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Abstract®

This paper applies the Model Confidence Set (MCS) procedure of Hansen, Lunde, and Nason (2003)
to a set of volatility models. A MCS is analogous to confidence interval of a parameter in the sense
that the former contains the best forecasting model with a certain probability. The key to the MCS is
that it acknowledges the limitations of the information in the data. The empirical exercise is based on
55 volatility models and the MCS includes about a third of these when evaluated by mean square error,
whereas the MCS contains only a VGARCH model when mean absolute deviation criterion is used.
We conduct a simulation study which shows the MCS captures the superior models across a range of
significance levels. When we benchmark the MCS relative to a Bonferroni bound, the latter delivers

inferior performance.
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Determining the Best Forecasting Models

1. Introduction

The literature on volatility models of asset returns has proposed a large number of specifications, start-
ing with the ARCH model of Engle (1982) and the GARCH model of Bollerslev (1986). This gives
practitioners a wide range of models to choose from and naturally leads to the qu&gtieh:is the

best volatility model? It is difficult to answer this question because asset returns often do not contain
sufficient information to identify a single volatility model as “best”.

This paper offers some resolution of this quandary. We characterize the volatility models of stock
returns that significantly dominate others, in an out-of-sample setting. The metric for assessing the
forecasts of volatility models is the Model Confidence Set (MCS) method of Hansen et al. (2003). The
MCS is reviewed in this paper along with a discussion of the inferences that can be drawn from the MCS.
We study the properties of the MCS through simulation experiments and find generally positive results.
The MCS is also benchmarked to a Bonferroni bound approach, and we find the latter to be inferior to
the former.

The MCS is an innovative approach to the problem of picking the “best” forecasting model, in this
case volatility models, in an out-of-sample evaluation under a loss function specified by the user. The
interpretation of a MCS is that of a confidence interval for a parameter, in the sense that a MCS contains
the best model with a given level of confidence. Hence, the difference between the MCS and other
selection criterion is analogous to the difference between the confidence interval of a parameter and a
point estimate of a parameter.

The MCS procedure represents a general approach to model selection. This method neither assumes
knowledge of the correct specification, nor does it require that the “true” model is available as one of the
competing models. Another advantage is that a MCS does not discard a model unless it is found to be
significantly inferior relative to other models. It is also more appealing to work with a set of forecasting
models because in practice it often cannot be ruled out that two (or more) competing models are equally
good (in population). This suggests the MCS dominates methods that require a single model be selected
as “best”.

The MCS accounts for uncertainty across a set of forecasting models, rather than uncertainty about
the “best” model. The MCS method acknowledges the limitations of the information contained in the
data by selecting a set of models, unlike more commonly used model selection criteria which select a
single model. However, the MCS can consist solely of the best model. In this case, the MCS signals this

model performs significantly better than all other models under consideration.



Determining the Best Forecasting Models

The framework in which one might test for superior predictive ability (SPA), is very similar to that of
the MCS method. The MCS approach has three advantages over tests for SPA. First, the MCS procedure
is independent of any benchmark model, which SPA tests are not. Second, the MCS method characterizes
the entire set of models that are/are not significantly out-performed by other models, while a test for
SPA only provides evidence about the relative performance of a particular model. Third, the MCS
method relies on tests of simple hypotheses. Thus, it avoids the potential problem of SPA tests in which
composite hypotheses are examined, see HansendRfad Hetails.

A MCS can be used to construct combination forecasts. The exact way that individual forecasts
should be combined depends on several characteristics, including the loss function and the correlation
structure of model forecasts. If the number of models in the MCS is too large to obtain a sensible
estimate of the correlation structure a reasonable way to proceed is to weight the individual forecasts
equally. The reason is that the MCS consists precisely of the models that cannot be rejected as being
equally good. It is easy to analyze whether the combined forecast outperforms the individual forecasts,
by deriving the MCS for the set of models, which includes the combined forecast as an additional model.
If the combined forecast is superior, the MCS of the expanded set of forecasts should consist only of the
combined forecast.

Construction of a MCS involves a sequence of tests for equal predictive ability (EPA). This trims the
set of candidate models by deleting models that are found to be significantly inferior. The set of surviving
models is the MCS, which is guaranteed to contain the best model with a certain level of confidence. The
Pantula (1989) testing principle is used because it ensures that sequential testing does not distort the
overall size of the test. Readers familiar with the trace-test for selecting the rank in the cointegrated
vector autoregressive model will recognize this testing principle, see Johansen (1988, 1996).

Tests of EPA has been proposed by Diebold & Mariano (1995) and West (1996). Their tests are based
on asymptotic normality of average (relative) performance, which require an estimate of the asymptotic
covariance matrix. Since the dimension of the estimators of this covariance matrix increase with the
number of models under consideration, the Diebold and Mariano and West EPA tests are useful for
comparing a moderate number of models, but become unwieldy when the objective is to compare a large
number of models.

This paper is concerned with the problem of drawing correct inference from multiple models. When
many models are being compared a dimensionality problem arises, and this problem can be handled
with bootstrap techniques. This approach was introduced by White (2000) to test for SPA, and further

examined by Hansen (200l This bootstrap approach was also used by Hansen (2002) for in-sample
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analysis of two or more regression models. The advantage of the bootstrap method is that it circumvents
the need for an explicit estimator of a high-dimensional covariance matrix. We apply the block-bootstrap
in our analysis, where the bootstrap is used repeatedly in the sequential testing.

We implement the MCS with a study of volatility models of equity returns. Volatility models attempts
to describe the intertemporal behavior of the volatility in equity returns. The literature contains a vast
number of studies that evaluate and compare volatility models (see, e.g., Poon & Granger (2002) that
contains a review of 93 papers). One example is Hansen & Lunde (2001) who report that a GARCH(1,1)
model is not significantly outperformed in an analysis of exchange rates. On the other hand, they report
the GARCH(1,1) model is inferior to other volatility models in an analysis of IBM stock returns. In their
analysis, the best performing volatility models is primarily those that can accommodate a leverage effect.

We estimate and forecast volatility models of daily returns on the SPYDBRindard & Poor’s
Depository Receipts, Amex: SPY), which tracks the S&P 500 index. Daily stock returns taken from
the Trade and Quote database on a sample that begins in January 3, 1995 and ends with February 28,
2002. The volatility models we examine are discussed in Hansen & Lunde (2001). Although it seems
reasonable to expect that no volatility models of equity returns outperforms the rest, we report surpris-
ingly small MCSs for the two criteria we use in the evaluation. When evaluating the models using the
mean squared error, the MCS contains about a third of the 55 models. Evaluation of models using mean
absolute deviation results in a MCS that includes only a VGARCH model, see Engle & Ng (1993).
This model incorporates an asymmetry term that captures the leverage effect in a simple way, see Black
(1976).

Evidence about the properties of the MCS is acquired through simulation experiments. These results
are very encouraging because the MCS is shown to have the correct size and to become more powerful
as the expected loss differential (between superior and inferior models) increases. We also compare the
MCS to an alternative approach that employs the Bonferroni bound. These results clearly show that the
Bonferroni bound method, in its simplest form, is not suitable for the problem of multiple comparison of
models.

