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Abstract

This paper generalizes the cointegrated vector autoregressive model of Johansen (1988) to allow for structural

changes. We take the time of the change points and the number of cointegration relations as given. Estimation

under various hypotheses is made possible by a new estimation technique, which makes it simple to derive a

number of interesting likelihood ratio tests. For example, one can test for m structural changes against m+ k

structural changes, or test linear parameter restrictions in the presence of structural changes. The asymptotic

distribution of the LR statistic is χ2 in both cases.

The model is applied to US term structure data, and structural changes in September 1979 and October

1982, which coincide with changes in the Fed’s policy, are found to be significant. After accounting for these

structural changes, we cannot, contrary to previous studies, reject the long-run implication of the expectations

hypothesis.
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1 Introduction

The modeling of structural changes in cointegrated processes has been addressed by several authors. In the

vector autoregressive framework, Seo (1998) derived the Lagrange multiplier (LM) test for structural changes

in cointegration relations and adjustment coefficients, and Inoue (1999) derived a rank test for cointegrated

processes with a broken trend. Other approaches to modeling structural changes in cointegrated processes are

the recursive estimation to identify structural changes by H. Hansen and Johansen (1999), the combination of

cointegration and Markov switching by Krolzig (1996), the co-breaking theory by Hendry (1995), and a test for

a cointegration relation with a structural change against an I(1) alternative was given by Gregory and B. E.

Hansen (1996).

One of the main contributions of this paper is the development of a flexible framework in which structural

changes can be formulated. In this framework it is possible to test for structural changes in any subset of the

parameters, referred to as a partial structural change.1 So it is possible to test for a structural change in a

particular cointegration relation or a particular coefficient, leaving other relations and parameters unchanged.

Throughout this paper, we take the change points and the number of cointegration relations in each of the

subsamples as given. The number of cointegration relations is not required to be constant over the full sample,

but the number of cointegration relations at any point in time is taken as given. The more general cases where

the change points are unknown, or the number of cointegration relations needs to be estimated, are not treated

in this paper.2 Because the change points are taken as given, the results are, in this sense, less general than those

of Seo (1998). However, the results are more general in other ways, because the framework allows for multiple

structural changes, non-constant cointegration rank, and it is possible to test for changes in any subset of the

parameters. The test statistic invoked in this paper is the likelihood ratio (LR) test, which is shown to have

an asymptotic χ2 distribution. Another contribution of this paper is that it enables hypotheses testing under

the maintained hypothesis that the underlying process exhibits structural changes. The asymptotic χ2 results

remain valid in this situation, as long as the hypotheses do not violate the assumed number of cointegration

relations.

Another contribution of this paper is the introduction of a new estimation technique, the generalized reduced

rank regression (GRRR) technique. This technique has an applicability beyond the estimation problems that

arise from structural changes. Estimation of the cointegrated vector autoregressive model (VAR) was solved by

Johansen (1988) as an eigenvalue problem, also known as reduced rank regression. This technique is directly

applicable to estimation under simple linear restrictions on cointegration relations, β, and adjustment coefficients,

1Partial structural changes in stationary processes has been analysed by Bai and Perron (1998) and Bai (1999).
2The case with unknown change points leads to non-standard asymptotic distributions. See Seo (1998) who used the framework

of Andrews and Ploberger (1994), or B. E. Hansen (1992) and H. Hansen and Johansen (1999) who applied the framework of
Nyblom (1989).
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α. Johansen and Juselius (1992) proposed a switching algorithm for estimation under slightly more general

restrictions. Boswijk (1995) derived a general estimation technique that can handle linear restrictions on vec(α)

and vec(β), where vec(·) is the vectorization operator. The estimation technique of Boswijk (1995) is applicable
to several estimation problems we face with structural changes in the cointegrated VAR. The GRRR technique

introduced in this paper is a generalization of his technique in two directions. First of all, the GRRR technique

allows for linear restrictions on all parameters apart from the variance parameter. Secondly, the GRRR technique

does not require a constant covariance matrix but allows us to model structural changes in the covariance matrix.

The framework developed in this paper is applied to the US term structure of interest rates. The results are

that the long-run implication of the expectations hypothesis cannot be rejected once structural changes have

been accounted for.

The paper is organized as follows. Section 2 contains the statistical formulation of structural changes in the

cointegration VAR. The estimation problems are treated in Section 3, and Section 4 contains the asymptotic

analysis. Section 5 contains an empirical analysis of the expectations hypothesis applied to the US term structure

of interest rates. Section 6 concludes, and the appendix contains proofs.

2 The Statistical Model

In this section we formulate structural changes in the p-dimensional cointegrated vector autoregressive model.

The model with constant parameters is given by

∆Xt = αβ
0X∗

t−1 +
k−1X
i=1

Γi∆Xt−i +ΦDt + εt, t = 1, . . . , T, (1)

where εt ∼ iidN(0,Ω), and where Dt is a q-dimensional vector that contains deterministic terms such as a

constant, a linear trend, and seasonal dummies. The variable X∗
t−1 consists of Xt−1 and restricted deterministic

variables. For example a linear trend, t, may be included in X∗
t−1, rather than in Dt, in order to avoid a

quadratic trend in the process, Xt. We refer to α as the adjustment coefficients, and to β as the cointegration

parameters, see Johansen (1988). The dimensions of the parameters are as follows: α is p× r, β is p1× r, where
p1 is the dimension of X∗

t−1, Γi is p× p, i = 1, . . . , k − 1, Φ is p× q, and Ω is p× p.
Structural changes are introduced by allowing the parameters to change their values at the change-points:

T1, . . . , Tm−1, where 0 < T1 < · · · < Tm−1 < T, and we map these change-points into the unit interval by

defining ρi ≡ Ti/T, i = 1, . . . ,m. In the most general situation we allow for structural changes in all parameters.
However, in most applications it is desirable to keep some parameters constant, such that the number of free

parameters is small relative to the sample size, and we can impose constancy of one or more parameters, across

two or more subsamples, using simple parameter restrictions.
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The generalization of (1) is the following:

∆Xt = α(t)β(t)
0X∗

t−1 +
k−1X
i=1

Γi(t)∆Xt−i +Φ(t)Dt + εt, t = 1, . . . , T, (2)

where {εt} is a sequence of independent Gaussian variables with mean zero and variance Ω(t). The time-varying
parameters are piecewise constant and given by

α(t)β(t)0 = α1β
0
111t + · · ·+ αmβ0m1mt,

Γi(t) = Γ1,i11t + · · ·+ Γm,i1mt, i = 1, . . . , k − 1,

Φ(t) = Φ111t + · · ·+Φm1mt,

Ω(t) = Ω111t + · · ·+Ωm1mt,

where we have defined an indicator function for each of the m subsamples

1jt ≡ 1 (Tj−1 + 1 ≤ t ≤ Tj) , j = 1, . . . ,m,

with the conventions T0 ≡ 0 and Tm ≡ T.
The Granger representation we obtain for this process shows that the columns of βj define the cointegration

relations in subsample j. Since βi and βj are not required to have the same number of columns, i 6= j, this

formulation allows for changes in the number of cointegration relations. Thus, the rank of α(t)β(t)0 may

vary across subsamples, in which case αj and βj have rj columns, where rj denotes the cointegration rank in

subsample j, j = 1, . . . ,m. All other parameters have dimensions that are constant across subsamples.3

We define the variables Z0t = ∆Xt, Z1t = (11tX∗0
t−1, . . . , 1mtX

∗0
t−1)

0, Z̃2t = (∆X 0
t−1, . . . ,∆X

0
t−k+1,D

0
t)
0, and

Z2t = (11tZ̃
0
2t, . . . , 1mtZ̃

0
2t)

0 and denote the number of variables Z̃2t by p2, such that Z1t and Z2t consist of mp1

and mp2 variables, respectively. Further, we define the parameters A = (α1, . . . ,αm) ,

B =



β1 0 · · · 0 0

0 β2 0

...
. . .

...

0 βm−1 0

0 0 · · · 0 βm


,

and C = (Ψ1, . . . ,Ψm), where Ψj = (Γj,1, . . . ,Γj,k−1,Φj), j = 1, . . . ,m. In the following, we use the notation

3 In a more general setting one could include different deterministic terms, Dt, in different subsamples in which case the dimension
of Φ(t) could differ across subsamples. If the (number of) variables included in Xt varies across time, it will cause variation in p,
which implies additional variation in the dimensions of some of the parameters.
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B = diag(β1, . . . ,βm) to save space. These definitions enable us to express (2) as the regression equation

Z0t = AB
0Z1t + CZ2t + εt, t = 1, . . . , T, (3)

which has constant parameters. Apart from the block diagonal structure of B and the non-constancy of Ω(t),

this equation has the form of a reduced rank regression problem, see Anderson (1984) or Johansen (1996).

We can impose the required structure of B using parameter restrictions of the form

vec(B) = Hϕ+ h, (4)

where vec(·) is the vectorization operator. The matrix H is a known mp1(r1 + · · · + rm) × pϕ matrix, h is a
known mp1(r1 + · · ·+ rm) dimensional vector, and ϕ is a vector, which consists of pϕ parameters. The vector
h, will serve as a tool to normalize/identify the parameters in A and B. Besides the restrictions on B, we also

consider restrictions on (A,C) of the form

vec(A,C) = Gψ, (5)

where G is a known p(r1 + · · ·+ rm +mp2)× pψ matrix, and where ψ is a vector with pψ free parameters.
The restrictions (4) and (5) are useful for three aspects of this framework. First of all, they server to impose

the required block-diagonal structure of B. Second, the restrictions can be used to impose constancy of some (or

all) of the parameters. This can be useful in practice, as the number of free parameters increase linearly with

the number of subsamples, unless some parameters are held constant. In applications, where the point of origin

is the model with constant parameters, it will often be relevant to test for structural changes in a particular

subset of parameters, rather than all parameters. The third use of the restrictions (4) and (5) is to impose other

parameter restrictions of interest, for example, that two coefficients equal one another.

2.1 Structural Changes in the Cointegration Parameters

In Section 4, we show that the asymptotic distribution of the LR tests is χ2 with degrees of freedom that equals

the reduction of free parameters. In order to calculate the number of free parameters in a given model, we need

the following lemma, taken from Johansen (1996).

