
Hansen, Peter Reinhard; Lunde, Asger

Working Paper

Consistent preordering with an estimated criterion
function, with an application to the evaluation and
comparison of volatility models

Working Paper, No. 2003-01

Provided in Cooperation with:
Department of Economics, Brown University

Suggested Citation: Hansen, Peter Reinhard; Lunde, Asger (2003) : Consistent preordering with an
estimated criterion function, with an application to the evaluation and comparison of volatility
models, Working Paper, No. 2003-01, Brown University, Department of Economics, Providence, RI

This Version is available at:
https://hdl.handle.net/10419/80163

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/80163
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Consistent Preordering with an Estimated Criterion Function,

with an Application to the

Evaluation and Comparison of Volatility Models

Peter Reinhard Hansen1

and

Asger Lunde2

Working Paper 2003-01

January, 2003

Brown University

Department of Economics

1Brown University, Department of Economics, Box B, Brown University, Providence, RI 02912, USA, Phone: (401) 863

9864, Email: Peter_Hansen@brown.edu.
2The Aarhus School of Business, Department of Information Science, Fuglesangs Allé 4 DK-8210 Aarhus V, Phone ( +45)

89486688, Email: alunde@asb.dk.



Abstract3

When alternatives are compared using an estimated criterion function, this may introduce a discrep-

ancy between the true and the estimated criterion.

In this paper, we consider a situation where a preordering (ranking) of stochastic sequences is defined

from expected loss/gain, using a parametric criterion function. Evaluation based on estimated parame-

ters induces a second preordering, and using sample averages in place of expectations induces a third

(empirical) preordering, and we derive conditions that ensure equivalence of the three preorderings.

We apply the framework to the comparison of ARCH-type models. In practice, the conditional

variance, σ 2t , t = 1, 2, . . . is unobserved, such that evaluation must be based on a proxy for σ 2t . We show

that some commonly used criteria for evaluation of volatility models, may induce a different preordering

than the one intended. This problem is cause by the measurement error of σ 2t , which defines (part

of) the empirical criterion. An empirical analysis and a simulation study show the practical relevance

of this inconsistency problem. The results provide an additional argument for using intra-day data to

approximate σ 2t , such as realized volatility.
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1 INTRODUCTION

The criterion function that define preferences is not always observed, so the unknown criterion func-

tion is often substituted by an approximate criterion function in empirical studies. Example include

studies that involve economic entities, such as individual and firms, where the parameters of the un-

known utility functions or production functions are estimated from observables. Another example is in

the evaluation of volatility that involves an unobserved conditional variance, σ 2t , which is substituted by

a proxy for σ 2t .

We consider a framework where the criterion function is parameterized such that the uncertainty

about it, is expressed in terms of parameter-uncertainty. The expected values of the true criterion func-

tion and the approximate criterion function induce two preorderings of alternatives, and we refer to these

preorderings as the true preordering and the approximate preordering, respectively. A third preorder-

ing, called the empirical preordering, is induced by an empirical comparison of alternatives, where the

expected value have been approximated by a suitable sample average.

The substitution of a proxy for true parameters affects the ranking of alternatives in two ways. One

effect is that noise is added to the evaluation, which makes it more difficult to identify the best of two

alternative, and we refer to this effect as the added-noise effect. This effect creates a discrepancy between

the approximate and the empirical preordering, however, this discrepancy vanishes asymptotically, under

standard regularity conditions. The second effect is called the inconsistency effect, as the substitution

creates a discrepancy between the true and the approximate preorderings of alternatives, unless certain

conditions are meet.

In this paper, we are mainly concerned about the inconsistency effect. In empirical comparisons,

where the inconsistency effect applies, the implication is that the approximate preordering, in part, is

defined by the measurement errors of the criterion function’s parameters. Hence, the actual preordering

will differ from the intended preordering, and the discrepancy is defined by random measurement errors,

which is highly unfortunate for obvious reasons.

In this setting, we formulate a sufficient set of conditions that ensure the equivalence of the true and

the approximate preordering, and another set of conditions, which ensure that the empirical preordering

is consistent for the approximate preordering. When these conditions are not meet, the empirical pre-

ordering may be inconsistent, e.g., what is asymptotically the best alternative according to the empirical

preordering may not be the best alternative as prescribed by the true preordering.

We illustrate this problem with an empirical comparison of volatility models. Some criteria that

1



Hansen, P. R. and A. Lunde: Consistent Preordering with an Estimated Criterion Function

are commonly used to compare volatility model do not satisfy the required conditions. An example, is

the R2-criterion when the R2s are calculated from Mincer-Zarnowitz regressions using logarithmically

transformed variables. When an empirical ranking of volatility models is based on a criterion, which do

not satisfy the required conditions, it it possible that a volatility model, which is inferior to other volatility

models, is found to be “significantly” better than all other models, with a probability that converges to

one.

In the context of volatility models, it has been shown that using high-frequency data for the con-

struction of precise measures of σ 2t , can greatly reduce the added-noise effect, see e.g. Andersen and

Bollerslev (1998). When the criterion, which is used to evaluate the volatility models, do not satisfy the

required conditions, the inconsistency effect provides an additional argument for using high-frequency

data to measure the conditional variance, σ 2t . It will typically be the case, that the smaller is the variance

of the measurement error, the smaller is the discrepancy between the true and the approximate ranking

of volatility models. So an inconsistency may be avoided by using a precise measure of σ 2t in the model

evaluation.

We use the following notation. All random variables are defined on the probability space, (�,F, P).

Thus, a random variable, X (ω), is a measurable mapping, X : (�,F) y (�,G), where (�,G) is a
measurable space, and we will often suppress the dependence on ω, and simply write X in place of

X (ω). Statements that are said to hold almost surely, (a.s.), refer to the existence of a set G ∈ F, with

P(G) = 1, for which the statement is true for all ω ∈ G.

This paper is organized as follows. In Section 2 we define the set of alternatives and the various pre-

orderings of alternatives, and we derived sufficient conditions under which the preorderings are equiv-

alent. In Section 3, we apply our framework to evaluations and comparison of volatility models, and

Section 4 contains an empirical and a simulation-based comparison of volatility models, and both com-

parisons show the practical relevance of the inconsistency effect. Section 5 contains concluding remarks.

2 THEORETICAL FRAMEWORK

LetX be a random variable that is evaluated through the expected value of some loss function, L(X ).

We consider a situation where the loss function, L, is unobserved, such that the evaluation of X must be
based on some approximation of L .We denote the proxy for the true loss function by L̃, and we seek to

establish conditions that will ensure that,

E(L(X )) ≥ E(L(Y)), if and only if E(L̃(X )) ≥ E(L̃(Y)), for all X and Y.
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We formalize this idea in a setting where X and Y represent sequences of random variables that are
being evaluated and compared in terms of their average expected loss.