This paper is organized as follows. In Section 2, we describe the MCS method and its properties.
In Section 3, we apply the MCS procedure to 55 volatility models using daily returns on the SPYDER,
which tracks the S&P 500 index. Section 4 reports our simulation study of the MCS method and com-

pares it to a related Bonferroni bound method. Section 5 concfudes.

1 See, e.g., Hasbrouck (2002) or Elton, Gruber, Comer & Li (2002)

2 The two appendices of the paper contain assumptions and theoretical results for the MCS method and a detailed description of the
bootstrap implementation.
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2. Model Confidence Setsfor Volatility Models

Let {p;} be a logarithmic price process where a unit of time corresponds to a trading day, such that the
continuously compounded daily returns are givenrpy= p; — p;_1, fort € Z. We let 7 denote

the information set at timg, and define the conditional mean, = E(r{|*:_1), and the conditional
variancepf = var(ri|Fi_1). The sample is divided into an estimation perid= —no, ..., 0), and an
evaluation periodit = 1, ..., n). The evaluation is made conditional on the parameter estimates, in the
sense that models are compared given these particular estimates.

We substitute a proxy far? because the conditional variance is unobserved. As has become common
practice, we employ realized volatility, which is a precise measure’dfin fact, it is important to use
precise measures of the conditional variance to avoid an inconsistent ranking of the alternatives, see
Hansen & Lunde (2003). Our measure of realized volatility is denoteﬁfb\ﬁnd is estimated with the
Fourier method, see Malliavin & Mancino (2002), Barucci & Reno (2002), and Hansen & Lunde (2003).

The objective is to determine which volatility model best describes the variatiorf.iTable 1
lists the volatility models that we compare with loss functions that are evaluated out-of-sample. The
models are indexed biy= 1, ..., m, and modei’s forecasts ob? is denoted b)hﬁt. We rank models
according to their expected loss using one of two loss functions: mean square error U\(Iﬁﬁg)gtz) =
(h?2, —0?)?, and mean absolute deviation (MAD(h?,, 0?) = |h?, —oZ|. The loss differential between

modelsi andj, is given by,
dji =L 6D — L2 6D, ij=1..m t=1...n
We make the following assumption about the loss function differential.

Assumption 1 E |dij | < co and {d;j;} is stationary and ergodic, for all i, j = 1,..., m,

It is important to note that Assumption 1 does not reqllu'(bﬁt, &tz) to be stationary and ergodic.
Assumption 1 makes it possible to define the best volatility model(s) from a set of models under consid-

eration that are denoted bylo = {1, ..., m}.
Definition 1 (Set of superior models) The set of superior modelsis defined by,

M*={i e Mg: E(dj;) <0 forall j € Mg}.

3 Realized volatility is an estimate of integrated volatility, which, in turn, is an unbiased measure of the conditional vaﬁam,
Barndorff-Nielsen & Shephard (2002).
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Our empirical problem is to determine which models areMitt and which are not. A MCS set
ﬁ/l\; is guaranteed to contain any given modelf* with a certain level of confidence, 1 «, e.g.,

1—o=95%

2.1. Estimation of Model Confidence Sets
The MCS is determined after sequentially trimming the set of candidate modiglsAt each step, the
hypothesis

Ho : E(dij,t) =0, foralli, j e M, (1)

is tested for a set of modelst ¢ M,y. The hypothesisHy, is a test for EPA over the models in,
and if Hyp is rejected, the worst performing model is eliminated frarh The trimming ends when the
first non-rejection occurs. The set of surviving models is the model confidenoageBy holding the
significance levely, fixed at each step of the MCS procedure, we constryét-a «)-confidence set,
/\71;;, for the best models in,. The algorithm is described in Appendix B.1.

We define the variablesi; = £ "1, dij anddi. = =15 Y"1 djj fori. j € M. The first variable,
dij, measures relative performance between modeid j, whereasd;. can be thought of as model
i's performance relative to the average of the modeldin The measure we use to rank the models
in M is vy = d./v/Vard:.), wherevard.) is a bootstrap estimate of \ar.), see Appendix B. The
standardized loss of modetelative to the other models i is given byw; A, and the worst performing
model is defined by" = arg maxeq vi .

Our tests for EPA employ theange statistic, Tr, and thesemi-quadratic statistic, Tsg, given by

g d )2
Tk = max ﬂ and Tso = /(\”_) ,
i,jeM @r(dij) i var(d;)

where the sum is taken over the modelsufy and\Tzir(dij) is an estimate of vaidij), see Hansen et al.
(2003).

We require an estimate of the (asymptotic) distribution$andTsq to test for EPA under the null
hypothesis of1). The covariances, cod i dw), i, i, k.1 € M, are nuisance parameters in this context
because the distributions @k and Tsqg depend on them. Fortunately the bootstrap is capable of esti-
mating these distributions consistently, under mild regularity conditions. Alternatively, the asymptotic
distributions can be bounded (over the nuisance parameters) using the Bonferroni bound. Although the
appeal of the Bonferroni bound method is its simplicity, a drawback this method is that it can be very

conservative, which results in very poor power properties.

6
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The Bonferroni bound is based on the observationThat max jea Itij |, wheretjj = d_ij /1 /\Tér(dij)

and the inequality (Bonferroni bound)
P(max [tj| <x) =< Z P(Jtij] < ). (2
g

Under standard regularity conditions, it holds tta,a’té N (0, 1), such that the right hand side of (2) can
be approximated by®(x) — ®(—x)]m(m — 1)/2, where® is the cdf of the standard normal. If we
apply aﬁ critical value from the standard normal, the result is a conservative test with significance
levela. This is the simplest form of the Bonferroni bound method, and as can be expected, the power of
this method will decrease asincreases. We compare the properties of the Bonferroni bound method to
those of the bootstrap method with simulation experiments.

We need to strengthen Assumption 1 to validate our bootstrap implementatiord; Henhote a

m(m — 1)/2-dimensional vector whose elements are givedibyfori < j, andi, j € M.

248

Assumption 2 The process, {d;}, iS geometric strong mixing and E |d;|"® < oo for some§ > 0.4

The sample averagd,= n~* 3", d;, is asymptotically normally distributed under Assumptions 1 and
2. The limit distributions of the test statistics we consider below, are given from this distribution.

The bootstrap avoids the need to obtain an estimate of the (asymptotic) covariance ntatBinoe
d has dimensiom(m — 1)/2, it will often be very challenging, or impossible, to work with the limit
distribution ofd. Rather than attempt to estimate the limit distribution @ind transform it into the limit
distribution of our test statistics, our bootstrap procedure operates on the distribution of a MCS statistic.

The result is a univariate distribution which avoids the curse of dimensionality.

2.2. MCS p-values
A very useful feature of the MCS procedure is that it yiepdgalues for all models under consideration.
The MCSp-value has the interpretation that a model with a srpalklue is unlikely to be a member of

the set of superior modeld/(*. We denote the-value for model asp;, i =1, ..., m, such that
ic Mifora<p and ¢ M:fora> p. 3)

A MCS p-value is constructed as follows. Index the possiblel tests for EPA, bk = 1,...m—1,

and letp(k) be thep-value of thekth test> SinceHy is rejected for large values of the test statistic. The

4 See Hirdle, Horowitz & Kreiss (2002) for details and references.
5 Naturally, to compute the MCS does not require all possible tests to be conducted ,/Gﬁasmsists of a single model.

