ

i′
s (xi′∗

s − ei′
s ).

For vs = πs(γ
2
se

1
1,s − γ1

se
2
1,s)/(γ

1
s + γ2

s ), it holds that

V =




∂v1(p∗)

∂v2(p∗)


 =




β1
1v1 β1

2v2 β1
3v3

−β2
1v1 −β2

2v2 −β2
3v3


 .

If the matrix V has full row rank, then price regulation can Pareto improve
the competitive equilibrium allocation. If the ratios of the marginal utilities
of income of the individuals are not the same across all states of the world,
β1

1/β
2
1 6= β1

2/β
2
2 or β1

3/β
2
3 6= β1

2/β
2
2 , for the matrix V to have full row rank it is

sufficient that vs 6= 0, for every state of the world. Since vs = 0 if and only if
e1
1,s/e

2
1,s = γ1

s/γ
2
s , generically in the endowments of individuals it is possible

to Pareto improve on the competitive allocation 3.
Because of the constant marginal utility of the numéraire commodity,

here, an ad hoc argument shows that variations in endowments of individuals
suffice to render Pareto improving price regulation generic.

3For the specification of parameters given in footnote 12,

V =
(

0 − 1
3

1
6

0 1
6 − 1

3

)
.

Both individuals benefit if the price of commodity 1 in states 2 and 3 is fixed below its
competitive equilibrium value.
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With the number of non-numéraire commodities 1, less than the number
of individuals, 2, it is not always possible to Pareto improve on the compet-
itive equilibrium by state - independent price regulation.
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14. Kajii, A. (1994), “Anonymity and optimality of competitive equilibria
when assets are incomplete,”Journal of Economic Theory, 64, 115 -
129.

15. Kalmus, P. (1997), “Pareto improving trade restrictions: an exam-
ple,”mimeo.
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Appendix 1: existence of fix-price equilibria

A compact, convex subset of the consumption set that contains the aggregate
initial endowment in its interior is X̃ i The assumptions on utility functions
and on the asset return matrix imply that all S +1 budget inequalities in the
definition of the budget set hold with equality at the optimal choice of an
individual. The rationing inequalities do not necessarily hold with equality.
The budget set related to X̃ i with all budget inequalities required to hold
with equality is β̃i and the corresponding demand function d̃i. Since prices
are fixed at (p, q), they are omitted in the notation.

The demand functions d̃i, i ∈ I, are continuous.
If (zn, zn, yn

, yn) is a sequence that converges to (z, z, y, y), then the se-

quence (d̃i(zn, zn, y
n
, yn)) has a convergent subsequence, with limit (x̂, ŷ) ∈

β̃i(z, z, y, y).

If there exists (x̃, ỹ) ∈ β̃i(z, z, y, y), such that ui(x̃) > ui(x̂), and L̃−, L̃+,

Ã−, and Ã+, is the sets of non-numeraire commodities and non-numeraire
assets for which x̃l,s − ei

l,s is negative, positive, ỹa is negative, and positive,
respectively, then, for

λn =

min
{
1,

zn
l,s

x̃l,s−ei
l,s

, (l, s) ∈ L̃−,
zn

l,s

x̃l,s−ei
l,s

, (l, s) ∈ L̃+,
yn

a

ỹa
, a ∈ Ã−, yn

a

ỹa
, a ∈ Ã+

}
,

x̃n = ei + λn(x̃ − ei), and ỹn = λnỹ, (x̃n, ỹn) ∈ β̃i(zn, zn, yn, yn). Evidently,
limn→∞ λn = 1, and limn→∞(x̃n, ỹn) = (x̃, ỹ). By the continuity of ui, x̃n is
strictly preferred to the consumption bundle in d̃i(zn, zn, yn

, yn), a contradic-
tion.

Since there is no rationing in the market of the numéraire asset nor in the
market of the numéraire commodities, the argument for equilibrium existence
is not trivial.

If ((x∗, y∗), (z∗, z∗, y∗, y∗)) is a fix-price equilibrium at prices (p, q), then

x∗i
′

l,s <
∑I

i=1 ei
l,s + ε, with ε some fixed positive number. Since R has full

column rank, this implies that there is α > 0 such that ‖y∗i‖∞ < α for any
y∗i consistent with a fix-price equilibrium at prices (p, q).

The functions (z, z) : CLS → −IRLS
+ × IRLS

+ and (y, y) : CA → −IRA
+× IRA

+,

where CK = {r ∈ IRK : 0 ≤ rk ≤ 1} is the unit cube of dimension K, are
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defined by

zl,s(r) = −min{2rl,s(
∑I

i=1 ei
l,s + ε),

∑I
i=1 ei

l,s + ε}, (l, s) ∈ Ľ × S,

zl,s(r) = min{(2− 2rl,s)(
∑I

i=1 ei
l,s + ε),

∑I
i=1 ei

l,s + ε}, (l, s) ∈ Ľ × S,

y
a
(ρ) = −min{2ρaα, α}, a ∈ Ǎ,

ya(ρ) = min{(2− 2ρa)α, α}, a ∈ Ǎ.

