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Abstract

Is general equilibrium theory empirically testable? Our perspec-
tive on this question differs from the standard, Sonnenschein-Debreu-
Mantel (SDM) viewpoint. While SDM tradition considers aggregate
(excess) demand as a function of prices, we assume that what is observ-
able is the equilibrium price vector as a function of the fundamentals
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of the economy. We apply this perspective to an exchange economy
where equilibrium prices and individual endowments are observable.
We derive necessary and sufficient conditions that characterize the
equilibrium prices, as functions of initial endowments. Furthermore,
we show that, if these conditions are satisfied, then the economy can
generically be identified. Finally, we show that when only aggregate
data are available, observable restrictions vanish. We conclude that
the availability of individual data is essential for the derivation of
testable consequences of the general equilibrium construct.

Key words: aggregation, equilibrium, identification, testability.

JEL classification numbers: D 10, D 50.

1 Introduction

Is general equilibrium theory empirically testable? This question has at-
tracted considerable attention for at least thirty years; that is, at least since
the statement of the “Sonnenschein problems”: in two seminal papers, Hugo
Sonnenschein (1973, 1974) posed the question whether the individualistic
foundations of general equilibrium theory could generate non-trivial testable
restrictions on the aggregate excess demand or market demand functions of
an exchange economy. The case of excess demand was solved by Ralf Mantel
(1974) and Gerard Debreu (1974); the market demand problem was solved
by Jordi Andreu (1983) for finite sets of data, and, recently, by Pierre-André
Chiappori and Ivar Ekeland (1999,a) for analytic demand functions. In all
cases, the answer is negative, provided there are enough individuals in the
economy — a conclusion that confirmed Sonnenschein’s intuition and initial
arguments.

These (by now classical) results have widely been interpreted as pointing
out a severe weakness of general equilibrium theory, namely its inability to
generate empirically falsifiable predictions. A prominent illustration of this
stand is provided for instance by Kenneth Arrow, who recently listed among
the main developments of utility theory the result that “in the aggregate, the
hypothesis of rational behavior has in general no implications ”, and drew
the conclusion that “if agents are different in unspecifiable ways, then [...]
very few, if any, inferences can be made” (1991, p. 201).
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Our main claim in the present paper is that this view is overly pes-
simistic, and that general equilibrium theory can actually generate strong
testable predictions, even for large economies. The main idea is in the line of
recent contributions by Brown and Matzkin (1996) and Brown and Shannon
(2000), and can be summarized as follows. The Sonnenschein-Debreu-Mantel
approach concentrates on the properties of excess (or market) demand as a
function of prices only. However, this viewpoint is not the only possible one,
and actually not the most adequate for assessing the testability of GE the-
ory.1 As far as testable predictions are concerned, the structure of aggregate
excess demand is not the relevant issue, if only because excess demand is,
in principle, not observable, except at equilibrium prices — where, by def-
inition, it vanishes. However, prices are not the only variables that can be
observed to vary. Price movements reflect fluctuations of fundamentals, and
the relationship between these fundamentals and the resulting equilibrium
prices is the natural object for empirical observation. One of the goals of
general equilibrium theory is precisely to characterize the properties of this
relationship. As it turns out, this characterization generates strong testable
restrictions.

We develop our claim in the simple but natural context of an exchange
economy, where excess demand depends on both prices and initial endow-
ments. Then equilibrium equations relate equilibrium prices to endowments;
the equilibrium manifold is defined as the set of prices and endowments for
which excess demand is zero.2 We are interested in the local structure of
the equilibrium manifold; that is, we study equilibrium prices, locally, as a
smooth function of initial endowments. We derive two main results. First,
there exist strong restrictions on the local structure of the equilibrium mani-
fold, that can be expressed as a system of partial differential equations, in the
spirit of Slutsky relationships. In other words, although utility maximization
by individuals does not constrain the shape of excess demand as a function
of prices (the SDM conclusion), it does restrict the form of the equilibrium
manifold, which is of empirical relevance.

Second, and perhaps more surprisingly, we prove that, if income effects
do not vanish, the observation of the equilibrium manifold, as a function
of initial endowments, generically identifies the underlying economy, in the

1There are, of course, deep theoretical reasons for the investigation of the structure
of aggregate demand as a function of prices; for instance, the SDM result has strong
implications for the convergence of tâ tonnement processes.