7
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p-value, p(k), is given by 1— F¢(tx), whereF is the (estimated) cdf of the test statistic dpds the
observed test statistic of theth test. We compute the test(i ), that would have resulted in the model
i being deleted from\ for each model = 1, ..., m. If modeli is the model that survives ath — 1
tests, (is the best performing modil), we use the conventior(i*) = m, andp(m) = 1. The p-value
of modeli is defined by

Pi = k@% p(K).

If « < fiy, there is a test that results in non-rejection prior to the elimination of mod€bnversely,

modeli is whena > ;.

3. Empirical Analysis

The conditional variances?, is our main object of interest. We examine a large number specifications
for o2, but restrict the specification of the conditional mean to be constant «, and take the stan-
dardized innovations, = (ry — u)/o¢, to be Gaussian. The parametric specificationssfoinclude

the GARCH model of Bollerslev (1986), the IGARCH model, the Taylor (1986)/Schwert (1989) TS-
GARCH model, the A-GARCH, the NA-GARCH and the V-GARCH models suggested by Engle &
Ng (1993), the threshold GARCH model (Thr.-GARCH) of Zakoian (1994), the GJR-GARCH model of
Glosten, Jagannathan & Runkle (1993), the log-ARCH developed by Geweke (1986) and Pantula (1986),
the EGARCH of Nelson (1991), the A-PARCH model proposed in Ding, Granger & Engle (1993), which
nests the NGARCH of Higgins & Bera (1992)), and the GQ-ARCH proposed by Sentana (1995). Many
of these models are nested within the general specifications studied in Hentshel (1995) and Dudh (1997).
We also include the FIGARCH and FIEGARCH suggested by Balillie, Bollerslev & Mikkelsen (1996),

and finally the canonical stochastic volatility model. Table 1 summarizes the volatility specifications.
[TABLE 1]

It is worthwhile to note that some specifications are expressed in terms of the innovatioqr,; —
w), while others are expressed in terms of the standardized innovatieng,/o;. The specifications
have two lag length parameters, denofedndq. We estimate the models overq = 1, 2, with the

exceptions of the FIGARCH and FIEGARCH models where = 0, 1.

6 Loudon, Watt & Yadav (2000) compare several models that are nested in the Aug-GARCH model.
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All models are estimated by maximum likelihobdlhe first pass at the MCS compares 55 models

altogether.

3.1. Data

The data are SPY transaction prices from the Trade and Quote (TAQ) database. SPY includes all trades
and quotes from the New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and Na-
tional Association of Securities Dealers Automated Quotation (Nasdaq) securities. Intra-day volatility is
estimated using transactions from 9:30am to 4pm on a sample period that runs from January 3, 1995 to
February 28, 2002 = 1802 trading days. Prior to estimation of the intra-day volatility, price observa-
tions(i) equal to zero(ii) of transactions that occurred outside the 9:30 am to 4pm tradingidayore

than a 1% deviation from a centered mean of 100 observafioshat move by more than®% in op-

posite directions in consecutive trading days, @ndhat increased (decreased) by at leas¥®between

timest andt + 1 and remain there ten periods or less were removed from the sample. This reduced the

number of intra-day observations from 2,991,154 to 2,886,650, but retained 1802 close-to-close returns.

3.2. Empirical Results

The parameters of the volatility models are estimated using the first 1000 inter-day observations. These
parameter estimates are used to make one-step-ahead forecasts for the following 802 periods. During
the evaluation period, we estimate daily volatility using intra-day returns and the Fourier method; see
Malliavin & Mancino (2002), Barucci & Reno (2002), and Hansen & Lunde (2003). The MCS are

presented in Table 2.

[TABLE 2]

For the semi-quadratic statistic the MCS is presented in Figure 2 as a MSE/MAD scatter-plot.
[FIGURE 2]

Table 2 and Figure 2 present the MCS results for the volatility models under consideratiofsgliest
results in a MCS that contains eight models with a confidence level of 75% and 19 models with 90%

confidence level 25% under the MSE loss function. Using the same loss function, the more conservative

7 With one exception, the optimization algorithm maximizes the likelihood functions with the simplex method described in Press, Teukol-
sky, Vetterling & Flannary (1992). The software platformds+. The stochastic volatility model is the exception because it was estimated
using Ox. In this case, a modification of the Ox cod&\ifivbdel . ox is used, see Koopman, Shephard & J.A.Doornik (1999). This code is
found athtt p: // st af f. f eweb. vu. nl / koopman/ sv/ .
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Range-testTg, lands 23 models in the MCS given either confidence levels. The MAD loss function leads
the two tests to the same inference in which the MCS contains only a single model, the VGARCH12
model. The fact that the MAD criterion leads to fewer models is not surprising because this criterion is
less sensitive to outliers (large mispredictions) such that the data can be more informative.

The best performing models havéeserage effect that allows for an asymmetric response in volatil-
ity to positive and negative shocks. Black (1976) is the first to note that leverage effect, a negative
correlation between stock returns and changes in their volatility, is important for understanding stock
return dynamics. The leverage effect implies that volatility tends to rise in response to bad news (de-
fined as lower than expected returns) and tends to fall after good news. Note also that many of the best
performing models have specifications for the variance that are based on the standardized innovation,
€. In particular, the best performing model, the VGARCH12, is formulated in terms of the standardized
innovations.

It may seem puzzling that the NAGARCH22 is in the MCS for MSE because its sample performance

is poor, see model 21 in Table 2 and Figure 2. The explanation is found in Table 3.
[TABLE 3]

A poor performing model may still end up in the MCSWr(d;.) is large. From the identitg;. =

Li.— L. ,whereLi.=n"1Y" Ly, L= m_leeM Lit,andL..=n"1>7 L., we see that
var(d;.) = var(L;.) +var(L..) — 2couL;.,L..)

var(L; .) L var(L; )

=var(L; ) |1+ - .
var(L..) var(L..)

corr(Li.,L.) |,

provided that the variances are well defined. So the relative size @f yas determined by two factors.
One factor is the ratio of the variance of modlslloss relative to the average loss, and the other factor
is the correlation between modéd loss and the average loss. The intuition of this decomposition is that
a high relative variance makes it difficult to determine whether modgtruly inferior, or was simply
‘unlucky’ in this sample. Similarly, if the correlation is smalj . is not expected to be close ko_.

In Table 3 we report the decomposition of the variance, in terms of the relative variance and the cor-
relation. The calculations are sample averages. This table shows that the NAGARCH22 has a relatively

small correlation with the average performance of the other m8dEtais, the NGARCH22 ends up in

8 The correlation for the NAGARCH22 is@64. Most other models have a correlation in excessa8.0

10
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the MCS using the MSE loss function because the data does not contain sufficient information to be able

to infer that this model is inferior within the MCS.

