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Summary: This article describes the basic elements of the cooperative approach to game theory, one of

the two counterparts of the discipline. After the presentation of some basic definitions, the focus will be

on the core and the Shapley value, two of the most central solution concepts in cooperative game theory.

Basic Definitions:

Cooperative game theory. It is one of the two counterparts of game theory. It studies the interactions

among coalitions of players. Its main question is this: Given the sets of feasible payoffs for each coalition,

what payoff will be awarded to each player? One can take a positive or normative approach to answering

this question, and different solution concepts in the theory lean towards one or the other.

Core. It is a solution concept that assigns to each cooperative game the set of payoffs that no coalition

can improve upon or block. In a context in which there is unfettered coalitional interaction, the core

arises as a good positive answer to the question posed in cooperative game theory. In other words, if a

payoff does not belong to the core, one should not expect to see it as the prediction of the theory.

Shapley value. It is a solution that prescribes a single payoff for each player, which is the average

of all marginal contributions of that player to each coalition he or she is a member of. It is usually

viewed as a good normative answer to the question posed in cooperative game theory. That is, those

who contribute more to the groups that include them should be paid more.

A Brief Historical Account: Although there were som earlier contributions, the official date of birth

of game theory is usually taken to be 1944, year of publication of the first edition of the Theory of Games

and Economic Behavior, by John von Neumann and Oskar Morgenstern. The core was first proposed by

Francis Ysidro Edgeworth in 1881, and later reinvented and defined in game theoretic terms in Gillies

(1959). The Shapley value was proposed by Lloyd Shapley in his 1953 PhD dissertation. Both the

core and the Shapley value have been applied widely, to shed light on problems in different disciplines,

including economics and political science. For recent accounts of the theory, the reader is referred to

Myerson (1991), Osborne and Rubinstein (1994), and Peleg and Sudholter (2003).
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1. Introduction.

Game theory is the study of games, also called strategic situations. These are decision problems

with multiple decision makers, whose decisions impact one another. It is divided into two branches:

non-cooperative game theory and cooperative game theory. The actors in non-cooperative game theory

are individual players, who may reach agreements only if they are self-enforcing. The non-cooperative

approach provides a rich language and develops useful tools to analyze games. One clear advantage of

the approach is that it is able to model how specific details of the interaction among individual players

may impact the final outcome. One limitation, however, is that its predictions may be highly sensitive

to those details. For this reason it is worth also analyzing more abstract approaches that attempt to

obtain conclusions that are independent of such details. The cooperative approach is one such attempt,

and it is the subject of this article.

The actors in cooperative game theory are coalitions, that is, groups of players. For the most part,

two facts, that a coalition has formed and that it has a feasible set of payoffs available to its members, are

taken as given. Given the coalitions and their sets of feasible payoffs as primitives, the question tackled

is the identification of final payoffs awarded to each player. That is, given a collection of feasible sets of

payoffs, one for each coalition, can one predict or recommend a payoff (or set of payoffs) to be awarded

to each player? Such predictions or recommendations are embodied in different solution concepts.

Indeed, one can take several approaches to answering the question just posed. From a positive or

descriptive point of view, one may want to get a prediction of the likely outcome of the interaction among

the players, and hence, the resulting payoff be understood as the natural consequence of the forces at

work in the system. Alternatively, one can take a normative or prescriptive approach, set up a number

of normative goals, typically embodied in axioms, and try to derive their logical implications. Although

authors sometimes disagree on the classification of the different solution concepts according to these two

criteria –as we shall see, the understanding of each solution concept is enhanced if one can view it from

very distinct approaches–, in this article we shall exemplify the positive approach with the core and the

normative approach with the Shapley value. While this may oversimplify the issues, it should be helpful

to a reader new to the subject.

The rest of the article is organized as follows. Section 2 introduces the basic model of a cooperative
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game, and discusses its assumptions as well as the notion of solution concepts. Section 3 is devoted to

the core, and Section 4 to the Shapley value. In each case, some of the main results for each of the two

are described, and examples are provided.