The excess demand function z̃ : CLS × CA → IRLS × IRA is

z̃l,s(r, ρ) =
∑I

i=1 d̃i
l,s(z(r), z(r), y(ρ), y(ρ))−∑I

i=1 ei
l,s, (l, s) ∈ Ľ × S

z̃a(r, ρ) =
∑I

i=1 d̃i
a(z(r), z(r), y(ρ), y(ρ)), a ∈ Ǎ.

If (r∗, ρ∗) ∈ CLS × CA is such that z̃(r∗, ρ∗) = 0, then ((x∗, y∗), (z∗, z∗, y∗,
y∗)), where (x∗i, y∗i) = d̃i(z∗, z∗, y∗, y∗), i ∈ I, (z∗, z∗) = (z(r∗), z(r∗)),
(y∗, y∗) = (y(r∗), y(r∗)), is a fix-price equilibrium. Conditions 1 and 2 of
Definition 1 are satisfied for non- numeraire commodities and assets. The
construction of the functions (z, z) and (y, y) takes care of Conditions 3 and
4.

The set z̃(CLS × CA) is compact. Let the set ZY be a compact, convex
set that contains z̃(CLS × CA). The correspondence µ : ZY → CLS × CA is
defined by

µ(z, y) = arg max{ ∑

(l,s)∈Ľ×S
rl,szl,s +

∑

a∈Ǎ
ρaya : r ∈ CLS, ρ ∈ CA}.

The correspondence ϕ : ZY × CLS × CA → ZY × CLS × CA is defined
by ϕ(z, y, r, ρ) = {z̃(r, ρ)} × µ(z, y). It is a non-empty, compact, convex val-
ued, upper hemi-continuous correspondence defined on a non-empty, com-
pact, convex set. By Kakutani’s fixed point theorem, ϕ has a fixed point,
(z∗, y∗, r∗, ρ∗).

If, for some a ∈ Ǎ, y∗a < 0, then, by the definition of µ, ρ∗a = 0, so y∗a ≥ 0,
a contradiction. If, for some a ∈ Ǎ, y∗a > 0, then, by the definition of µ,
ρ∗a = 1, so y∗a ≤ 0, a contradiction. Consequently, y∗a = 0, for all a ∈ Ǎ.
Moreover, y∗A+1 = −∑

a∈Ǎ qay
∗
a = 0.
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If, for some (l, s) ∈ Ľ × S, z∗l,s < 0, then, by the definition of µ, r∗l,s = 0,

so z∗l,s ≥ 0, a contradiction. If, for some (l, s) ∈ Ľ × S, z∗l,s > 0, then, by the
definition of µ, r∗l,s = 1, so z∗l,s ≤ 0, a contradiction. Consequently, z∗l,s = 0,

for all (l, s) ∈ Ľ×S. Moreover, for every s ∈ S, z∗L+1,s = −∑
(l,s)∈Ľ×S pl,sz

∗
l,s+

Rs·y∗ = 0.
It follows that 0 ∈ z̃(r∗, ρ∗), so a fix-price equilibrium at prices (p, q)

exists.

Apendix 2:local comparative statics

In the optimization problem an individual faces when determining his de-
mand, the Lagrange multipliers corresponding to the rationing constraints in
the markets for commodities (assets) are π (ρ). The individual optimization
problem leads to the study of a modified demand function, d̂i. At prices and
Lagrange multipliers (p, q, π, ρ), d̂i is defined by the solution to the optimiza-
tion problem

max ui(x)−∑
(l,s)∈Ľ×S πl,sxl,s −∑

a∈Ǎ ρaya,

s.t. qy ≤ 0,

ps(xs − ei
s) ≤ Rs·y, s ∈ S.

The set of (p, q, π, ρ) on which each individual optimization problem has a
solution is N . Whenever (p∗, q∗) are competitive equilibrium prices, N is a
neighborhood of (p∗, q∗, 0, 0).

The modified demand function, d̂i, i ∈ I, is continuously differentiable
on N .

At a competitive equilibrium, ((p∗, q∗), (x∗, y∗)), z−l,s, z+
l,s, y−a and y+

a , de-
fined by

z−l,s = mini∈I xi∗
l,s − ei

l,s, z+
l,s = maxi∈I xi∗

l,s − ei
l,s, (l, s) ∈ Ľ × S,

y−a = mini∈I yi∗
a , y+

a = maxi∈I yi∗
a , a ∈ Ǎ,

determine the minimal and the maximal excess demands on both the spot
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and the asset markets. If

I l,s = {i ∈ I : xi∗
l,s − ei

l,s = z−l,s}, (l, s) ∈ Ľ × S,

I l,s = {i ∈ I : xi∗
l,s − ei

l,s = z+
l,s}, (l, s) ∈ Ľ × S,

Ia = {i ∈ I : yi∗
a = y−a }, a ∈ Ǎ,

Ia = {i ∈ I : yi∗
a = y+

a }, a ∈ Ǎ,

then, in a neighborhood of the competitive equilibrium, only individuals in
I l,s (I l,s) may be rationed on supply (demand) in the spot market (l, s), and
only individuals in Ia (Ia) on supply (demand) in the asset market a.