Definition 1 (Set of Alternatives) The set of alternatives, A, is a set of random sequences. A typical

element of A is X (ω) = {X1(ω), X2(ω), . . .} , which is defined on a probability space (�,F, P) and
takes values in (S∞,B∞), where S∞ ≡ S×S×· · · , where S ⊆ Rl, and where B∞ is the Borel σ -algebra

on S∞.1

Initially, we make the following assumptions about the two loss functions.

Assumption 1 Let Lt and L̃t be mappings from S into R, t = 1, 2, . . . , and define the random variable

ψ̂n(X ) ≡ n−1
∑n
t=1 L̃ t(Xt).

For all X ∈ A it holds that:

(i) Lt(Xt) and L̃t(Xt) are integrable for all t;

(i i) The limits,

ψ(X ) ≡ lim
n→∞

n−1
n∑
t=1
E [Lt(Xt)] , and ψ̃(X ) ≡ lim

n→∞

n−1
n∑
t=1
E
[
L̃ t(Xt)

]
,

exist and are finite;

(i i i) The limit ψ̂(X ) ≡ limn→∞ ψ̂n(X ) exists and is finite a.s.

This assumption allows us to define two non-stochastic preorderings on A, and a sequence of sto-

chastic preorderings. We shall refer to the non-stochastic preorderings as the true preordering, �, and

the approximate preordering,
a
�, where the latter can be thought of as an approximation of the former.

The stochastic preorderings are referred to as the empirical preorderings,
e
�n, n = 1, 2, . . . .

Definition 2 (Preordering of Alternatives) For X ,Y ∈ A we write: X � Y if ψ(X ) ≤ ψ(Y); X a
� Y

if ψ̃(X ) ≤ ψ̃(Y); and we write X e
�n Y if ψ̂n(X ) ≤ ψ̂n(Y), where

e
�n is a stochastic preorderings, as

it depends on the realized value of ω, n = 1, 2, . . . .

It is easy to verify that the preorderings of Definition 2 are complete preorderings, and we shall

follow standard notation and write X ∼ Y if “X � Y and X � Y”, and we write X � Y if “X �

1Thus X is a measurable mapping from (�,F) to (S∞,B∞), P is a probability on (�,F), and B∞ is the smallest

σ -algebra that contains all open subsets of S∞ under the euclidian norm.
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Y and X �� Y”, and similarly for the approximate preordering, a�, and the empirical preorderings, e�n,
n = 1, 2, . . . .

We define equivalence of preorderings, and the interesting situation is when the preorderings are

equivalent in some sense.

Definition 3 (Equivalent and Weakly Equivalent) Let �′ and �′′ be preorderings and let �′′

n, n =

1, 2, . . . be a sequence of stochastic preorderings of A. If it, for all X ,Y ∈ A, holds that:
a) X �′ Y ⇔ X �′′ Y, then �′ and �′′ are equivalent on A;

b) X �′ Y ⇔ X �′′ Y, then � and �′ are weakly equivalent on A;

c) X �′ Y ⇒ P(X �′′

n Y) →
n→∞

1, then �′′

n is asymptotically equivalent to � on A;

d) X �′ Y ⇒ P(X �′′

n Y) →
n→∞

1, then �′′

n is asymptotically weakly equivalent to �′ on A.

The difference between equivalence and weak equivalence is that the former makes a statement

about alternative for which X ∼ Y, whereas the latter does not. The concept of asymptotic equivalence
is useful for the analysis of empirical preorderings. It should be noted that the definitions are specific to

the set of alternatives, A, under considerations. E.g., two preorderings that are equivalent on A, may not

be equivalent on a larger set of preorderings A′.

Lemma 4 Define γ (X ) ≡ ψ(X )− ψ̃(X ) and γ n(X ) ≡ ψ̃(X )− ψ̂n(X ), (where the latter is random).

(i) If δ(X ,Y) ≡ γ (X )− γ (Y) = 0 for all X ,Y ∈ A, then � and
a
� are equivalent. (i i) If δn(X ,Y) ≡

γ n(X ) − γ n(Y) a.s.→ 0, as n → ∞, for all X ,Y ∈ A, then
e
�n is asymptotically weakly equivalent to

a
�

on A.

So δ(X ,Y) can be interpreted as a measure of discrepancy between� and a
�, and similarly, δn(X ,Y)

can be interpreted as a measure of discrepancy between
a
� and the limit of

e
�n. Note that mild variation

in δ need not distort the equivalence of preorderings, as long as |δ(X ,Y)| < |γ (X ) − γ (Y)| for all
X ,Y ∈ A. So the conditions of Lemma 4 are sufficient conditions, but need not be necessary conditions.

2.1 EQUIVALENCE UNDER PARAMETRIC SPECIFICATION

Wemake additional assumptions about the true criterion function, Lt , the observed criterion function,

L̃ t , and the relation between the two. For example, we assume that the loss functions have the same

parametric form.

Assumption 2 Let θ t and θ̃ t denote two (possibly random) variables.
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(i) For all X ∈ A, it holds that Lt(Xt)
a.s.
= L(θ t , Xt) and L̃t(Xt)

a.s.
= L(θ̃ t , Xt), t = 1, 2, . . . .

Define ηt ≡ θ̃ t − θ t and let {Ft} be a filtration, such that for all X ∈ A, it holds that Xt and θ t are

Ft−1-measurable, t = 1, 2, . . . .

(i i) Either,

(a) L ′(θ, X) ≡ ∂L(θ,X)
∂θ

exists and does not depend on X ; or

(b) L ′′(θ, X) ≡ ∂2L(θ,X)
∂θ∂θ ′

exists, does not depend on X, and {ηt ,Ft} is a martingale difference
sequence.

Assumption 2 (i) requires that Lt and L̃ t have the same parametric form, such that the uncertainty

about Lt is entirely expressed in terms of uncertainty about the parameter θ t . We call θ t and θ̃ t para-

meters although both may be random variables, much like a conditional mean or a conditional variance.

Assumptions 2 (i i.a) and 2 (i i.b) are assumptions about the functional form of L, linear and quadratic,

respectively.

Theorem 5 Under Assumptions 1 (i -ii) and 2, the true and the approximate preorderings,� and
a
�, are

equivalent. Assumptions 1 and 2 (i) alone, are not sufficient conditions for � and
a
� to be equivalent.

It is interesting to elaborate on the situation where Assumption 2 (ii) does not hold. A consequence

is that an increase in the measurement error, as measured by var(ηt), will tend to increase the discrepancy

between � and
a
�.