2. Cooperative Games.

2.1. Representations of Games. The Characteristic Function. Let us begin by presenting the different

ways to describe a game. The first two are the usual ways employed in non-cooperative game theory.

The most informative way to describe a game is called its extensive form. It consists of a game tree,

specifying the timing of moves for each player and the information available to each of them at the time

of making a move. At the end of each path of moves, a final outcome is reached and a payoff vector is

specified. For each player, one can define a strategy, i.e., a complete contingent plan of action to play the

game. That is, a strategy is a function that specifies a feasible move each time a player is called upon to

make a move in the game.

One can abstract from details of the interaction (such as timing of moves and information available

at each move), and focus on the concept of strategies. That is, one can list down the set of strategies

available to each player, and arrive at the strategic or normal form of the game. For two players, for

example, the normal form is represented in a bimatrix table. One player controls the rows, and the other

the columns. Each cell of the bimatrix is occupied with an ordered pair, specifying the payoff to each

player if each of them chooses the strategy corresponding to that cell.

One can further abstract from the notion of strategies, which will lead to the characteristic function

form of representing a game. This is the representation most often used in cooperative game theory.

Thus, here are the primitives of the basic model in cooperative game theory. Let N = {1, . . . , n} be

a finite set of players. Each non-empty subset of N is called a coalition. The set N is referred to as the

grand coalition. For each coalition S, we shall specify a set V (S) ⊂ IR|S| containing |S|-dimensional payoff

vectors that are feasible for coalition S. This is called the characteristic function, and the pair (N, V )

is called a cooperative game. Note how a reduced form approach is taken because one does not explain

what strategic choices are behind each of the payoff vectors in V (S). In addition, in this formulation, it

is implicitly assumed that the actions taken by the complement coalition (those players in N \S) cannot

4



prevent S from achieving each of the payoff vectors in V (S). There are more general models in which

these sorts of externalities across coalitions are considered, but we shall ignore them in this article.

2.2. Assumptions on the Characteristic Function. Some of the most common technical assumptions

made on the characteristic function are the following:

(1) For each S ⊆ N , V (S) is closed. Denote by ∂V (S) the boundary of V (S). Hence, ∂V (S) ⊆ V (S).

(2) For each S ⊆ N , V (S) is comprehensive, i.e., for each x ∈ V (S), {x} − IR
|S|
+ ⊆ V (S).

(3) For each x ∈ IR|S|,

∂V (S) ∩ ({x} + IR
|S|
+ )

is bounded.

(4) For each S ⊆ N , there exists a continuously differentiable representation of V (S), i.e., a continuously

differentiable function gS : IR|S| → IR such that

V (S) = {x ∈ IR|S|| gS(x) ≤ 0}.

(5) For each S ⊆ N , V (S) is non-levelled, i.e., for every x ∈ ∂V (S), the gradient of gS at x is positive

in all its coordinates.

With the assumptions made, ∂V (S) is its Pareto frontier, i.e., the set of vectors xS ∈ V (S) such that

there does not exist yS ∈ V (S) satisfying that yi ≥ xi for all i ∈ S with at least one strict inequality.

Other assumptions usually made relate the possibilities available to different coalitions. Among them,

a very important one is balancedness, which we shall define next:

A set of weights w(S) ∈ [0, 1] for each S ⊆ N is called a balancing set of weights if for every i ∈ N ,
∑

S,i∈S w(S) = 1. One can think of these weights as the fraction of time that each player devotes to

each coalition he is a member of, with a given coalition representing the same fraction of time for each

player. The game (N, V ) is balanced if for every balancing set of weights (w(S))S⊆N and for every

xS ∈ V (S), the payoff
∑

S⊆N w(S)(xS, 0N\S) ∈ V (N). That is, the grand coalition can always implement

any “time-sharing arrangement” that the different subcoalitions may come up with.
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The characteristic function defined so far is often referred to as a non-transferable utility (NTU)

game. A particular case is the transferable utility (TU) game case, in which for each coalition S ⊆ N ,

there exists a real number v(S) such that

V (S) = {x ∈ IR|S| :
∑

i∈S

xi ≤ v(S)}.