2See Balasko (1988) for a detailed analysis.
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sense that individual preferences can be recovered without ambiguity. In a
way, this result is the exact opposite of the SDM conclusion. In the SDM
perspective, all the structure due to individual utility maximization is lost
by aggregation. Adopting the equilibrium manifold perspective, we reach the
opposite conclusion that all the relevant structure is generically preserved,
in the sense that the initial economy can (generically) be recovered from the
structure of the equilibrium manifold.

These results indicate that the two lines contrasted above — the ’man-
ifold’ point of view versus the SDM excess demand approach — generate
totally different (and in a sense opposite) conclusions. How can this striking
discrepancy be explained? Our interpretation emphasizes a crucial difference:
in the manifold approach, individual data (initial endowments) are available,
whereas only aggregate variables can be observed in the SDM setting. In
other words, we understand our results as suggesting the important con-
clusion that whenever data are available at the individual level, then utility
maximization generates very stringent restrictions upon observed behavior,
even if the observed variables (equilibrium prices in our case) are aggregate.
From this perspective, whether individual transactions can be observed is
irrelevant. Individual determinants of individual choices (such as initial en-
dowments or individual incomes) may do just as well.

A natural question, then, is whether the converse claim also holds: is
it the case that, when aggregate variables only are observed, no testable
restriction can be generated, at least if the number of individuals is “large
enough”? Specifically, assume that only aggregate endowments Ω can be
recorded. These aggregate endowments are redistributed among individuals
in the economy according to some rule that is not observed. In particular,
fluctuations in Ω generate changes in individual endowments that are not
recorded. What is observed, however, are the corresponding movements of
equilibrium prices. In this new context, the equilibrium manifold is observed
as a function of aggregate endowments only. Is there any restriction on the
form of this relationship?

We show that, under an analyticity condition, when the number of in-
dividuals is at least equal to the number of commodities, any (sufficiently
smooth) manifold can be (locally) rationalized as the equilibrium manifold of
an exchange economy with utility maximizing individuals, for some ’well cho-
sen’ redistribution rule. This result closes the argument by confirming that
the Walrasian framework cannot generate restrictions on the local structure
of the equilibrium manifold when only aggregate data are observable. In this
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sense, although our results emphasize a new aspect of aggregation theory,
they remain fully consistent with the conventional wisdom of the field.

Our work is in the line of a former contribution by Brown and Matzkin
(1996), who study the restrictions on the structure of the equilibrium man-
ifold from a “non-parametric”, revealed preferences perspective. In their
paper, Brown and Matzkin derive a set of necessary and sufficient conditions
under the form of linear equalities and inequalities that have to be satisfied by
any finite data set, and they show that these relationships are indeed restric-
tive3. Our work complements their results in three ways. First, we adopt a
differentiable viewpoint, so that our necessary and sufficient conditions take
the somewhat more familiar form of a system of partial differential equations,
reminiscent of Slutsky conditions. In particular, our conditions can readily
be imposed on a parametric estimation of the equilibrium manifold; hence
they can be tested using the standard econometric tools used in consumer
analysis.4 Secondly, the result that these restrictions, if fulfilled, are sufficient
to generically recover the underlying economy is original. Thirdly, we extend
the analysis to the case where only aggregate endowments are observable,
and provide a formal non testability result.

2 The framework

2.1 The model

We consider an exchange economy with K commodities and N individuals.
Initial endowments of individual n we denote by ωn = (ω1

n, . . . , ω
K
n ) ∈ RK

+ ,
and his wealth by yn = p′ωn =

∑
k pkω

k
n.

Each individual is characterized by a demand function, xn(p, yn). We as-
sume that demands are derived from the maximization of smooth, strongly
quasi-concave utilities; in particular, xn(p, yn) is smooth and satisfies homo-
geneity, Walras’ law and Slutsky symmetry and negative definiteness.

A smooth map Z, defined on RK
+ ×RKN

+ , is an excess demand function

3This approach has been recently extended by Kübler (2002), Snyder (1999) and Brown
and Shannon (2000).

4We provide an example of such a parametric analysis in Section 3.
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if there exist N individual demand functions x1, ..., xN , such that

Z(p, ω) =
N∑

n=1

(xn(p, p′ωn)− ωn).

