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Abstract

It is known that the incompleteness of asset markets causes inefficiency in almost every equilibrium.

Yet unexplored is the ”size” of this inefficiency.

The size of a Pareto improvement is the total willingness to pay for it, out of current consumption.

Inefficiency is the maximum size of any Pareto improving reallocation.

Inefficiency of US consumption in middle age is computed to be 10-11% of total consumption in youth,

for CRRA parameters 1.5-3.25, in a calibrated economy.

The inefficiency of a general economy is approximated. A natural approximation, based on mar-

ginal rates of substitution (MRS), is preposterously crude in the calibrated economy, owing to a law of

diminishing willingness to pay.

Alternative approximations end up being functions of a classical notion, weighted social welfare

maximized subject to resource constraints. They are simple, sharper in general and accurate in the

calibrated economy.
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1 Introduction

Suppose a policy maker wants to Pareto improve on an allocation parameterized by future uncertainty, and
carrying out any reallocation involves a present cost. A basic question is whether any Pareto improving
reallocation is ”worth” this cost. Quantitatively, ”how inefficient” is an allocation parameterized by future
uncertainty?
Consider households with preferences for consumption xh = (xh0 , x

h
1) of a current amount and an

uncertain future amount. The current willingness to pay for a stochastic change zh in future consumption
is by definition the maximum value wh making household h weakly prefer xh+(−wh, zh) to xh. In this
sense (−w, z) defines a weak Pareto improvement, whose size is the total willingness to pay Σwh. The
inefficiency of an allocation x is the maximum size of any weakly Pareto improving reallocation:

ρx := sup
x1+zÀ0,Σzh=0

Σwh (1)

This measure is for ordinal preferences and in real terms, lying between 0 and Σxh0 . It is 0 exactly at
Pareto efficiency. Debreu’s (1951) coefficient of resource utilization is similar, the main distinction being that
ours requires payment in the present only—when there is willingness—whereas his in the future as well—when
there is moral hazard in place of willingness.1

The measure is not the welfare cost of the ”business cycle,” the focus of a large literature2 since Lucas
(1987), nor of a ”permanent shock,” a fitter interpretation of the future here. A single, representative

household illustrates: Pareto efficiency and ρx = 0 are automatic, whereas the welfare cost of a large
permanent shock is hardly 0. The randomness of total income is fixed in our question, but smoothable in
Lucas’; our payment is for allocating, Lucas’ is for eliminating, this randomness.
There is a literature on inefficiency of equilibria involving asset markets, when these incompletely insure

against the future. It detects the generic existence of Pareto improvements, but does not quantify their
significance—owing to the underlying technique, as explained below. This generic existence is robust. For
economies with multiple goods, it survives various limits on reallocations: rebalances of portfolios, Geanako-
plos and Polemarchakis (1986), Geanakoplos et al. (1990), and Stiglitz (1982); lump sum changes in current
income plus a mild instrument, Citanna, Kajii, and Villanacci (1998); taxation of asset trades, Citanna,

Polemarchakis, and Tirelli (2006); anonymous income taxes, Tirelli (2003); excise taxes or capital gains
taxes, Turner (2005). For economies with a single good3, it survives behavioral agents, Nagata (2005). We
focus on quantifying inefficiency, not on detecting it.
Equipped with a measure of inefficiency, we ask two questions:

• How inefficient is an equilibrium allocation, calibrated to capture many people facing a major risk
against which insurance markets are incomplete?

• Is there a closed formula for inefficiency, to invite research about the relation between the size of
inefficiency and the underlying economy?

1Only in Debreu (1959) is time explicitly recognized.
2E.g. Barro (2007), İmrohoroğlu (1989), Krebs (2003), Krusell and Smith (1999), Kurz (2005), Levine and Zame (2002),

Ríos-Rull (1994).
3Magill and Quinzii (1996) is the reference here.
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1.1 Estimation of the inefficiency of US middle age consumption

In applying this measure of inefficiency, it is fundamental to specify first the underlying uncertainty. We
highlight a major risk faced by US youth, income in middle age. This risk is underscored by the high income

mobility and inequality. Income belongs to a different quintile in middle age than it did in youth with high
probability, at least .46 according to Gottschalk and Danzinger (1997).4 At the time of the middle aged,
any quintile’s median income exceeds the preceding quintile’s by 45% or more, McNeill (1999).
We must estimate the consumption distribution and preferences. To estimate the former, we adjust data

on income distribution by data on savings rates. To estimate the latter, we fix them to be time additive, von
Neumann-Morgenstern, v(x0)+δ

hΣπsv(xs), with felicity v = c1−β

1−β that has CRRA β > 1, and a probability
space capturing Gottschalk and Danzinger’s probabilities of transitioning between quintiles. Preferences
differ only in the patience parameter δh, calibrated to make the estimated consumption distribution optimal
given the interest rate.
This calibrated economy’s inefficiency is numerically computable. Youth are willing to pay a fraction

ρ
Σxh0

= .10− .11 of their total current consumption for a weakly Pareto improving reallocation of their total
future consumption, if the CRRA is 1.5↔ 3.25 : 5

Inefficiency vs. Risk Aversion
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These estimates, though rooted in data, are limited in their reliability by the crudeness of the state-
preference model, which ignores how the reallocations underlying (1) affect incentives for creating income.
Still, for many models inefficiency is quantifiable in the same spirit, as the supremum total willingness to

pay for a Pareto improving feasible change.

1.2 Formulas for approximate inefficiency of a general economy

A formula for the inefficiency of a general economy is elusive, even if a formula for willingness to pay exists.
Nonetheless, we

• note a formula, if preferences are representable and quasilinear in current consumption

• derive a natural formula Lx for approximate inefficiency of a general economy, linear in marginal
rates of substitution

• note how crude Lx is in the calibrated economy, and why by a law of diminishing willingness to pay
4 Incomes are from a panel. This mobility is beyond that associated with income being monotone in age.
5For Kocherlakota (1996), the plotted range 1.5− 5 is empirically wide.
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• derive discrete and quadratic formulas Dx, Qx for approximate inefficiency of a general economy

• prove both alternatives are generally sharper, and note their accuracy in the calibrated economy

• relate Dx, Qx and a classical notion, social welfare maximized subject to resource constraints

• extend the results to economies with multiple goods

We stop short of theoretical applications of these approximations, a future topic. Throughout, we assume
preferences admit time separable representations, u0 + u1.
A two-step method drives all approximations of inefficiency. First, we derive an upper bound w ≤ ŵ

on the willingness to pay for a given change z in future consumption. Second, we compute ρ̂x, the value

of problem (1) relaxed to supx1+zÀ0,Σzh=0 Σŵ
h or an upper bound thereof—this ρ̂x is the method’s

approximation.