4. A Simulation Study of the MCS Method

We construct a simulation experiment with the following design. The model performances are generated

Lit ~iid Nm(pi, D, i =1,...,mandt =1, ..., n, where

0 for i=1...,[pm],
YN for i =[pm]+1,...,m,

Ky =

wherei > 0 defines the performance difference (in population) between good and bad modeds, and
denotes the ratio of models i* relative tom, (the number of models iM).

We configure our simulation experiments withe {.20, .50, .80}; A € {1, 3, 5}; m € {10, 40, 100};
and we study the properties of the MCS using the significance level$§0.01, 0.05, 0.10, 0.25}. In our
simulations we seh = 250. The bootstrap tests were based®nr= 1,000 iid bootstrap resamples and
the results are based oane = 4,000 simulation (or more) for each configuration.

In each simulation we evaluate how the models were classified, as displayed in Figure 1.

Population Classification

superior: inferior:
M* Cmx
o A1 As2
superior: M}
# Correctly classified # Inferior models
Estimated as superior model wrongly classified

Classification as superior models

e A2 Az
inferior:  CAL%
# Superior models # Correctly classified
wrongly classified as inferior models

as inferior models

Figure 1: Classification into superior and inferior model

We simulate again given set times, which yieldsA;1n, Aizn, Asrn, andAg forh =1,..., H.

From these variables, we compute summary statistics: the frequency that all superior models are con-

11
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tained in the MCS,
A — _ H
QM*CM(’; =PM*CcM,}=H th:l Ry —

where 1, is the indicator function; the frequency that the MCS equal was exactly equal to the true set of

superior models,
5T H
Q,A’/\(;:M* = P{Ma = M*"}=H 1Zh:1 1{A12h=0}1{A21h=0};
and the frequency that a particular modej\utr* is contained in/\’/\l;fl,
Qi e = PIMEIM?) = H*le A1in/(Arrh + Aszn)
M | M= o hoy Faih/(Arrn 12.h)s

which is the quantity being controlled in the construction of the MCS which im}ﬁli/@ﬁaw* >1—oa.

We also define the proportion of the models/\/'vif; that are truly superior,
Qe = PIMIME) = HE S Atsn/(Astn+ Aoin)
M| M o g L : h),

and the proportion of models classified as inferior that are truly inferior,
Qonericae: = FS{EM*|C/\72} =H Z::l Aoon/(Az1n + Azzn),
which represents the “power” of the MCS.
[TABLES 4-6]

Tables 4-6 contain the simulation resfltsSThe properties of the MCS procedure are as could be
expected. The frequency that any of the best models are contained in the @Ijﬁgﬁg*) is always
greater than(l — «), and the MCS becomes better at separating the inferior models from the superior
models, as the performance gabincreases. The requirement th/b?f; = M*isvery demanding, yet as
A increases the equality occurs quite frequently. The range test is less powerful than is the semi-quadratic
test, and will on average have more models in the MCS. This is not surprising, because the range-test
satisfies that all superior models are contained in the MCS, with a frequency no less-thanskee
Hansen et al. (2003). This property is also confirmed by the simula@p,scﬂz. Since the semi-
guadratic test is less conservative it will delete superior models from the MCS at a higher frequency,

which is also observed, in particular for the case wite= 100.

9 The simulations were done with Ox versions 3.0 and 3.2, see Doornik (1999).
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4.1. Bootstrap versus Bonferroni Bound

Our bootstrap method and the Bonferroni bound method requires an estimatedqbyan implement

the tests. The estimate is easily obtained from the bootstrap resamples. For the sake of comparability, we
use the true variance in our simulation experiments, where we compare the Bonferroni bound method to

the MCS bootstrap method.
[TABLE 7]

Table 7, A ¢ = .05 and B(«¢ = 0.10) contain a simulation experiment where we have generated

random variabled,;; ~iid N(u;,1),i =1,...,mandt =1, ..., n, where
0 for i=1...,[pm]
My =
I YN for i=[pm]+1,...,m,

fora = 1,35, p € (0.20, .50, .80), and form = 10,40, andn = 250. B = 1,000. nj;¢ = 4,000.
a = 0.05, 0.10.

The table reports four summery statistics for the two bootstrap t&gtandTsg), and the Bonferroni
bound test. As can be seen, the Bonferroni bound test perform very poorly. The test lacks pawer so

needs to be very large before the Bonferroni method is able to tell good and bad models apart.

5. Summary

This paper studies the model confidence set (MCS) method of Hansen et al. (2003). The MCS provides a
useful tool to select the superior forecasting models from a larger set. The model whose forecasts produce
the minimum expected loss defines the best model, where the loss function is selected by the user. The
MCS contains the best model with a level of confidence, which is specified by the user. Generally, the
number of models in the MCS will increase as the level of confidence increases. Thus, the set of models
in a MCS can be interpreted in the same way that a confidence interval covers the part of the real line in
which the true value of a parameter resides with a certain significance level. When the MCS (with a high
level of confidence) contains only one model, this model is very likely to be the truly superior model, in
terms of the loss function that was applied in the construction of the MCS.

The MCS does not require as much prior information as other methods for model selection. There is
no need to assume knowledge of the “true” data generating process or the optimal forecasting model in
order to apply the MCS. This focuses uncertainty on the set of forecasting models under consideration.

Thus, the MCS recognizes that the limitations of the data imply that in most cases it is not possible to

13
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settle on a single model. Instead, the MCS usually chooses the models that perform significantly better
than the rest.

We apply the MCS to volatility models to judge their ability to forecast the volatility of stock returns.
The MCS selects VGARCH over the other volatility models we examine when the evaluation is made
with the mean absolute deviation loss function, and the MCS contains about a third of the candidate
models when the models are evaluated using the mean square error loss function. Thus, the MCS is
able to separate superior from inferior volatility models under these loss functions, even at a ten percent
significance level.

We study the properties of the MCS with a series of simulation experiments. These experiments
reveal that the MCS possess the ability to separate superior from inferior models. In particular, the
simulations show that the MCS yields a set of models that contains all, or almost all, truly superior
models, but rarelyexactly captures the true set of superior models, unless the difference in expected
performance of superior and inferior models is large. Perhaps most importantly, the MCS faces few
problems when it has to classify inferior models as truly inferior. Thus, the MCS represents a powerful

tool to choose the best set of forecasting models.

Appendix A: Assumptionsand Theoretical Results
Lemmal Letd =nt3{, di. Under Assumptions 1 and 2 it holds that

nY2@ -8 5 N, ®), asn— oo, (A.1)
where § = E(d;), and € is the asymptotic covariance matrix.

Proof. Follows by the multivariate central limit theorem for stationary and ergodic procdBses.

We note that the limit distribution need not be Gaussian, when the evaluation of models is made
unconditionally on parameter estimates. Situations where different limit distributions arise, are discussed
in West & McCracken (1998) and Clark & McCracken (2001). The former studies the situation with
various estimation schemes and the latter studies the case with nested models, both situations violates

our Assumption 1.

Theorem 2 Under Assumptions 1 and 2, the asymptotic distribution of Tg and Tsg, under the hypothesis

E(dij) = O0foralli, j € M, aregiven by a continuous transformation of N (0, ).