Abusing notation slightly, we shall denote a TU game by (N, v). In the TU case there is an underlying

nummeraire –money– that can transfer utility or payoff at a one-to-one rate from one player to any other.

2.3. Solution Concepts. Given a characteristic function, i.e., a collection of sets V (S), one for each S,

the theory formulates its predictions on the basis of different solution concepts. We shall concentrate on

the case in which the grand coalition forms, that is, cooperation is totally successful. Of course, solution

concepts can be adapted to take care of the case in which this does not happen.

A solution is a mapping that assigns a set of payoff vectors in V (N) to each characteristic function

game (N, V ). Thus, a solution in general prescribes a set, which can be empty, or a singleton (when it

assigns a unique payoff vector as a function of the fundamentals of the problem). The leading set-valued

cooperative solution concept is the core, while one of the most used single-valued ones is the Shapley

value.

There are several criteria to evaluate the reasonableness or appeal of a cooperative solution. As

outlined above, in a normative approach, one can propose axioms, abstract principles that one would

like the solution to satisfy, and the next step is to pursue their logical consequences. Historically, this

was the first argument to justify the Shapley value. Alternatively, one could start by defending a solution

on the basis of its definition alone. In the case of the core, this will be especially natural: in a context in

which players can freely get together in groups, the prediction should be payoff vectors that cannot be

improved upon by any coalition. One can further enhance one’s positive understanding of the solution

concept by proposing games in extensive form or in normal form played non-cooperatively by players

whose self-enforcing agreements lead to a given solution. This is simply to provide non-cooperative

foundations or non-cooperative implementation to the cooperative solution in question, and it is an

important research agenda initiated by John Nash (Nash (1953)), referred to as the Nash program (see

Serrano (2005) for a recent survey). Today, there are interesting results of these different kinds for many
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solution concepts, which include axiomatic characterizations and non-cooperative foundations. Thus,

one can evaluate the appeal of the axioms and the non-cooperative procedures behind each solution to

defend a more normative or positive interpretation in each case.

3. The Core.

The idea of agreements that are immune to coalitional deviations was first introduced to economic

theory in Edgeworth (1881), who defined the set of coalitionally stable allocations of an economy under

the name “final settlements.” Edgeworth envisioned this concept as an alternative to competitive equi-

librium (Walras (1874)), of central importance in economic theory, and was also the first to investigate

the connections between the two concepts. Edgeworth’s notion, which today we refer to as the core,

was rediscovered and introduced to game theory in Gillies (1959). The origins of the core were not ax-

iomatic. Rather, its simple and appealing definition appropriately describes stable outcomes in a context

of unfettered coalitional interaction.

The core of the game (N, V ) is the set of payoff vectors

C(N, V ) = {x ∈ V (N) : 6 ∃S ⊆ N, xS ∈ V (S) \ ∂V (S)}.

In words, it is the set of feasible payoff vectors for the grand coalition that no coalition can upset. If

such a coalition S exists, we shall say that S can improve upon or block x, and x is deemed unstable.

That is, in a context where any coalition can get together, when S has a blocking move, coalition S will

form and abandon the grand coalition and its payoffs xS in order to get to a better payoff for each of the

members of the coalition, a plan that is feasible for them.

3.1. Non-Emptiness. The core can prescribe the empty set in some games. A game with an empty core

is to be understood as a situation of strong instability, as any payoffs proposed to the grand coalition

are vulnerable to coalitional blocking.

Example: Consider the following simple majority 3-player TU game, in which the votes of at least two

players makes the coalition winning. That is, we represent the situation by the following characteristic

function: v(S) = 1 for any S containing at least two members, v({i}) = 0 for all i ∈ N . Clearly,

C(N, v) = ∅. Any feasible payoff agreement proposed to the grand coalition will be blocked by at least

one coalition.
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An important sufficient condition for the non-emptiness of the core of NTU games is balancedness,

as shown in Scarf (1967):

Theorem (Scarf, 1967): Let the game (N, V ) be balanced. Then C(N, V ) 6= ∅.