1.2.1 Marginal rates of substitution are a poor foundation

Marginal rates of substitution are appealing. They detect inefficiency both theoretically—that households’
marginal rates of substitution are not all equal—and practically—that small Pareto improving reallocations

solve some linear system. Being so good at detecting inefficiency, they should be good at quantifying it.
Specifically, a natural approximation of the willingness to pay for a change z in future consumption is

∇z, where ∇ ∈ RS is the vector of marginal rates of substitution of current income for future income. The
two-step method then yields the linear approximation of inefficiency (theorem 1):

ρx ≤ Lx := Σ
¡
5∗ −5h

¢
xh1

where 5∗ := (maxh5h
s )s is the stochastic maximum MRS over all households, an index of the most

deprived. In this approximation, all households fully donate their future consumption to the most deprived.

Intuitive and appealing as it is, this linear approximation is preposterously crude in the calibrated econ-
omy (CRRA = 2.5). While inefficiency is ρx = .109·Σxh0 , the approximation is over fourfold, Lx = .457·Σxh0 .
The linear approximation is crude because of a law of diminishing willingness to pay. Given a direction

z ∈ RS of change in future consumption, change z(t) := tz is parameterized by its ”size” 0 ≤ t ≤ 1.
How does the willingness to pay w(z(t)) for a change depends on its size? It turns out that w(z(t)) is
concave—the willingness to pay for a marginal change is diminishing.
In sum, marginal rates of substitution are useful to detect inefficiency, but inept to quantify it.

1.2.2 A classical social program is a better foundation

Sharper approximations of inefficiency turn out to be functions of a classical social program,

F ∗ := sup
y1À0,Σyh1=r1

Σµhuh1(y
h
1)

namely, maximizing future social welfare F : RSH+ → R, F (y1) := Σµhuh1(yh1) with weights µh := 1
uh00 (x0)

constrained by future resources r1 := Σxh1.

3



The discrete approximation (theorem 2) is intuitive,

ρx ≤ Dx := F ∗ − F (x1) (2)

just the failure to solve the social program. The quadratic approximation (theorem 3) is less intuitive,
itself a function of the discrete one,

ρx ≤ Qx :=
q
T
2

0 + 2T 0 ·Dx − T 0 (3)

where T 0 := ΣTh0 is total risk tolerance, and Th0 = −u00(x0)/u000(x0).
These approximations are increasingly sharper, in that ρx ≤ Qx ≤ Dx ≤ Lx (proposition 3). The

sharpening is dramatic in the calibrated economy (CRRA = 2.5):

Approximate inefficiency 
as fraction of resources

0.109 0.113 0.129

0.457
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inefficiency Q D L

relative errors ρ̂−ρ
ρ

Qx Dx Lx

+3.7% +18.3% +319.3%

The quadratic is excellent, the discrete very good, the linear preposterous.
Both are precise at Pareto efficiency, where ρx = 0. To see why, we recall the classical result that a

Pareto efficient interior allocation solves supyÀ0,Σyh=r Σµ
huh(yh), which thanks to time separable utilities

u = u0 + u1 in turn implies it solves F ∗, i.e. F ∗ = F (x1). Thus at a Pareto efficient interior allocation,
both approximations (2), (3) take value 0, precisely ρx.

Lastly we note how all results extend to economies with multiple goods. The key is to let current income
I0 play the role of the numeraire, with current utility u0(x0) replaced by its indirect utility v0(p0, I0). Now
inefficiency and all bounds on it are defined in terms of the allocation (I0, x1) as before, as well as current
prices p0. Although multiple goods underlie much of the literature on the generic presence of equilibrium
inefficiency, they seem immaterial for the size of inefficiency. After all, with state separable preferences, in
each state the equilibrium allocation of goods already is Pareto efficient; only the interstate allocation of
income might not be—and income is a numeraire as above.

1.3 Related literature

The closest literature is purely qualitative, on the Pareto inefficiency of asset market equilibria, following

Stiglitz (1982) as cited above. Adding a quantitative dimension is what motivates the measure of inefficiency,
estimating it in a calibrated economy and approximating it is a general economy.
This literature lacks a quantitative dimension because of its very technique, linearization. Linearization

is limited to infinitesimal reallocations. It tells whether there is a direction of reallocation (in the sense
of directional derivative) that Pareto improves the equilibrium allocation. Although conclusions at the
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infinitesimal scale extend to conclusions at the neighborhood scale, they do not beyond; indeed, a direction
that is improving if followed infinitesimally may become impairing if followed finitely:

 

Accordingly, linearization is mute on the size of the Pareto improvements it proves to exist. In contrast, our
measure of inefficiency does quantify Pareto improvements, and is unconstrained by any neighborhood.
An apparently close literature, which is quantitative, is on the welfare cost of business cycles, following

Lucas (1987) as cited above. In truth, it deals with payments for smoothing (changing) total future income,
whereas we focus on payments for allocating (fixing) total future income.
The paper’s organization follows. Section 2 quantifies inefficiency in terms of willingness to pay. Section

3 numerically computes the inefficiency of an economy calibrated to US income mobility, income distribution,
and savings rates. Section 4 describes the method for deriving formulas for approximate inefficiency of a
general economy. Section 5 shows how marginal rates of substitution approximate inefficiency, but only
crudely in the calibrated economy, because of a law of diminishing willingness to pay. Section 6 derives
alternative approximations, sharper in general and accurate in the calibrated economy. Finally, Section 7
is an extension to multiple goods. An appendix contains proofs.