Lemma 1 The function f(x, y) = xy0, where x is p× r (r ≤ p) and y is p1 × r (r ≤ p1), is differentiable at all
points, with a differential given by

Df(x, y) = x(dy)0 + (dx)y0

where dy is p × r and dx is p1 × r. If x and y have full rank r, then the tangent space at (x, y), given by
{x(dy)0 + (dx)y0 : dx ∈ Rp1×r, dy ∈ Rp×r} , has dimension (p+ p1 − r)r.
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The lemma is useful for calculating the number of free parameters of a product of matrices. For example, in

the model with m− 1 structural changes we can calculate the number of free parameters in α(t)β(t)0 by setting
x = αi (p× ri) and y = βi (p1 × ri) and find the number to be

Pm
i=1(p+ p1 − ri)ri. If the rank is constant over

the full sample, then the expression simplifies to m(p+ p1 − r)r.

2.1.1 A Structural Change in the Adjustment Coefficients: α

Consider the case where the structural changes do not affect the cointegration relations. In this case, we can

express the model as

Z0t = (α1, . . . ,αm) diag(β, . . . ,β)
0Z1t +ΨZ2t + εt,

and the constancy of β(t) is straight forward to impose with a suitable choice of H. Since β is constant, so is

the cointegration rank r, and the number of free parameters in α(t)β(t)0 is given by (mp+ p1 − r)r.

2.1.2 Structural Changes in the Cointegration Relations: β

When the structural change is solely due to changes in the cointegration relations β(t) while α(t) remains

constant, the model simplifies to

∆Xt = αβ0111tX
∗
t−1 + · · ·+ αβ0m1mtX∗

t−1 +ΨZ2t + εt

= α
¡
β01, . . . ,β

0
m

¢
Z1t +ΨZ2t + εt.

Thus, this model can also be formulated in the form of (3), but without the need of the restrictions (4) and (5).

In this situation only a constant cointegration rank, r, is meaningful and the matrices A and B have dimensions

p× r and mp1 × r respectively. So the number of free parameters in AB0 is given by (p+mp1 − r)r.
The relations between the different structural changes are displayed in Figure 1, along with the degrees of

freedom of some LR tests.

The following example illustrates how the restriction matrix, H, can be used to impose the required structure

on B under various hypotheses.

Example 1 Consider the bivariate system, p = 2, with two subsamples, m = 2, and a single cointegration

relation in both subsamples, r1 = r2 = 1. Since m = 2 the process can have no more than one structural change.

In this setting B = diag(β1,β2), where β1 = (β1,1,β1,2)
0, and where β2 = (β2,1,β2,2)0. The zero elements can
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be imposed with

H =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



, since vec(B) =



β1,1

β1,2

0

0

0

0

β2,1

β2,2



.

This choice of H implies that ϕ = (β1,1,β1,2,β2,1,β2,2)
0. Imposing that the cointegration parameters are constant

can be achieved with the restrictions β1,1 = β2,1 and β1,2 = β2,2, which can be imposed using

Hr =

 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

0

.

Constancy of α(t) and Φ(t), as well as additional restrictions on these parameters, can be imposed in a similarly

way, using a suitable choice for G.

In this case we have h = 0, and B is not identified. However, identification is not needed for testing

the hypothesis of constant cointegration relations, because this is a hypothesis on the subspace spanned by the

cointegration vector. If inference is to be made on particular coefficients of β(t) or α(t), then a normalization

is needed. This can be achieved with the following choices of H and h,

Hn =



0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 1



, Hn,r =



0

1

0

0

0

0

0

1



, h =



1

0

0

0

0

0

1

0



,

where Hn is the restriction matrix used in the unrestricted (and identified) model, and Hn,r is the restriction

matrix used in restricted (and identified) model. Both models apply the same h to impose the normalization

β1,1 = β2,1 = 1.
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2.2 Temporary and Permanent Cointegration Relations

The scenario where some cointegration relations are present in the full sample, whereas others are only present

in a subsample is also simple to formulate in this framework. Consider the case with a single change point,

where β define r1 permanent cointegration relations, and βe define an additional r2−r1 temporary cointegration
relations that are linearly independent of β. Thus, β1 = β and β2 = (β1,βe) and we obtain the equation

Z0t = (α1,α2,1,α2,e)

 β 0 0

0 β βe

0

Z1t +ΨZ2t + εt.

In this case we impose the zero elements and cross restrictions of the parameters in B, with a suitable choice of

H. Similarly, we can impose that the adjustment coefficients corresponding to β are constant (α1 = α2,1) using

the restriction matrix G.

In this case it is slightly more complicated to derive the degrees of freedom in α(t)β(t)0. The most general

model, where the constancy of r1 cointegration relations is not imposed, results in (p+p1−r1)r1 free parameters in
α1β

0
1 plus (p+p1−r2)r2 parameters in α2β02. The model with r1 constant cointegration relations has (p+p1−r2)r2

free parameters in α2β
0
2 plus (p + r2 − r1)r1 free parameters in α1β01, where we used that β1 = β2ξ for some

r2× r1 matrix ξ. The most restrictive model, where we impose α1 = α2,1, has (p+ p1− r1)r1 free parameters in
α1β

0
1 and an additional [p+(p1−r1)− (r2−r1)](r2−r1) = (p+p1−r2)(r2−r1) free parameters in αeβ0e. When

calculating these numbers, we used that βe can be chosen orthogonal to β1, i.e., βe = β1,⊥δ, where β1,⊥ is the

orthogonal compliment4 to β1, and where δ is some p1−r1×r2−r1 matrix. Adding the two terms yields a total
of (p + p1 − r2)r2 + (r2 − r1)r1 free parameters. The relations between the three nested models are displayed
in Figure 2. Notice that the three models have identical cointegration ranks, r1 and r2. Had this not been the

case, the asymptotic distribution would not be χ2.

The extension to models with multiple sets of temporary cointegration relations in individual and overlapping

subsamples is straightforward, although the calculation of degrees of freedom can be somewhat complicated.

2.2.1 A Useful Simplification

As discussed earlier, it will often be useful to keep some parameters constant. In some cases, one might impose

the constraints: Ψ1 = · · · = Ψm = Ψ, and concentrate the analysis to structural changes in α(t), β(t), and Ω(t).
Rather than imposing the constraints onΨ(t) with the restriction matrixG, we can substitute Z̃2t = (∆X 0

t−1, . . . ,

∆X 0
t−k+1,D

0
t)
0 for Z2t, and redefine C = Ψ. This will automatically impose the constancy of Ψ(t), which is

useful because it reduced the dimensions of G and other matrices that are used in the estimation.

4 If a is a p× r matrix with column rank r < p, then the orthogonal compliment to a, denoted a⊥ is a p× (p− r) matrix with full
column rank, that satisfies a0⊥a = 0p−r×r . The matrix a⊥ is not unique, but the subspace spanned by the columns of a⊥ is unique.
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3 Estimation

Estimation of the cointegrated VAR, and other models that can be expressed in the form of (3), can be solved

as an eigenvalue problem by reduced rank regression techniques, if the parameters, A, B, and C are unrestricted

and the covariance is constant. The method of reduced rank regression was developed by Anderson (1951) and

Izenman (1975), and applied to the cointegrated VAR model by Johansen (1988).

Reduced rank regression is related to a number of classical estimation problems, such as principle components

and canonical correlations, see Reinsel and Velu (1998). The advantage of reduced rank estimation is that

a closed-form solution can be obtained without the use of iterative estimation techniques. This method is

applicable to estimation under simple linear restrictions on the reduced rank parameters. However, the reduced

rank regression technique is not applicable to most models with structural changes, because these models involve

more complicated parameter restrictions. So a more general estimation technique is needed to estimated the

models with structural changes.

Some estimation problems can be formulated as regression problems that can be solved with the switching

algorithm of Johansen and Juselius (1992). This algorithm is an iterative procedure that in every iteration

simplifies the problem to a reduced rank regression by keeping a subset of the parameters fixed. This method

has the nice property that it increases the value of the likelihood function in every iteration, but unfortunately

applications have shown that convergence can be very slow, and it is possible to construct examples where the

method will not converge to the global optimum.

A more general estimation technique was proposed by Boswijk (1995). This method is similar to the switching

algorithm, in the sense that it increases the likelihood function in every iteration. It is more general because

it can handle estimation problems with linear restrictions on vec(A) and vec(B). This method is therefore

sufficient for the estimation of models that only involve structural changes in the adjustment coefficients, α, and

the cointegration parameters, β. Applications of the method have shown that convergence is obtained in few

iterations, and that it does converge to the global optimum. The fast convergence is not surprising because the

information matrix is asymptotically block diagonal, due to the faster rate of convergence of the estimator for

B.

A related estimation technique is the minimum-distances approach by Elliott (1997, 2000), which can estimate

parameters under the general restriction g(θ) = c, where θ is the vector of parameters, c is a constant and g

is a well-behaved function. This method minimizes θ0V̂θ̂θ subject to the constraints g(θ) = c, where V̂θ̂ is an

estimate of the asymptotic covariance matrix.

As we shall see below, it is possible to estimate under more general restrictions than those considered by

Boswijk (1995) and Elliott (1997, 2000). The restrictions (4) and (5) achieve the same generality as the minimum

distance method, and can in addition estimate models with a non-constant variance.
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3.1 Generalized Reduced Rank Regression

Consider the regression equations (3), given by Z0t = AB0Z1t + CZ2t + εt, t = 1, . . . , T, where the parameters

are subject to the constrains (4) and (5), and where we denote the free parameters in Ω1, . . . ,Ωm by the vector

θ. The parameters in the model are given by the three vectors, ψ, ϕ, and θ.

To ensure that our choice of G, H, and h in (4) and (5), does not violate the assumed rank of A and B, we

make the following assumption, which is taken from Boswijk (1995).

Assumption 1 The matrices H and G have full column rank and H, G, and h are such that A and B have

full column rank for all (ψ0,ϕ0)0 ∈ Rn, except on a set with Lebesgue measure zero, where n is the total number
of columns in H and G.