For the TU case, balancedness is not only sufficient, but it becomes also necessary for the non-

emptiness of the core:

Theorem (Bondareva, 1963; Shapley, 1967): Let (N, v) be a TU game. Then, (N, v) is balanced if and

only if C(N, v) 6= ∅.

3.2. The Connections with Competitive Equilibrium. In economics, the institution of markets and the

notion of prices are essential to the understanding of the allocation of goods and the distribution of wealth

among individuals. For simplicity in the presentation, we shall concentrate on exchange economies,

and disregard production aspects. That is, we shall assume that the goods in question have already

been produced in some fixed amounts, and now they are to be allocated to individuals to satisfy their

consumption needs.

An exchange economy is a system in which each agent i in the set N has a consumption set Zi ⊆ IRl
+

of commodity bundles, as well as a preference relation over Zi and an initial endowment ωi ∈ Zi of the

commodities. A feasible allocation of goods in the economy is a list of bundles (zi)i∈N such that zi ∈ Zi

and
∑

i∈N zi ≤
∑

i∈N ωi. An allocation is competitive if it is supported by a competitive equilibrium. A

competitive equilibrium is a price-allocation pair (p, (zi)i∈N ), where p ∈ IRl \ {0} is such that

• for every i ∈ N , zi is top-ranked for agent i among all bundles z satisfying that pz ≤ pωi,

• and
∑

i∈N zi =
∑

i∈N ωi.

In words, this is what the concept expresses. First, at the equilibrium prices, each agent demands zi,

i.e., wishes to purchase this bundle among the set of affordable bundles, the budget set. And second,

these demands are such that all markets clear, i.e., total demand equals total supply.

Note how the notion of a competitive equilibrium relies on the principle of private ownership (each

individual owns his or her endowment, which allows him or her to access markets and purchase things).

Moreover, each agent is a price-taker in all markets. That is, no single individual can affect the market

prices with his or her actions; prices are fixed parameters in each individual’s consumption decision. The
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usual justification for the price-taking assumption is that each individual is “very small” with respect to

the size of the economy, and hence, has no market power.

One difficulty with the competitive equilibrium concept is that it does not explain where prices come

from. There is no single agent in the model responsible for coming up with them. Walras (1874) told the

story of an auctioneer calling out prices until demand and supply coincide, but in many real-world markets

there is no auctioneer. More generally, economists attribute the equilibrium prices to the workings of

the forces of demand and supply, but this appears to be simply repeating the definition. So, is there a

different way one can explain competitive equilibrium prices?

As it turns out, there is a very robust result that answers this question. We refer to it as the

equivalence principle (see, e.g., Aumann (1987)), by which, under certain regularity conditions, the

predictions provided by different game-theoretic solution concepts, when applied to an economy with a

large enough set of agents, tend to converge to the set of competitive equilibrium allocations. One of

the first results in this tradition was provided by Edgeworth in 1881 for the core. Note how the core of

the economy can be defined in the space of allocations, using the same definition as above. Namely, a

feasible allocation is in the core if it cannot be blocked by any coalition of agents when making use of

the coalition’s endowments.

Edgeworth’s result was generalized later by Debreu and Scarf (1963) for the case in which an exchange

economy is replicated an arbitrary number of times (Anderson (1978) studies the more general case of

arbitrary sequences of economies, not necessarily replicas). An informal statement of the Debreu-Scarf

theorem follows:

Theorem (Debreu and Scarf, 1963): Consider an exchange economy. Then,

(i) The set of competitive equilibrium allocations is contained in the core.

(ii) There exists a sufficiently large replica of the economy for which the replica of any non-competitive

core allocation of the original economy is blocked.