2 Quantifying inefficiency

Inefficiency is a qualitative notion—we seek to quantify it. The idea is in the spirit of Debreu’s (1951)
coefficient of resource utilization, but emphasizes willingness to pay and the timing of payment.
Let º be a preference on R1+S++ , whose points (x0, x1) specify consumption of a sole good in the

present 0 and in the future states of nature 1, ..., S. Let x be a status quo consumption, and z À −x1
a change in future consumption. The willingness to pay for this change, in terms of current consumption,
is by definition the supremum w ∈ R such that

x+ (−w, z) % x (4)

Fixing the status quo, this defines a function w = w(z) bounded above by x0, whose argument we
occasionally omit.6 It may take negative values, interpretable as compensation.

6The set of w such that (4) is bounded above by x0; if nonempty, its supremum exists by completeness of R. Nonemptiness
holds if the preference obeys 0-desirability: x ∈ R1+S++ , x1 + z ∈ RS++ ⇒ (x0 − w,x1 + z) % x for some w ∈ R, possibly
negative. So w(z) ≤ x0 is defined.
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Remark 1 If preference is continuous and Inada in current consumption, then (4) holds with indifference
at the willingness to pay w(z). Further, if the preference is increasing in current consumption, a solution
w of x+ (−w, z) ∼ x is unique.7

The timing of payment—out of current consumption, not future—matches the interpretation of preferences
as being ex ante the realization of the state of nature. Ex post, the willingness to pay in the realized state
s may be different, if naturally defined, such as with state-separable preferences.
We quantify inefficiency in terms of willingness to pay. Let the economy (º, x) specify for each

household h = 1, ...,H a preference, as in remark 1, and a status quo consumption; let wh be the implied
willingness to pay functions.

Definition 1 The inefficiency of (º, x) is the value ρx of

supΣwh(zh) s.t. x1 + z À 0,Σzh = 0 (5)

The measure is for ordinal preferences, denominated in current resources, and lies in [0,Σxh0 ].
8 It

is society’s supremum willingness to pay for an allocation that, with the payment, is just weakly Pareto
improving. A solution z of this problem, if it exists, is an optimal arbitrage. An arbitrageur could elicit
Σwh in the present, without adding to future resources.

There is a computationally useful characterization of optimal arbitrage:

Proposition 1 Suppose in addition preferences are transitive.9 Suppose z ∈ RSH is feasible for (5). Then
it is a solution iff the xh + (−wh, zh) define a Pareto optimum.

This implies a characterization of Pareto efficiency:

Corollary 1 x is Pareto efficient iff ρx = 0.

Occasionally, to get a measure of inefficiency at most 1 we quote the Σwh of problem (5) as a fraction
of current resources, Σwh = φr0, where r := Σxh is notation for resources. So current consumption
ch0 := x

h
0 − wh satisfies Σch0 = φ̃r0 with φ̃ := 1− φ, which is a measure of efficiency. A similar notion is

Debreu’s (1951) coefficient of resource utilization φ̃, except that he requires current and future consumption
to satisfy Σch = φ̃r. His notion refers to the fraction of resources, in every state and not just today, to which
society is willing to deprive itself and still be weakly Pareto better off. As noted, with ex ante preferences, a

willingness to pay today may disappear in a future state, a moral hazard hidden in Debreu’s (1951) timeless
model. The timing of payments is the key distinction between Debreu’s measure and ours.
Lucas (1987) asks about the willingness to pay for changing future resources r1 := Σx

h
1 to their

expectation E[r1], eliminating their risk. This question is unrelated to inefficiency and to our measure,
which by the constraint Σzh = 0 fixes future resources, preserving their risk.

7Continuity means that (y0, y1) Â x implies (ỹ0, y1) Â x in some neighborhood ỹ0 ≈ y0. Inada means that always
x0 −w(z) > 0. Increasingness means that x ∈ R1+S++ , ² > 0⇒ x+ (², 0) Â x.

8z = 0 is feasible for (4) and has wh(0) = 0, so ρx ≥ Σwh(0) = 0. Since wh(zh) ≤ xh0 whenever zh À −xh1, the sum
Σwh(zh) ≤ Σxh0 , showing ρx ≤ Σxh0 .

9 ”Boundary averse” means y º xÀ 0 implies y À 0.

6



Remark 2 (constrained inefficiency) Reallocations in problem (5) are state contingent. Were they con-
strained to arise from a particular policy—fiscal, monetary, financial—then problem (5) would measure “policy
constrained inefficiency.” This would be no greater than our measure, as the feasible set would be no greater;
our measure is an upper bound on ”policy constrained inefficiency” for any policy.

The willingness to pay has an important representation, if the preference has a time separable u0(x0) +

u1(x1) representation. By remark 1, w is characterized by the indifference u0(x0 − w) + u1(x1 + z) =
u0(x0)+u1(x1), equivalent to an equation involving the change in future welfare ∆ := u1(x1+z)−u1(x1) :

u0(x0)− u0(x0 − w) = ∆ (6)

Standard conditions imply an implicit function w = w(∆) with w(0) = 0, representing the willingness to
pay in terms of changes in future welfare.
A formula for inefficiency is elusive, even when a formula w = w(∆) for willingness to pay is available.

This unfortunate state motivates two explorations: to numerically compute inefficiency arising in an asset
market equilibrium, calibrated to capture important risks, and to derive formulas for approximate inefficiency.

2.1 Formula in quasilinear case

We note a formula for inefficiency, assuming 0-quasilinear utilities, x0+ u1(x1). Equation (6) reduces to
w = ∆. The total willingness to pay is then Σwh = Σ∆h = Σuh1(x

h
1 + z

h) − Σuh1(xh1), so inefficiency (5) is
the value

ρx =

"
sup

y1À0,Σyh1=r1

Σuh1(y
h
1)

#
− Σuh1(xh1) (7)

using the change of variable yh1 = x
h
1 + z

h, provided the solution has xh0 −∆h > 0. Inefficiency is just the
failure to to maximize ”future social welfare” Σuh1. This is partially generalized in section 6.

3 Estimation of the inefficiency of US middle age consumption

One of the great risks faced by youth is consumption in middle age. How inefficiently is middle age con-
sumption allocated? We use data on income mobility, income distribution and savings rates to calibrate the
economy (º, x), a profile of preferences and consumption distribution. For this economy we numerically
compute inefficiency ρx in the sense of definition 1.