If Z is an excess demand function, then it is is homogeneous of degree
zero with respect to p, and, by Walras’ law,

p′Z(p, ω) = 0.

We use, henceforth, the normalization

p′p = 1.

We denote by SK−1 the unit sphere in RK , and by SK−1
+ its intersection with

RK
+ . With the normalization of prices,

Z : SK−1
+ ×RKN

+ −→ RK ,

and Z(•, ω) is a map from the unit sphere into RK .
Walras’ law implies restrictions on the Jacobian matrix DZ. Differentiat-

ing, we get, with obvious notation, that

p′DpZ = Z,

and, for every commodity,
p′DωnZ = 0.

Finally, the equilibrium manifold is defined as

E =
{
(p, ω) ∈ SK−1

+ ×RKN
+ | Z(p, ω) = 0

}
.

In particular, at any point (p, ω) belonging to E ,

p′DpZ = 0.

Taking into account the fact that Z(•, ω) is defined on the unit sphere, p′p =
1, and that the tangent space at p is precisely p⊥, we see that, at every point,
(p, ω) on E , the Jacobian DpZ maps [p]⊥ into itself; the same conclusion holds
for DωnZ, for every commodity.
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2.2 The problem

Under standard assumptions, the graph of the competitive equilibrium cor-
respondence has the structure of a continuously differentiable manifold. Lo-
cally, in a neighborhood, N (p, ω̄) , of some arbitrary, non singular point
(p, ω̄), the equilibrium price can be defined as a function of individual en-
dowments:

(p, ω) ∈ E ∩ N (p, ω̄) ⇒ p = π (ω) .

We denote by N (ω̄) the projection of N (p, ω̄) over RKN
+ .

Definition 1 A smooth map, π : N (ω̄) 7→ RK
+ , with π′π = 1, is a regular

equilibrium map over N (ω̄) if there exists a smooth aggregate excess demand
function Z (p, ω), defined on N (p, ω̄), such that Z (π (ω) , ω) = 0, and DpZ :
[π(ω)]⊥ → [π(ω)]⊥ is invertible for all ω ∈ N (ω̄) .

Our basic question is thus: What are the conditions for a smooth map,
π, to be a regular equilibrium map over N (ω̄)?

An immediate remark is that, as pointed out by Balasko (1999), the
local nature of the problem is crucial. Indeed, assume that the equilibrium
manifold is known globally, including the boundaries of RKN

+ . Then, one can
set ω2, ..., ωn to zero, so that aggregate excess demand coincides with the
excess demand of individual 1; the manifold coincides with inverse demand
function of individual 1, which must satisfy well-known restrictions; of course,
the same trick can be used for all individuals. The interesting, and more
difficult, question we consider refer to the neighborhood of an interior point
(p, ω̄), where the non-negativity constraints are not binding: xk

n(p̄, p̄′ω̄n) > 0,
for all commodities and individuals.

3 Characterization of the equilibrium mani-

fold

3.1 Necessary conditions

A first result concerns necessary conditions.

Proposition 2 If π is a regular equilibrium map over N (ω̄) , then there is
an invertible linear map Θ(ω) from [π(ω)]⊥ into itself, and vectors θn(ω), 1 ≤
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n ≤ N in [π(ω)]⊥, that depend smoothly on ω, such that, for every n, the
decomposition

Θ(ω)Dωnπ(ω) = I − θn(ω)π(ω)′, ω ∈ N (ω̄) (1)

holds. In particular, for any i and j, the rank of the matrix (Dωj
π−Dωi

π) is
at most one. Moreover, the linear map Θ(ω) and the vectors θn(ω) are deter-
mined uniquely by the map π. Finally, knowledge of Θ(ω) and θn (ω) uniquely
identifies the marginal pro- pensity to consume, an (p, y) = Dyxn (p, y) , of an
individual:

an

[
π (ω) , π (ω)′ ωn

]
= θn (ω) + π (ω) ,

and, for each n, the function an (p, y) satisfies the equations

(
∂ak

∂pj

− ∂aj

∂pk

)
∂ai

∂y
+

(
∂aj

∂pi

− ∂ai

∂pj

)
∂ak

∂y
+

(
∂ai

∂pk

− ∂ak

∂pi

)
∂aj

∂y
= 0, (2)

for all commodities i, j, k.