Corollary 6 Let Assumptions 1 (i -i i) and 2 (i) hold, and suppose that Assumption 2 (i i) is violated. Let

the approximate preordering, �̃λ, be defined by θ̃λ,t ≡ θ t + ληt , t = 1, . . . , n, where E(ηt |Ft−1) a.s.= 0

and var(ηt |Ft−1) > 0, a.s. and define the discrepancy measure

δλ(X ,Y) ≡ [ψ(X )− ψ̃λ(X )]− [ψ(Y)− ψ̃λ(Y)].

(i) If the second derivative, ∂2L(θ, X)/∂θ∂θ ′, is bounded a away from zero, uniformly in X, a.s.,

then for some alternatives, X and Y, it holds that |δλ(X ,Y)| → ∞ as λ → ∞.

(i i) Under certain regularity conditions, see Assumption 4 in the Appendix, it holds that |δλ(X ,Y)| is
strictly increasing in |λ|, for some X ,Y ∈ A.

The broad message of Corollary 6, is that an increase in the conditional variance, var(θ t− θ̃λ,t |Ft−1),
is likely to cause an inconsistency between � and

a
�, when Assumption 2 (i i) does not hold. For a

detailed form of δλ(X ,Y) see (11) in the appendix.

5
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2.2 CONSISTENCY OF THE EMPIRICAL PREORDERING

Without knowledge about the probability measure, P, it is not possible to evaluate expected values,

such as E [L(θ, X)] =
∫
L(θ, X)dP, and it is therefore not directly possible to rank alternatives in terms

of � or
a
�. However, under regularity conditions the expected value can be approximated by a sample

average, such that the empirical preordering,
e
�n, asymptotically resemble

a
�.

Theorem 7 Let Assumptions 1 and 2.i hold and suppose that L(θ̃ t , Xt), t = 1, 2, . . . , is stationary and

ergodic for all X ∈ A. Then
e
�n is asymptotically weakly equivalent to

a
� almost surely.

For practical implementations, the interesting situation is when,
a
� is equivalent to �, such that

e
�n is

asymptotically equivalent to the true preferences �, with probability one.

3 COMPARISON OF VOLATILITY MODELS

In this section, we show that our framework for preordering of stochastic sequences, yields valuable

insight to the problem of comparing volatility models. Some, but not all, of the popular criteria for evalu-

ating volatility models do satisfy the conditions we formulated in the previous section. For these criteria,

it holds that an empirical ranking of alternatives is consistent for the intended ranking of alternatives. On

the other hand, if a criterion does not satisfy the needed conditions, an inconsistency may arise, and there

are very strong arguments for using a proxy of σ 2t , which is unbiased and has the smallest possible con-

ditional variance. The reason is that the distortion of the empirical evaluation increases with the variance

of the measurement error ηt = σ̃ 2t − σ 2t .

The literature contains a vast number of studies that evaluate and compare volatility models, see, e.g.,

Poon and Granger (202) that contains a review of 93 papers. Most papers apply a loss function to compare

model-based predictions of volatility, {h2t }, to proxies for volatility, {σ̃
2
t }, where the latter are measured

ex-post. Common loss functions are: mean square (prediction) error (MSE), root mean squared error

(RMSE), mean absolute error (MAD), and logarithmic versions of these, where the loss functions take

log-volatilities as the arguments. Another approach to the evaluation is to base it on the R2 from simple

regressions, as suggested by Mincer and Zarnowitz (1969). In this approach, a proxy for the conditional

variance is regressed on a model forecast of volatility and a constant. Pagan and Schwert (1990) noted

that this regression is sensitive to “outliers” of the proxies, assuming that estimation is made using the

least squares method. This point was also made by Engle and Patton (2001). The problem is that the

parameter estimates are affected disproportionately by the largest realizations (outliers) of the proxy, σ̃ 2t .

For this reason, Pagan and Schwert (1990) suggest to use a log-regression, where log(σ 2t ) is regressed

6
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on log(h2t ) and a constant, as this regression is less sensitive to “outliers”. An influential paper that

applied Mincer-Zarnowitz regressions is Andersen and Bollerslev (1998), and Hansen and Lunde (2001)

contains an extensive evaluation of volatility models using loss functions as well as Mincer-Zarnowitz

regressions.

3.1 THE FRAMEWORK

From a continuously compounded price process, {pt} , t ≥ 0, we define daily returns rt ≡ pt− pt−1,

t = 1, 2, . . . and the σ -algebra, Ft ≡ σ(rt , rt−1, . . .), such that rt is adapted to Ft . We assume that rt
has finite second moment such that it is meaningful to define σ 2t ≡ var(rt |Ft−1). For simplicity, we also
assume that E(rt |Ft−1) = 0, such that {rt ,Ft} is a martingale difference sequence.
We consider volatility models that are designed to describe the variation in the conditional variance

σ 2t , t = 1, 2, . . .. Each model produces a “forecast”, h2t , of σ 2t , where h2t is Ft−1-measurable, t = 1, 2,
. . .. So our set of alternatives, A, consists of different sequences, H = (h21, h22, . . .), (one sequence for

each model).

An immediate obstacle for evaluating a volatility model is the fact that σ 2t is unobserved. The solution

is to substitute a proxy for σ 2t , such as squared daily returns, σ̃
2
t = r2t , or σ̃

2
t = (rt − µ̂t)

2, where µ̂t is

an estimate of the conditional mean, E(rt |Ft−1). It is not surprising that squared daily returns produce
a rather noisy measure of σ 2t , t = 1, 2, . . . . In fact, when volatility models are evaluated using squared

daily returns, it results in, (what appears to be), a very poor performance. Better choices for σ̃ 2t are

measures that incorporate the additional information that intra-day returns have to offer about σ 2t . The

simplest extension is the range-based proxy for σ 2t , which is based on the “open”, “low”, “high”, and

“close” prices for day t , see, e.g., Parkinson (1983), Garman and Klass (1983), Beckers (1983), Ball

and Torous (1984), Rogers and Satchell (1991), Wiggins (1991), Kunitomo (1992), Gallant, Hsu, and

Tauchen (1999), and McLeish (2002).

A better, but also more computational intensive, measure of daily volatility is the realized volatility,

see e.g., Andersen and Bollerslev (1998). Realized volatility is constructed by taking the sum of squared

intra-day returns, which produces an unbiased measure of the conditional variance, σ 2t , (conditional on

Ft−1) under suitable regularity conditions.
It is clear that this problem fits into the framework of the previous section, where σ 2t and σ̃

2
t play the

role of θ t and θ̃ t , respectively, and where the set of alternative, A, is given by the sequences of forecasts,

H = (h21, h22, . . .).