3.1 Data on income mobility, income levels and savings rates

There is high risk of income mobility. Whatever one’s income quintile in youth, moving to a different income
quintile in middle age has high probability. Estimates of the probabilities of transitioning from 1968 quintiles
to 1991 quintiles are
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transition probabilities

Â 1 2 3 4 5

1 .54 .22 .19 .05 .01

2 .23 .25 .18 .26 .08

3 .11 .21 .24 .28 .15

4 .05 .23 .23 .19 .3

5 .07 .09 .16 .22 .46

(8)

by Gottschalk and Danzinger (1997); see their table 4.10 The probability of income mobility is at least
.46 ≤ 1− diagonal = .46, .75, .76, .81, .54, for all 1968 quintiles.
This risk of income mobility is greatly consequential, because the income distribution is greatly unequal.

The median incomes of 1968, 1991 quintiles are (in 1991 dollars)

I1968 : 9, 774 20, 722 29, 682 40, 330 70, 802

I1991 : 9, 315 22, 725 35, 570 51, 317 96, 501
(9)

by McNeill (1999).11 Every 1991 median exceeds the preceding median by 45% or more.
This inequality in incomes implies inequality in consumption. Estimates of the quintiles’ savings rates

are (in 1973)
σq = −.45, .− .015, .09, .175, .286 (10)

by Bosworth, Burtless, Sabelhaus (1991); see their table 5. Thus someone whose income in young age falls
in quintile q but whose income in middle age transitions to quintile Q is estimated12 to have

consumption in youth: xq0 := I
q
1968(1− σq)

consumption in middle age: xq1 := I
Q
1991 + σqIq1968R

(11)

where R is the gross interest rate over the period, say, R = 1.65.13

3.2 Translation of data to model

We wish to define a state space consistent with income mobility (8) and income distribution (9), and to
calibrate preferences so consumption distribution (11) is optimal given the interest rate.
Time Period 0 is 1968, period 1 is 1991.
Households They are five representatives, sampled one from each 1968 income quintile. We deal with

this sample instead of the whole population to keep the state space manageable for numerical computation.
States They are all the independent quintile transitions of the sampled households, totaling 55 states.

Thus 55111 is the state where the two poorest representatives become rich and the three richest become
10Theirs is PSID data on 1968 and 1991 incomes, adjusted for family size. Only ages 22 to 62 appear.
11We switch to McNeill’s (1999) quintile incomes from Gottschalk and Danzinger’s (1997) because theirs are unreported. His

definition of income is essentially the 1995 Panel on Poverty’s, also adusted for family size.
12This estimate takes consumption and bequests as perfect substitutes, and ignores investments other than savings.
13This is the cumulated real interest rate for 1968-1991, computed from nominal yields of 1-year US Treasuries in the secondary

market, and the US GDP deflator. Annualized, the real interest rate is about 2.2%, and (1 + 0.022)23 ≈ 1.65.
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poor. In a random sample, multiple households can transition to the same 1991 quintile; in the economy,
multiple quintiles cannot transition to the same 1991 quintile—quintiles are equinumerous by definition.
State probabilities They are defined by the product rule for independent events, reflecting that house-

holds are a random sample. Thus π55111 = (.01)(.08)(.11)(.05)(.07) ≈ 3 · 10−6, nearly impossible.
Assets A riskless bond with a unitary return in 1991 is tradeable in 1968 at price 1

1.65 .

Consumption distribution Our notion of state s determines every household’s transition qQ, so
that (11) defines a consumption distribution, post asset trade.
We quote inefficiency Σwh as a fraction of total current consumption Σxh0 =: r0, computed as follows.

Tables (9) and (10) imply an aggregate savings rate of 0.151, so that r0 := .849 · I0, where I0 := ΣI
q
0 is

total current income.
Preferences Households differ only in their patience parameters δh > 0, otherwise having a common

time separable, von Neumann-Morgenstern preference v(x0) + δhΣπsv(xs). The felicity v(c) = 1
1−β c

1−β

has CRRA β ∈ [1.5, 5], and π is the above state probability. We calibrate the patience parameters δ as
follows.
Patience parameters Given β, we calibrate each δh by imposing that consumption distribution (11)

is optimal, given the riskless bond’s price above. For example, if β = 2.5, the annualized patience parameters
δ

1
23 are .815, .957, .98, 1.006, 1.024, increasing with income in youth. Details are in section 8.1.

3.3 Estimates

We estimate the inefficiency of US middle age consumption by having Mathematica solve problem (1) for
the model economy (º, x) just specified.14 Plotting ρ̂

r0
,

Inefficiency vs. Risk Aversion
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The economy is willing to pay 10− 11% of its total current consumption for some reallocation of its future
total consumption, subject to leaving everyone weakly better off, provided the CRRAs β range in 1.5−3.25.
How robust are these estimates with respect to the CRRA parameter? Quite, in the range β = 1.5↔ 3.25.

Does the calibration pass validity tests, such as matching moments of the data? If the moment is the
growth rate of per capita income, there is a match. From outside data, the growth factor of real GDP per
capita during 1968-1991 is 1.5. In the calibrated economy, the stochastic growth factor in total income,
Is+σI0
I0

with σ = .151 the aggregate savings rate, has expectation of 1.503 and standard deviation of .34,
relative to the above state probabilities.
14The code is availale on request.
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How are we to interpret these figures about the model economy, which is not the whole economy but
merely a sample, one household from each quintile? Reallocations at the scale of the sample can be replicated
to the whole economy, since quintiles are equinumerous. (Of course, many reallocations in the whole economy
do not project to the sample.) Thus reallocations in our model economy represent a subset of the reallocations
in the whole economy. Since definition 1 involves a maximization over all reallocations, the inefficiency of

the whole economy is at least the plotted estimates, once normalized by its size r0 = Σxh0 .