Assumption 2 The matrices H and G and the vector h are such that ϕ and ψ are identified.

Assumption 3 The parameters ψ, ϕ, and θ are variation free. I.e., the parameter space for (ψ,ϕ, θ) is given

by a product space: Θψ ×Θϕ ×Θθ, where Θκ is is the parameter space for κ = ψ, ϕ, or θ.

Assumption 2 is needed for testing some (but not all) hypotheses, and Assumption 3 allows us to construct

a useful iterative algorithm for our estimation problem. We can now state the main result of this section.

Theorem 2 Let the parameter A, B, and C be restricted by vec(A,C) = Gψ and vec(B) = Hφ+h and suppose

that Assumptions 1 and 3 hold.

The maximum likelihood estimates of A, B, C, and Ω(t) satisfy

vec(Â, Ĉ) = G

G0 TX
t=1

 B̂0Z1tZ01tB̂ B̂0Z1tZ02t

Z2tZ
0
1tB̂ Z2tZ

0
2t

⊗ Ω̂(t)−1
G

−1 (6)

×G0
TX
t=1

vec
³
Ω̂(t)−1Z0t(Z 01tB̂, Z

0
2t)
´
,

vec(B̂) = H

"
H 0

TX
t=1

h
Â0Ω̂(t)−1Â⊗ Z1tZ01t

i
H

#−1
(7)

×H 0
"
TX
t=1

vec
³
Z1t(Z0t − ĈZ2t)0Ω̂(t)−1Â

´
−

TX
t=1

h
Â0Ω̂(t)−1Â⊗ Z1tZ01t

i
h

#
+ h,

and

Ω̂j = (Tj − Tj−1)−1
TjX

t=Tj−1+1

ε̂tε̂
0
t, j = 1, . . . ,m, (8)
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where ε̂t = Z0t − ÂB̂0Z1t − ĈZ2t. The maximum value of the likelihood function is given by

Lmax(Â, B̂, Ĉ, Ω̂(t)) = (2π)
−Tp

2

TY
t=1

|Ω̂(t)|− 1
2 exp

µ
−Tp
2

¶
.

The proof, which is given in the Appendix, exploits that the estimation problem reduces to a GLS problem,

when either (A,C,Ωj=1,...,m) or (B,Ωj=1,...,m) is held constant, and the fact that the covariance estimate is the

average sum-of-squared residuals when (A,B,C) is held constant. If Ω(t) is assumed to be constant over two or

more subsamples, then the estimate is given by the average sum-of-squared residuals over these subsamples.

The theorem yields a procedure for parameter estimation, in the sense that the parameter estimates can

be obtained by iterating on the three equations until convergence, from some initial values of the parameters.

Consider the procedure that iterates on the following three equations:

ψ(n) = arg max
ψ∈Θψ

L(ψ,ϕ(n−1), θ(n−1)),

ϕ(n) = arg max
ϕ∈Θϕ

L(ψ(n),ϕ, θ(n−1)),

θ(n) = arg max
θ∈Θθ

L(ψ(n),ϕ(n), θ),

n ≥ 1 until convergence of the likelihood function, L, starting from some initial values of the parameters

(ψ(0),ϕ(0), θ(0)). An algorithm of this kind is useful whenever a complicated (possibly high dimensional) problem

can be divided into smaller problems that are simpler to solve. For more details, see Oberhofer and Kmenta

(1974) who considered the case with two subsets of parameters. The algorithm increases the value of the

likelihood function in every iteration, and since the likelihood function is bounded by its global maximum, the

procedure will eventually converge. Since finding a stationary point of the three equations is equivalent to

solving the normal equations, a convergence point, say (ψ̂, ϕ̂, θ̂), will satisfy the normal equations, which in our

case is given by (6), (7), and (8). So this procedure will produce the maximum likelihood estimators whenever

the normal equations uniquely define the global maximum of L. In practise local maxima may exist, so one

should start the algorithm with different initial values of the parameters, and check that the algorithm converges

to the same value of the likelihood function.

The following two corollaries provide solutions to some simpler estimation problems. Although these problems

are special cases of the framework in Theorem 2, these results are quite useful for practical implementations.

Some of the estimation problems that arises from our analysis do not require the general formulation of Theorem

2, and the computational burden can be reduced substantially by implementing the results of these corollaries.

To simplify some notation and some of the following expressions, we define the moment matrices Mij =

1
T

PT
t=1 ZitZ

0
jt, i, j = 0, 1, 2, the residuals R0t = Z0t −M02M

−1
22 Z2t, R1t = Z1t −M12M

−1
22 Z2t, and the moment

matrices of the residuals Sij = 1
T

PT
t=1RitR

0
jt, i, j = 0, 1.
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Corollary 3 Let the parameter A, B, and C be restricted by vec(A,C) = Gψ and vec(B) = Hϕ+h and suppose

that {εt} is iid N(0,Ω). The maximum likelihood estimates of A, B, C, and Ω satisfy the equations

vec(Â, Ĉ) = G

G0(
 B̂0M11B̂ B̂0M12

M21B̂ M22

⊗ Ω̂−1)G
−1G0vec³Ω̂−1(M01B̂,M02)

´
,

vec(B̂) = H
h
H 0
³
Â0Ω̂−1Â⊗M11

´
H
i−1

H 0

×
h
vec

³
M10 −M02Ĉ

0)Ω̂−1Â
´
−
³
Â0Ω̂−1Â⊗M11

´
h
i
+ h,

and Ω̂ = T−1
PT
t=1 ε̂tε̂

0
t, where ε̂t = Z0t−ÂB̂0Z1t− ĈZ2t. The maximum value of the likelihood function is given

by

L−2/Tmax (Â, B̂, Ĉ, Ω̂) = (2πe)
p |Ω̂|.

If C is unrestricted we obtain the following result of Boswijk (1995).

Corollary 4 Let A and B be restricted by vec(A) = Gζ and vec(B) = Hφ+ h, for known G, H, and h. Then

the maximum likelihood estimates satisfy

vec(B̂) = H
h
H 0
³
Â0Ω̂−1Â⊗ S11

´
H
i−1

H 0 (9)

×
h³
Â0 ⊗ S10

´
vec

³
Ω̂−1

´
−
³
Â0Ω̂−1Â⊗ S11

´
h
i
+ h,

and

Â = G
h
G0
³
B̂0S11B̂ ⊗ Ω̂−1

´
G
i−1

G0
³
B̂0 ⊗ Ω̂−1

´
vec (S01) , (10)

Ĉ = M02M
−1
22 − ÂB̂0M12M

−1
22 ,

Ω̂ = S00 − S01B̂Â0 + ÂB̂0S11B̂Â0 − ÂB̂0S10. (11)

If A is unrestricted, then (10) and (11) simplify to

Â = S01B̂
³
B̂0S11B̂

´−1
,

Ω̂ = S00 − S01B̂
³
B̂0S11B̂

´−1
B̂0S10.

The maximum value of the likelihood function is given by

L−2/Tmax (Â, B̂, Ĉ, Ω̂) = (2πe)
p |Ω̂|.

With these results we have the tools available to estimate the parameters in the cointegrated vector autore-
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gressive model under all the various structural changes that were considered in the previous section. However,

the results presented here have a broader applicability and can be used to estimate parameters in models, which

are different from the structural change models considered in this paper.

4 Asymptotic Analysis

We let
p→, d→, and w→, denote convergence in probability, convergence in distribution, and weak convergence,

respectively. To simplicity the analysis we derive the results in the case where the parameters, α(t), β(t),

and Ω(t) may have a single structural change at time T1, and all other parameters are kept constant. From

the analysis, it is clear that the extensions to multiple structural changes and non-constancy of additional

parameters lead to the same results. Also, as is the case for the standard model, the asymptotic results depend

on the deterministic part of the process. For simplicity we consider the model without deterministic terms. The

analysis for other choices of the deterministic term is quite similar.5

So we consider the process described by

∆Xt = α1β
0
1Xt−11(t≤T1) + α2β

0
2Xt−11(t>T1) +

k−1X
i=1

Γi∆Xt−i + εt, (12)

where εt ∼ N(0,Ω(t)) and independent, and where Ω(t) = Ω1 for t ≤ T1 and Ω(t) = Ω2 for t > T1, and we

assume that the usual I(1) assumptions hold in both subsamples.

Assumption 4 The roots of Aj(z) = |I(1− z) − αiβ0iz −
Pk−1
i=1 Γi(1 − z)zi| = 0 are outside the unit circle or

equal to one, and the matrix α0j⊥(I − Γ1 − · · ·− Γk−1)βj⊥ has full rank p− rj , j = 1, 2.

Note, that we do not require the cointegration rank, rj , to be the same in the two subsamples.

Lemma 5 (Granger’s Representation Theorem) Define the matrices C ≡ β1⊥ (α01⊥Γβ1⊥)
−1
α01⊥, D ≡

β2⊥ (α02⊥Γβ2⊥)
−1
α02⊥, and Γ ≡ I − Γ1 − · · ·− Γk−1. The process given by

Xt = C
tX
i=1

εi + C(L)εt + C(X0 −
k−1X
i=1

ΓiX0−i), t = 1, . . . , T1, (13)

Xt = D
tX

i=T1+1

εi +DΓC

T1X
i=1

εi +D(L)εt + Vt +DC
∗(L)εT1 (14)

+DΓC(X0 −
k−1X
i=1

ΓiX0−i), t = T1 + 1, . . . , T,

5Different deterministic terms lead to different Granger representations that result in different limits. Different linear combina-
tions of some matrices will have different speed of convergence, which one needs to keep track of. In the end, the differences in the
speed of convergence cancel each other out, so the differences are mainly a matter of accounting.

13



satisfies (12), where the polynomials C(z), C∗(z), and D(z) are convergent for |z| < 1+δ and where (1+δ)tVt p→ 0

for some δ > 0.