7
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3.2 EVALUATION BASED ON LOSS FUNCTIONS

We consider two loss functions, the mean squared error (MSE) loss function, L(σ 2t , h2t ) = (σ 2t−h2t )2,

and the logarithmic version of it (MSE�), which is given by L(σ 2t , h2t ) =
[
log

(
σ 2t )− log(h2t

)]2
. Both

are common in the literature, and in the context of evaluating volatility models, it is sometimes argued

that the latter is better than former because it is less sensitive to outliers.

MSE: Mean Squared Error Loss

Consider the loss function

L(σ 2t , h
2
t ) = (σ 2t − h

2
t )
2. (MSE)

A Taylor expansion of the approximating loss function, L(σ̃ 2t , h2t ) = (σ̃ 2t − h2t )2, is given by

L(σ̃ 2t , h
2
t ) = L(σ 2t , h

2
t )+ 2(σ

2
t − h

2
t )ηt + η2t ,

where ηt = σ̃ 2t − σ 2t . So Assumption 2 (i i.b) is satisfied whenever σ̃
2
t is conditionally unbiased for σ 2t ,

and we can conclude that L(σ 2, ·) and L(σ̃ 2, ·) induce the same preordering. In particular, if we index

the competing volatility models by k, we have that

argmin
k
E

[
n−1

n∑
t=1
L(σ 2t , h

2
k,t)

]
= argmin

k
E

[
n−1

n∑
t=1
L(σ̃ 2t , h

2
k,t)

]
,

i.e., the volatility model (or models) with the smallest population loss for the true and the approximate

loss functions, coincide.

MSE�: Mean Squared Log Relative Error Loss

Consider now, the loss function given by

L(σ 2t , h
2
t ) =

[
log

(
h2t
σ 2t

)]2
=

[
log

(
σ 2t )− log(h

2
t
)]2

. (MSE�)

The relevant derivatives are given by,

∂L
∂σ 2t

= 2
log(σ 2t /h2t )

σ 2t
, and

∂2L
∂σ 2t ∂σ

2
t
= 2

1− σ 2t log(σ 2t /h2t )
σ 4t

,

which do not satisfy Assumption 2 (i i).

8
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Given the failure to satisfy Assumption 2 (ii), we conclude that evaluation based on this loss function

may result in an inconsistent ranking of volatility models, even if an conditionally unbiased proxy for the

unobserved conditional variance, σ 2t , is employed (E(ηt |Ft−1) = 0). Inconsistencies are more likely to
arise the larger is E(η2t |Ft−1), in fact a large conditional variance causes the the approximate evaluation
to favor models for which E[log h2] is relatively small. This can be seen from the Taylor expansion of

this loss function. Naturally, if log(σ̃ 2t ) is conditionally unbiased for log(σ 2t ), then we have a situation

that is identical to that of the MSE loss function, where Assumption 2 (i i) is satisfied.

3.3 REGRESSION BASED EVALUATION

An alternative to using loss functions for evaluating volatility models, is to use the R2 of the Mincer-

Zarnowitz regressions, which take the form

ϕ(σ 2t ) = α + βϕ(h2t )+ ut , t = 1, . . . , n. (1)

Common choices for the function, ϕ, are: the identity, ϕ(x) = x, and the logarithmic transformation,

ϕ(x) = log(x), which leads to the two regression equations

σ 2t = α + βh2t + ut , t = 1, . . . , n, (2)

log σ 2t = α + β log h2t + ut , t = 1, . . . , n, (3)

respectively. As mentioned earlier, Pagan and Schwert (1990) have argued in favor of the log-regression

(3) as the level-regression (2) may be sensitive to extreme (large) values of r2t .

It is simple to verify that the R2-criterion is equivalent to the criterion given by,

ψ(H) ≡ cov(ϕ(σ 2t ), ϕ(h
2
t ))

[
var(ϕ(h2t ))

]−1 cov(ϕ(h2t ), ϕ(σ 2t )). (4)

When σ̃ 2t is substituted for σ 2t , the approximate criterion is proportional to

ψ̃(H) ≡ cov(ϕ(σ̃ 2t ), ϕ(h
2
t ))

[
var(ϕ(h2t ))

]−1 cov(ϕ(h2t ), ϕ(σ̃ 2t )), (5)

The underlying criterion of (4) and (5) does not fit directly into our framework of Section 2. Nev-

ertheless, we shall derive condition that ensure consistency, which are analog to those of the previous

section.

Assumption 3 Let ηt ≡ σ 2t − σ̃ 2t . The function, ϕ, in (1) is infinite differentiable,2 and it holds that

E
((
ηt
) j
|Ft−1

) ∂ jϕ(x)
∂(x) j

∣∣∣∣
x=σ 2t

a.s.
= c j ,

for some constant c j ,∈ R, for all t = 1, 2, . . . , and all j = 1, 2, . . ..
2By infinite differentiable is meant that the pth derivative of ϕ exists for any integer, p.

9
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This assumption is simply to interpret in special cases. Below we consider the three cases where ϕ

is linear, quadratic, and logarithmic respectively.

Quadratic ϕ. Suppose that ϕ is quadratic, such that the second order derivative, ϕ′′, is constant and

higher order derivatives are all zero. The conditions in Assumption 3, then simplifies to E
(
ηt |Ft−1

)
ϕ′(σ 2t )

and E
(
η2t |Ft−1

)
being equal to some constants, almost surely.

Theorem 8 The criteria, ψ(H) and ψ̃(H), are equivalent under Assumption 3.

Linear ϕ. Suppose that ϕ is linear, such that the first derivative, ϕ′, constant and higher order derivatives

are zero. Assumption 3 simply requires E
(
ηt |Ft−1

)
to be constant (almost surely).

So the R2-criterion of (2) is not affected by a conditional bias of σ̃ 2t . This robustness does not come

without a cost, as the criterion is unable to distinguish between the volatility models, H1 = {h2t } and

H2 = {a + bh2t }, (for any value of a and any value of b �= 0).

Logarithmic ϕ. Suppose that the models are compared using the R2s from the regressions (3). If the

proxy, σ̃ 2t , is conditionally unbiased for σ 2t , then it is unlikely that the R2 from the feasible regressions,

(3), will induce the same ranking of volatility models as the R2 from the infeasible regression log σ 2t =

a + b log h2t + ut , as Assumption 3 is not satisfied. This is clearly an unfortunate property of the log-

regression criterion, in particular if squared returns, r2t , are substituted for the unobserved volatility

measure, σ 2t , as this leads to an ηt = r2t − σ 2t with a large variance. Analog to the case with additive loss

function, see Corollary 6, the distortion is aggravate as the conditional variance of ηt increases. The last

point is easily seen from a closer inspection of the proof of Theorem 8.