Proof See Appendix.

Proposition 1 describes the testable properties of the price function stem-
ming from the underlying, general equilibrium framework. One is the decom-
position property (1); is states that there exists a linear map Θ such that, for
any n, the matrix (Θ(ω)Dωnπ(ω) − I) is of rank one and vanishes over the
subspace [π(ω)]⊥. The second set of properties states that the θn are related
to individual demand functions, hence must satisfy variants of Slutsky rela-
tionships. In addition, Proposition 1 shows that the local structure of the
manifold allows us to recover the individual income effects — that is, each
individual’s vector of marginal propensities to consume).

3.2 An example

To see how restrictive condition (1) is in general, assume that K = 2 (then
π2 can be normalized to one) and consider the following functional form for
π1 as a function of the ω :

π1 (ω) =

∑
n (A1

nω1
n + A2

nω
2
n)∑

n (B1
nω1

n + B2
nω

2
n)

, (3)

with the normalization A2
1 + B1

1 = 1.
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We now derive the restrictions implied by (1) on the coefficients Ai
n, B

i
n.

First,

∂π1

∂ωk
s

− ∂π1

∂ωk
t

=

∑2
j=1

∑
n

[(
Ak

sB
j
n −Bk

s Aj
n

)− (
Ak

t B
j
n −Bk

t Aj
n

)]
ωj

n

[
∑

n (B1
nω

1
n + B2

nω2
n) .]2

The decomposition property (1) implies that

∂π1

∂ω1
s
− ∂π1

∂ω1
t

∂π1

∂ω2
s
− ∂π1

∂ω2
t

= π1,

which gives

∑
k

∑
n

[(
A1

sB
k
n −B1

sA
k
n

)− (
A1

t B
k
n −B1

t A
k
n

)]
ωk

n∑
k

∑
n [(A2

sB
k
n −B2

sA
k
n)− (A2

t B
k
n −B2

t A
k
n)] ωk

n

=

∑
n (A1

nω
1
n + A2

nω
2
n)∑

n (B1
nω

1
n + B2

nω
2
n)

.

This equation must be satisfied for all
(
ω1

1, ω
K
N

)
. Simple (although te-

dious) algebra shows that the only form possible for π is then:

π1 (ω) =
A1Ω1 +

∑
n A2

nω
2
n∑

n (1− A2
n) ω1

n + B2Ω2
.

The important message of the example is that should an econometric test
be based on the relatively flexible functional form (3), then the decomposition
condition (1) implies that A1

s = A1
t , B

2
s = B2

t and A2
s + B1

s = 1 for all s, t —
that is, a set of strong restrictions.

3.3 Recovering individual demands

We now consider the identification problem: to what extent is it possible to
recover preferences from the observation of the local structure of the equilib-
rium manifold? A first remark is that from Proposition 1, the local structure
of the equilibrium manifold fully allows to identify individual income effects.
We are thus left with a problem in consumer theory, namely: is it possible
to recover a demand function x(p, y) from the sole knowledge of its partial
derivatives with respect to income, a (p, y) = Dyx (p, y)? We proceed to show
that the answer is positive in general. We start with the following restriction:

Assumption 1 : The demand function x(p, y) is such that
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1. the income effect for every commodity i, ∂xi/∂y, is a twice differentiable
function of income, and

∂2xi

∂(y)2
6= 0;

2. there exist at least two commodities j and k such that

∂

∂y
(ln

∂2xj

∂(y)2
) 6= ∂

∂y
(ln

∂2xk

∂(y)2
).

Assumption 1 requires that income effects do not vanish for any com-
modity, while there are two commodities for which the partial elasticities of
the income effects with respect to revenue do not vanish. A few remarks
are in order here. First, Assumption 1 implies that there are at least three
commodities: L ≥ 3; a different argument is required for economies with
two commodities, L = 2. Secondly, Assumption 1 rules out specific prefer-
ences, such as homothetic or quasi-linear utility functions. Indeed, it can
readily be checked that identification is not possible for homothetic utility
functions. Intuitively, this is due to the fact that homothetic utilities permit
aggregation. In general, however, if demand is non-linear in income, and if
income effect do not vanish, Assumption 1 is satisfied for an open and dense
set of prices and incomes; which suffices, since continuity then allows for
identification.5

Finally, it is important to note that Assumption 1 involves only deriva-
tives of the income effects. As such, it can be directly expressed in terms of
a (p, y) . In particular, from the general perspective of the paper, Assumption
1 can be directly checked from the structure of the manifold, since the latter
identifies a (p, y) .