Proof. Definey;; = var(y/nd;). UnderHo, we note that max <« |/Ndij| /y;; andn ", _; d3/yf, are

continuous function of the elementsaffor which E(dij ;) = 0. By the continuous mapping theorem it

14
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follows that the asymptotic distributions @& and Ty are given from the limit distribution of, under

the assumption th@r(ﬁdij) is consistent for va(r\/ﬁdij ). |

B Appendix B: Bootstrap Implementation

The bootstrap implementation consists of three steps. In the first step resamples are generated. The
second step uses the resamples to estimate certain parameters, and the distribution of the test statistic of

interest is estimated in step three.

1. (a) Evaluate the dependencelifx to get the bootstrap dependence parameter (the block-length).

One way to do this is to estimate an autoregressive procesl far j € M, and determine
its lag-length, e.g., by the use of information criteria. The bootstrap block-length can be set
to be the largest lag-length (ovierj € M).

(b) GenerateB bootstrap resamples 41, ..., n}, using the block bootstrap, usirigas the
block-length. This can be done as follows, whatalenotes the uniform distribution over
the integerdl, ..., n}.

i. Determine the number of blocks needed for a sample ofsizee., letv the smallest

integer that satisfies > .

i. Fora=0,...,v—1 letry,,, ~iid Y. (First element of each block.)
iii. SetTakit = Tpyy, , +1modn, fort =2,... k,andfora=0,...,v—-1
iv. Thebth resample index is given by, ..., Tp,).

v. This is repeated for all resamples=1, ..., B.

2. Estimate variance parameters as follows.

(a) Define the bootstrap re-samples avera@gﬁ, = %Z[‘Zl dij..,, » and let the bootstrap esti-
mated of va¢d;;) be given by
i} 1S ]
vand,) = 5 bZ;(d;;” —dp?  fori,j e M.

(b) Similarly, calculatedy; = =25 3" ds;;, and the bootstrap estimate of dr), which is

1
m_
defined by

_ 1 _ _
vard, ) = 5 > @y —d?, fori e M.
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3. Calculate the test statistic of interest, and obtain its bootstrap distribution.

(a) Calculate the two statisticSgr and T,.

(b) The estimated bootstrap distributionsTaf and Tgy, under the null hypothesis, are given by

the empirical distribution of

dsij — dij di i —di)?
i<j
respectively.
(c) A p-value of the test for EPA is obtained by calculating the ratidof (or Ty's,) that exceed

Tr (or Tp). le.,

W~

N .
PREEZI{Tb)R>TR}, and Pgp=

B
Y UTrg > Teo} -
b1 b—1

B.1 TheMCSTesting Procedure
1. Initiate the procedure by settingl = Mo.

2. Test for EPA of the models iM.

(a) Ifthe EPA-hypothesisis “accepted”. We §d\§ = M, and report this thél—«)-confidence

set.
(b) If the EPA-hypothesis is rejected.
i. Then define
_ 1 _
d. = = jeX/:\/[ dij,
wherem denotes the number of models.M. This statistic,d;., measures the perfor-

mance of model, relative to the average across models.

ii. Determine the “worst performing model” froov, as defined by

I~ = arg maxX——,
ieM . /var(d.)

wherevar(d;.) is an estimate of vad, ).

ii. Remove model”from M, and repeat step.2
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Table 1: Alternative GARCH-type models: The conditional variance

SV: In(c?) = w+ BIn(eZ) +n.. 1 ~ Nid(0, 02)

ARCH: ol=w+ Y1 aie?

GARCH: of=w+Y el + Y] B0l

IGARCH ol =w4el + Y (el — 2 )+ Y P B0l — el )

Taylor/Schwert: oy =+ Y\ aileril + Yj_1 Bjor|

A-GARCH: ol=w+3, [aie? + yviei] + Z}O:l ﬂj(’tz—j

NA-GARCH: ol=w+ Y (e + ViUt—i)2 + ZJP::L ﬂj“tz—j

V-GARCH: of=w+ Y0 (@i +7) + X0 B0l

Thr-GARCH: o =w+ Y ai [A—y)el — A+ye ]+ X1 Bjor

GIR-GARCH:  o?=w+ Y\, [ + Vil -0] et + X0 Bjol

log-GARCH:  Ino) =0 + Y1 ailai| + X0, B In(or-)

EGARCH: INod) =+, [eiai +y (ail — Ela_iD]+ X1, 8;In(eZ ),
A-PARCH: o' =+ Y0 o [leil - view] + X0 B0l

GQ-ARCH: ol=w+ Y e+ Y il + Y0 dijeieig + Y1 B0l
FI-GARCH: o?=o[l-BL)] 1 +{1-[1-BML)] L)AL — L)} e

FI-EGARCH?  In(62) = w+¢(L) 21— L)1 — a(L)]g(er_1)

& Hereg(z) = y1z + v2 (1z] — Elz)).
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Table 2: MCS andb-values

No.

=

© 0 N O a b~ wN

e S
W N - O

N e
~N o oM

N DN P P
R O ©

N NDNDN
a b~ N

NN DNDN
©O© 0N O

w W
= O

W w w
A WN

Model
STOCH. VO

GARCH11
GARCH12
GARCH21
GARCH22

| GARCH11
| GARCH12
| GARCH21
| GARCH22

TSGARCH11
TSGARCH12
TSGARCH21
TSGARCH22

AGARCH11
AGARCH12
AGARCH21
AGARCH22

NAGARCH1 1
NAGARCHL12
NAGARCH21
NAGARCH22

VGARCH11
VGARCH12
VGARCH21
VGARCH22

Thr GARCHL 1
Thr GARCH12
Thr GARCH21
Thr GARCH22

GIRGARCH11
GIRGARCH21

| ogGARCH11
| 0gGARCH12
| 0gGARCH21

Panel A: MSE

MSE var (d,)
1.617 3.887
1.703 1.712
1.825 2.964
1.737 1.935
1.858 3.435
1.731 1.708
1.868 2.856
1.771 1.904
1.916  3.405
1.679 2.044
1.739 2.557
1.695 2.142
1.759 2.607
1.584 0.809
1.547 1.430
1575 0.774
1.704 2.110
1.878 3.376
1.852 2.966
1.873 4.037
2.012 13.81
1.587 7.203
1.578 6.673
1.583 6.971
1.527 4.960
1.823 2.293
1.810 3.411
1.816 2.566
1.707 5.481
1.803 2.092
1.803 2.082
1.622 2.035
1.652 2.417
1.631 2.129