Note that the cointegration relations in the second subsample, given by β02Xt = β
0
2D(L)εt + β

0
2Vt, are not

entirely stationary. However, for large t, β02Xt ≈ β02D(L)εt since β02Vt p→ 0 exponentially fast as t→∞.
Let Dp[0, 1] denote the space of CADLAG functions on the unit interval, which take values in Rp, and let

W (u) be a standard p-dimensional Brownian motion, i.e., var(W (u)) = u · Ip. We let ρ ≡ T1/T denote the

proportion of observations in the first subsample and define ρ+ = (T1 + 1)/T. In the asymptotic analysis, we

shall, as T approaches infinity, keep ρ constant, whereby limT→∞ ρ+ = ρ.

The results of Lemma 5 allow us to define

Σ(j) ≡ lim
T→∞

T−1
TjX

t=Tj−1+1

 E(B0Z1tZ01tB) E(B0Z1tZ 02t)

E(Z2tZ
0
1tB) E(Z2tZ

0
2t)

 , j = 1, 2,

and Υ = Σ(1) ⊗Ω−11 +Σ(2) ⊗Ω−12 .

Lemma 6 With the assumptions given above, it holds that.

T−1
TjX

t=Tj−1+1

 B0Z1tZ01tB B0Z1tZ02t

Z2tZ
0
1tB Z2tZ

0
2t

 p→ Σ(j), (15)

vec

Ã
T−1/2

TX
t=1

Ω(t)−1εt(Z01tB,Z
0
2t)

!
d→ N(0,Υ). (16)

For u ∈ [0, 1] we define FT (u) ≡ T−1/2Z1[Tu], where [Tu] is the integer part of Tu. We also define

F (u) =

 F1(u)

F2(u)

 ≡

 CΩ
1/2
1 W (u)1(u<ρ)h

DΓCΩ
1/2
1 W (ρ) +DΩ

1/2
2 (W (u)−W (ρ))

i
1(u≥ρ)

 ,
and note that FT (u), F (u) ∈ Dp[0, 1]. Finally we define the (stochastic) matrix

Ξ ≡
 α01Ω

−1
1 α1 0

0 0

⊗
 R ρ

0
F1(u)F1(u)

0du 0

0 0


+

 0 0

0 α02Ω
−1
2 α2

⊗
 0 0

0
R 1
ρ
F2(u)F2(u)

0du

 .
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Lemma 7 For a process with the representation (13) and (14) it holds that

FT (u)
w→ F (u), (17)

T−2
TX
t=1

Z1tZ
0
1t

d→
Z 1

0

FF 0du =

 R ρ
0
F1F

0
1du 0

0
R 1
ρ
F2F

0
2du

 , (18)

H 0T−1
TX
t=1

vec
¡
Z1tε

0
tΩ(t)

−1A
¢ d→ H 0vec

 R ρ
0
F1dW

0Ω−1/21 α1 0

0
R 1
ρ
F2dW

0Ω−1/22 α2

 , (19)

where the last expression is a mixed Gaussian distribution. That is, conditional on F (u), the distribution is

Gaussian with mean zero and variance H 0ΞH.

4.1 Properties of Estimators and Likelihood Ratio Tests

Theorem 8 (Consistency) The maximum likelihood estimators, given by the equations (6)—(8) are consistent

for the true parameters.

Theorem 9 (Asymptotic Distribution of Estimators) The asymptotic distribution of Â and Ĉ is Gaussian,

T 1/2
h
(Â, Ĉ)− (A,C)

i
d→ N(0, G(G0ΥG)−1G0),

and the asymptotic distribution of B̂ is mixed Gaussian,

T (B̂ −B)|F d→ N
³
0,H (H 0ΞH)−1H 0

´
,

where F is the mixing variable.

Theorem 10 (Asymptotic Distribution of LR Tests) Let M0 and M1 be two models defined by restric-

tions on the form (4) and (5) both satisfying Assumptions 1, 2, 3, and 4, and both having the same cointegration

rank in each subsample.

If M1 is a submodel of M0 with q fewer parameters, then the asymptotic distribution of the likelihood ratio

test of M1, tested against M0, is χ2 with q degrees of freedom.

5 Empirical Analysis of the US Term Structure of Interest Rates

In this section we analyze the US term structure using the structural change model we developed in Section 2.
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5.1 The Expectations Hypothesis

A version of the term structure of interest rates is that the expected future spot rates equals the future rate

plus a time-invariant term premium. We adopt the notation from Campbell, Lo, and Mackinlay (1997) and let

pn,t denote the log of the price of a unit-par-value discount bond at date t, with n periods to maturity. The

continuously compounded yield to maturity for an n period bond is defined as yn,t = − 1
npn,t, and the one-period

future rate of return, earned from period t+n to t+n+1, (known at time t) is given by 1+Fn,t = Pn,t/Pn+1,t,

such that fn,t = log(1 + Fn,t) = pn,t − pn+1,t.
The expectations hypothesis states that fn,t = Et(y1,t+n) + Λn, where Λn is the term premium.6 The

restriction imposed by the expectations hypothesis is that the term premium does not depend on t. From the

Fisher-Hicks relation ynt = n−1
Pn−1
j=0 fjt, n = 1, 2, . . . , and the identity Et(y1,t+j) =

Pj
i=1Et(∆y1,t+i) + y1,t,

we obtain

ynt − y1t = n−1
n−1X
j=1

jX
i=1

Et(∆y1,t+i) + Ln, (20)

where Ln = n−1
Pn−1

j=0 Λj . This shows that if y1t is integrated of order one, I(1), such that the terms ∆y1,t

and n−1
Pn−1
j=1

Pj
i=1Et(∆y1,t+i) are stationary,

7 then ynt must be integrated of order one and ynt and y1t

are cointegrated with cointegration vector (1,−1) as first analyzed by Campbell and Shiller (1987). Since the
relationship will hold for any integer n, any pair of yields to maturity will be cointegrated with cointegration

vector (1,−1). We shall call this implication the long-run implication of the expectations hypothesis, which is
one of several implications of the expectations hypothesis. Equation (20) is the motivation for modeling interest

rates as cointegrated processes and illustrates the convenience of using this framework to test the long-run

implication.

The implications of the expectations hypothesis are commonly rejected when tested on US term structure

data; this is also the case for the long-run implication as concluded by Hall, Anderson, and Granger (1992),

Engsted and Tanggaard (1994), Johnson (1994), and Pagan, Hall, and Martin (1996). Hall, Anderson, and

Granger (1992) and Engsted and Tanggaard (1994) attributed their rejection to the unstable period for interest

rates between September 1979 and October 1982, when the Fed did not target short interest rates directly.

This period is also known as the period with the nonborrowed reserves operating procedure. Pagan, Hall, and

Martin (1996) gave another possible explanation for the rejection. They extended the cointegration model with

a parameter, γ, which denotes the elasticity of volatility with respect to the level of the shortest interest rate.

With simulations, they showed that tests on cointegration vectors increasingly over-reject as γ is increase, and

found the effect to be substantial as γ increases beyond 0.5.

Whereas the expectations hypothesis has been rejected by most studies of US data, see, e.g., Shiller (1990)

6For an overview of the expectations hypothesis theory and empirical studies of interest rates, see Shiller (1990).
7The stationarity of Et(∆y1,t+j) does not hold in general, but will hold for time-homogeneous processes. In particular it will

hold for the vector autoregressive process we consider in this paper.
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for an overview, the results from studies of the term structure in other countries are mixed. Hardouvelis (1994)

rejected the expectations hypothesis in five of the G7 countries. Cuthbertson (1996) found some evidence in

favor of the expectations hypothesis using UK interbank rates and Engsted and Tanggaard (1995) found the

long-run implication to hold for Danish data in the period where the central bank targeted interest rates.

5.2 Structural Changes in the US Term Structure of Interest Rates

There are several studies that find evidence of a structural change in the US term structure of interest rates.

Hamilton (1988) applied a Markov switching model to 3- and 12-month T-bills, and the model detected a period

that precisely coincides with the period with the nonborrowed reserves operating procedure as a separate regime.

H. Hansen and Johansen (1999) have developed a recursive estimation of the cointegrated vector autoregressive

model to detect structural changes. Their application to US data also indicates structural changes around the

fall of 1979 and the fall of 1982.

Structural changes of US interest rates have also been analyzed within the framework of continuous time

models. Chan, Karolyi, Longstaff, and Sanders (1992) estimated a diffusion process for the short term interest

rate and rejected a structural change in October 1979, and then estimated the elasticity of volatility to be 1.5.

However Bliss and Smith (1998) found significant structural changes when the possibility of a structural change

by the end of 1982 is included in the analysis. They found evidence of structural changes in both 1979 as

well as in 1982 when the Fed reversed to target the Fed funds rate. After these changes are accounted for, an

elasticity as low as 0.5 is consistent with their data. These studies have shown that the US term structure has

had structural changes, and it is not surprising that these changes affect point estimates and inference.

Cavanagh, Elliott, and Stock (1995) showed how standard inference can be misleading when there is a root

close to unity. Using this local-to-unity approach, Lanne (1999) rejected the expectation hypothesis for US data

in the period 1952:1—1991:2. However, after accounting for a structural change in 1979:10 the hypothesis could

not be rejected.

In this paper, interest rates are modeled as I(1) variables.8 The fact that nominal interest rates cannot be

negative and other considerations are strong arguments against interest rates being I(1). Nevertheless, interest

rates may very well be I(1) in a particular sample period. Whenever this is the case, modeling interest rates

as I(1) is equivalent to invoking asymptotic results to finite samples. The parallel is that the sample in which

interest rates behaved as I(1) need to be long enough for asymptotic results of the I(1) model to be valid, and

that any constraint that may prevent interest rates from being I(1), is either irrelevant for the particular sample

size (conditional on starting values) or not influential enough to severely distort the asymptotic approximation.

See Pagan, Hall, and Martin (1996) for another argument on this matter.

8Ait-Sahalia (1996) found the short interest rates to behave as an I(1) process within the band [4%, 18%] and a theoretical
model, in which interest rates are like I(1) variables, is given by DenHaan (1995).
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5.3 Data

The term structure data were extracted from the Bliss data9 that are interpolated by the McCulloch cubic-spline

method. This is the same technique as the one used to create the widely used data sets from McCulloch (1990)

and McCulloch and Kwon (1993). However the Bliss data differs by not being tax adjusted. The data used in

the empirical analysis are monthly US zero-coupon yields with maturities of 1, 3, 6, 9, 12, 60, and 84 months10

within the sample period 1970:1 — 1995:12. Three of the series are presented in Figure 3.