The main result is then the following:

Proposition 3 If the demand function, x(p, y), satisfies Assumption 1, then
it is uniquely identified by its partial derivatives with respect to income a (p, y) =
Dyx (p, y) : for any demand function, ξ (p, y) , if Dyξ (p, y) = Dyx (p, y) for
all (p, y) , then ξ (p, y) = x (p, y) , for all (p, y) .

Proof See Appendix.

5This point can be better understood through concept of the “generalized rank” of a
demand system, introduced in Lewbel (1991).
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Note, in particular, that if x(p, y) satisfies Assumption 1 and ξ is such that
Dyξ (p, y) = Dyx (p, y) for all (p, y) , then ξ(p, y) also satisfies Assumption 1.

We can thus summarize our findings:

Theorem 4 A given smooth map π on N (ω̄) cannot be a regular equilibrium
manifold unless it satisfies the testable restrictions given in Proposition 1.

Conversely, if π is a regular equilibrium map over N (ω̄) , and if As-
sumption 1 is satisfied, then the underlying economy, if it exists, is uniquely
identified.

4 The case of aggregate endowments

4.1 The problem

The previous restrictions obtain under a specific hypotheses, namely, that
individual endowments are observable. This fact is quite interesting; it sug-
gests, indeed, that testable restrictions require that some data are available at
the individual level. In this section, we substantiate this claim by considering
the case when aggregate endowments only can be observed. Do restrictions
still exist?

Quite obviously, the answer depends on the number of individuals. Take
the extreme case of a one individual economy. Then the equilibrium condition
boils down to Z = z1 = 0, which means that Ω = ω1 must be the agent’s
equilibrium consumption at prices π(Ω). Then π(Ω) is an inverse demand
function; as such, it has to satisfy the Slutsky relations, that is, Dω1π must
be symmetric on ω1

⊥.
This fact is by no means unexpected. With one individual, utility maxi-

mization is known to generate restrictive conditions on behavior. What the
previous literature suggests, however, is that these conditions might become
less and less restrictive as the number of individuals is increased. This intu-
ition turns out to be true, as we now proceed to demonstrate.

4.2 A formal statement

Suppose that we can no longer observe the individual endowments ωn, but
only the aggregate endowment Ω =

∑
n ωn. Suppose furthermore that, for

each value of Ω, this total endowment is distributed across individuals in a
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way which is not observed, and that we only observe some set of equilib-
rium prices, p. What can we predict on the local structure of the mapping
π : Ω 7→ p? Technically, is it possible, for some arbitrary, smooth π satis-
fying the normalization π′π = 1, to find n utility functions U1, . . . , UN and
some distribution of endowment (ω1(Ω), . . . , ωN(Ω)), such that the price vec-
tor π(Ω) is an equilibrium price for an economy with N individuals, the
preference of the n-th individual being Un and his endowment ωn (Ω)?

We now answer positively a local version of this problem. Assume that
N ≥ K, and suppose we are given a mapping π : RK 7→ SK−1

+ . Chose an Ω̄
that satisfies the following, smoothness restriction:

Assumption 2 : There exists an open neighborhood V
(
Ω̄

)
of Ω̄ in which

the mapping Ω → (π (Ω) , π (Ω) · Ω) is (locally) invertible, and the inverse
mapping A : (p, Y ) → Ω is analytic in a neighborhood of

(
π

(
Ω̄

)
, π

(
Ω̄

) · Ω̄)
.

Here, Y = π (Ω) ·Ω denotes the economy’s total wealth. This assumption
deserves a few comments. First, local invertibility does not raise specific
problems. It is a standard regularity assumption, that can be expected to
hold for almost every Ω. Its main use, here, is to allow to consider the mapping
A as a change of variables; that is, any function of Ω can alternatively be
expressed as a function of prices and aggregate income. This technique will
be helpful in what follows.

Analyticity is more demanding; it can be viewed as an extreme case of
smoothness. However, it is by now known that it is a very useful assumption
for this kind of problem (see Chiappori and Ekeland (1999,b).)