4 Method to approximate inefficiency of a general economy

In the absence of a formula for the inefficiency of a general economy (º, x), we turn to formulas for approxi-
mate inefficiency. A two-step method drives all approximations of inefficiency ρx = supx1+zÀ0,Σzh=0Σw

h(zh) :

• derive an upper bound on willingness to pay, wh(zh) ≤ ŵh(zh)

• compute the value of the relaxed problem (or an upper bound thereof)

sup
x1+zÀ0,Σzh=0

Σŵh(zh) (12)

on substituting in the definition of ρx the upper bound of step one.

Clearly,

Principle 1 Inefficiency is bounded above by (12).

The first step is essentially a Taylor approximation of equation (6) characterizing willingness to pay,
u0(x0)− u0(x0 − w) = ∆(z). Care is needed that this approximation is an upper bound. The method yields
three approximations: linear, discrete, and quadratic. Henceforth, numerical computation is absent except
to probe their accuracy in the calibrated economy of section 3.2.

5 Approximation by marginal rates of substitution: crude

Marginal rates of substitution are appealing. They detect inefficiency both theoretically—that households’
marginal rates of substitution are not all equal—and practically—that small Pareto improving reallocations
solve some linear system. Being so good at detecting inefficiency, they should be good at quantifying it.

Unfortunately, marginal rates of substitution (1) always overstate inefficiency, because they (2) ignore a law
of diminishing willingness to pay, and (3) tag on a quantitatively gross error, even in reasonable cases.
A natural approximation of the willingness to pay is w ≈ ∇z, where ∇ is the so calledmarginal rates

of substitution (MRS), defined by the requirement that (1,∇) be normal to the smooth indifference set
through x. It turns out, this fulfills step one in the method:

Lemma 1 (linear approximation of willingness to pay) Suppose the preference is reflexive and con-
vex, and its indifference set through xÀ 0 is differentiable. The willingness to pay for z is at most

w ≤ ∇z (13)

10



By principle 1, inefficiency is bounded above by ∗ = supx1+zÀ0,Σzh=0Σ∇hzh, which involves the object

5∗ := (max
h
5h
s )s (14)

It is the stochastic maximum MRS over all households, an index of the most deprived. The solution of ∗
has all households fully donating their future consumption to the most deprived:

Theorem 1 (linear approximation of inefficiency) Suppose as in lemma 1. Then inefficiency is bounded
above as

ρx ≤ Σ
¡
5∗ −5h

¢
xh1 := Lx (15)

There is a reason that linearization overstates willingness to pay. Given a direction z ∈ RS of change in
future consumption, change z(t) := tz is parameterized by its ”size” 0 ≤ t ≤ 1. How does the willingness
to pay w(z(t)) for a change depends on its size?

Proposition 2 (law of diminishing willingness to pay) Suppose the preference is increasing in current
consumption and convex. Then w(z(t)) is concave. Further, w(z(t)) ≥ tw(z) for all 0 ≤ t ≤ 1.

5.1 Crudeness

The crudeness of marginal rates of substitution in approximating inefficiency is apparent in the calibrated
economy of section 3.2 (CRRA β = 2.5). The inefficiency is ρx = .109 · r0 and the linear approximation
(15) is over fourfold, Lx = .457 · r0.
This crudeness is present in the willingness to pay as well. Let us take the preference and status quo

consumption to be that of the richest 1968 quintile, and the change z5 in future consumption to be, say, that
associated with the optimal arbitrage. The willingness to pay is w5 = 7514.08 and the linear approximation
(13) is nearly threefold, ∇5z5 = 20392. The culprit of this crudeness is the law of diminishing willingness
to pay15, as illustrated by plotting w5(z(t)) :

0 0.2 0.4 0.6 0.8 1
size of change

0

5000

10000

15000

20000

Linear approximation overstates w.t.p.

In sum, marginal rates of substitution are useful to detect inefficiency, but inept to quantify it. Granted,
they are computationally much simpler than the inefficiency measure ρx. But so are the following approxi-
mations, sharper in general and accurate in the calibrated economy.
15Alvarez and Jermann (2004) linearize information about asset prices to answer Lucas’ (1987) question. They find estimates

far exceeding Lucas’ (who does not linearize), but are mute on whether this excess owes to the linearization itself. They state
an analogue of proposition 2.
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6 Sharper approximations

We derive two approximations of inefficiency. Compared to the linear one based on MRS, they are sharper
in general and dramatically so in the calibrated economy. Most surprisingly, inside them appears notion
classically linked to efficiency, social welfare maximized subject to resource constraints:

F ∗ := sup
y1À0,Σyh1=r1

Σµhuh1(y
h
1) (16)

Here future social welfare F : RSH+ → R, F (y1) := Σµhuh1(yh1) has the weights µh := 1
uh00 (x0)

, and future

resources r1 := Σxh1 are the status quo’s. Preferences here admit a time separable representation u0+u1.
One application of the method results in

Theorem 2 (discrete approximation of inefficiency) Suppose utilities for current consumption with
u00 > 0 ≥ u000 . Then the allocation’s inefficiency is at most its failure to maximize future social welfare:

ρx ≤ F ∗ − F (x1) := Dx (17)

Another application of the method results in something involving the total risk tolerance T 0 := ΣT
h
0 ,

where T0 := −u00(x0)/u000(x0).

Theorem 3 (quadratic approximation of inefficiency) Suppose utilities for current consumption with
u0000 ≥ 0 > u000 ,−u00.16 Suppose also every household has a nonnegative willingness to pay for the optimal
arbitrage. Then the allocation’s inefficiency is at most

ρx ≤
q
T
2

0 + 2T 0 · [F ∗ − F (x1)]− T 0 := Qx (18)

This quadratic approximation Qx is a correction of the discrete one Dx : Qx =

q
T
2

0 + 2T 0 ·Dx − T 0

A seeming weakness of theorem 3 is the high level hypothesis on the optimal arbitrage; it holds in the
calibrated economy.
DISCUSSION OF APPROXIMATIONS
Both are explicit up to F ∗, which to compute requires specifying future welfare u1, as illustrated below.
Both are precise at Pareto efficiency. To see why, we recall the classical result that a Pareto efficient

interior allocation solves supyÀ0,Σyh=r Σµ
huh(yh), which thanks to time separable utilities u = u0 + u1

in turn implies x1 solves (16), i.e. F ∗ = F (x1). Thus at a Pareto efficient interior allocation, both
approximations (17), (18) take value 0, which by corollary 1 is precisely the value of ρx.