For an open set of endowments with full Lebesgue measure Ω ⊂ IR
I(L+1)S
++ ,

for any competitive equilibrium ((p∗, q∗), (x∗, y∗)) of E , | I l,s |=| I l,s |= 1,

(l, s) ∈ Ľ × S, and | Ia |=| Ia |= 1, a ∈ Ǎ.
For a generic set of economies, there is exactly one individual in each

market with the minimal excess demand and exactly one individual with the
maximal excess demand. For the remainder, the allocation of endowments
in the economy E belong to the set Ω, which permits the study of the local
structure of the set fix-price equilibria in the neighborhood of a competitive
equilibrium ((p∗, q∗), (x∗, y∗)) of E .

For every individual, the function ci : IRLS × IRA → IRLS × IRA is defined
by

ci
l,s(π, ρ) =





πl,s, if πl,s ≤ 0 and {i} = I l,s or πl,s ≥ 0 and {i} = I l,s,

0, otherwise,

ci
a(π, ρ) =





ρa, if ρa ≤ 0 and {i} = Ia or ρa ≥ 0 and {i} = Ia,

0, otherwise.

The function c relates the Lagrange multipliers (π, ρ) to the fix-price equi-
libria in the neighborhood of the competitive equilibrium. The aggregate
modified excess demand function for commodities and assets other than the
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numéraire is ẑ : N → IRLS+A defined by

ẑl,s(p, q, π, ρ) =
∑

i∈I d̂i
l,s(p, q, c

i(π, ρ))−∑
i∈I ei, (l, s) ∈ Ľ × S,

ẑa(p, q, π, ρ) =
∑

i∈I d̂i
a(p, q, c

i(π, ρ)), a ∈ Ǎ.

For the study of fix-price equilibria in the neighborhood of the competitive
equilibrium, it is sufficient to restrict attention to the zero points of ẑ. Neigh-
borhoods N i

xi∗,yi∗ are such that, for every (x, y) ∈ Nx∗,y∗ = ×i∈IN i
xi∗,yi∗ , for

all (l, s) ∈ Ľ × S, for all a ∈ Ǎ,

xi′
l,s − ei′

l,s < 0 and xi′
l,s − ei′

l,s < xi
l,s − ei

l,s, i 6= i′, i′ ∈ I l,s

xi′
l,s − ei′

l,s > 0 and xi′
l,s − ei′

l,s > xi
l,s − ei

l,s, i 6= i′, i′ ∈ I l,s

yi′
a < 0 and yi′

a < yi
a, i 6= i′, i′ ∈ Ia

yi′
a > 0 and yi′

a > yi
a, i 6= i′, i′ ∈ Ia.

If ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, and (x, y) ∈ Nx∗,y∗ , then

(x, y) ∈ D(p, q) if and only if there is (p, q, π, ρ) ∈ N such that d̂i(p, q, ci(π, ρ))
= (xi, yi), i ∈ I, and ẑ(p, q, π, ρ) = (0, 0).

The function ẑ is Lipschitz continuous because of the differentiability
of the functions d̂i and the Lipschitz continuity of the functions ci. It is
differentiable at each (p, q, π, ρ) ∈ N where all components of π and ρ are
non-zero. For each sign vector r without zero components,

N r = {(p, q, π, ρ) ∈ N : πl,srl,s > 0, (l, s) ∈ Ľ × S, ρara > 0, a ∈ Ǎ}.
The function ẑ is differentiable on N r. The limit of its Jacobian, limn→∞ ∂ẑ
(pn, qn, πn, ρn) = ∂ẑr(p∗, q∗, 0, 0), along a sequence ((pn, qn, πn, ρn) ∈ N r)
that converges to (p∗, q∗, 0, 0), exists;

∂p̌,q̌ẑ
r
l,s(p

∗, q∗, 0, 0) =
∑

i∈I ∂p̌,q̌d̂
i
l,s(p

∗, q∗, 0, 0) = ∂p̌,q̌zl,s(p
∗, q∗),

∂p̌,q̌ẑ
r
a(p

∗, q∗, 0, 0) =
∑

i∈I ∂p̌,q̌d̂
i
a(p

∗, q∗, 0, 0) = ∂p̌,q̌za(p
∗, q∗),

where z(p, q) denotes the unconstrained total excess demand function for
commodities and assets other than the numeraires at prices (p, q). It follows
that the Jacobian with respect to (p̌, q̌) is independent of r at a competitive
equilibrium.