Suppose now that σ̃ 2t = (1− υ t)σ
2
t , for some random variable, υ t , 3 where the conditional moments

of υ t , given by κ j ≡ E(υ jt |Ft−1), j = 1, 2, . . . , are finite and constant. This implies that the conditional
bias of log σ̃ 2t , relative to log σ 2t , is constant. The measurement error is then given by ηt = υ tσ

2
t , and

E(η jt |Ft−1) = E(υ jt |Ft−1)(σ 2t ) j . Since ∂ j log(x)
∂x j = (−1) j−1

( j−1)! x
− j , we have that

E
((
ηt
) j
|Ft−1

) ∂ jϕ(x)
∂(x) j

∣∣∣∣
x=σ 2t

= κ j
(−1) j−1

( j − 1)!
,

which is constant. So an measurement error of this kind will not create an inconsistency for this criterion.

The multiplicative structure of the error appear to be more appropriate, than the additive. For ex-

ample, Barndorff-Nielsen and Shephard (2002a), Barndorff-Nielsen and Shephard (2002b), have shown

that the variance of the realized volatility estimator increases with σ 2t , see also Meddahi (2002).4

3One may impose that νt ≤ 1 (a.s) to ensure that σ̃2t is non-negative (a.s).
4The correct statement is that the variance of realized volatility increases with intergrated volatility. However, the integrated
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4 EMPIRICAL AND SIMULATION-BASED COMPARISONS OF ARCH-TYPE MODELS

In this section we explore the empirical relevance of the theoretical inconsistencies that we studied

in the previous section. This is done by evaluating and comparing ARCH-type volatility models using a

real data set and a large number of artificial data.

4.1 EMPIRICAL COMPARISON BASED ON IBM EQUITY RETURNS

We evaluate and compare eight ARCH-type volatility models, using IBM stock price data. These

data were extracted from the Trade and Quote (TAQ) database.5 In our estimation of intra-day volatility,

we have used the mid-quotes between 9:30 AM and 4 PM. The sample period is January 3, 1995 through

February 21, 2002, which adds up to a total of 1795 trading days. The models were estimated using

the first 1250 observation (up until December 13, 1999) and the last 545 observations were used for the

evaluation and comparison.

Our set of competing ARCH-type models comprises the ARCH of Engle (1982), the GARCH model

by Bollerslev (1986), the threshold GARCH model (Thr.-GARCH) by Zakoian (1994), the EGARCH

of Nelson (1991), the A-PARCH model that was proposed in Ding, Granger, and Engle (1993), the

FIGARCH suggested by Baillie, Bollerslev, and Mikkelsen (1996), and the FIAPARCH of Tse (1998).

Each model is estimated using inter-day returns and using the MSE and the MSE� loss functions and two

Mincer-Zarnowitz regressions, the level-regression (2) and the log-regression (3).

To make the evaluation feasible, we need to substitute a proxy for the unobserved conditional vari-

ance, σ 2t , and we apply three different proxies, σ̃
2
j,t , j = 1, 2, 3, that differs in terms of the associated

variance of η j t ≡ σ̃ 2j,t − σ 2t . The three proxies are denoted by

σ̃ 2[intra]t ≡ ĉ · σ̃ 2( f/m),t ,

σ̃ 2[+on.]t ≡ σ̃ 2( f/m),t + (popent − pcloset−1 )2,

σ̃ 2[inter]t ≡ (pcloset − pcloset−1 )2.

We shall not give a lengthy discussion of these proxies and how they are estimated. Details are presented

in the Appendix, however, for the illustration of the results regarding consistent ranking of alternatives,

it suffices to know that:

volatility is a conditionally unbiased estimator of the conditional variance σ2t .
5The TAQ database contains all trades and quotes in the New York Stock Exchange (NYSE), American Stock Exchange

(AMEX), and National Association of Securities Dealers Automated Quotation (Nasdaq) securities.
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σ̃ 2[intra]t The term, σ̃
2
( f/m),t , is a measure of realized volatility during the hours that the market is open

(only f our ofm possible intra-day returns are available). A Fourier method is implemented for the

calculation of σ̃ 2( f/m),t . The constant, ĉ, is an estimated scaling (a correction factor) that accounts

for the partial availability of intra-day returns.

σ̃ 2[+on.]t Is also based on realized volatility, but rather than scaling, it adds the squared over-night return

to account for the partial availability.

σ̃ 2[inter]t The simple squared daily return, r2t .

Under quite reasonable assumptions it holds that

var(σ̃ 2[intra]t |Ft−1) ≤ var(σ̃ 2[+on.]t |Ft−1) ≤ var(σ̃ 2[inter]t |Ft−1).

So for criteria where the true and the approximate preferences do not coincide, the discrepancy should

increase with the conditional variance of σ̃ 2t , that underlies the approximate evaluation.

4.2 EMPIRICAL RESULTS

The empirical results of the evaluation of the eight volatility models are given in Tables 1 and 2. Table

1 contains the results based of the two loss functions and the analogous results for the regression-based

criteria are presented in Table 2.

We shall refer to the MSE loss function and the regression in levels as robust criteria, as they satisfy

conditions, where the true and the approximate preordering are equivalent, provided that the proxy for σ 2t
is conditionally unbiased. The two other criteria, MSE� and the R�2 from the regression in logs, which

do not satisfy the relevant conditions are referred to as sensitive criteria.

It is striking that the robust criteria all point to the same model as the best volatility model, for all

three choices of σ̃ 2t , whereas the sensitive criteria points to different models. The MSE� points to the

ARCHmodel as the best volatility models when squared returns are substituted for σ 2t .Most people with

knowledge about volatility models would not believe this result, as the ARCHmodel is unable to capture

the persistence in the conditional variance. Given the large standard errors of the performance measures,

it is not clear that any pair of models have a performance that is significantly different from another.

However, the benefits from using precise measures of the conditional variance are clearly illustrated by

the fact that the standard errors are much smaller for the realized volatility measure than is the case for

the measure based on squared returns (in relative terms).

12
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4.3 SIMULATION BASED COMPARISON

Generating artificial data to evaluate and compare volatility models has two advantages. Firstly, by

simulating the data we know the true conditional variance, which can be used in the evaluation; Secondly,

a large number of samples can be generated such that an extensive comparison can be made.

In our simulation study, we generate artificial data from a GARCH(1,1) model and an EGARCH(1,1)

model, where the models population parameter values were set to estimates we found in the analysis of

IBM data6. The artificial samples are used to estimate and evaluate seven ARCH-type models. The

models are evaluated in terms of out-of-sample loss using the MSE and MSE� loss function, and we use

both squared returns, r2t , and the true conditional variance, σ 2t , in the evaluation. Our set of competing

ARCH-type models comprises the ARCH of Engle (1982), the GARCH model by Bollerslev (1986),

the threshold GARCHmodel (Thr.-GARCH) by Zakoian (1994), the EGARCH of Nelson (1991), the A-

PARCHmodel that was proposed in Ding, Granger, and Engle (1993). We also include a two-component

GARCH(1,1) model (2Comp) and a two-component Thr.-GARCH(1,1) model (2CompThr) of Ding and

Granger (1996).7 The FIGARCH model is computational expensive to estimate, so we did not include

this model in the simulation experiments.