The yields are stacked in the vector Xt, ordered such that the first element in Xt is the 1-month interest rate

at time t.We shall allow for structural changes in the adjustment coefficients, α(t), the cointegration parameters,

β(t), the covariance, Ω(t), and the deterministic term, ΦDt = µ(t) = α(t)ρ(t), where ρ(t) is an r× 1 vector. So
the deterministic term is a constant that has been restricted into the subspace spanned by α(t), to prevent a

deterministic trend in the yields. We allow for two structural changes in 1979:10 and in 1982:11. So our model

can be written as

∆Xt = α(t)β
∗(t)0X∗

t−1 +
k−1X
i=1

Γi∆Xt−i + εt,

where X∗0
t = (X

0
t, 1) and β

∗(t)0 = (β(t)0, ρ(t)).

We normalize the cointegration relations by

β∗(t) =



β11(t) β12(t) · · · β16(t)

−1 0 0

0 −1
...

. . .

0 −1
ρ1(t) ρ2(t) · · · ρ6(t)


. (21)

Since these relations define the stationary relations, the long-run implication of the expectations hypothesis can

be formulated as the parameter restrictions β11(t) = · · · = β16(t) = 1.
The cointegration relations in (21) can be written as

bn(t)y1,t − yn,t + ρn(t), n = 3, 6, 9, 12, 60, and 84,

where bn(t) = β1i(t), and where the values of n correspond to i = 1, . . . , 6. The Granger representation shows

that E(bn(t)y1,t − yn,t + ρn(t)) = 0, so ρ̂i(t) can be interpreted as the estimated term premium when bn(t) is

9The data were provided to me by David Marshall, see Bekaert, Hodrick, and Marshall (1997). Interested parties are referred to
Robert R. Bliss: rbliss@gsbalum.uchicago.edu.
10Longer maturities were not selected because precise estimates of these are difficult to obtain by interpolation techniques. See

Bliss (1997)
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set to unity.

5.4 Estimation Results

The lag length was set to two using Akaike’s and Hannan-Quinn’s information criteria. The cointegration rank

is set at six (r = 6) as predicted by the expectations hypothesis and as the existing literature has supported,

see Hall, Anderson, and Granger (1992), Engsted and Tanggaard (1994), Johnson (1994), and Pagan, Hall, and

Martin (1996). No formal test was applied for this selection, because a rank-test for processes with structural

changes (in the general form we consider) is currently unavailable.

Table 1 shows that the covariance matrix clearly differs between the three subsamples. The variance estimates

from the three subsamples are given in Table 2.

It is not surprising that the variance of interest rates were much higher in the 1979—1982 subsample when

the Fed did not target interest rates directly. One conclusion from Table 1 is that the difference between the

variance of interest rates in the first and third subsample is significant. From Table 2 it can be seen that the

major difference between the covariance matrix in the first and last subsample is the reduced volatility of the

interest rates with shorter maturities. This phenomenon may be explained by the less frequent adjustments of

the Fed’s target of the Fed’s fund rate in the most recent sample, along with fact that the Fed now publicly

announces what their target is. The numbers in italic font in Table 2 are the correlation coefficients, which are

similar for the three subsamples, although we have not applied a formal test to analyze this question.

Six models with different parameter restrictions were estimated.11 Model 1 in Table 3 with unrestricted

parameters is the most general model, which can be represented by the equation

∆Xt = α(t) [β(t)
0Xt−1 + ρ(t)] + Γ1∆Xt−1 + εt, t = 1, . . . , T,

where εt ∼ N(0,Ω(t)) and where the parameters are constant within each subsample, i.e., α(t) = α1 for

t ≤ 1979:09, α(t) = α2 for 1979:10 ≤ t ≤ 1982:10 and α(t) = α3 for t ≥ 1982:11, and similarly for β(t), ρ(t)

and Ω(t). The long-run implication of the expectations hypothesis requires bn = 1 for n = 3, 6, 9, 12, 60, and

84. The point estimates differ from unity by being systematically too small in the two first subsamples and too

large in the last subsample.

In Model 2 the long-run implication of the expectations hypothesis is in all subsamples, whereas the term

premium, ρn, the adjustment coefficients, αj , and the covariance matrices, Ωj , may differ across the subsamples,

j = 1, 2, 3. This model can be written as

∆Xt = α(t)
£
β0Xt−1 + ρ(t)

¤
+ Γ1∆Xt−1 + εt, t = 1, . . . , T,

11The empirical analysis was performed in Gauss.
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where εt ∼ N(0,Ω(t)), and where β has the structure required by the long-run implication. The likelihood ratio
test of Model 2 against Model 1, has a p-value of 4.95%. This shows that there is not strong evidence against

the long-run implication once structural changes in the parameters are accounted for.

Model 3 is a more parsimonious model where in addition to the restrictions in Model 2, the adjustment

coefficients are required to span the same subspace, α(t) = α · φ(t), where φ(t) is a full rank r× r matrix. This
model can be written as

∆Xt = αφ(t)
£
β0Xt−1 + ρ(t)

¤
+ Γ1∆Xt−1 + εt, t = 1, . . . , T,

where εt ∼ N(0,Ω(t)). The restriction implies that the orthogonal complement to α(t) is constant, i.e., α⊥(t) =
α⊥. The strength of the adjustments in the three subsamples is expressed in terms of the matrix φ(t).

Recall the Granger representation from equations (13) and (14), extended with a third subsample,

Xt = C
tX
i=1

εi +Op(1), t = 1, . . . , T1,

Xt = D
tX

i=T1+1

εi +DΓC

T1X
i=1

εi +Op(1), t = T1 + 1, . . . , T2,

Xt = E
tX

i=T2+1

εi +EΓD

T2X
i=T1+1

εi +EΓDΓC

T1X
i=1

εi +Op(1), t = T2 + 1, . . . , T.

An implication of the constancy of α⊥ and β and Γ1 is that the loading matrix is constant, i.e. C = D = E =

β⊥ (α0⊥Γβ⊥)
−1
α0⊥. This simplifies the Granger representation to a single equation given by

Xt = C
tX
i=1

εi +Op(1), t = 1, . . . , T,

using the fact that CΓC = β⊥ (α0⊥Γβ⊥)
−1
α0⊥Γβ⊥ (α

0
⊥Γβ⊥)

−1
α0⊥ = C.

The term α0⊥
Pt
i=1 εi is called the common stochastic trend in Xt, because it describes the random walk

element of Xt, and Cᾱ⊥ defines how the stochastic trend is loaded into the process Xt, (note that Cᾱ⊥α0⊥ = C).

Thus the non-rejection of Model 3 (a p-value of 10.38% when tested against Model 1) can be interpreted as

follows: The long-run implication is consistent with the data and we cannot reject that the common stochastic

trend has been a constant linear combination of εt, although the variance of the innovations, Ω(t), has been

non-constant. Also, we cannot reject that the loading of the common stochastic trend has been constant.

The last model in Table 3, Model 4, can be expressed as

∆Xt = α
£
β0Xt−1 + ρ(t)

¤
+ Γ1∆Xt−1 + εt, t = 1, . . . , T,
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where εt ∼ N(0,Ω(t)). In this model the adjustment coefficients have the same strength in the three subsamples.
This is equivalent to Model 3, with the additional restriction that φ(t) = φ. This model is clearly inconsistent

with the term structure data. The fact that the strength of the adjustments are non-constant is not surprising,

since changes in volatility and term premium, are likely to affect the strength of the adjustments.

Thus, we find the term structure to have had structural changes in the covariance Ω(t), the term premium

ρ(t), and in the strength of the adjustments. However, the parameters that define fundamentals, such as the

common stochastic trend and the cointegration relations between interest rates, have been stable.

These findings are consistent with many of the suggestions that have been offered to explain the rejection

of the expectations hypothesis. The monetary changes in the fall of 1979 and the fall of 1982 had an important

impact on the stochastic properties of interest rates. If the structural changes are not accounted for, it distorts

inference and can cause a rejection of a true hypothesis, as was suggested by Hall, Anderson, and Granger (1992)

and Engsted and Tanggaard (1994). The suggestion by Tzavalis and Wickens (1997) of a time varying term

premium is also consistent with our results, since we find ρ(t) to vary as the volatility of interest rates changes.

In fact, the spread between long and short interest rates is smaller in the 1979—1982 period where the “short”

interest rates were relatively more volatile than “long” interest rates. As pointed out by a referee, this may be

explained by agents expecting that the unusually high level of short interest rates would not persist. Finally,

we found Ω(t) to be non-constant. If the variance is modeled to be constant, this is likely to distort inference,

similar to the distortion that Pagan, Hall, and Martin (1996) observed in Monte Carlo experiments, where the

variance depended on the level of the short interest rate.

The fifth and sixth models in Table 4 replicate previous empirical studies of the US term structure, by having

constant parameters. Model 5 is the unrestricted model (with constant parameters) and Model 6 is the submodel

in which the long-run implication of the expectations hypothesis is imposed. A test of Model 6 against Model 5

would have lead to a weak rejection of the expectations hypothesis, exactly as previous studies have concluded.

Of course, this inference is invalid because Model 5 is inconsistent with the data. The LR test statistic of Model

5 against Model 1 is 1166 and is therefore clearly rejected.

6 Conclusion

We have shown how structural changes in cointegrated processes can be formulated in a unified framework, using

the familiar vector autoregressive model. It is possible to formulate and test various structural changes as simple

parameter restrictions in this framework, and the parameters can be estimated with the generalized reduced

rank regression technique, which is introduced in this paper. This technique is also applicable to estimation

problems unrelated to structural changes, see P. R. Hansen (2002) for several examples.

We derived the likelihood ratio test for structural changes occurring at known points in time and showed
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how hypotheses can be tested, when the maintained hypothesis is presence of structural changes. Moreover, we

derived the asymptotic distributions of the estimators and LR tests that involve nested models, which agree

on the cointegration rank. As it is the case for the standard model without structural changes, the estimator

of the cointegration parameters is super-consistent and asymptotically mixed Gaussian, and the LR statistic is

asymptotically χ2.