18



Lemma 1 If ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium such that ∂z
(p∗, q∗) is of full rank, then, for each sign vector r without zero components,
the tangent cone at (p∗, q∗) to the set of price systems having a local fix-price
equilibrium with state of the markets r is

{(p, q) ∈ P ×Q : (p̌, q̌) = (∂z(p∗, q∗))−1∂π,ρẑ
r(p∗, q∗, 0, 0)(π, ρ),

πl,srl,s > 0, (l, s) ∈ Ľ × S, ρara > 0, a ∈ Ǎ}.
Proof The restriction of ẑ to N r extends to a differentiable function z̃ :
N → IRLS+A as follows. For i ∈ I, the function c̃i is defined by c̃i

l,s(π, ρ) = πl,s

if i ∈ I l,s, rl,s = −1, or i ∈ I l,s, rl,s = +1, c̃i
l,s(π, ρ) = 0 otherwise, and

c̃i
a(π, ρ) = ρa if i ∈ Ia, ra = −1, or i ∈ Ia, ra = +1, and c̃i

a(π, ρ) = 0
otherwise. The function z̃ is defined as ẑ with c replaced by c̃. Since ∂z(p∗, q∗)
is of full rank, it follows by the implicit function theorem that the solution
to z̃(p, q, π, ρ) = (0, 0) determines p and q as a function of π and ρ in a
neighborhood of (0, 0). The derivative of this function at (0, 0) with respect
to π and ρ is given by (∂z(p∗, q∗))−1∂π,ρz̃(p∗, q∗, 0, 0). The expression in the
proposition follows immediately if one takes into account that only π’s and
ρ’s satisfying πl,srl,s > 0, (l, s) ∈ Ľ × S, and ρara > 0, a ∈ Ǎ, should be
considered. 2

Proposition 2 in Geanakoplos and Polemarchakis (1986) shows that the
assumption that ∂z(p∗, q∗) has full rank at every competitive equilibrium
holds generically in endowments. Lemma 3.2 characterizes the tangent cones
to the regions in the price space having a fix-price equilibrium with state of
the markets r in the neighborhood of a competitive equilibrium. It guarantees
neither that the closures of these tangent cones cover the price space nor
that the tangent cones are full-dimensional nor that the tangent cones do
not intersect. If this were the case, local uniqueness would result.

In general, an increase in a price causes a different individual to be ra-
tioned as a decrease in a price. Since ∂π,ρẑ

r, and therefore the tangent cone,

depend on ∂π,ρd̂
i for the individual i that is rationed, the fact that the tangent

cones need not fit nicely together does not come as a surprise. In abstract
terms, the fact that different individuals get rationed at different prices in
the neighborhood of a competitive equilibrium, creates non-differentiabilities
in the function ẑ at competitive prices. At a point of non-differentiability,
the implicit function theorem need not apply, and local uniqueness may fail.
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The generalized Jacobian of a Lipschitz continuous function f at a point x
is the convex hull of all matrices that are the limits of the sequence (∂f(xn)),
where (xn) is a convergent sequence with limn→∞ xn = x and f is differen-
tiable at xn.

A restriction of the fundamentals of the economy, the utility functions
of individuals and the matrix of asset payoffs is required to guarantee that,
generically, competitive equilibrium allocations are differentiably locally uni-
que as fix-price equilibrium allocations

If a function f is Lipschitz continuous, f(x̂, ŷ) = 0, and every matrix M in
∂xf(x̂, ŷ) has full rank, then there exist a neighborhood Nx̂,ŷ, a neighborhood
Nŷ, and a Lipschitz continuous function g on Nŷ such that (x, y) ∈ Nx̂,ŷ and
f(x, y) = 0 if and only if y ∈ Nŷ and x = g(y).

Assumption 2 For endowments in Ω∗, an open set of full Lebesgue measure,
if ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, then the determinants of the
matrices ∂π,ρẑ

r(p∗, q∗, 0, 0), with r sign vectors without zero components, are
either all equal to −1 or all equal to +1.

By an argument similar to the one in the proof of Theorem 1, Laroque
(1981), the competitive equilibrium allocation is differentiably locally unique
as a fix-price equilibrium allocation.

Remark An example of an economy that satisfies differentiable local uniqu-
eness for all endowments and, à fortiori, satisfies assumption 3.

There are three states of the world, two commodities and two assets. The
utility functions have an additively separable representation ui =

∑
s∈S πsu

i
s

with
ui

s(xs) = αi ln x1,s + (1− αi)x2,s, 0 < αi < 1,

and a uniform probability measure π over the states of the world. The payoffs
of the assets are R·1 = (1, 0, 0)′, and R·2 = (0, 1, 0)′. Endowments are chosen
such that | I l,s |=| I l,s |= 1, (l, s) ∈ Ľ × S, and | Ia |=| Ia |= 1, a ∈ Ǎ, so
they belong to a set of full Lebesgue measure by Lemma 4.4.

Competitive equilibrium prices are (p∗, q∗). All partial derivatives are eval-
uated at (p∗, q∗, 0, 0). It holds that ∂π1,s ẑ

r = ∂π1,s d̂
i(1,s), where {i(1, s)} = I1,s

if r1,s = −1, and {i(1, s)} = I1,s if r1,s = +1. An increase in π1,s corresponds
to the introduction of demand rationing or the disappearance of supply ra-
tioning on commodity (1, s), which decreases the demand for commodity

20



(1, s), so ∂π1,s ẑ
r
1,s is negative. The change in income spent on commodity

(1, s) equals p∗1,s∂π1,s ẑ
r
1,s. The individual i(1) is the one affected by rationing

in the asset market, so {i(1)} = I1 if r1 = −1, and {i(1)} = I1 if r1 = +1.
From the properties of the Cobb-Douglas utility function, it follows that