The results are presented in Figures 1 and 2. Figure 1 contains the results from the artificial data that

where generate using the GARCH model, and Figure 2 contains the analog results from the data that

were generated with an EGARCH model. The simulations are based on 500 artificial samples, where

1000 observations were used for the initial estimation, and an additional 100, 250, or 500 observations

were used for the out-of-sample evaluation. The models were estimated recursively.

From Figure 1 it can be seen that the true GARCHmodel is often found to have the smallest loss when

the true conditional variance is used in the evaluation, which is true for both loss functions. However,

with squared returns are substituted for the conditional variance in the evaluation, the GARCH model is

less likely to have the smallest loss and there is a noticeable difference between the two loss functions.

When the evaluation is based on 250 and 500 observations the GARCH is more likely to have a smaller

6The estimated parameter values used in the simulations are as follows:

GARCH(1,1): σ2t = 0.038
(0.0075)

+ 0.094
(0.01)

ε2t−1 + 0.875
(0.0129)

σ2t−1 (6)

EGARCH(1,1): σ2t = −0.105
(0.011)

+ 0.141
(0.014)

(|εt−1| − 0.512
(0.07)

εt−1)σ
−1
t−1 + 0.974

(0.004)
σ2t−1 (7)

7The actual form to these models are those implemented in S+, which are sligthly modified versions of those in Ding and

Granger (1996), see Zivot and Wang (2003, p. 234) for details.
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sample loss than any other model using the MSE loss function. This is in sharp contrast to the results

for the MSE� loss function, where the Component Thr.-GARCH model very frequently out-performs all

other models, and in particular the GARCH(1,1) model. The results from the simulations based on the

EGARCH model that are presented in Figure 2, similarly shows that an inconsistency can arise.

5 CONCLUSION

We have considered evaluations and comparisons that are based on an estimated criterion function.

Uncertainty about parameters that characterize the criterion functions have two effects, an added-noise

effect and an inconsistency effect. The former increases the sample uncertainty, which makes it more

difficult to tell good an bad models apart, and the latter may introduce an inconsistency. In this paper,

we have separated the two effects by distinguishing between the true, the approximate, and the empirical

preordering, and we have mainly been concerned about the inconsistency effect. We derived conditions

under which the true and the approximate preordering are equivalent, and conditions that ensure that the

empirical preordering is asymptotically weakly equivalent to the approximate preordering. Thus, under

both sets of assumptions, the limit of the empirical preordering coincide with the true preordering.

As we indicated in the introduction, this framework applies to many econometric problems that

involves (a large number of) economic entities, such as individuals or firms. This will be the case in situ-

ations where the individuals’ utility functions or the firms’ production functions are estimated (somewhat

imprecisely) and the object of interest is an aggregate of the individual utility/production functions.

In the context of evaluation and comparison of volatility models, we have shown that certain criteria

that are commonly applied in the evaluation of volatility models, do not meet the needed conditions, and

may for this reason produce a different ranking of models, than the one intended, and may do so with

a probability that approaches one, as the evaluation period is increased. The inconsistency, typically,

increases with the conditional variance of the parameter estimators. This result provides an additional

argument for using high frequency data when volatility models are being evaluated and compared.

In an empirical analysis of IBM equity return, we compared eight volatility models using three

different proxies for the unobserved conditional variance, and found that criteria that are sensitive to

estimation uncertainty, pointed to different models as the best volatility model, whereas the robust criteria

all pointed to the same model. Simulation-based studies similarly showed that inconsistencies can arise

for certain loss functions. These findings strongly indicate that the inconsistency problem does have

practical relevance, as the empirical results are consistent with the predictions of the theoretical results.
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A APPENDIX: ESTIMATION OF DAILY VOLATILITY

Let pt be the log-price on some asset in which dividends (if any) are accumulated. For any t and

any � > 0, we define rt,
 ≡ pt − pt−
, which is the return over the time interval with length �, that

preceded time t. We let the unit of time be a trading day (i.e. the length from close to close), such that

rt,
 corresponds to a daily return when � = 1. For integer values of t, which corresponds to the time of

“close”, we have that rt,1 = rt (daily returns that were defined previously).

Realized volatility (at frequency m), σ̃ 2m,t , is defined by

σ̃ 2m,t ≡
m−1∑
i=0
r2t− i

m ,
1
m
, t = 1, 2, . . . , (8)

and for some integer m. (So � = 1
m in this notation). Similarly the realized volatility over a period of

partially available intra-day returns is define by

σ̃ 2( f,m),t ≡

f−1∑
i=0
r2t− i

m ,
1
m
, t = 1, 2, . . . .

Under the assumption that E(rt) = 0, it holds that the squared inter-day return, r2t = σ̂
2
t,1, is a

conditionally unbiased estimator of σ 2t , and for m ≥ 2, the realized volatility, σ̃ 2m,t , is conditionally

unbiased for σ 2t under the additional assumption that the intra-day returns, rt− i
m ,

1
m
, i = 0, . . . ,m − 1,

are uncorrelated.

Realized volatility can also be calculated from unevenly spaced intra-day returns, where one example

is

σ̃ 2( f,m,+on),t ≡ r
2
t− f

m ,
m− f
m

+

f−1∑
i=0
r2t− i

m ,
1
m
,

which is also unbiased for σ 2t , provided that intra-day returns are uncorrelated.

If σ̃ 2( f,m),t is proportional to σ 2t , then c·σ̃
2
( f,m),t is conditionally unbiased for σ 2t ,where c = E(σ 2t /σ̃

2
( f,m),t),

which is consistently estimated by n−1
∑n
t=1 r2t /σ̃

2
( f,m),t , under certain regularity conditions. Note that

some correlation across intra-day returns, is tolerated under the proportionality assumption. See also

Hansen and Lunde (2001).

A.1 THE FOURIER METHOD

We apply a Fourier method to estimate realized volatilities. This method was suggested by Malliavin

and Mancino (2002) and has previously been applied by Barucci and Reno (2002a) and Barucci and

Reno (2002b). A short description of the method is the following.
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Let the price process be defined from a diffusion process with bounded quadratic variation,

dp(t) = µ(t)dt + σ(t)dW (t),

where µ and σ are time-varying functions, and where W (t) is a standard Brownian motion. The inte-

grated volatility over an interval [a, b] is defined by
∫ b
a σ(t)dt, which, in general, is a random variable.