Approximation (17) partially generalizes formula (7).

6.1 Sharpness

How sharp are the three approximations of inefficiency? In general,
16Most utilities in the linear risk tolerance class satisfy this, such as CRRA >1, CARA, log, quadratic.
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Proposition 3 Suppose as in theorems 1, 2, 3. Then the linear, discrete, and quadratic approximations of
inefficiency are increasingly sharper:

ρx ≤ Qx ≤ Dx ≤ Lx

The sharpenings are dramatic in the calibrated economy of section 3.2 with CRRA β = 2.5. As fractions
of total current consumption r0 = Σx

h
0 , they are:

Approximate inefficiency 
as fraction of resources

0.109 0.113 0.129

0.457

0

0.1

0.2

0.3

0.4

0.5

0.6

inefficiency Q D L

relative errors ρ̂−ρ
ρ

Qx Dx Lx

+3.7% +18.3% +319.3%

The quadratic is excellent, the discrete very good17, the linear preposterous.

6.2 Computation with CRRA felicities

Approximations (17), (18) are explicit up to F ∗, which is easy to compute in the following benchmark.

Proposition 4 Suppose households’ future utilities uh1 = δhV differ only in the patience parameters δh > 0,

having the same von Neumann-Morgenstern transform V := Σπsv(cs) of the felicity v(c) = 1
1−β c

1−β with
CRRA β > 1. Then the value of problem (16) is

F ∗ = δV (r1)

where δ :=

∙
Σ
³
µhδh

´ 1
β

¸β
and r1 are total future resources.

Substituting this in expression (18) with µh = 1
uh00

then gives a closed formula for approximate ineffi-

ciency. Further, in the quadratic approximation it is easy to compute T 0 = r0
β if uh0 = v.

In contrast, a closed formula for inefficiency is hopeless, even in this simplified setting. By remark 1, the
equation defining willingness to pay is 1

1−β (x0 − w)
1−β + δΣπs

1
1−β (xs + zs)

1−β = u, the status quo utility.
Solving for w shows inefficiency is hopeless indeed:

sup
x1+zÀ0,Σzh=0

Σ
h
(1− β)uh − δhΣπs

¡
xhs + z

h
s

¢1−βi 1
1−β

17 If the total risk tolerance T 0 is high enough, one can conclude the quadratic is only marginally better than the discrete
one, for then a first order Taylor expansion shows Q ≈ T0Dq

T
2
0+2T0·D

≈ T0Dq
T
2
0+0

= D. But for practical purposes, this conclusion

entails computing T 0, and then one may as well compute the quadratic.
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7 Extension to multiple goods

A final matter is whether the quantitative notion of inefficiency and the results extend to economies with
multiple commodities. This is relevant since most contributions on the existence of inefficiency of equilibria
with incomplete asset markets rely on the existence of multiple goods.
There is a simple extension of willingness to pay and inefficiency to the case of L > 1 commodities per

state. It sacrifices generality slightly for simplicity. Thus suppose that preferences admit utility representa-
tions that are time separable, u0(x0)+u1(x1), where (x0, x1) ∈ RL(1+S)+ , and that v0 = v0(p0, I0) denotes
the indirect utility associated with u0. Define a pseudo state space as {1, ..., S}×{1, ..., L} , with S∗ := SL

future states. Define a pseudo utility on R1+S
∗

+ by ũ(I0, y1) := v0 (p0, I0) + u1(y1), given period 0 prices
p0. The willingness to pay for a change z ∈ RS

∗
in future consumption, in terms of current consumption,

is by definition the supremum w ∈ R such that

ũ(I∗0 − w, x1 + z) ≥ ũ(I∗0 , x1) (19)

where I∗0 := p0x0 is the income necessary for the status quo current consumption x0, in analogy to (4).
We note that if x0 is optimal in that v0 (p0, I∗0 ) = u0 (x0) , then the right side of (19) is just the status quo
welfare u0(x0) + u1(x1), so w(0) = 0 provided u0 is increasing.

Definition 2 Given a current spot price p0 ∈ RL++, the inefficiency of (º, x) is the value ρx,p0 of

supΣwh(zh) s.t. x1 + z À 0, Σzh = 0 (20)

Proposition 1 extends:

Proposition 5 Suppose u0 is continuous and increasing. Suppose z ∈ RHS∗ is feasible for (20). Then it
is a solution iff the (I∗h0 , x

h
1) + (−wh, zh) define a Pareto optimum (with respect to pseudo utilities).

The lemmata describing the three approximations of willingness to pay extend :

Lemma 2 (linear) Suppose the preference is reflexive and convex, and its indifference set through xÀ 0

is differentiable. The willingness to pay for z is at most

wh ≤ ∇hzh

Lemma 3 (discrete) Suppose Du0 is strictly positive and D2u0 negative definite, let v00 :=
dv00(p0,I0)

dI0

be marginal utility. Then willingness to pay is at most

w ≤ ∆
v00

Lemma 4 (quadratic) Assume v0000 ≥ 0 > v000 . If ∆ ≥ 0 then willingness to pay is at most

w ≤ −T0 +
s
T 20 + 2T0 ·

∆

v00

where T0 := − v00
v000
.
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As before, these approximations are unambiguously ranked:

Proposition 6 Suppose as in the lemmata. Then these approximations of willingness to pay are increasingly
sharper,

inefficiency ≤ quadratic ≤ discrete ≤ linear

Lastly, the law of diminishing returns also holds, by an identical argument.
That these upper bounds on willingness to pay translate into upper bounds on inefficiency is merely a

notational extension, omitted.

8 Appendix

8.1 Calibrating patience parameters

For bond purchases θ to maximize the welfare u(x) = v(x0) + δhΣπsv(xs) of the consumption x =

(I0 − qθ, I1 + θ) they finance, they must satisfy the FOC:

x−β0 q = δΣπsx
−β
s

Substituting the price qbond = 1
1.65 ,

δ =
1

1.65

x0
−β

Σπsx
−β
s

(21)

Evaluating (21) at the consumption distribution x and the state probabilities π gives δh as a function
of the CRRA parameter β.