∂π1,1 d̂
i(1,1)
1,2 =

−α
i(1,1)
1 p∗1,1q∗1∂π1,1 ẑr

1,1

p∗1,2q∗2(2−α
i(1,1)
1 )

, ∂π1,1 d̂
i(1,1)
1,3 = 0, ∂π1,1 d̂

i(1,1)
1 =

p∗1,1∂π1,1 ẑr
1,1

(2−α
i(1,1)
1 )

,

∂π1,2 d̂
i(1,2)
1,1 =

−α
i(1,2)
1 p∗1,2q∗1∂π1,2 ẑr

1,2

p∗1,1q∗2(2−α
i(1,2)
1 )

, ∂π1,2 d̂
i(1,2)
1,3 = 0, ∂π1,2 d̂

i(1,2)
1 =

−p∗1,2q∗2∂π1,2 ẑr
1,2

q∗1(2−α
i(1,2)
1 )

,

∂π1,3 d̂
i(1,3)
1,1 = 0, ∂π1,3 d̂

i(1,3)
1,2 = 0, ∂π1,3 d̂

i(1,3)
1 = 0,

∂ρ1 d̂
i(1)
1,1 =

α
i(1)
1 ∂ρ1 ẑr

1

p∗1,1
, ∂ρ1 d̂

i(1)
1,2 =

−α
i(1)
1 q∗1∂ρ1 ẑr

1

p∗1,2q∗2
, ∂ρ1 d̂

i(1)
1,3 = 0.

The sign of the determinant of ∂π,ρẑ
r does not change by premultiplying it

by the strictly positive row vector (p∗1,1q
∗
1, p

∗
1,2q

∗
2, 1, q

∗
1) and postmultiplying

it by the strictly positive column vector ((2 − α
i(1,1)
1 )/ − p∗1,1q

∗
1∂π1,1 ẑ

r
1,1, (2 −

α
i(1,2)
1 )/−p∗1,2q

∗
2∂π1,2 ẑ

r
1,2, 1/− ẑr

1,3, 1/− q∗1∂ρ1ẑr
1
)′. The resulting matrix is given

by 


α
i(1,1)
1 − 2 α

i(1,2)
1 0 −α

i(1)
1

α
i(1,1)
1 α

i(1,2)
2 − 2 0 α

i(1)
1

0 0 −1 0

−1 1 0 −1




and its determinant equals

(4− 2α
i(1,1)
1 − 2α

i(1,2)
1 )(1− α

i(1)
1 ) > 0.

The determinant of ∂π,ρẑ
r is positive, irrespective of the sign vector r. It

follows that the competitive equilibrium allocation is differentiably locally
unique as a fix-price equilibrium allocation. 2

As in Laroque (1981), whenever there are two sign vectors without zero
components r1 and r2 such that the determinants of ∂π,ρẑ

r1
(p∗, q∗, 0, 0) and
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∂π,ρẑ
r2

(p∗, q∗, 0, 0) have opposite signs and ∂z(p∗, q∗) has full rank, then for
every neighborhood Nx∗,y∗ there exists for every neighborhood Np∗,q∗ a price
system (p, q) ∈ Np∗,q∗ with at least two fix-price equilibrium allocations in
Nx∗,y∗ . Assumption 3 is “almost necessary” for the differentiable local unique-
ness of competitive equilibrium allocations.

Local uniqueness of fix-price equilibrium allocations at competitive equi-
libria is not too strong a requirement. It is less demanding than the re-
quirement of uniqueness of fix-price equilibrium allocations at prices in a
neighborhood of competitive prices. The latter requirement has a very clear
interpretation and guarantees a certain degree of generality of our results.

The function (x̂, ŷ) : Np∗,q∗ → IRI(L+1)S+I(A+1) associates the unique fix-
price equilibrium allocation in Nx∗,y∗ to (p, q) ∈ Np∗,q∗ . The indirect utility
function of an individual at a locally unique fix-price equilibrium is defined
by

vi(p, q) = ui(x̂i(p, q)), (p, q) ∈ Np∗,q∗ .

Lemma 2 If ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, then the indirect
utility function vi : Np∗,q∗ → IR is differentiable and

∂pl,s
vi(p∗, q∗) = −∂xL+1,s

ui(xi∗)(xi∗
l,s − ei

l,s), (l, s) ∈ Ľ × S.

Proof For every sign vector r, the restriction of vi to Np∗,q∗ ∩ PQ(r), de-
noted vir , is differentiable. From the differentiation of the budget constraints

qŷir(p, q) = 0 and ps(x̂
ir

s (p, q)− ei
s) = Rs·ŷir(p, q), s ∈ S,

with respect to pl,s, and the first order conditions for individual optimization
at a competitive equilibrium,

∂xi
l,s

ui(xi∗) = ∂xi
L+1,s

ui(xi∗)p∗l,s, (l, s) ∈ Ľ × S,

and ∑

s∈S
∂xi

L+1,s
ui(xi∗)Rs· = µiq∗, for some µi > 0,

it follows that

∂p
l,s

vir(p∗, q∗) = −∂xi
L+1,s

ui(xi∗)(xi∗
l,s
− ei

l,s
).