The first part states a very appealing property of competitive allocations, i.e., their coalitional sta-

bility. The second part, known as the core convergence theorem, states that the core “shrinks” to the

set of competitive allocations as the economy grows large.
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Aumann (1964) models the economy as an atomless measure space, and demonstrates the following

core equivalence theorem:

Theorem (Aumann, 1964): Let the economy consists of an atomless continuum of agents. Then, the

core coincides with the set of competitive allocations.

For readers who wish to pursue the topic further, Anderson (2008) provides a recent survey.

3.3. Axiomatic Characterizations. The axiomatic foundations of the core were provided much later

than the concept was proposed. These characterizations are all inspired by Peleg’s work. They include

Peleg (1985, 1986), and Serrano and Volij (1998) – the latter paper also provides an axiomatization of

competitive allocations in which core convergence insights are exploited.

In all these characterizations, the key axiom is that of consistency, also referred to as the reduced

game property. Consistency means that the outcomes prescribed by a solution should be “invariant” to

the number of players in the game. More formally, let (N, V ) be a game, and let σ be a solution. Let

x ∈ σ(N, V ). Then, the solution is consistent if for every S ⊆ N , xS ∈ σ(S, VxS), where (S, VxS) is the

reduced game for S given payoffs x, defined as follows. The feasible set for S in this reduced game is the

projection of V (N) at xN\S , i.e., what remains after paying those outside of S:

VxS(S) = {yS : (yS, xN\S) ∈ V (N)}.

However, the feasible set of T ⊂ S, T 6= S, allows T to make deals with any coalition outside of S,

provided that those services are paid at the rate prescribed by xN\S:

VxS(T ) = {yT ∈ ∪Q⊆N\S(yT , xQ) ∈ V (T ∪ Q)}.

It can be shown that the core satisfies consistency with respect to this reduced game. Moreover,

consistency is the central axiom in the characterization of the core, which, depending on the version one

looks at, uses a host of other axioms; see Peleg and Sudholter (2003).

3.4. Non-Cooperative Implementation. To obtain a non-cooperative implementation of the core, the

procedure must embody some feature of anonymity, since the core is usually a large set and it contains

payoffs where different players are treated very differently. For instance, if the procedure always had a

fixed set of moves, typically the prediction would favor the first mover, making it impossible to obtain

an implementation of the entire set of payoffs.
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Perry and Reny (1994) build in this anonymity by assuming that negotiations take place in continuous

time, so that anyone can speak at the beginning of the game, and at any point in time, instead of having

a fixed order. The player that gets to speak first makes a proposal consisting of naming a coalition

that contains him and a feasible payoff for that coalition. Next, the players in that coalition get to

respond. If they all accept the proposal, the coalition leaves and the game continues among the other

players. Otherwise, a new proposal may come from any player in N . It is shown that, if the TU game

has a non-empty core (as well as any of its subgames), a class of stationary self-enforcing predictions

of this procedure coincide with the core. If a core payoff is proposed to the grand coalition, there

are no incentives for individual players to reject it. Conversely, a non-core payoff cannot be sustained

because any player in a blocking coalition has an incentive to make a proposal to that coalition, who will

accept it (knowing that the alternative, given stationarity, would be to go back to the non-core status

quo). Moldovanu and Winter (1995) offer a discrete-time version of the mechanism: in their work, the

anonymity required is imposed on the solution concept, by looking at the order-independent equilibria

of the procedure.