4.3 The main result

If Assumption 2 is satisfied, then the mapping A has two obvious properties:
it is homogenous, and it satisfies p · A (p, Y ) = Y.

Now, let us just assume that resources are shared equally; the distribution
of endowment (ω1(Ω), . . . , ωN(Ω)) is thus defined by

ωn(Ω) =
1

N
Ω.

This implies, in particular, that

π (Ω) · ωn(Ω) =
Y

N
=

π (Ω) · Ω
N

.
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The problem can be stated as follows: can one find N individual demand
functions x1 (p, y1) , ..., xN (p, yN) , such that

N∑
n=1

xn

(
π (Ω) ,

π (Ω) · Ω
N

)
= Ω, Ω ∈ V (

Ω̄
)
.

We can use the change in variables defined by Assumption 2; the previous
equation becomes, with obvious notation,

N∑
n=1

xn

(
p,

Y

N

)
= A (p, Y )

or, using homogeneity

N∑
n=1

xn

(
p

Y
,

1

N

)
= A

( p

Y
, 1

)
.

In words, we are now looking for an economy, the aggregate demand of
which is locally equal to some given, analytic function B

(
p
Y

)
= A

(
p
Y

, 1
)
.

The answer is given by a recent result (Chiappori Ekeland 1999,a), which
states that this is always possible. Formally,

Theorem 5 Under Assumption 2, and assuming N ≥ K, there is an open
neighborhood V of Ω, and N functions U1, ..., UN , concave and analytic on
RK , such that, for all Ω in V , π(Ω) is a system of equilibrium prices for the
economy where individual n is characterized by the utility function Un and
the endowment

ωn =
Ω

N
.

This result confirms the intuition, stated in introduction, that the obser-
vation of individual data is necessary to generate testable restrictions. These
restrictions reflect both the decentralized nature of the problem and the max-
imization assumptions made at the individual level; furthermore, they allow,
generically, to recover the entire economy. If, on the contrary, only fluctu-
ations in aggregate income can be observed, then no structure is preserved,
at least if the number of individuals is large enough. In this sense, albeit
our results emphasize a new aspect of aggregation theory, they remain fully
consistent with the conventional wisdom of the field6.

6These results can be related to the works by Hildenbrand (1994), who derives testable
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5 Concluding remarks

A first and obvious conclusion of our work is that the “equilibrium mani-
fold” approach leads to conclusions that differ deeply from the Sonnenschein-
Debreu-Mantel excess demand perspective. The main conclusion of the latter
literature is that all the structure due to individual utility maximization is
lost by aggregation. Adopting the equilibrium manifold perspective, we reach
the opposite conclusion that all the relevant structure is generically preserved,
in the sense that the initial economy can be recovered from the structure of
the equilibrium manifold. In that sense, our results both generalize Brown
and Matzkin’s findings and shed a new light on their scope and status7. Also,
out interpretation of these results is simple. Rephrasing Arrow’s statement
quoted in introduction, we believe that in the aggregate, the hypothesis of
rational behavior and market equilibrium has in general strong implications
even if individuals are different in unspecifiable ways; however, the latter can
be tested only insofar as data are available at the individual level. In short,
rationality may be testable, but not without individual data8.

Finally, what is the empirical relevance of the restrictions derived in the
paper? An obvious qualification is that they rely on the impact of changes in
individual endowments on aggregate prices. Obviously, the larger the econ-
omy, the smaller such effects, and the more difficult it will be to produce
empirical work on them. It should be stressed, however, that general equi-
librium does not apply only to ’large’ economies. On the contrary, the tools

restrictions on the structure of aggregate demand (such as the Law of Demand or the
Weak Axiom of Revealed Preference) from assumptions on the form of the distribution
of consumptions in the population (increased dispersion, increased spread). The inter-
esting difference is that, while we concentrate upon the properties that are preserved (or
destroyed) by aggregation, Hildenbrand’s point of view concentrates upon properties that
are created by aggregation. A precise assessment of the relationship between the two
approaches is a promising line for future investigations.

7See also Felix Kübler, Chiappori, Ekeland and Heraklis Polemarchakis (2002) for an
extension of these results to the case of uncertainty and incomplete markets.