The combination of cointegration and structural changes may provide a fruitful framework for many economic

questions of interest. In this paper, we analyzed the US term structure and found evidence of structural changes

that coincide with the Fed’s policy changes in September 1979 and October 1982. Contrary to previous studies

(see Hall, Anderson, and Granger (1992), Engsted and Tanggaard (1994), or Pagan, Hall, and Martin (1996)),

we cannot reject the long-run implication of the expectations hypothesis, once these structural changes are

accounted for. In fact, a parsimonious model is consistent with the data. This model has a different covariance,

term premium, and strength of adjustments in the three monetary regimes, whereas the cointegration relations

and other parameters are stable over the sample period.

In this paper, we took the cointegration rank and the timing of the change points as given. Although this

is not an alarming assumption in the empirical analysis of interest rates, this will not be the case in most

application. However, it should be possible to use the asymptotic results in the appendix of this paper to: (1)

derive a formal test to determine the rank of cointegrated processes with structural changes, (see P. R. Hansen

(2000b, chapter 4) for some preliminary results), and (2) to generalized this framework to the case with unknown

changes points.

A Appendix of Intermediate Results and Proofs

We introduce the notation, Z0 ≡ (Z01, . . . , Z0T ), Z1 ≡ (Z11, . . . , Z1T ), Z2 ≡ (Z21, . . . , Z2T ), andE ≡ (ε1, . . . , εT ),
so that we can express (3) as

Z0 = AB
0Z1 + CZ2 +E. (22)

We also define ZB ≡ ((Z01B,Z02) ⊗ Ip)) and ZAC ≡ (Z01 ⊗ A)Kp1,r, where Kp1,r is the commutation matrix,

uniquely defined by Kp1,rvec(B) ≡ vec(B0) for any p1× r matrix B. Thus Kp1,r is a p1r×p1r matrix consisting
of zeros and ones. Finally, we let ε ≡ vec(ε1, . . . , εT ) = vec(E) and set

Σ ≡ var(ε) = diag(IT1 ⊗Ω1, IT2−T1 ⊗Ω2, . . . , IT−Tm−1 ⊗Ωm),

which is block diagonal. Hence Σ−1 is also a block diagonal matrix with Ωj−1, j = 1, . . . ,m as diagonal matrices.
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Lemma 11 With the definitions above, we have the identities

Z0ACΣ
−1ZAC =

TX
t=1

£
A0Ω(t)−1A⊗ Z1tZ01t

¤
, (23)

Z0ACΣ
−1vec(Z0 − CZ2) =

TX
t=1

vec
¡
Z1t(Z0t − CZ2t)0Ω(t)−10A

¢
, (24)

Z0BΣ
−1ZB =

TX
t=1

 B0Z1tZ01tB B0Z1tZ02t

Z2tZ
0
1tB Z2tZ

0
2t

⊗Ω(t)−1
 , (25)

Z0BΣ
−1vec (Z0) =

TX
t=1

vec
¡
Ω(t)−1Z0t(Z01tB,Z

0
2t)
¢
, (26)

If {εt} is iid Gaussian with covariance matrix Ω, the expressions simplify to

Z0ACΣ
−1ZAC = T

£
A0Ω−1A⊗M11

¤
,

Z0ACΣ
−1vec(Z0 − CZ2) = Tvec

¡
(M10 −M02C

0)Ω−1A
¢
,

Z0BΣ
−1ZB = T

 B0M11B B0M12

M21B M22

⊗Ω−1
 ,

Z0BΣ
−1vec (Z0) = Tvec

¡
Ω−1(M01B,M02)

¢
.

Proof. The calculations

Z0ACΣ
−1ZAC = K0

p1,r(Z1 ⊗A0)Σ−1(Z01 ⊗A)Kp1,r

= Kr,p1

TX
t=1

(Z1t ⊗A0)Ω(t)−1(Z 01t ⊗A)Kp1,r

= Kr,p1

TX
t=1

(Z1t ⊗A0Ω(t)−1)(Z 01t ⊗A)Kp1,r

= Kr,p1

TX
t=1

(Z1tZ
0
1t ⊗A0Ω(t)−1A)Kp1,r

=
TX
t=1

(A0Ω(t)−1A⊗ Z1tZ01t).
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proves (23), where we used that Z1t = vec(Z1t) and that we can write Ω(t)−1 = 1⊗Ω(t)−1. Next,

Z0ACΣ
−1vec(Z0 − CZ2) = Kr,p1

TX
t=1

(Z1t ⊗A0)Ω(t)−1(Z0t − CZ2t)

= Kr,p1

TX
t,τ=1

(Z1t ⊗A0Ω(t)−1)vec(Z0t − CZ2t)

= Kr,p1

TX
t,τ=1

vec(A0Ω(t)−1 (Z0t − CZ2t)Z01t)

=
TX
t=1

vec
¡
Z1t(Z0t − CZ2t)0Ω(t)−1A

¢
.

proves (24), and (25) and (26) are proven similarly.

In the situation where {εt} is iid, we have Ω(t)−1 = Ω−1, which proves the last four identities.
Proof of Theorem 2. Applying the vec operation to equation (22) yields the equation

vec(Z0) = (Z 01B ⊗ Ip)vec(A) + (Z02 ⊗ Ip)vec(C) + ε

= [(Z01B,Z
0
2)⊗ Ip)] vec(A,C) + ε = ZBGψ + ε.

For fixed values of B and Σ this is a restricted GLS problem with the well-known solution given by

vec(Â, Ĉ) = G
£
G0Z0BΣ

−1ZBG
¤−1

G0Z0BΣ
−1vec (Z0) ,

which by Lemma 11 simplifies to (6). Similarly, for fixed A, C, and Σ, we have the equation

vec(Z0 − CZ2) = vec(AB0Z1) + ε = (Z01 ⊗A)vec(B0) + ε

= (Z01 ⊗A)Kp1,rvec(B) + ε = ZAvec(B) + ε,

which is also a restricted GLS problem. Its solution is given by

vec(B̂) = H
£
H 0Z0ACΣ

−1ZACH
¤−1

H 0Z0ACΣ
−1vec(Z0 − CZ2),

which by Lemma 11 reduces to (7).

Proof of Corollary 3. Follows from Theorem 2 and Lemma 11.

Proof of Corollary 4. From the results for the standard model, see Johansen (1996), we obtain the expressions

for Ĉ and Ω̂. Rather that handling the remaining estimation for A and B as a GLS problem we can obtain the
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likelihood equations directly. The concentrated log-likelihood function is (apart from a constant) given by

logL(A,B) = −T
2
tr
©
Ω−1(S00 −AB0S10 +AB0S11BA0 − S01BA0)

ª
.

So the differentials for A and B, in the directions a and b are given by

DA logL(A,B)(a) = T tr
©
Ω−1 (S01 −AB0S11)Ba0

ª
= T

£
tr
©
Ω−1S01Ba0

ª− tr©Ω−1A(B0S11B)a0ª¤
= Tvec(a)0

£¡
B0 ⊗Ω−1¢ vec (S01)− ¡B0S11B ⊗Ω−1¢ vec(A)¤ ,

and

DB logL(A,B)(b) = T tr
©
Ω−1 (S01 −AB0S11) bA0

ª
= T tr

©
A0Ω−1 (S01 −AB0S11) b

ª
= Tvec(b)0

£
(A0 ⊗ S10) vec

¡
Ω−1

¢− ¡A0Ω−1A⊗ S11¢ vec(B)¤ ,
where we applied theorem 3 from Magnus and Neudecker (1988, chapter 2). So (9) and (10) are the first order

conditions. When A is unrestricted (G = I) we see that (10) simplifies to

vec(Â) =
h
B̂0S11B̂ ⊗ Ω̂−1

i−1 ³
B̂0 ⊗ Ω̂−1

´
vec (S01)

=

µh
B̂0S11B̂

i−1
B̂0 ⊗ Ip

¶
vec (S01) = vec(S01B̂

h
B̂0S11B̂

i−1
)

as claimed, and the simplification of (11) follows directly.

Proof of Lemma 5. The representation for the first subsample is given from Granger’s representation theorem

for the standard model without structural changes, see P. R. Hansen (2000a).12 The representation of the second

subsample is given by

Xt = D
tX

s=T1+1

εs +D(L)εt + Vt +D(XT1 −
k−1X
i=1

ΓiXT1−i), t = T1 + 1, . . . , T,

where D(L)εt + Vt =
Pt−1
s=0Dsεt−s +DtXT1 . In the derivation of the Granger representation, one divides the

initial values, (X0, . . . ,X−k+1), into the “stationary” linear combinations that can be assigned their stationary

distribution, D(L)εt, and the term D(XT1 −
Pk−1
i=1 ΓiXT1−i). However, as pointed out by a referee, we are not

12The original Granger representation for cointegrated VAR processes of Johansen (1991), does not provide a closed-form expres-
sion for the initial value (given by C(X0 −

Pk−1
i=1 ΓiX0−i)) which is important for our analysis.
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free to choose a distribution for the “stationary” part of the initial values. The first subsample will result

in a value of XT1 , which need not satisfy DtXT1 6=
P∞
s=0Dt+sεT1−s, which is required for the term to be

assigned its stationary distribution stationary. However, the deviation from stationarity is given by Vt =P∞
s=0Dt+sεT1−s − DtXT1 , which converges to zero in probability exponentially fast, so it play no role in the

asymptotic analysis.

In order to get the representation in the appropriate form we need to modify the second representation such

that the initial value depends only on Xt, t = 0,−1, . . . , rather than XT1 , . . . ,XT1−k+1. This is obtained by
substituting the appropriate Granger representations for XT1 , . . . ,XT1−k+1, by which we obtain an expression

that simplifies to

D(XT1 −
k−1X
i=1

ΓiXT1−i) = DΓC
T1X
s=1

εs +DC
∗(L)εT1 +DΓC(X0 −

k−1X
i=1

ΓiX0−i),

where

C∗(L)εT1 = (I − (I − Γ1)C)εT1 + (C1 − Γ1C0)εT1−1 + (C2 − Γ1C1)εT1−2 + · · ·

is a stationary process.