Serrano (1995) sets up a market to implement the core. The anonymity of the procedure stems from

the random choice of broker. The broker announces a vector (x1, . . . , xn), where the components add

up to v(N). One can interpret xi as the price for the productive asset held by player i. Following an

arbitrary order, the remaining players either accept or reject these prices. If player i accepts, he sells his

asset to the broker for the price xi and leaves the game. Those who reject get to buy from the broker, at

the called out prices, the portfolio of assets of their choice if the broker still has them. If a player rejects,

but does not get to buy the portfolio of assets he would like because someone else took them before, he

can always leave the market with his own asset. The broker’s payoff is the worth of the final portfolio

of assets that he holds, plus the net monetary transfers that he has received. Serrano (1995) shows that

the prices announced by the broker will always be his top-ranked vectors in the core. If the TU game

is such that gains from cooperation increase with the size of coalitions, a beautiful theorem of Shapley

(1971) is used to prove that the set of all equilibrium payoffs of this procedure will coincide with the

core. Core payoffs are here understood as those price vectors where all arbitrage opportunities in the

market have been wiped out. Serrano and Vohra (1997) also implement the core, but do not rely on the
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TU assumption, and they use a procedure in which the order of moves can be endogenously changed by

players. Finally, yet another way to build anonymity in the procedure is by allowing the proposal to be

made by brokers outside of the set N , as done in Pérez-Castrillo (1994).

3.5. An Application. Consider majority games within a parliament. Suppose there are 100 seats, and

decisions are made by simple majority so that 51 votes are required to pass a piece of legislation.

In the first specification, suppose there is a very large party –player 1–, who has 90 seats. There are

five small parties, with 2 seats each. Given the simple majority rules, this problem can be represented

by the following TU characteristic function: v(S) = 1 if S contains player 1, and v(S) = 0 otherwise.

The interpretation is that each winning coalition can get the entire surplus –pass the desired proposal.

Here, a coalition is winning if and only if player 1 is in it. For this problem, the core is a singleton: the

entire unit of surplus is allocated to player 1, who has all the power. Any split of the unit surplus of the

grand coalition (v(N) = 1) that gives some positive fraction of surplus to any of the small parties can

be blocked by the coalition of player 1 alone.

Consider now a second problem, in which player 1, who continues to be the large party, has 35 seats,

and each of the other five parties has 13 seats. Now, the characteristic function is as follows: v(S) = 1

if and only if S either contains player 1 and two small parties, or it contains four of the small parties;

v(S) = 0 otherwise. It is easy to see that now the core is empty: any split of the unit surplus will

be blocked by at least one coalition. For example, the entire unit going to player 1 is blocked by the

coalition of all five small parties, which can award 0.2 to each of them. But this arrangement, in which

each small party gets 0.2 and player 1 nothing, is blocked as well, because player 1 can bribe two of the

small parties (say, players 2 and 3) and promise them 1/3 each, keeping the other third for itself, and

so on. The emptiness of the core is a way to describe the fragility of any agreement, due to the inherent

instability of this coalition formation game.

4. The Shapley Value.

Now consider a transferable utility or TU game in characteristic function form. The number v(S) is

referred to as the worth of S, and it expresses S’s initial position (e.g., the maximum total amount of

surplus in nummeraire –money, or power– that S initially has at its disposal.
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4.1. Axiomatics. Shapley (1953) is interested in solving in a fair and unique way the problem of

distribution of surplus among the players, when taking into account the worth of each coalition. To do

this, he restricts attention to single-valued solutions and resorts to the axiomatic method. He proposes

the following axioms on a single-valued solution:

(i) Efficiency: The payoffs must add up to v(N), which means that all the grand coalition surplus is

allocated.

(ii) Symmetry: If two players are substitutes because they contribute the same to each coalition, the

solution should treat them equally.

(iii) Additivity: The solution to the sum of two TU games must be the sum of what it awards to each

of the two games.

(iv) Dummy player: If a player contributes nothing to every coalition, the solution should pay him

nothing.

(To be precise, the name of the first axiom should be different. In an economic sense, the statement

does imply efficiency in superadditive games, i.e., when for every pair of disjoint coalitions S and T ,

v(S) + v(T ) ≤ v(S ∪ T ). In the absence of superadditivity, though, forming the grand coalition is

not necessarily efficient, because a higher aggregate payoff can be obtained from a different coalition

structure.)