If we let the unit of time be 24 hours, then
∫ t+1
t σ(t)dt is an unbiased estimator of the conditional vari-

ance, σ 2t+1 (for integer values of t). As is the case for realized volatility, σ̃
2
m,t , defined in (8), the Fourier

method approximates the integrated volatility. Let p(t) be observed in the interval [t0, t0 + 1] at the

discrete points in time, t1 < t2 < . . . < tN . These points in time are mapped into the interval [0, 2π], by

defining, τ i = 2π(ti − t0)/(tN − t0) for i = 1, . . . , N .

The Fourier method is based on the identity

1
2π

∫ 2π

0
σ(t)dt = a0(σ 2),

where

a0(σ 2) = lim
m→∞

π

2m

m∑
k=1

(
a2k (dp)+ b

2
k(dp)

)
, (9)

and where

ak(dp) =
p(τ N )− p(τ 1)

π
+
1
π

N−1∑
i=1

p(τ i )
[
cos(kτ i )− cos(kτ i+1)

]
,

bk(dp) = −
1
π

N−1∑
i=1

p(τ i)[sin(kτ i )− sin(kτ i+1)].

The estimate of the Fourier method is given by

σ̆ 2m,t ≡
π

2m

m∑
k=1

(
a2k (dp)+ b

2
k(dp)

)
,

where we applied m = 80 in our estimation.

B APPENDIX OF PROOFS

Proof of Lemma 4. (i) Suppose that X � Y then ψ(X ) ≤ ψ(Y). But ψ̃(X ) = ψ(X ) − γ (X ) =

ψ(X )−γ (X )+γ (Y)−ψ(Y)+ ψ̃(Y) = ψ(X )−ψ(Y)+ ψ̃(Y) ≤ ψ̃(Y), and this implies X a
� Y. The

other implication of (i) is shown similarly. (i i) Suppose that X � Y . Then there exists ε > 0, such that

ψ(X ) + ε ≤ ψ(Y). Similar calculations to those in the proof of (i) leads to ψ̂n(X ) + ε − δn(X ,Y) ≤
ψ̂n(Y), and since δn(X ,Y) a.s.→ 0 it holds for almost surely that ψ̂n(X ) ≤ ψ̂n(Y)− ε/2 < ψ̂n(Y), for n
sufficiently large. The other implication is proven similarly.
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Proof of Theorem 5. Under Assumption (i i.a) we consider the first order Taylor expansion of L,

given by L(θ̃ t , Xt) = L(θ t , Xt)+ L ′(θ∗t , Xt)ηt , where θ∗t lies between θ̃ t and θ t . Taking expected value

yields

E
[
L(θ̃ t , Xt)

]
= E [L(θ t , Xt)]+ E

[
L ′(θ∗t , Xt)ηt

]
,

since the last term does not depend on Xt under Assumption (i i.a), it holds that

E[L(θ̃ t , Xt)]− E[L(θ̃ t ,Yt)] = E[L(θ t , Xt)]− E[L(θ t ,Yt)], (10)

for all (Xt ,Yt), which shows the equivalence in this case. Under Assumption (i i.b) we consider the

second order Taylor expansion of L, given by

L(θ̃ t , Xt) = L(θ t , Xt)+ L ′(θ t , Xt)ηt +
1
2
η′L ′′(θ∗∗t , Xt)ηt ,

where θ∗∗t lies between θ̃ t and θ t . Taking expected value yields

E
[
L(θ̃ t , Xt)

]
= E [L(θ t , Xt)]+ E

[
L ′(θ t , Xt)ηt

]
+
1
2
E
[
η′t L

′′(θ∗∗, Xt)ηt
]
,

where the last term does not depend on Xt , and where the second term is zero, as E[L ′(θ t , Xt)ηt |Ft−1] =
L ′(θ t , Xt)E[ηt |Ft−1] = 0. So once again we have established the identity (10), which shows the equiv-
alence of � and

a
� in this case.

Proof of Theorem 7. The stationarity assumption implies that E[L(θ̃1, X1)] = n−1
∑n
t=1 E[L(θ̃ t , Xt)],

and the ergodic theorem states that n−1
∑n
t=1 L(θ̃ t , Xt)

a.s.
→ E[L(θ̃1, X1)], which completes the proof.

Let θ̃λ,t ≡ θ t + ληt , t = 1, . . . , n, and suppose that L is twice differentiable with continuous

derivatives. Consider the Taylor expansion,

L(θ̃λ,t , Xt) = L(θ t , Xt)+ L ′(θ t , Xt)ληt + L ′′(θ∗λ,t , Xt)λ
2η2t ,

where θ∗λ,t ∈ [θ t , θ t + ληt ]. Suppose that E(ηt |Ft−1) a.s.= 0 and that var(ηt |Ft−1) > 0, a.s., such that

E[L(θ̃λ,t , Xt)− L(θ t , Xt)] = E[L ′(θ t , Xt)ληt ]+ E[L ′′(θ∗λ,t , Xt)λ
2η2t ]

= 0+ λ2E[L ′′(θ∗λ,t , Xt)η
2
t ].

The last term need not simplify to λ2E[L ′′(θ∗λ,t , Xt)]var(ηt |Ft−1), since θ∗λ,t is not Ft−1-measurably (it
depends on ηt ).
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Assumption 4 For all X ∈ A, it holds that (i) L ′′(θ∗λ,t , Xt) > 0, almost surely; and

(i i) L ′′(θ̃
∗

λ1,t , Xt)/L
′′(θ̃

∗

λ2,t , Xt) ≤
(
λ2

λ1

)2
,

almost surely, for all 0 ≤ λ1 < λ2 < ∞.

Lemma 9 Under Assumption 4, the criterion function for the approximate preordering, is given by

E(L(θ t , Xt))+ λ2E[L ′′(θ∗λ,t , Xt)η
2
t ],

and the measure of discrepancy

δλ(X ,Y) ≡ λ2 lim
n→∞

n−1
n∑
t=1
E{[L ′′(θ∗λ,t , Xt)− L

′′(θ∗λ,t ,Yt)]η
2
t }. (11)

Proof of Theorem 8. Consider the Taylor expansions under each of the three conditions, (i) ϕ(σ̃ 2t ) =

ϕ(σ 2t ) + ϕ̇ηt , where ϕ̇ ≡ ∂ϕ/∂σ 2t is a constant; (i i) ϕ(σ̃ 2t ) = ϕ(σ 2t ) + ϕ′(σ 2t )ηt +
1
2 ϕ̈η

2
t , where

ϕ̈ ≡ ∂2ϕ/∂σ 2t ∂σ
2
t is a constant; and (i i i) ϕ(σ̃

2
t ) = ϕ(σ 2t )+ ϕ′(σ 2t )ηt + 2−1ϕ′′(σ 2t )η

2
t + 6−1

...
ϕη3t , where

...
ϕ ≡ ∂3ϕ/(∂σ 2t )