Proof of Lemma 6. (15) follows by a law of large numbers, and (16) follows from

vec(Ω(t)−1εt(Z01tB,Z
0
2t)) =

 B0Z1t

Z2t

⊗Ω(t)−1/2
Ω(t)−1/2εt,

var(Ω(t)−1/2εt) = Ip, and

T−1
TX
t=1

 B0Z1t

Z2t

⊗Ω(t)−1/2
 B0Z1t

Z2t

⊗Ω(t)−1/2
0

= T−1
TX
t=1

 B0Z1tZ01tB B0Z1tZ 02t

Z2tZ
0
1tB Z2tZ

0
2t

⊗ Ω(t)−1 p→ Υ,

where we applied (15).

Proof of Lemma 7. Define WT (u) ≡ T− 1
2
P[Tu]
t=1 Ω(t)

−1/2εt. Then by Donsker’s invariance principle we have

thatWT (u)
w→W (u), for u ∈ [0, 1]. The mapping V(u) 7→ V(u)1{a≤u<b} is Lipschitz and therefore continuous, for

any V ∈ Dp[0, 1] and any a, b ∈ [0, 1].13 Consider the random walk terms, of Z1t, in the Granger representation.

13This is easy to verify using the sup-norm, since

sup
0≤u≤1

|U(u)− V(u)| ≥ sup
a≤u<b

|U(u)− V(u)| = 1 · sup
0≤u≤1

¯̄
1(a≤u<b)U(u)− 1(a≤u<b)V(u)

¯̄
,

shows that the mapping is Lipschitz, with Lipschitz constant c = 1.

26



For (u < ρ+) we have that

T−
1
2C

[Tu]X
t=1

εt = CΩ
1/2
1 WT (u)1{u<ρ+}

w→ CΩ
1/2
1 W (u)1{u<ρ},

where we use the continuity of W (u). Similarly, for u ≥ ρ+ we have that

T−
1
2

DΓC T1X
t=1

εt +D

[Tu]X
t=T1+1

εt

 = DΓCΩ
1/2
1 WT (ρ) +DΩ

1/2
2 (WT (u)−WT (ρ))1{u≥ρ+}

w→ DΓCΩ
1/2
1 W (ρ) +DΩ

1/2
2 (W (u)−W (ρ)) 1{u≥ρ}.

Since all other terms in (13) and (14) vanish in probability, we have shown (17), and (18) follows from the

continuous mapping theorem.

Next, we see that the Brownian motions F1 and α01Ω
−1/2
1 W are independent on 0 ≤ u ≤ ρ, since

cov(CΩ
1/2
1 W (u1),α

0
1Ω

−1/2
1 W (u2)) = β1⊥(α

0
1⊥Γβ1⊥)

−1α01⊥min(u1, u2)Iα1 = 0,

for all u1, u2 ∈ [0, ρ]. So

T−1
T1X
t=1

Xt−1ε0tΩ
−1
1 α1

d→
Z ρ

0

F1dW
0Ω−1/21 α1,

and similarly it follows that

T−1
TX

t=T1+1

Xt−1ε0tΩ
−1
2 α2

d→
Z 1

ρ

F2dW
0Ω−1/22 α2.

Since other terms are multiplied by zeroes in H (due to the structure of B), we have shown (19).

To show that the expressions have a mixed Gaussian distribution, we note that α02Ω
−1/2
2 dW is also indepen-

dent of F1, and α01Ω
−1/2
1 dW of F2, since for u1 ∈ [0, ρ] and u2 ∈ [ρ, 1] we have that

E
h
F1(u1) (W (u2)−W (ρ))0 Ω−1/22 α2

i
= E

h
CΩ

1/2
1 W (u1)(W (u2)−W (ρ))0Ω−1/22 α2

i
= 0

E
h
F2(u1)W (u1)

0Ω−1/21 α1

i
= E

h
(DΓCΩ

1/2
1 W (ρ)W (u1)

0Ω−1/21 α1

i
+E

h
DΩ

1/2
2 (W (u2)−W (ρ)))W (u1)Ω−1/21 α1

i
= DΓCu1Iα1 + 0 = 0.

In general, for two independent Brownian motions, W1 and W2, the conditional distribution of
R b
a
W1dW

0
2 given

W1 is Gaussian with mean zero and variance
R b
a
W1W

0
1du⊗ var(W2(1)). Hence, given F the stochastic integral

is Gaussian with the variance stated in the lemma.
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Proof of Theorem 8. Rather than proving this directly, we can make use of existing results. Within each

of the subsamples one could estimate the unrestricted parameters: αj , βj , Ψj , and Ωj , j = 1, . . . ,m. It follows

from Johansen (1988, lemma 13.1, 13.2), that these estimators are consistent for the true parameters (assuming

a normalization of βj). The estimators from the m subsamples can be combined into the estimators Âu, B̂u, Ĉu,

and Ω̂u(t) that are consistent for the population parameters, A, B, C, and Ωj=1,...,m. These estimators need not

satisfy all the restrictions imposed byG, H, and h, as is the case for the maximum likelihood estimator. However,

the consistency is not affected by imposing valid restrictions, and it follows that the maximum likelihood

estimators Â, B̂, Ĉ, and Ω̂j=1,...,m are consistent for the population parameters.

Proof of Theorem 9. Define M̂B = T
−2PT

t=1

h
Â0Ω̂(t)−1Â⊗ Z1tZ 01t

i
, then we have that M̂B

d→ MB, where

H 0MBH = H 0ΞH. Consider the expansion of the likelihood equation for B̂,

vec(B̂) = H
h
H 0M̂BH

i−1
H 0
"
T−2

TX
t=1

vec
³
Z1t(Z0t − ĈZ2t)0Ω̂(t)−10Â

´
− M̂Bh

#
+ h

= H
h
H 0M̂BH

i−1
H 0
"
M̂Bvec(B) + op(T

−1) + T−2
TX
t=1

vec
³
Z1tε

0
tΩ̂(t)

−1Â
´
− M̂Bh

#
+ h

= vec(B) +H [H 0ΞH]−1H 0T−2
TX
t=1

vec
³
Z1tε

0
tΩ̂(t)

−1Â
´
+ op(T

−1),

where we used the consistency of Â, Ĉ, and Ω̂j=1,2. Hence

Tvec(θ̂ − θ) w→ [H 0ΞH]−1H 0vec
µZ

F (u)dW (u)0Ω−1/2A
¶
,

and by Lemma 7 the result for B̂ follows. Similarly, the expansion

T 1/2vec(Â−A, Ĉ − C) = G

G0
T−1 TX

t=1

 B̂0Z1tZ01tB̂ B̂0Z1tZ02t

Z2tZ
0
1tB̂ Z2tZ

0
2t

⊗ Ω̂(t)−1
G

−1

×G0vec
Ã
T−1/2

TX
t=1

Ω̂(t)−1εt(Z01tB̂, Z
0
2t)

!
,

shows the result for (A,C), using Lemma 6, the consistency of Ω̂j=1,2, and the super-consistency of B̂.

Lemma 12 Define

PAC ≡ Σ−1/2ZBG
£
G0Z0BΣ

−1ZBG
¤−1

G0Z0BΣ
−1/2,

PB ≡ Σ−1/2ZACH
£
H 0Z0ACΣ

−1ZACH
¤−1

H 0Z0ACΣ
−1/2.

Then PAC and PB are orthogonal projection matrices that satisfy PACPB = op(1).
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Proof. That they are orthogonal projection matrices follows form P = PP and P = P 0, and it holds that

aT ≡ G0Z0BΣ−1ZBG = op(T ), bT ≡ H 0Z0ACΣ
−1ZACH = Op(T

2), and cT ≡ G0Z0BΣ−1/2ZACH = Op(T ), such

that

kPACPBk = tr
©
(PACPB)

0 (PACPB)
ª
= tr

©
b−1T cTa

−1
T aTa

−1
T cT b

−1
T bT

ª
= Op(T

−2)Op(T )op(T−1)Op(T ) = op(T−1),

which completes the proof.

Proof of Theorem 10. From Theorem 2 we have that the maximum value of the log-likelihood function is

given by

logLmax ≡ logL(Â, B̂, Ĉ, Ω̂j=1,...,m) ∝ −T
2

 mX
j=1

ρj log |Ω̂j |
 ,

where Ω̂j = (Tj −Tj−1)−1
PTj
t=Tj−1+1 ε̂tε̂

0
t and where ρj = (Tj −Tj−1)/T denotes the proportion of observations

in subsample j relative to the full sample. We have the identity:

log |Ω̂j | = log |Ωj |+ log
¯̄̄
I +Ω−1j (Ω̂j −Ωj)

¯̄̄
,

which we can Taylor-expand using log |I + δ| = tr{δ}− 1
2tr{δ2}+O(kδk3), where δ = Ω−1j (Ω̂j −Ωj). Below we

show that (Ω̂j − Ωj) = Op(T−1/2), so the last term is Op(T−3/2) and vanishes in probability. The second term

is treated below. Next, we define Ê(j) ≡ (ε̂Tj−1+1, . . . εTj ) and ε̂(j) = vec(Ê(j)), and see that the first term in

the expansion (after multiplying with Tρj and adding the constant Tp) can be expressed as

ρjT tr
n
Ω−1j (Ω̂j −Ωj)

o
+ Tp = ρjT tr

n
Ω−1j Ω̂j

o
= tr

n
Ω−1j Ê(j)Ê

0
(j)

o
= ε̂0(j)

£
I ⊗Ω−1j

¤
ε̂(j).