Since the derivative is independent of the sign vector r, the result follows. 2
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Appendix 3: Pareto improving price regulation

Price regulation can Pareto improve on a competitive equilibrium ((p∗, q∗),
(x∗, y∗)) if there exist prices of commodities p such that a fix-price equilibrium
of commodities at prices of commodities and assets (p, q∗) Pareto dominates
the allocation x∗. The ambiguity introduced by the possibility of multiple fix-
price equilibrium allocations at prices (p, q∗) is circumvented by considering
local variations at competitive equilibrium allocations that are differentiably
locally unique as fix-price equilibria.

Definition 4 (Pareto improving price regulation) A competitive
equilibrium ((p∗, q∗), (x∗, y∗)) can be Pareto improved by price regulation if it
is differentiably locally unique as fix-price equilibrium and there exists an in-
finitesimal variation in commodity prices dp̌ such that

∑
(l,s)∈Ľ×S ∂pl,s

vi(p∗, q∗)
dpl,s > 0, i ∈ I.

The competitive equilibrium can be Pareto improved by uniform price regu-
lation if it can be Pareto improved by a price regulation with dp̌s = dp̌s′ , s, s′ ∈
S.

Pareto improvement by price regulation is possible only if the asset market
is incomplete. Another necessary requirement is that the economy allows for
heterogeneous individuals.

Assumption 3 A + 1 < S and I > 1.

The function ϕ is defined by

ϕ(x, λ̃, p̃, e) =




∂ui(xi)− λ̃ip̃, i ∈ I
∑

s∈S p̃s(x
i
s − ei

s), i ∈ I
∑

i∈I(x
i
l,s − ei

l,s), (l, s) ∈ L × S \ {(L + 1, S)}
∑

s∈S nsp̃s(x
i
s − ei

s), i ∈ I \ {1}




,

where the Lagrangian multiplier λ̃i ∈ IR does not vary with the state of
the world, the prices of commodities p̃ ∈ IR

(L+1)S−1
++ × {1} are discounted

prices, with only the price of commodity (L + 1, S) normalized to 1, and
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n 6= 0 is a fixed vector such that nR = 0. In the standard reformulation of
the incomplete markets model in discounted prices, it is assumed that one
individual is unconstrained, so that his marginal utility at an optimal choice is
proportional to the price system. Pareto optimality implies that the marginal
utility vectors of all agents should be proportional to the price system. The
function ϕ is completed by specifying budget constraints and market clearing
conditions, and one condition for every individual but one that recognizes the
incompleteness of markets:

∑
s∈S nsp̃s(x

i
s − ei

s) = 0. The existence of n 6= 0
such that nR = 0 follows from market incompleteness. It follows that the
function ϕ vanishes at a Pareto optimal competitive equilibrium.

For a function f that depends on a vector of variables α and on en-
dowments e, fe(α) is the function that results from fixing e; for instance,
ϕe(x, λ̃, p̃) = ϕ(x, λ̃, p̃, e).

Lemma 3 Generically, competitive equilibrium allocations are not Pareto
optimal.

Proof A necessary condition for x to be a Pareto optimal competitive
equilibrium allocation for an economy e is that ϕe(x, λ̃, p̃) = 0. Since the
dimension of the domain of ϕe is lower than the dimension of the range,
whenever ϕe is transverse to 0, a solution to ϕe(x, λ̃, p̃) = 0 does not exist.
By a standard argument, ϕ is transverse to 0. By the transversal density
theorem, the set of economies for which ϕe is transverse to 0 has full Lebesgue
measure. By a standard argument, this set can be chosen to be open. 2

The function ψ : Ξ× Ω∗ → IRN is defined by

ψ(ξ, e) =




∂xi
s
ui(xi)− λi

sps, i ∈ I, s ∈ S

ps(x
i
s − ei

s)−Rs·yi, i ∈ I, s ∈ S

λiR− µiq, i ∈ I
∑

i∈I(x
i
l,s − ei

l,s), (l, s) ∈ Ľ × S
∑

i∈I yi
a, a ∈ Ǎ

qyi, i ∈ I




,

24



ξ = (x, λ, y, µ, p̌, q̌) and Ξ = IR
I(L+1)S
++ × IRIS

++ × IRI(A+1) × IRI × P̌ × Q̌. The
dimension of Ξ is N. When ξ∗ is consistent with a competitive equilibrium,
it is necessarily the case that ψe(ξ

∗) = 0.
The function h : Ξ× IRI × Ω∗ → IRLS+1 is defined by

h(ξ, α, e) =




∑
i∈I αiλi

s(x
i
l,s − ei

l,s), (l, s) ∈ Ľ × S
∑

i∈I(α
i)2 − 1


 .

A competitive equilibrium can be Pareto improved by price regulation if the
matrix of partial derivatives of the indirect utility functions with respect to
prices has full rank4. By Proposition 4.8, this matrix is guaranteed to have
full rank if there is no solution to ψe(ξ) = 0 in combination with he(ξ, α) = 0.

The function ψ̃ : Ξ× IRI × Ω∗ → IRN+LS+1 is defined by

ψ̃(ξ, α, e) =

(
ψ(ξ, e)

h(ξ, α, e)

)
.