2 is a constant. It now follows that for each of the three cases, cov(ϕ(σ̃ 2t ), ϕ(h2t )) −

cov(ϕ(σ 2t ), ϕ(h2t )) equals ϕ̇c1σ hh, 2−1ϕ̈c2σ hh, and 2−1σ 2ηc3σ hh , respectively. For example under As-

sumption (i i i) we have

cov(ϕ(σ̃ 2t ), ϕ(h
2
t )) = cov(ϕ(σ 2t ), ϕ(h

2
t ))+ cov(ϕ

′(σ 2t )ηt , ϕ(h
2
t ))

+2−1cov(ϕ′′(σ 2t )η
2
t , ϕ(h

2
t ))+ 6

−1cov(...ϕη3t , ϕ(h
2
t ))

= cov(ϕ(σ 2t ), ϕ(h
2
t ))+ 0+ 2

−1σ 2ηc3σ
2
hh + 0,

where c3 = cov(ϕ′′(σ 2t ), ϕ(h2t )).

Thus ψ̃(H) = ψ(H) + C, where C under assumption (i), (i i), and (i ii) equals ϕ̇2c21, ϕ̈
2c22, and

ϕ̈2c23 respectively.
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APPENDIX: TABLES AND FIGURES

Table 1: Mean Squared Errors Loss Functions for GARCH Models of IBM Stock Returns.

Mean Squared Error Mean Squared Error logs
Model MSEintra MSE+on. MSEinter MSE�

intra MSE�
+on. MSE�

inter

ARCH(1) 39.924 168.30 305.06 0.492 0.599 11.882
(7.159) (126.67) (150.21) (0.030) (0.046) (3.639)

GARCH(1,1) 30.722 159.77 297.01 0.298 0.479 12.441
(5.820) (120.33) (142.98) (0.019) (0.033) (3.718)

EGARCH(1,1) 25.434 155.25 289.37 0.260 0.459 12.506
(5.389) (120.01) (142.64) (0.016) (0.032) (3.733)

A-PARCH(1,1) 23.358 153.66 286.52 0.269 0.485 12.644
(5.147) (120.01) (142.54) (0.015) (0.031) (3.736)

THR-GARCH(1,1) 24.711 155.00 288.49 0.261 0.471 12.594
(5.111) (119.39) (141.86) (0.015) (0.031) (3.741)

FIGARCH(0,0) 31.460 161.89 299.03 0.338 0.543 12.573
(6.376) (123.15) (146.01) (0.020) (0.036) (3.724)

FIGARCH(1,1) 32.057 161.89 299.51 0.344 0.564 12.765
(6.350) (121.08) (143.76) (0.021) (0.036) (3.744)

FIAPARCH(1,1) 24.334 155.53 288.11 0.293 0.533 12.883
(4.854) (119.69) (141.96) (0.017) (0.032) (3.768)

In this table MSEintra, MSE+on., MSEinter is the MSE of the volatility forecasts less the estimated realized
volatility, less the estimated realized volatility plus the squarred overnight return, and less the squarred
log return. MSE�

intra, MSE
�
+on., and MSE

�
inter are the corresponding MSE of the log quantities. Standard

errors are given in parentheses.
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Table 2: R2 from Mincer-Zarnowitz Regressions for GARCH Models of IBM Stock Returns.

M.-Z. Regression M.-Z. Log-regression
Model R2intra R2+on. R2inter R�2

intra R�2
+on. R�2

inter

ARCH(1) 0.067 0.010 0.003 0.131 0.102 0.009
GARCH(1,1) 19.907 4.328 1.808 43.301 35.048 1.531
EGARCH(1,1) 30.575 6.365 3.596 52.007 42.366 2.625
A-PARCH(1,1) 36.052 7.329 4.525 52.182 42.816 2.483
THR-GARCH(1,1) 32.425 6.665 3.871 52.442 42.700 2.622
FIGARCH(0,0) 16.867 3.112 1.191 37.827 30.773 1.614
FIGARCH(1,1) 16.338 3.420 1.226 38.245 31.471 1.314
FIAPARCH(1,1) 33.784 6.737 4.037 51.791 42.931 2.532

In this table R2intra, R2+on., R2inter are the the coefficients of determination from the Mincer-Zarnowitz re-
gressions of the volatility forecasts on the estimated realized volatility, the estimated realized volatility
plus the squarred overnight return, and the squarred log return. R�2

intra, R�2
+on., and R�2

inter are from the
corresponding log regression.
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(a) 100 one-step-ahead forecasts

Ar
ch

G
ar

ch

EG
ar

ch

AP
ar

ch

Th
rG

ar
ch

2C
om

p

2C
om

pT
h

M
SE

 o
n

sq
ua

re
d 

re
tu

rn
s

0.16 0.12
0.2

0.07 0.1
0.15

0.2

Ar
ch

G
ar

ch

EG
ar

ch

AP
ar

ch

Th
rG

ar
ch

2C
om

p

2C
om

pT
h

M
SE

 o
n

vo
la

til
ity

 0

0.57

0.05
0.14

0.08
0.14

0.03

Ar
ch

G
ar

ch

EG
ar

ch

AP
ar

ch

Th
rG

ar
ch

2C
om

p

2C
om

pT
h

lo
g-

M
SE

 o
n

sq
ua

re
d 

re
tu

rn
s

0.24

0.08 0.11
0.05

0.12 0.13

0.27

Ar
ch

G
ar

ch

EG
ar

ch

AP
ar

ch

Th
rG

ar
ch

2C
om

p

2C
om

pT
h

lo
g-

M
SE

 o
n

vo
la

til
ity

 0

0.59

0.04
0.13

0.07
0.14

0.04

(b) 250 one-step-ahead forecasts
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(c) 500 one-step-ahead forecasts
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Figure 1: The figure shows the frequency that each model had the smallest out-of-sample loss. The
artificial data was simulated from a GARCH(1,1) model. The three panels contain the results for 100,
250, and 500 out-of-sample observations. The first (second) column contains the evaluation based on
squared returns (the true conditional variance); and the MSE (MSE) loss function was applied in rows
1, 3, and 5 (2, 4, and 6). 23
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(a) 100 one-step-ahead forecasts
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(b) 250 one-step-ahead forecasts
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(c) 500 one-step-ahead forecasts
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Figure 2: The figure shows the frequency that each model had the smallest out-of-sample loss. The
artificial data was simulated from an EGARCH(1,1) model. The three panels contain the results for 100,
250, and 500 out-of-sample observations. The first (second) column contains the evaluation based on
squared returns (the true conditional variance); and the MSE (MSE) loss function was applied in rows
1, 3, and 5 (2, 4, and 6). 24