8.2 Proposition 1

Proof. Necessity by contradiction. Let z be a solution where the xh+(−wh, zh) admit a Pareto superior
reallocation y ∈ RH(S+1)++ , so that Σyh0 = r0 − Σwh and Σyh1 = Σx

h
1, and yh %h xh + (−wh, zh) without

indifference for some i. By (4) and transitivity, yh %h xh. Reduce yi0 to yi0 − ² by some ² > 0. By
continuity in current consumption, a small enough ² is feasible, in that still yi + (−², 0) Âi xi + (−wi, zi)
%i xi . But now this modified ỹ0 (identical to y0 but for household i) sums to r0 − Σwh − ². Set
ỹ := (ỹ0, y1) so ỹh %h xh. Set a := ỹ − x so that ỹh = xh + (−(−ah0), ah1) %h xh and Σah1 = 0.

This shows that wh(ah1) ≥ −ah0 hence Σwh(ah1) ≥ −Σah0 = −
£
(r0 − Σwh − ²)− r0

¤
= Σwh + ², which

exceeds Σwh = ρx, the supremum total willingness to pay for some future reallocation z (which a1 is), a
contradiction.
Sufficiency by contraposition. Let z̃ be a counterexample to z being a solution. Consider the two

allocations (xh0 − wh(z̃h), xh1 + z̃h), (xh0 − wh(zh), xh1 + zh). By remark 1, they are indifferent to xh, hence

to each other by transitivity. By hypothesis, Σwh(z̃h) > Σwh(zh), so that the first allocation has lower
current resources than, but of course equal future resources to, the second. Thus change the first allocation
by taking the aforementioned current slack and distributing it evenly over households; being increasing in
current consumption, this makes the (so modified) first allocation preferred to the second one, using the
same resources, showing the second one is not Pareto optimal.

15



8.3 Corollary 1

Proof. Necessity. By hypothesis, x is Pareto efficient, and wh(0) = 0 in any case, so (xh0−wh(0), xh1) = xh
is Pareto efficient. By proposition 1, z = 0 solves problem (5). So the problem’s value is ρx = Σw

h(0) =

Σ0 = 0.

Sufficiency. Suppose y ∈ RH(S+1)++ ,Σyh = Σxh with yh %h xh. Rewrite as yh = xh + (−(xh0 −
yh0 ), z

h) %h xh, defining z := y1 − x1. Then wh(zh) ≥ xh0 − yh0 by definition of willingness to pay, so
Σwh(zh) ≥ Σ(xh0 − yh0 ) = 0. Conversely, Σwh(zh) ≤ ρx because z is feasible for problem (5) and ρx its
value. So if ρx = 0, then Σw

h(zh) = 0. So the ah := xh + (−wh(zh), zh) satisfy Σah = Σxh, are Pareto
efficient by remark 1, and indifferent to x. Thus x is itself Pareto efficient.

8.4 Lemma 1, theorem 1

The proposition relies on a simple global-infinitesimal principle for smooth convex preferences: if x +
(z0, z) º x then (1,∇(x)) · (z0, z) ≥ 0.
Proof. Let w be the willingness to pay for z, so that x+(−w, z) ∼ x. Since also x ∼ x, convexity implies

x+ t(−w, z) % x with ∗ = tz for, say, t = 1
2 . By the global-infinitesimal principle, (1,∇(x)) · (−w, z) ≥ 0,

i.e. w ≤ ∇(x)) · z.
Proof. By principle 1, it suffices to show the value of supx1+zÀ0,Σzh=0 Σ∇hzh is Σ

¡
5∗ −5h

¢
xh1.

Now, Σzh = 0 implies Σ∇hzh = Σ
¡
5∗ −5h

¢
(−zh) = ∗. In turn, x1 + z ≥ 0 and 5∗ −5h ≥ 0 imply

∗ ≤ Σ
¡
5∗ −5h

¢
xh1. So the value is at most the claimed one, which is actually achieved by z := −x1.

8.5 Proposition 2

Proof. w(z(t)) ≥ tw(z) By remark 1, the willingness to pay w = w(z) makes (4) hold with indifference.
Thus w solves x+ (−w, z) ∼ x. Of course, x+ (−0, 0) ∼ x. By convexity of the preference, the t-convex
combination of the latter left sides is weakly preferred to x : x+ (−tw, z(t)) % x, where t0 := 1− t. Since
w(z(t)), the wtp for z(t), is the supremum s such that x+ (−s, z(t)) % x, it follows w(z(t)) ≥ tw.

Concavity Fix s, t ∈ [0, 1] and a ∈ [0, 1]; we want w(z(as + a0t)) ≥ aw(z(s)) + a0w(z(t)), where
a0 := 1 − a. The following indifferences hold: x + (−w(z(s)), z(s)) ∼ x, x + (−w(z(t)), z(t)) ∼ x. By

convexity of the preference, x+ (−aw(z(s))− a0w(z(t)), ∗) % x where ∗ = az(s) + a0z(t) = z(as+ a0t). As
above, by definition of wtp as the supremum, w(∗) ≥ aw(z(s)) + a0w(z(t)).

8.6 Theorem 2

We analyze equation (6), which characterizes the willingness to pay w for a change z in future consumption,
repeated here:

u0(x0)− u0(x0 − w) = ∆ (22)

Note, ∆, w = 0 satisfy this equation; since u0 is increasing, one is positive (negative) iff the other is, hence

Remark 3 The signs of w,∆ agree.
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Lemma 5 (discrete approximation of willingness to pay) Suppose u00 > 0 ≥ u000 . Then willingness to
pay is at most18

w ≤ ∆
u00

(23)

Proof. By the Fundamental Theorem of Calculus, u0(x0)− u0(x0 −w) = w
R 1
0
u00(x0 −w+ tw)dt. This

and equation (22) imply

w =
∆R 1

0
u00(x0 − w + tw)dt

(24)

Since u000 ≤ 0, the integrand is bounded as u00(x0) S u00(x0 −w+ tw) according as w T 019 , i.e. according
as ∆ T 0 (by remark 3), giving (23).