If ψ̃ is transverse to 0, then it follows from the transversal density theorem
that for a subset of endowments of full Lebesgue measure, ψ̃e is transverse
to 0. If LS ≥ I, then the dimension of the range of ψ̃e exceeds that of the
domain. Transversality of ψ̃e implies that there are no solutions to the asso-
ciated system of equations. It is possible to Pareto improve all competitive
equilibria by price regulation.

Proposition 2 If LS ≥ I, then, generically, all competitive equilibria of E
can be Pareto improved by price regulation.

Proof One fixes (l, s) ∈ Ľ × S and Ω∗∗, an open subset of endowments
in Ω∗ of full Lebesgue measure, such that no competitive equilibrium of the
associated economy E is Pareto optimal. The function ψ̂ : Ξ× Ω∗∗ → IRN+1

is defined by

ψ̂(ξ, e) =




ψ(ξ, e)

∑
s∈S\{s}

∑
i∈I

λi
s

λi
s

(xi
l,s
− ei

l,s
)


 .

4If the matrix of partial derivatives has full rank, it is possible to generate any desired
marginal change in utilities by means of price regulation.
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If ψ̂(ξ, e) = 0, then the matrix M̂ of partial derivatives of ψ̂ evaluated at
(ξ, e) has full row rank: if v′M̂ = 0, then v = 0. The components of v are
v1,i,l,s, i ∈ I, (l, s) ∈ L × S, v2,i,s, i ∈ I, s ∈ S, v3,i,a, i ∈ I, a ∈ A, v4,l,s,
(l, s) ∈ Ľ × S, v5,a, a ∈ Ǎ, v6,i, i ∈ I, and v9, according to the labelling of

the equations defining ψ̂.
If v is such that v′M̂ = 0, then 0 = v′∂ei

L+1,s
ψ̂(ξ, e) = −v2,i,s, i ∈ I, s ∈ S.

It follows that, for i ∈ I,

0 = v′∂ei
l,s

ψ̂(ξ, e) = −v4,l,s, (l, s) ∈ (Ľ \ {l})× S,

0 = v′∂ei

l,s

ψ̂(ξ, e) = −v4,l,s − v9
λi

s

λi
s

= 0, s ∈ S \ {s},

0 = v′∂ei

l,s

ψ̂(ξ, e) = −v4,l,s.

Consequently, if v4,l,ŝ = 0 for some ŝ ∈ S \{s}, then v9 = 0 and v4,l,s = 0, for
all s ∈ S \ {s}. If, on the contrary, v4,l,s 6= 0, for all s ∈ S \ {ŝ}, then

λi
s

λi
s

= −v4,l,s

v9

=
λi′

s

λi′
s

, i, i′ ∈ I, s ∈ S \ {s}.

Hence, for i, i′ ∈ I, for s1, s2 ∈ S, λi
s1/λi

s2 = (λi
s1/λi

s)(λ
i
s/λ

i
s2) = (λi′

s1/λi′
s )(λi′

s /
λi′

s2) = λi′
s1/λi′

s2 . The economy e has then a Pareto optimal competitive equilib-
rium induced by ξ, contradicting e ∈ Ω∗∗. Consequently, v4,l,s = 0, s ∈ S\{s},
and v9 = 0.

For i ∈ I, and (l, s) ∈ L × S,

0 = v′∂xi
l,s

ψ̂(ξ, e) = v′1,i,·,·∂xi
l,s

∂ui(xi).

It is possible to represent a utility function satisfying A2 by one with ∂2ui(xi)
negative definite on a bounded subset of the consumption set. Then it follows
that v1,i,·,· = 0. For i ∈ I, 0 = v′∂yi

A+1
ψ̂(ξ, e) = v8,i. Also, for a ∈ Ǎ,

0 = v′∂yi
a
ψ̂(ξ, e) = v5,a. Finally, 0 = v′∂λi

s
ψ̂(ξ, e) = v′3,i,·R

′
s·, i ∈ I, s ∈ S.

Since R has full column rank it follows that v3,i,a = 0, i ∈ I, a ∈ A.

Therefore, v = 0, M̂ has full row rank N + 1, and ψ̂ is transverse to 0.
The set of endowments such that ψ̂e is transverse to zero is denoted Ω̂l,s.

By the transversal density proposition, Ω∗∗ \ Ω̂l,s has Lebesgue measure zero.
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For e ∈ Ω̂l,s, the dimension of the range of ψ̂e exceeds that of the domain, so

(ψ̂e)
−1({0}) = ∅.
The set Ω̂ = ∩(l,s)∈Ľ×SΩ̂l,s is of full Lebesgue measure and, by a standard

argument, open. Redefine the function ψ̃ such that endowments belong to
Ω∗ ∩ Ω̂. For (ξ, α, e) such that ψ̃(ξ, α, e) = 0, M̃ is the matrix of partial
derivatives of ψ̃ evaluated at (ξ, α, e).