8This conclusion should however be qualified in regard of the remarkable work by
Hildenbrand (1994), who derives testable restrictions on the structure of aggregate de-
mand, such as the Law of Demand or the Weak Axiom of Revealed Preferences, from as-
sumptions on the form of the distribution of consumptions in the population — increased
dispersion, increased spread. The interesting difference is that, while we concentrate upon
the properties that are preserved or destroyed by aggregation, Hildenbrand’s point of view
concentrates upon properties that are created by aggregation. A precise assessment of the
relationships between the two approaches is a promising line for future investigation.

14



of general equilibrium theory have been recently applied, in a very successful
way, to the analysis of the behavior of ’small’ groups. For instance, standard
demand theory uses data on households or families, most of which gather
several individuals. Models aimed at taking into account the ’non unitary’
nature of the interactions at stake usually rely on a ’collective’ approach,
that postulates only efficiency. With private consumptions - a framework
that has been used in most empirical applications - efficient allocations and
market equilibria coincide, and GE theory is a relevant tool (see for instance
Chiappori and Ekeland 2002). The same approach has also been adopted
to the analysis of such groups as committees, clubs, villages and other local
organizations, which have also attracted much interest. For instance, many
micro studies in development, starting with Robert Townsend’s (1994) inves-
tigation of risk sharing within an Indian village, are based on data collected
at the local level; it is not uncommon to observe endowments (say, individ-
ual crops) and prices within the village, a context to which our framework
directly applies. Even in large economies, our result may still apply directly
when individuals belong to a finite (and “small”) number of homogeneous
“classes”. Finally, an interesting question is how our results can be extended
to production economies. The idea is that, in a production context, changes
in factor endowments will have an observable impact on factor prices, and
that the corresponding equilibrium manifold can in principle be studied in a
similar way. All this shall be the subject of further research
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APPENDIX

Proof of Lemma 1

From the definition of the excess demand function Z, differentiating, we
obtain

∂Zk

∂ωj
n

=
∂ xk

n

∂yn

pj − δj
k,

where δj
k is equal to 1 if j = k, and equal to 0 otherwise; in matrix notation,

this writes

DωnZ =
∂xn

∂yn

(p, p′ωn)p′ − I.

Differentiating the equation Z(π(ω), ω)) = 0 with respect to ωn yields

DpZ Dωnπ = −DωnZ.

Replacing in the preceding equation the right-hand side, one gets

DpZ Dωnπ = I − θn (ω) π(ω)′,

where

θn (ω) =
∂xn

∂y

[
π (ω) , π (ω)′ ωn

]
.

We now split RK into the orthogonal sum of [π(ω)] and [π(ω)]⊥, and ex-
press all matrices in some basis B = {π, b2, ..., bK}, where the vectors {b2, ..., bK}
all belong to [π(ω)]⊥. In this new basis

Dωnπ =




0 0

−Θ (ω)−1 θn Θ (ω)−1


 ,

where Θ (ω) is the (K − 1) × (K − 1) matrix, in the (sub)basis {b2, ..., bK},
of the restriction of DpZ (π (ω) , ω) to [π(ω)]⊥; note that, under standard
assumptions, DpZ (π (ω) , ω) is of rank K − 1, hence Θ (ω) is invertible.

In particular, the (K − 1) × (K − 1) submatrix Θ (ω)−1 is independent
of n. A first consequence is that, for any i and j, the rank of the matrix
(Dωj

π −Dωi
π) is at most one; indeed, in the basis B,

(Dωj
π −Dωi

π) =




0 0

−Θ (ω)−1 (θj − θi) 0


 .

18



A second consequence, that is actually crucial here, is that the linear map
Θ(ω) and the vectors θn(ω) above are uniquely defined from π. Indeed, in the
same basis as above, Θ(ω) is the inverse of the south-east (K − 1)× (K − 1)
submatrix of Dωnπ, while θn (ω) is the product of −Θ(ω) by the south-west
(K − 1)× 1 submatrix of Dωnπ.

This point can actually be made in a more focused way. Denote by

P (ω) : RK 7→ [π(ω)]⊥,

sometimes shortened to P, the orthogonal projection over [π(ω)]⊥. Note that
P (ω)DωnπP (ω)′ is invertible and independent of n:

P (ω) Dωnπ(ω)P (ω)′ = Θ (ω)−1 .