The surprising result in Shapley (1953) is this:

Theorem (Shapley, 1953): There is a unique single-valued solution to TU games satisfying efficiency,

symmetry, additivity and dummy. It is what today we call the Shapley value, the function that assigns

to each player i the payoff

Shi(N, v) =
∑

S,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

[v(S) − v(S \ {i})].

That is, the Shapley value awards to each player the average of his marginal contributions to each

coalition. In taking this average, all orders of the players are considered to be equally likely. Let us

assume, also without loss of generality, that v({i}) = 0 for each player i.
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What is especially surprising in Shapley’s result is that nothing in the axioms (with the possible

exception of the dummy axiom) hints at the idea of marginal contributions, so marginality in general is

the outcome of all the axioms, including additivity or linearity. Among the axioms utilized by Shapley,

additivity is the one with a lower normative content: it is simply a mathematical property to justify

simplicity in the computation of the solution. Young (1985) provides a beautiful counterpart to Shapley’s

theorem. He drops additivity (as well as the dummy player axiom), and instead, uses an axiom of

marginality. Marginality means that the solution should pay the same to a pleyar in two games if his

or her marginal contributions to coalitions is the same in both games. Marginality is an idea with a

strong tradition in economic theory. Young’s result is “dual” to Shapley’s, in the sense that marginality

is assumed and additivity derived as the result:

Theorem (Young, 1985): There exists a unique single-valued solution to TU games satisfying efficiency,

symmetry and marginality. It is the Shapley value.

Apart from these two, Hart and Mas-Colell (1989) provide further axiomatizations of the Shapley

value using the idea of potential and the concept of consistency, as described in the previous section.

There is no single way to extend the Shapley value to the class of NTU games. There are three main

extensions that have been proposed: the Shapley λ-transfer value (Shapley (1969)), the Harsanyi value

(Harsanyi (1963)), and the Maschler-Owen consistent value (Maschler and Owen (1992)). They were

axiomatized in Aumann (1985), Hart (1985), and de Clippel, Peters and Zank (2004), respectively.

4.2. The Connections with Competitive Equilibrium. As for the core, there is a value equivalence theorem.

The result holds for the TU domain (see Shapley (1964), Aumann (1975), Aumann and Shapley (1974)).

It can be shown that the Shapley value payoffs can be supported by competitive prices. Furthermore,

in large enough economies, the set of competitive payoffs “shrinks” to approximate the Shapley value.

However, the result cannot be easily extended to the NTU domain. While it holds for the λ-transfer

value, it need not obtain for the other extensions. For further details, the interested reader is referred to

Hart (2008) and the references therein.

4.3. Non-Cooperative Implementation. Gul (1989) was the first to propose a procedure that provided

some non-cooperative foundations of the Shapley value. Later, other authors have provided alternative

procedures and techniques to the same end, including Winter (1994), Krishna and Serrano (1995), Hart
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and Mas-Colell (1996), and Pérez-Castrillo and Wettstein (2001).

We shall concentrate on the description of the procedure used in Hart and Mas-Colell (1996). Gen-

eralizing an idea of Mas-Colell (1988), who studies the case of δ = 0 –see below–, Hart and Mas-Colell

propose the following non-cooperative procedure. With equal probability, each player i ∈ N is chosen

to publicly make a feasible proposal to the others: (x1, . . . , xn) is such that the sum of its components

cannot exceed v(N). The other players get to respond to it in sequence, following a prespecified order.

If all accept, the proposal is implemented; otherwise, a random device is triggered. With probability

0 ≤ δ < 1, the same game continues being played among the same n players (and thus, a new proposer

will be chosen again at random among them), but with probability 1− δ, the proposer leaves the game.

He is paid 0 and his resources are removed, so that in the next period, proposals to the remaining n− 1

players cannot add up to more than v(N \ {i}). A new proposer is chosen at random among the set

N \ {i}, and so on.