If v is such that v′M̃ = 0, and the components of v are denoted by v1,i,l,s,

v2,i,s, v3,i,a, v4,l,s, v5,a, v6,i, v7,l,s, and v8, then, 0 = v′∂ei
L+1,s

ψ̃(ξ, α, e) = −v2,i,s,

i ∈ I, s ∈ S. Hence,

0 = v′∂ei
l,s

ψ̃(ξ, α, e) = −v4,l,s − αiλi
sv7,l,s, i ∈ I, (l, s) ∈ Ľ × S.

Since
∑

i∈I(α
i)2 = 1, there is i′ such that αi′ 6= 0. If there is s ∈ S such that,

for i ∈ I \ {i′}, αi′λi′
s − αiλi

s = 0, then, for any l ∈ Ľ,

0 =
∑

s∈S\{s}
∑

i∈I αiλi
s(x

i
l,s − ei

l,s) =
∑

s∈S\{s}
∑

i∈I
αi′λi′

s

λi
s

λi
s(x

i
l,s − ei

l,s)

= αi′λi′
s

∑
s∈S\{s}

∑
i∈I

λi
s

λi
s

(xi
l,s − ei

l,s).

Since αi′ 6= 0,
∑

s∈S\{s}
∑

i∈I(λ
i
s/λ

i
s)(x

i
l,s − ei

l,s) = 0, a contradiction since

e ∈ Ω̂. Consequently, for every s ∈ S, there is i ∈ I \ {i′} such that αi′λi′
s −

αiλi
s 6= 0. For (l, s) ∈ Ľ × S, (αi′λi′

s − αiλi
s)v7,l,s = 0, so v7,l,s = 0, and, thus

v4,l,s = 0. Also, 0 = v′∂αi′ ψ̃(ξ, α, e) = 2αi′v8, so, since αi′ 6= 0, v8 = 0. It
follows as in the first part of the proof that v1,i,l,s = 0, i ∈ I, (l, s) ∈ Ľ × S,
that v6,i = 0, i ∈ I, that v5,a = 0, a ∈ Ǎ, and that v3,i,a = 0, i ∈ I, a ∈ A.

Therefore, M̃ has rank N + LS + 1 and ψ̃ intersects 0 transversally. If
Ω̃ is the set of economies such that ψ̃e is transverse to 0, then Ω∗ \ Ω̃ has
Lebesgue measure zero by the transversal density theorem. Openness follows
by a standard argument. 2

Generically, it is possible to make every individual better off by choosing
appropriate price regulations on the spot markets when asset markets are
incomplete. One needs at least as many instruments, LS, as individuals, I.
Proposition 1 makes clear that this is all one needs. This is not the case
in the constrained suboptimality result of Geanakoplos and Polemarchakis
(1986), which applies when 2L ≤ I ≤ L(S − 1) + 1.

27



A competitive equilibrium can be Pareto improved by uniform price reg-
ulation if the matrix of partial derivatives of the indirect utility functions
with respect to uniform price regulation has full rank.

The function k : Ξ× IRI × Ω∗ → IRL+1 is defined by

k(ξ, α, e) =




∑
s∈S hl,s(x, λ, α, e), l ∈ Ľ

∑
i∈I(α

i)2 − 1


 .

The matrix of partial derivatives of the indirect utility functions with respect
to uniform price regulation is guaranteed to have full rank if there is no
solution to ψe(ξ) = 0 in combination with ke(ξ, α) = 0.

Corollary 1 If L ≥ I, then, generically, all competitive equilibria of E can
be Pareto improved by uniform price regulation.

Proof The argument follows that in the proof of Proposition 5.3. The
equations related to h that characterize Pareto improving price regulation are
replaced by the equations related to k that characterize Pareto improvements
by uniform price regulation. This defines a function ψ. The matrix M gives
the partial derivatives of ψ evaluated at some (ξ, α, e) with ψ(ξ, α, e) = 0. If
v′M = 0, by considering the partial derivatives with respect to ei

l,s, it follows

that v2,i,s = 0, i ∈ I, s ∈ S, and v4,l,s +αiλi
sv7,l = 0, i ∈ I, (l, s) ∈ Ľ×S. If i′

is such that αi′ 6= 0, and if s ∈ S such that, for i ∈ I \{i′}, αi′λi′
s −αiλi

s = 0,
then

0 =
∑

i∈I αi ∑
s∈S λi

s(x
i
l,s − ei

l,s) = αi′λi′
s

∑
i∈I

∑
s∈S

λi
s

λi
s

(xi
l,s − ei

l,s)

=
∑

i∈I
∑

s∈S
λi

s

λi
s

(xi
l,s − ei

l,s) =
∑

i∈I
∑

s∈S\{s}
λi

s

λi
s

(xi
l,s − ei

l,s), l ∈ Ľ,

which contradicts e ∈ Ω̂. It follows that v4,l,s = 0, (l, s) ∈ Ľ×S, and v7,l = 0,
l ∈ Ľ. The remainder of the proof follows the argument in the proof of
Proposition 6. 2

Uniform price regulation is effective when L ≥ I, which reflects again
that the number of instruments has to exceed the number of objectives.
It complements the constrained suboptimality result of Geanakoplos and
Polemarchakis (1986), which applies when 2L ≤ I ≤ L(S − 1) + 1.
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