Then, θn is the orthogonal projection of (∂xn/∂y) on [π(ω)]⊥, which implies
that

∂xn

∂y
= θn + γπ,

where γ is some scalar. Since π′π has been normalized to 1, and since
π(∂xn/∂y) = 1, we get γ = 1, and, hence,

θn (ω) =
∂xn

∂y

[
π (ω) , π (ω)′ ωn

]− π (ω) .

Finally, we have to check that the knowledge of θn (ω) uniquely defines
(∂xn/∂y) (p, y) ; intuitively, there are “enough degrees of variation” in the ω
to identify the function on the right-hand-side of the equation. A proof is
the following. The map Φn : ω 7−→ (

π′ (ω)′ ωn, π (ω)
)
, which sends RKN

+ into
RK

+ . We claim that DωnΦn (ω) has rank K for all ω. Indeed, we consider the
matrix of partial derivatives with respect to the ωk

n, k = 1, ..., K:

DωnΦn (ω) = (ω′nDωnπ (ω) + π′ (ω) , Dωnπ (ω)) .

It maps RK
+ into itself. Splitting RK

+ into the orthogonal sum of π (ω) and

[π (ω)]⊥ , we get, in the new basis,

DωnΦn (ω) =




1 0 . . . 0

ηn Θ (ω)−1


 ,

where ηn is some (K − 1) vector. Clearly, DωnΦn (ω) is of full rank.
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This will allow us, by the implicit functions theorem, to use the following
change of variable:

ω = (ω1, ...ωN) → (ω1, ..., ωn−1, π, yn, ωn+1, ..., ωN) .

The function ηn (ω) defined from θn (ω) by

ηn (ω) = θn (ω) + π (ω) .

In the new coordinate system, it can be written as a function of π and yn

only, which is the required function.

Proof of Lemma 2

Since x (p, y) is a demand function, it satisfies Slutsky symmetry:

∂xk

∂pj

− ∂xj

∂pk

= xk ∂xj

∂y
− xj ∂xk

∂y
.

Differentiating with respect to y,

∂2xk

∂y∂pj

− ∂2xj

∂y∂pk

= xk ∂2xj

∂y2
− xj ∂

2xk

∂y2
,

which can be written as

∂ak

∂pj

− ∂aj

∂pk

= xk ∂aj

∂y
− xj ∂ak

∂y
, (k, j)1.

This provides a system of equations in the xi where all the coefficients
are known. Unfortunately, it can readily be checked that this system cannot
be of full rank. In fact, the equations are not compatible unless the following
condition is fulfilled:

(
∂ak

∂pj

− ∂aj

∂pk

)
∂ai

∂y
+

(
∂aj

∂pi

− ∂ai

∂pj

)
∂ak

∂y
+

(
∂ai

∂pk

− ∂ak

∂pi

)
∂aj

∂y
= 0, (i, j, k).

If this holds, however, the system is indeterminate, and one further deriva-
tion in y is needed. Specifically,

∂2ak

∂y∂pj

− ∂2aj

∂y∂pk

−
(

ak ∂aj

∂y
− aj ∂ak

∂y

)
= xk ∂2aj

∂y2
− xj ∂

2ak

∂y2
, (k, j)2.
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From Assumption 1, there exist commodities j and k such that the system
consisting of the two equations (k, j)1 and (k, j)2 in xj and xk is of full rank.
This identifies xj and xk. Then (i, k)1 written for xk and xi, allows to identify
xi.

Finally, a consistency restriction is that the identification gives the same
result using j and i instead of k and i. This gives

∂2ak

∂y2
∂aj

∂y

((
∂ai

∂pk
− ∂ak

∂pi

)
∂aj

∂y
− ∂ai

∂y

(
∂aj

∂pk
− ∂ak

∂pj

))
=

∂2aj

∂y2
∂ak

∂y

((
∂aj

∂pi
− ∂ai

∂pj

)
∂ak

∂y
− ∂ai

∂y

(
∂aj

∂pk
− ∂ak

∂pj

))
+

∂aj

∂y
∂ak

∂y

((
∂ai

∂pk
− ∂ak

∂pi

)
∂2aj

∂y2 −
(

∂aj

∂pi
− ∂ai

∂pj

)
∂2ak

∂y2

)
.

which is a consequence of (k, j, i).
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