If we add up the terms from each of the subsample we get ε̂0Σε̂, and we can express ε̂t as

ε̂t = εt + (AB
0 − ÂB̂0)Z1t +

³
C − Ĉ

´
Z2t

= εt +
h
(A,C)− (Â, Ĉ)

i B0Z1t

Z2t

+A(B − B̂)0Z1t + (Â−A)(B − B̂)0Z1t.
Since the last term, (Â−A)(B − B̂)0Z1t = Op(T−1/2)Op(T−1)Op(T ) = op(1), we find after some algebra that

ε̂ = ε+ ZBvec
h
(A,C)− (Â, Ĉ)

i
+ ZACvec(B − B̂) + op(1),
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and since

vec
h
(A,C)− (Â, Ĉ)

i
= G

£
G0Z0BΣ

−1ZBG
¤−1

G0Z0BΣ
−1ε,

vec(B − B̂) = H
£
H 0Z0ACΣ

−1ZACH
¤−1

H 0Z0ACΣ
−1ε+ op(T−1),

we find that

ε̂0Σε̂ = η0(IT − PAC − PB)η + op(1),

where η = Σ−1/2ε ∼ N(0, IT ). Now let G0 and H0 be the restrictions matrices for M0, and G1 and H1 for

M1, and denote the corresponding projection matrices by PAC,0, PAC,1, PB,0, and PB,1. Since M1 is nested in

M0, it holds that sp(G1) ⊂ sp(G0) and sp(H1) ⊂ sp(H0), and the rank of PAC,0 − PAC,1 + PB,0 − PB,1 equals
q ≡ dim(sp(G0)) + dim(sp(H0))− dim(sp(G1))− dim(sp(H1)), where sp(D) denotes the space spanned by the
columns of a matrix, D, and dim(sp(D)) denotes the dimention of this space. Finally, the difference between

the two second order terms in the Taylor expansion is proportional to T tr
½³
Ω−1j (Ω̂1 − Ω̂0)

´2¾
= Op(T

−1), and

by a standard orthogonality argument we find that −2 logLmax,1/Lmax,0 = η0Qη + op(1) d→ χ2(q).

Corollary 13 The information matrix is block diagonal with three blocks corresponding to the three sets of

parameters, (A,C), B, and Ωj=1,...,m.

Proof. From the linear model it is well known that the sum-of-squared residuals covariance estimator is

asymptotically uncorrelated of (Â, B̂, Ĉ), and the asymptotic independence of (Â, Ĉ) and B̂ follows from

PACPB = op(1).
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∆Xt − α(t)β∗(t)0X∗
t−1 − Γ1∆Xt−1 ∼ N(0,Ω(t))

Model max logL(α(t),β∗(t),Γ1,Ω(t)) Degrees of freedom LR(Mi|M0)
(p-value)

M0: Ω(t) 2009.25 295 —
M1: Ω1 = Ω3 1824.94 270 368.61

(0.0000)

M2: Ω1 = Ω2 = Ω3 1631.77 239 754.96
(0.0000)

Table 1: The maximum value of the likelihood function for different specification of the covariance matrix, Ω(t).
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The Estimated Covariance Matrices, Ω(t)

1970:3—1979:9 Ω̂1 =



0.30 0.28 0.25 0.22 0.14 0.10 0.09
0 .98 0.27 0.25 0.22 0.15 0.11 0.10
0 .91 0 .96 0.25 0.23 0.17 0.12 0.11
0 .84 0 .88 0 .96 0.23 0.17 0.13 0.11
0 .66 0 .75 0 .88 0 .92 0.15 0.12 0.11
0 .58 0 .67 0 .76 0 .86 0 .98 0.10 0.09
0 .58 0 .68 0 .78 0 .81 0 .99 0 .99 0.08



1979:10—1982:10 Ω̂2 =



1.75 1.68 1.51 1.28 0.92 0.63 0.54
0 .97 1.70 1.58 1.33 0.97 0.68 0.59
0 .93 0 .99 1.50 1.30 0.97 0.69 0.61
0 .89 0 .94 0 .98 1.18 0.90 0.65 0.57
0 .82 0 .88 0 .93 0 .98 0.72 0.54 0.48
0 .73 0 .80 0 .86 0 .91 0 .97 0.43 0.39
0 .69 0 .76 0 .84 0 .89 0 .96 0 .99 0.35



1982:11-1995:12 Ω̂3 =



0.10 0.09 0.08 0.07 0.07 0.06 0.05
0 .95 0.09 0.09 0.09 0.09 0.08 0.07
0 .80 0 .95 0.10 0.11 0.11 0.10 0.09
0 .64 0 .87 0 .99 0.12 0.12 0.11 0.11
0 .61 0 .83 0 .96 0 .96 0.13 0.13 0.12
0 .53 0 .74 0 .88 0 .88 0 .99 0.13 0.13
0 .46 0 .67 0 .82 0 .92 0 .96 0 .99 0.12



Table 2: The estimated covariance matrices, Ω̂j , j = 1, 2, 3, from the most general change model. The variances
are in the diagonal, the covariances in the upper triangle, and the correlations are displayed with italic font in
the lower triangle.
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Model 1. 2 logL df LR p-value
α(t), β(t), ρ(t), Ω(t) 4018.49 295 — —

n = 3 n = 6 n = 9 n = 12 n = 60 n = 84
1970:3—1979:9 bn 0.9831 0.9767 0.9162 0.7473 0.6154 0.5947

ρn 0.3634 0.6356 1.1666 2.4113 3.4517 3.6640
1979:10—1982:10 bn 0.9234 0.8455 0.7716 0.7378 0.7179 0.6765

ρn 1.4726 2.5655 3.5156 3.8391 3.9931 4.4702
1982:11-1995:12 bn 1.0746 1.1391 1.2596 1.5328 1.7390 1.7989

ρn -0.2384 -0.4607 -0.9011 -2.0401 -2.8354 -3.0585

Model 2. 2 logL df LR p-value
α(t), β(t) = β0, ρ(t), Ω(t) 3989.58 277 28.91 0.0495

n = 3 n = 6 n = 9 n = 12 n = 60 n = 84
1970:3—1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.2620 0.4935 0.6592 0.8935 1.1475 1.2357
1979:10—1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.6309 0.8628 0.9917 0.9370 0.8637 0.8800
1982:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.2106 0.3694 0.6307 1.0520 1.3919 1.5010

Model 3. 2 logL df LR p-value
α(t) = αφ(t), β(t) = β0, ρ(t), Ω(t) 3978.44 265 40.05 0.1038

n = 3 n = 6 n = 9 n = 12 n = 60 n = 84
1970:3—1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.2644 0.4999 0.6748 0.9221 1.1861 1.2753
1979:10—1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.6529 0.9089 1.0495 0.9896 0.9065 0.9281
1982:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.2123 0.3753 0.6523 1.1248 1.5229 1.6487

Model 4. 2 logL df LR p-value
α(t) = α, β(t) = β0, ρ(t), Ω(t) 3784.01 199 234.48 0.0000

n = 3 n = 6 n = 9 n = 12 n = 60 n = 84
1970:3—1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.2701 0.5061 0.6798 0.9381 1.2343 1.3332
1979:10—1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.5850 0.8015 0.9598 1.2261 1.4309 1.5107
1982:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.2182 0.3826 0.6621 1.1599 1.5995 1.7405

Table 3: Estimation results: For each model we report the maximum value of the likelihood function, the model’s
degrees of freedom (df) and the LR statistic (tested against the most general model) with the correspondings
p-value. β(t) = β denotes constant cointegration relations and β(t) = β0 denotes constant cointegration rela-
tions that satisfy the expectations hypothesis. The cointegration parameters bn and term premia ρn from the
cointegration relations bny1,t − yn,t + ρn are reported for each model and subsample.

36



Model 5. 2 logL df LR p-value
α(t) = α, β(t) = β, ρ(t) = ρ, Ω(t) = Ω 2852 131 — —

n = 3 n = 6 n = 9 n = 12 n = 60 n = 84
1970:3—1995:12 bn 1.0390 1.0417 1.0520 1.0529 1.0239 1.0191

ρn 0.0011 0.1680 0.2951 0.6209 1.1478 1.2875

Model 6. 2 logL df LR p-value
α(t) = α, β(t) = β0, ρ(t) = ρ, Ω(t) = Ω 2825 125 26.84 0.0002

n = 3 n = 6 n = 9 n = 12 n = 60 n = 84
1970:3—1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρn 0.2719 0.4570 0.6561 0.9888 1.3148 1.4215

Table 4: Estimation results. Testing the expectations hypothesis in the cointegrated VAR without structural
changes. Note that the p-value is invalid because Model 5 is clearly rejected when tested against Model 1.
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χ2((p1 − r)r) χ2((p− r)r)

χ2(pr) χ2(p1r)

General structural change
Z0t = α1β

0
1Z11t + α2β

0
2Z12t +ΨZ2t + εt

Structural change in α
Z0t = α1β

0Z11t + α2β0Z12t +ΨZ2t + εt

Structural change in β
Z0t = α(β1,β2)

0(Z011t, Z
0
12t)

0 +ΨZ2t + εt

Model without changes
Z0t = αβ

0Z1t +ΨZ2t + εt

Figure 1: The relations between the different types of structural changes in the cointegration parameters, in the
situation with a single structural change. The asymptotic distribution of the LR tests are χ2 in all cases, with
the degrees of freedom reported in the brackets. The LR test of constant parameters against changes in both α
and β is asymptotically χ2 with (p+ p1 − r)r degrees of freedom.
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?
χ2((p1 − r2)r1)

?
χ2(pr1)

General structural change model
r1 cointegration relations for t ≤ T1
r2 cointegration relations for t ≥ T1 + 1

Z0t = α1β
0
1Z11t + α2β

0
2Z12t +ΨZ2t + εt

Permanent cointegration relations: r1
Constant adjustment coefficients: ÷
Temporary cointegration relations: r2 − r1
Z0t = α11β

0
1Z11t + (α21,αe)(β1,βe)

0Z12t +ΨZ2t + εt

Permanent cointegration relations: r1
Constant adjustment coefficients:

√
Temporary cointegration relations: r2 − r1

Z0t = α1β
0
1Z1t + αeβ

0
eZ12t +ΨZ2t + εt

Figure 2: The relations between the different models with structural changes and a change in the number of
cointegration relations. The asymptotic distribution of the LR test statistic between two of these models is χ2

with the (p1 − r2)r1, pr1, or (p+ r1 − r2)r2 degrees of freedom.
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US Term Structure Data

Figure 3: Monthly data of US zero-coupon yields with maturities 1, 12, and 84 month. The vertical lines show
the location of the (possible) change points.
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