Proof. By principle 1 and upper bound (23), it suffices to show supx1+zÀ0,Σzh=0 Σ
∆h

uh00
has value

F ∗ − F (x1). Now,

Σ
∆h

uh00
= Σµh

£
uh1(x

h
1 + z

h)− uh1(xh1)
¤
= Σµhuh1(x

h
1 + z

h)− Σµhuh1(xh1) = F (x1 + z)− F (x1)

On changing variables as y1 = x1 + z and recalling the definition of F ∗, this is shown.

8.7 Theorem 3

Lemma 6 (quadratic approximation of willingness to pay) Suppose u0000 ≥ 0 > u000 ,−u00.20 If ∆ ≥ 0
then willingness to pay is at most

w ≤
s
T 20 + 2T0 ·

∆

u00
− T0 (25)

Proof. Rewrite expression (24) as ∆
w =

R
. (If w = 0, then ∆ = 0 by remark 3 and the inequality is

trivial.) By the Fundamental Theorem of Calculus, u00(x0 − tw) = u00 −w
R t
0
u000(x0 − sw)ds, so this integral

is expressible asZ
=

Z 1

0

u00(x0 − w + tw)dt =
Z 1

0

u00(x0 − tw)dt =
Z 1

0

∙
u00 − w

Z t

0

u000(x0 − sw)ds
¸
dt

= u00 − w
Z 1

0

Z t

0

u000(x0 − sw)dsdt = u00 − w
Z 1

0

(1− t)u000(x0 − tw)dt

the latter being the identity
R 1
0

R t
0
f(s)dsdt =

R 1
0
(1− t)f(t)dt. Since u0000 ≥ 0, in the last integrand we have

u000 T u000(x0 − tw) for all t ∈ [0, 1] according as w T 0. ThusZ
≥ u00 − w

Z 1

0

(1− t)u000dt = u00 − w
u000
2

18To ease notation we omit the argument when it is current consumption x0 at the status quo, as in u00 for u00(x0).
19That is, u00(x0) ≤ u00(x0 −w + tw) if w ≥ 0; and u00(x0) ≥ u00(x0 −w + tw) if w ≤ 0.
20Most utilities in the linear risk tolerance class satisfy this, such as CRRA >1, CARA, log, quadratic.
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regardless of w0s sign. This and ∆
w =

R
imply ∆

w ≥ u00 − w
u000
2 . Dividing by −u000 > 0 and using the

identity − ∆u000 = T0
∆
u00

imply

0 ≥ T0 +
w

2
− T0

∆

wu00
(26)

Finally, suppose ∆ > 0. Then multiplying (26) by w, which is positive by remark 3, implies the quadratic
0 ≥ w2

2 +T0w−T0
∆
u00
. This being convex, w lies between the roots, hence is at most the greater root, which

is −T0 +
q
T 20 + 2T0

∆
u00
.

Proof. By principle 1 and upper bound (25), it suffices to show ∗ = supx1+zÀ0,Σzh=0Σ
h
−Th0 +

p
Th20 + 2Th0 ·Dh

i
has value at most the Qx in (18), with Dh := ∆h

uh00
. This is increasing in the Dh. The proof of theorem 2

shows that supx1+zÀ0,Σzh=0 ΣD
h equals Dx = F ∗ − F (x1). Thus ∗ is at most

sup
ΣDh≤Dx

Σ

∙
−Th0 +

q
Th20 + 2Th0 ·Dh

¸
Note, ΣDh ≤ Dx will be binding, as the objective is monotone in the Dh. Since the objective is concave
and the constraint linear, the constraint qualification holds, and Kuhn-Tucker multipliers exist. The FOC
are Th0√

· = λ. Rearranging, T2h0
λ2

=
√
·2 = Th20 + 2Th0 ·Dh or ( 1

λ2
− 1)Th0 = 2 ·Dh, which aggregated implies

( 1
λ2
− 1) = 2D

T 0
so that Dh = Dx

Th0
T0
. The insides of the square roots become

Th20 + 2Th0 ·Dx
Th0
T 0

= Th20

µ
1 +

2D

T 0

¶
so the objective becomes

Σ

"
−Th0 + Th0

s
1 +

2D

T 0

#
=

Ã
−1 +

s
1 +

2D

T 0

!
ΣTh0 = −T 0 +

q
T
2

0 + 2T 0Dx

8.8 Proposition 3

The proposition relies on a fact: a direction that is globally improving is necessarily locally improving, that
tangents lie above the graph of a concave function:

Lemma 7 Suppose f : A→ R is C1 and concave. Then for all a+ z ∈ A, interior a ∈ A

f(a+ z)− f(a) ≤ Df(a)z (27)

Proof. of proposition 3. Dx ≤ Lx . We recall Dx = supx1+zÀ0,Σzh=0Σ
∆h

uh00
and Lx = maxx1+zÀ0,Σzh=0Σ∇hzh,

so it suffices that ∆h

uh00
≤ ∇hzh. This is immediate from inequality (27), as ∆ = u1(x1 + z) − u1(x1) and

∇ = Dx1u

u00
. Qx ≤ Dx . Theorem 3 expresses one in terms of the other, Qx =

q
T
2

0 + 2T 0 ·Dx−T 0. Inequal-

ity (27) with f(D) :=
q
T
2

0 + 2T 0 ·D at D = 0 gives Qx =
q
T
2

0 + 2T 0 ·Dx−
q
T
2

0 ≤ 1

2
√
T20
2T0 ·(Dx−0) =

Dx.
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8.9 Proposition 4

We rewrite the objective F = Σµhuh1(y
h
1) = Σµ

hδhΣπsv(y
h
s ) = Σπsm

hv(yhs ) where mh := µhδh. Clearly,
F ∗ = Σπsas where

as := max
Σyhs=rs

Σmhv(yhs )

The Kuhn-Tucker method leads to the solution yhs = rsτ
h, where τh =

(mh)
1
β

M with M := Σ
¡
mh
¢ 1
β . Thus

as = Σm
hv(rsτ

h) = kr1−βs where k := 1
1−βΣm

h
¡
τh
¢1−β

. This simplifies to k = Mβ

1−β , on substituting τ .

Thus as = Mβ

1−β r
1−β
s =Mβv(rs) and F ∗ =Mβ · Σπsv(rs) =Mβ · V (r1).
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