Pr
0.44%

0.020
0.020
0.020
0.020

0.020
0.020
0.020
0.020

0.078
0.020
0.078
0.020

0.44%
0.93%
0.44%
0.078

0.020
0.020
0.020
0.44%

0.59%4
0.630
0.630
1.000

0.020
0.44%
0.020
0.44%

0.020
0.020

0.44%
0.44%
0.44%

Pso
0.176

0.029
0.004
0.008
0.003

0.010
0.002
0.006
0.001

0.073
0.023
0.038
0.008

0.198

0.916™

0.274™*
0.032

0.006

0.008

0.060
0.104

0.247

0.312*
0.312*
1.000™

0.007
0.036

0.010
0.176°

0.008
0.007

0.176"
0.096
0.176"
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Panel B: MAD
MAD var(d;)
0.698 0.150
0.765 0.089
0.789 0.106
0.772  0.090
0.794 0.137
0.779  0.098
0.808 0.120
0.787 0.101
0.820 0.153
0.769 0.108
0.776  0.107
0.770 0.106
0.781 0.115
0.727 0.026
0.704  0.059
0.725 0.026
0.744 0.071
0.812 0.116
0.804 0.105
0.817 0.123
0.880 0.330
0.659 0.231
0.653  0.240
0.659 0.230
0.665 0.173
0.815 0.083
0.831 0.126
0.817 0.084
0.825 0.204
0.777 0.114
0.776 0.114
0.740 0.088
0.741  0.082
0.740 0.085

Pr
0.054

0.002
0.002
0.002
0.002

0.002
0.002
0.002
0.002

0.004
0.002
0.004
0.002

0.054

0.054

0.054
0.054

0.002

0.002

0.002
0.002

0.054
1.000
0.054
0.054

0.002
0.002
0.002
0.002

0.054
0.054

0.054
0.054
0.054

Pso
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000

0.006

0.000
0.000

0.000

0.000

0.000
0.000

0.059
1.000™
0.059
0.059

0.000
0.000
0.000
0.000

0.000
0.000

0.000
0.000
0.000



No.

35

36
37
38
39

40
41
42
43

44
45
46
47

48
49
50
51

52
53
54
55

Model
| 0gGARCH22

EGARCH11
EGARCH12
EGARCH21
EGARCH22

APARCH11
APARCH12
APARCH21
APARCH22

GQARCH11
GQARCH12
GQARCH21
GQARCH22

FI GARCHOO
FI GARCHO1
FI GARCH10
FlI GARCH11

FI EGARCHOO
FI EGARCHO1
FI EGARCH10
FI EGARCH11
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Panel A: MSE

MSE var (d)
1.686 2.602
1.651 0.795
1.685 0.942
1.644 0.846
1.551 2.708
1.902 2.564
1.806 1.954
1.872 2.518
1.803 1.825
1.584 0.809
1.647 1.520
1.575 0.774
1.586 1.528
1.717 5.128
1.905 7.772
1.840 4.752
1.853 5.290
2.606 28.99
2516 17.99
2535 23.52
2,538 19.31

Pr
0.44%

0.44%
0.078
0.44%
0.93%

0.020
0.020
0.020
0.020

0.44%
0.44%
0.630
0.630

0.44%
0.020
0.020
0.020

0.020
0.020
0.020
0.020

Pso
0.052

0.176°
0.052

0.176°

0.916™

0.002
0.006
0.004
0.006

0.176
0.176°
0.312*
0.312*

0.088
0.007
0.006
0.006

0.012
0.002
0.004
0.002

Panel B: MAD
MAD var(d;)

0.748

0.750
0.769

0.749

0.753

0.854
0.821
0.847
0.818

0.727
0.765
0.725
0.740

0.735
0.781
0.777
0.778

1.112
1.085
1.092
1.091

0.089

0.048
0.089

0.049

0.149

0.117
0.098
0.109
0.097

0.026
0.106
0.026
0.128

0.260
0.210
0.124
0.138

0.577
0.520
0.537
0.532

Pr
0.054

0.054
0.004

0.054

0.054

0.002
0.002
0.002
0.002

0.054
0.054
0.054
0.054

0.054
0.054
0.002
0.004

0.002
0.002
0.002
0.002

Pso

0.000

0.000
0.000

0.000

0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

This table present model confidence sets for our selection of volatility moéelsalues marked with
two stars are inMj ,, and one star marks modeld ,. Note thatM} s C Mg,
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Determining the Best Forecasting Models

Table 4: Simulations witipom] superior (EPA) models and — [pom] inferior models.,0 = 0.2.

Alm

QM*CM\(’;
Q=i
Q/\//\ligl/\/l*
Qs 41
QCM*|CA7;;
QM*cﬂ;
Q=i
Q/\73;|M*
Q15
QCM*|C/\77;
QM*C/\//TZQ
Q=i
Q/\W;;MA*
Qs &1
QEM*|CA7;;

Alm

QM*CM\(’;
Q=i
Q/\//\ligl/\/l*
Qi &1
QCM*|CA7;;
QM*cﬂ;
Qur=itz
Q/\73;|M*
Q1 50z
QCM*|C/\77;
QM*CM\(’;
Q=i
Q/\W;;MA*
Qs &1
QEM*|CA7;;

Panel A; « = 0.25

10 40

TR Tso TR Ts Tr
0.964 0.953 0.9300.958
0.006 0.004 0.000 0.000
0.9810.975 0.9850.994
0.2410.238 0.211 0.209
0.9730.967 0.969 0.978

0.8420.818 0.8710.729
0.3210.277 0.0120.022
0.921 0.909 0.968 0.936
0.699 0.666 0.4520.634
0.9820.978 0.992 0.985

0.748 0.745 0.7740.747
0.7230.714 0.552 0.587
0.874 0.873 0.944 0.940
0.991 0.988 0.9550.980
0.9720.972 0.987 0.986

100

Tso
0.912 0.940
0.000 0.000
0.991 0.997
0.207 0.206
0.9750.982

0.874 0.526
0.000 0.000
0.984 0.956
0.369 0.642
0.996 0.988

0.763 0.700
0.256 0.299
0.968 0.971
0.9120.971
0.993 0.993

Panel C: « = 0.05

10 40

TR Tsg TR Ts Tr
0.998 0.995 0.988 0.996
0.000 0.000 0.000 0.000
0.999 0.998 0.998 0.999
0.208 0.206 0.202 0.202
0.9950.982 0.9750.992

0.980 0.965 0.9800.917
0.1300.102 0.001 0.003
0.9900.982 0.996 0.987
0.4300.410 0.2880.442
0.997 0.995 0.999 0.996

0.9530.950 0.966 0.940
0.8120.753 0.3320.369
0.976 0.975 0.994 0.990
0.9390.918 0.7940.918
0.9950.994 0.999 0.998