As shown in Hart and Mas-Colell (1996), there exists a unique stationary self-enforcing prediction of

this procedure, and it actually coincides with the Shapley value payoffs for any value of δ. (Stationarity

means that strategies cannot be history dependent). As δ → 1, the Shapley value payoffs are also

obtained not only in expectation, but with independence of who is the proposer. One way to understand

this result, as done in Hart and Mas-Colell (1996), is to check that the rules of the procedure and

stationary behavior in it are in agreement with Shapley’s axioms. That is, the equilibrium relies on

immediate acceptances of proposals, stationary strategies treat substitute players similarly, the equations

describing the equilibrium have an additive structure, and dummy players will have to receive 0 because

no resources are destroyed if they are asked to leave. It is also worth stressing the important role in the

procedure of players’ marginal contributions to coalitions: following a rejection, a proposer incurs the

risk of being thrown out and the others of losing his resources, which seem to suggest a “price” for them.

Krishna and Serrano (1995) study the conditions under which stationarity can be removed to obtain

the result. Pérez-Castrillo and Wettstein (2001) use a variant of the Hart and Mas-Colell procedure, by

replacing the random choice of proposers with a bidding stage, in which players bid to obtain the right

to make proposals.

4.4. An Application. Consider again the class of majority problems in a parliament consisting of 100
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seats. As we shall see, the Shapley value is a good way to understand the power that each party has in

the legislature.

Let us begin by considering again the problem in which player 1 has 90 seats, while each of the five

small parties has 2 seats. It is easy to see that the Shapley value, like the core in this case, awards the

entire unit of surplus to player 1: effectively, each of the small parties is a dummy player, and hence, the

Shapley value awards zero to each of them.

Consider a second problem, in which player 1 is a big party with 35 seats, and there are 5 small

parties, with 13 seats each. The Shapley value awards 1/3 to the large party, and, by symmetry, 2/15

to each of the small parties. To see this, we need to see when the marginal contributions of player 1

to any coalition are positive. Recall that there are 6! possible orders of players. Note how, if player 1

arrives first or second in the room in which the coalition is forming, his marginal contribution is zero: the

coalition was losing before he arrived and continues to be a losing coalition after his arrival. Similarly,

his marginal contribution is also zero if he arrives fifth or sixth to the coalition; indeed, in this case,

before he arrives the coalition is already winning, so he adds nothing to it. Thus, only when he arrives

third or fourth, which happens a third of the times, does he change the nature of the coalition, from

losing to winning. This explains his Shapley value share of 1/3. In this game, the Shapley value payoffs

roughly correspond to the proportion of seats that each party has.

Next, consider a third problem in which there are two large parties, while the other four parties are

very small. For example, let each of the large parties have 48 seats (say, players 1 and 2), while each

of the four small parties has only one seat. Now, the Shapley value payoffs are 0.3 to each of the two

large parties, and 0.1 to each of the small ones. To see this, note that the marginal contribution of a

small party is only positive when he comes fourth in line, and out of the preceding three parties in the

coalition, exactly one of them is a large party, i.e., 72 orders out of the 5! orders in which he is fourth.

That is, (72/5!) × (1/6) = 1/10. In this case, the competition between the large parties for the votes of

the small parties increases the power of the latter quite significantly, with respect to the proportion of

seats that each of them holds.

Finally, consider a fourth problem with two large parties (players 1 and 2) with 46 seats each, one

mid-size party (player 3) with 5 seats, and three small parties, each with one seat. First, note that each
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of the three small parties has become a dummy player: no winning coalition where he belongs becomes

losing if he leaves the coalition, and so players 4, 5 and 6 are paid zero by the Shapley value. Now, note

that, despite the substantial difference of seats between each large party and the mid-size party, each

of them is identical in terms of marginal contributions to a winning coalition. Indeed, for i = 1, 2, 3,

player i’s marginal contribution to a coalition is positive only if he arrives second or third or fourth or

fifth (and out of the preceding players in the coalition, exactly one is one of the non-dummy players).

Note how the Shapley value captures nicely the changes in the allocation of power due to each different

political scenario. In this case, the fierce competition between the large parties for the votes of player 3,

the swinging party to form a majority, explains the equal share of power among the three.
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