100

Tso
0.986 0.990
0.000 0.000
0.999 0.999
0.201 0.201
0.981 0.984

0.976 0.772
0.000 0.000
0.998 0.985
0.256 0.498
0.999 0.996

0.962 0.902
0.088 0.116
0.997 0.994
0.701 0.928
0.999 0.998

Panel B: « = 0.1

10

TR Tx Tr

0.993 0.989
0.001 0.001
0.996 0.994
0.2150.211
0.988 0.983

0.950 0.931
0.204 0.170
0.975 0.965
0.527 0.501
0.994 0.991

0.894 0.891
0.8200.782
0.947 0.946
0.970 0.956
0.988 0.988

40

Tso Tr
0.978 0.990
0.000 0.000
0.996 0.999
0.204 0.203
0.976 0.986

0.954 0.860
0.004 0.006
0.991 0.975
0.338 0.508
0.998 0.993

0.9250.892
0.450 0.495
0.9850.979
0.869 0.947
0.997 0.995

Panel D: « = 0.01

10

TR Tx Tr

1.000 1.000
0.000 0.000
1.000 1.000
0.202 0.201
1.000 0.996

0.998 0.994
0.030 0.025
0.999 0.997
0.292 0.291
1.000 0.999

0.990 0.988
0.633 0.543
0.995 0.994
0.821 0.796
0.999 0.999

40

Tso Tr
0.999 0.998
0.000 0.000
1.000 1.000
0.201 0.200
0.990 0.988

0.998 0.972
0.000 0.000
1.000 0.996
0.234 0.345
1.000 0.999

0.992 0.984
0.1320.142
0.999 0.998
0.614 0.854
1.000 0.999

100

Tso

0.972 0.979
0.000 0.000
0.997 0.999
0.203 0.202
0.982 0.983

0.948 0.693
0.000 0.000
0.9950.978
0.290 0.550
0.998 0.994

0.9190.847
0.148 0.188
0.992 0.989
0.792 0.946
0.998 0.997

100

Tso
0.998 0.999
0.000 0.000
1.000 1.000
0.200 0.200
0.984 0.992

0.996 0.883
0.000 0.000
1.000 0.993
0.222 0.413
1.000 0.998

0.994 0.953
0.0250.025
1.000 0.997
0.522 0.890
1.000 0.999

This table present simulation set 1 foe= 0.2.
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Determining the Best Forecasting Models

Table 5: Simulations witfipom] superior (EPA) models and — [pom] inferior models.,0 = 0.5.

Alm

QM*CM\(’;
Q=i
Q/\//\ligl/\/l*
Qs 41
QCM*|CA7;;
QM*cﬂ;
Q=i
Q/\73;|M*
Q15
QCM*|C/\77;
QM*C/\//TZQ
Q=i
Q/\W;;MA*
Qs &1
QEM*|CA7;;

Alm

QM*CM\(’;
Q=i
Q/\//\ligl/\/l*
Qi &1
QCM*|CA7;;
QM*cﬂ;
Qur=itz
Q/\73;|M*
Q1 50z
QCM*|C/\77;
QM*CM\(’;
Q=i
Q/\W;;MA*
Qs &1
QEM*|CA7;;

Panel A; « = 0.25

10 40

TR Tso TR Ts Tr
0.847 0.851 0.8420.802
0.002 0.004 0.000 0.000
0.954 0.950 0.980 0.985
0.543 0.557 0.518 0.525
0.822 0.853 0.873 0.896

0.7890.742 0.7990.578
0.244 0.268 0.0050.011
0.924 0.904 0.9740.961
0.8310.871 0.723 0.853
0.9430.932 0.976 0.962

0.7520.751 0.756 0.730
0.714 0.726 0.490 0.483
0.916 0.908 0.966 0.972
0.9930.995 0.977 0.986
0.9410.937 0.9730.976

100

Tso
0.829 0.673
0.000 0.000
0.986 0.990
0.5130.519
0.895 0.904

0.7750.302
0.000 0.000
0.983 0.969
0.679 0.857
0.984 0.967

0.738 0.690
0.1900.212
0.977 0.987
0.961 0.983
0.981 0.988

Panel C: « = 0.05

10 40

TR Tsg TR Ts Tr
0.976 0.972 0.9700.950
0.000 0.000 0.000 0.000
0.994 0.993 0.997 0.997
0.5100.513 0.504 0.507
0.894 0.905 0.9050.917

0.963 0.934 0.964 0.809
0.090 0.105 0.001 0.002
0.990 0.982 0.997 0.988
0.6730.737 0.5960.771
0.989 0.984 0.996 0.986

0.950 0.948 0.954 0.936
0.7510.792 0.2840.279
0.987 0.986 0.996 0.996
0.957 0.973 0.902 0.958
0.990 0.989 0.996 0.996

100

Tso
0.966 0.908
0.000 0.000
0.998 0.998
0.502 0.506
0.9150.922

0.956 0.527
0.000 0.000
0.998 0.985
0.569 0.799
0.997 0.982

0.951 0.896
0.067 0.064
0.997 0.997
0.867 0.962
0.998 0.997

Panel B: « = 0.1

10

TR Tx Tr

0.941 0.942
0.000 0.001
0.985 0.984
0.518 0.522
0.856 0.881

0.922 0.885
0.1490.172
0.977 0.964
0.7320.788
0.9790.971

0.907 0.897
0.793 0.815
0.975 0.969
0.977 0.986
0.981 0.978

40

Tso Tr
0.9410.911
0.000 0.000
0.994 0.994
0.507 0.511
0.8900.912

0.9190.740
0.002 0.003
0.992 0.981
0.639 0.801
0.991 0.979

0.907 0.884
0.378 0.383
0.990 0.991
0.9370.971
0.992 0.992

Panel D: « = 0.01

10

TR Tx Tr

0.995 0.993
0.000 0.000
0.999 0.998
0.502 0.503
0.917 0.909

0.995 0.983
0.026 0.030
0.999 0.996
0.587 0.651
0.998 0.995

0.990 0.988
0.565 0.596
0.998 0.997
0.893 0.929
0.998 0.998

40

Tso Tr
0.995 0.987
0.000 0.000
1.000 0.999
0.501 0.502
0.946 0.922

0.993 0.904
0.000 0.000
1.000 0.995
0.5430.716
0.999 0.992

0.991 0.980
0.1120.101
0.999 0.999
0.814 0.932
0.999 0.999

100

Tso

0.934 0.840
0.000 0.000
0.996 0.996
0.505 0.510
0.909 0.918

0.908 0.440
0.000 0.000
0.9950.981
0.604 0.821
0.994 0.977

0.896 0.842
0.1090.111
0.994 0.995
0.9100.971
0.995 0.995

100

Tso
0.994 0.980
0.000 0.000
1.000 1.000
0.500 0.502
0.929 0.945

0.988 0.674
0.000 0.000
1.000 0.991
0.531 0.759
0.999 0.989

0.988 0.951
0.016 0.012
0.999 0.999
0.773 0.944
1.000 0.999

This table present simulation set 1 foe= 0.5.
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Determining the Best Forecasting Models

Table 6: Simulations witfipom] superior (EPA) models and — [pom] inferior models.,0 = 0.8.

Alm

QM*CM\(’;
Q=i
Q/\//\ligl/\/l*
Qs 41
QCM*|CA7;;
QM*cﬂ;
Q=i
Q/\73;|M*
Q15
QCM*|C/\77;
QM*C/\//TZQ
Q=i
Q/\W;;MA*
Qs &1
QEM*|CA7;;

Alm

QM*CM\(’;
Q=i
Q/\//\ligl/\/l*
Qi &1
QCM*|CA7;;
QM*cﬂ;
Qur=itz
Q/\73;|M*
Q1 50z
QCM*|C/\77;
QM*CM\(’;
Q=i
Q/\W;;MA*
Qs &1
QEM*|CA7;;

Panel A; « = 0.25

10 40

TR Tso TR Ts Tr
0.776 0.764 0.7800.706
0.014 0.019 0.000 0.000
0.947 0.944 0.977 0.982
0.824 0.831 0.8120.815
0.522 0.562 0.625 0.649

0.758 0.740 0.749 0.595
0.364 0.405 0.0250.038
0.9400.934 0.9750.976
0.941 0.953 0.905 0.940
0.8700.868 0.9300.914

0.7380.742 0.7500.727
0.7150.726 0.558 0.510
0.934 0.933 0.9720.983
0.997 0.998 0.992 0.993
0.8830.884 0.9390.949

100

Tso
0.766 0.594
0.000 0.000
0.981 0.989
0.809 0.811
0.657 0.695

0.720 0.372
0.000 0.001
0.980 0.982
0.889 0.941
0.9450.925

0.731 0.696
0.2750.230
0.980 0.992
0.986 0.991
0.9520.972

Panel C: « = 0.05

10 40

TR Tsg TR Ts Tr
0.957 0.950 0.9600.924
0.003 0.005 0.000 0.000
0.9930.991 0.997 0.997
0.806 0.808 0.802 0.804
0.6310.663 0.7120.701

0.9490.932 0.9520.838
0.209 0.227 0.005 0.007
0.9910.988 0.997 0.993
0.8810.897 0.8490.902
0.962 0.958 0.985 0.968

0.949 0.943 0.947 0.946
0.817 0.843 0.396 0.328
0.9910.991 0.996 0.998
0.984 0.989 0.966 0.977
0.9800.978 0.989 0.992

100

Tso
0.9530.892
0.000 0.000
0.998 0.998
0.801 0.803
0.7140.731

0.939 0.646
0.000 0.000
0.998 0.993
0.837 0.912
0.988 0.965

0.938 0.921
0.122 0.078
0.998 0.999
0.954 0.978
0.994 0.995

Panel B: « = 0.1

10

TR Tx Tr

0.910 0.908
0.007 0.010
0.983 0.982
0.8110.814
0.578 0.630

0.904 0.885
0.281 0.310
0.9820.977
0.904 0.920
0.941 0.938

0.890 0.888
0.813 0.835
0.978 0.978
0.991 0.994
0.955 0.954

40

Tso Tr
0.917 0.866
0.000 0.000
0.993 0.994
0.805 0.807
0.667 0.693

0.8940.770
0.0100.015
0.992 0.989
0.869 0.916
0.9700.954

0.897 0.895
0.4890.434
0.991 0.995
0.978 0.984
0.978 0.983

Panel D: « = 0.01

10

TR Tx Tr

0.993 0.991
0.000 0.000
0.999 0.999
0.802 0.802
0.757 0.757

0.991 0.981
0.092 0.093
0.999 0.997
0.844 0.859
0.989 0.982

0.990 0.988
0.684 0.716
0.999 0.998
0.960 0.969
0.996 0.995

40

Tso Tr
0.992 0.986
0.000 0.000
1.000 0.999
0.801 0.801
0.7910.775

0.991 0.936
0.000 0.002
1.000 0.998
0.8230.876
0.996 0.986

0.989 0.985
0.2000.116
0.999 0.999
0.9350.962
0.998 0.998

100

Tso

0.903 0.807
0.000 0.000
0.995 0.996
0.803 0.805
0.701 0.722

0.881 0.546
0.000 0.000
0.994 0.990
0.855 0.923
0.979 0.953

0.888 0.864
0.1790.136
0.994 0.997
0.969 0.983
0.985 0.990

100

Tso
0.989 0.977
0.000 0.000
1.000 1.000
0.800 0.801
0.7100.770

0.9850.796
0.000 0.000
0.999 0.997
0.817 0.893
0.996 0.980

0.985 0.968
0.0390.012
1.000 1.000
0.921 0.967
0.999 0.998

This table present simulation set 1 foe= 0.8.
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Determining the Best Forecasting Models

Table 7: Simulations witfiom] superior (EPA) models and — [pm] inferior models. 0 = 50.

Panel A: o = 0.1
Alm 10 40
Tgont Tr Tsn Thont Tr Tsn
Q pgsc Ot 1.000 0.944 0.948 1.000 0.936 0.909
1 QM*:/\?Z 0.000 0.000 0.001 0.000 0.000 0.000
QM*U\'/T;; 0.500 0.517 0.521 0.500 0.507 0.512
Qe Lk - 0855 0.876 - 0.897 0912
Q pprc i 1.000 0.898 0.892 1.000 0.892 0.875
5 QM*z/\?; 0.000 0.782 0.810 0.000 0.367 0.384
QM*lK/Tj; 0.500 0.977 0.986 0.500 0.938 0.971
QUM*IU/\Z’; - 0.978 0.976 - 0.990 0.992
Q s Ot 1.000 0.893 0.893 1.000 0.898 0.896
20 QM*:/WZ 0.000 0.893 0.893 0.000 0.898 0.896
QM*M?;; 0.500 1.000 1.000 0.500 1.000 1.000
QcMﬂg/\qé - 0.977 0.976 - 0.990 0.992
Q pprc i 1.000 0.893 0.898 1.000 0.888 0.906
40 QM*:/\’/\(E 1.000 0.893 0.898 0.014 0.888 0.906
QM*lM\:; 1.000 1.000 1.000 0.510 1.000 1.000
QGM*|[}/\7; 1.000 0.978 0.978 1.000 0.990 0.993
Panel B: « = 0.05
Alm 10 40
Tgont Tr Tsn Thont Tr Tsn
Qe i 1.000 0972 0975 1.000 0973 0.952
1 QM*:/WZ 0.000 0.000 0.000 0.000 0.000 0.000
QM*M?; 0.500 0.509 0.511 0.500 0.503 0.507
Qe Lk - 0867 0.898 - 0921 0926
Q pprc i 1.000 0.952 0.946 1.000 0.943 0.929
5 Qi ts 0.000 0.750 0.787 0.000 0271 0.277
QM*|M\:; 0.500 0.958 0.972 0.500 0.902 0.959
QCM*|G/\73; - 0.990 0.989 - 0.995 0.996
Q pgsc Ot 1.000 0.942 0.946 1.000 0.945 0.948
20 QM*:/\qg 0.000 0.942 0.946 0.000 0.945 0.948
QM*|A71; 0.500 1.000 1.000 0.500 1.000 1.000
QgMﬂg/\’;l; - 0.988 0.989 - 0.995 0.996
Qe 1.000 0.944 0.942 1.000 0.944 0.952
0 Quein 1.000 0.944 0.942 0.000 0.944 0.952
QM*I/\??; 1.000 1.000 1.000 0.500 1.000 1.000
QCM*lC/\?;; 1.000 0.989 0.988 1.000 0.996 0.997

This table present the Bonferoni simulation setdoe 50.
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Figure 2: This figure present the voIatiIltW"l‘oo/o based on sequential testing using Thag statistics. The
models are plotted according to their MAD/MSE combination. The model number in larger boldface are
in Mm% both according to MSE and MAD loss function. The slightly smaller regular faced number are
in M, according to the MSE loss. The small numbers are excluded froovihg,



