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Abstract

We apply stochastic stability to study the evolution of bidding
behavior in private-values second-price, first-price and k-double auc-
tions. The learning process has a strong component of inertia but with
a small probability, the bids are modified in the direction of ex-post
regrets. We identify essentially a unique bid that will be used by each
type in the long run. In the second-price auction, this is the truth-
ful bid. In the first-price auction, bidding half of one’s valuation is
stable. The stable bid in the k-double auction is a toughening of the
Chatterjee-Samuelson linear equilibrium strategy. If we add a friction
in changing one’s bid, then truth-telling behavior is also obtained in
the first-price and k-double auctions. Intuitively, the stochastically
stable bid minimizes the maximal regret.
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1 Introduction

The standard analysis of most auctions and double auctions with incomplete
information is based on the notion of Bayesian equilibrium, and has led
to beautiful theoretical constructions. Moreover, equilibrium insights can
sometimes be applied with success to real-world problems. However, the use
of equilibrium also has important limitations, as it relies on the existence
of a common-knowledge type space to describe the underlying uncertainty.
When one talks to game theorists that have provided advice on how to bid
in real auctions, this is often a major stumbling block: we may calculate an
equilibrium of the given auction, but in the absence of common-knowledge of
type spaces and prior beliefs, it is implausible to expect the equilibrium to be
played. One common way out in recent literature is to shift the analysis from
the interim stage to the ex-post stage: by requiring that the equilibrium be
robust for any type space, one ends up at the concept of ex-post equilibrium.1

The approach we shall follow in this paper uses stochastic stability, one
of the important tools introduced by evolutionary game theory (see Foster
and Young (1990), Kandori, Mailath and Rob (1993), Young (1993)). Most
applications of this methodology in non-cooperative game theory have been
confined to games with complete information.2 An exception is Jensen, Sloth
and Witta-Jacobson (2005), which extends the model in Young (2003) to fi-
nite Bayesian games. They make three assumptions that are necessary for
this extension. First, the players know the true distribution of types in the
population; second, the types of the matched players are truthfully revealed
to everyone after the end of the interaction; and third, for each type of each
player, there is a record of the action taken by that type during some past
periods in which that type was selected. Under these assumptions, the un-
perturbed best-response dynamic process, appropriately redefined, converges
with probability one to a convention, which is a state that is “equivalent” to
a strict Bayesian equilibrium of the game – if the latter exists. The pertur-
bations then select among the different strict Bayesian equilibria. We have
already noted that the scale of information needed to satisfy the first as-
sumption is rarely available. It is also not clear how the second assumption
would be satisfied. The only information that is revealed at the end of an
interaction is the outcome and the consequent payoffs, which is not sufficient

1One well-known difficulty with this concept is that it rarely exists.
2See Young (1998) for an account of different applications. See also Agastya (2004) for

an application to double auctions with complete information.
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to reveal the types – specially when players have private values.
Agreeing with the recent trends in the robust analysis of game theory

with incomplete information, we shall turn to ex-post considerations. But,
rather than working with the concept of ex-post equilibrium, we shall analyze
an evolutionary model of behavior based on ex-post regrets. Hyafil and
Boutilier (2004) propose minimizing the maximal ex-post regret as a decision
criterion in such environments, which leads them to define a minimax-regret
equilibrium. We will later show that the profile of stable bids in our model
is a minimax-regret equilibrium. A description of our model follows.

There is a large number of traders, sellers and potential buyers of an indi-
visible good. We study three kinds of trading institutions, all under private-
values asymmetric information (second-price auctions, first-price auctions
and double auctions).

In our study of auctions, each seller has a zero valuation for the object
and sets a reservation price of zero. Each bidder is privately informed about
her valuation for the good and has no information about the valuations of the
others. No assumptions on uncertainty are made, except that it is diffuse, in
the sense that each bidder believes that there is always a positive probability
of playing against any bid for the good.3 Each seller will be selling one good
in each period, and is matched at random to a number of bidders. In each
match, a one-shot auction procedure is used. We first analyze a second-price
auction in Section 2, while a first-price auction is studied in Section 3. Each
bidder’s behavior is described as follows. First, as often found in much of
the evolutionary literature, there is an important component of inertia. That
is, with very high probability, a bidder, if she participates in an auction in
period t + 1, will repeat the bid that she used in period t (she is convinced
by a convention learned in the past, or by the game theorist that gives her
expert advice). However, with small but positive probability, she will adjust
her bid in the direction of ex-post regret. That is, she looks at the outcome
of the last auction where she participated, and wonders what would have
been her payoff had she bid differently against the specific bids used by the
other bidders she met in the last match. If by changing to a different bid, her
ex-post payoff would have increased, she regrets having used her bid instead
of the alternative bid. The higher this regret the higher her probability of

3This is accomplished through the introduction of a rich set of obstinate types, agents
who never change their behavior (see, for example, Ellingsen (1997), Abreu and Gul
(2000)).
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switching to such an alternative bid.
Thus, within the useful classification provided in Hart (2005), our models

lie somewhere between “evolution” and “adaptive heuristics.” The evolu-
tionary aspect of our work stems from the inertial component: with very
high probability, our players are “programmed” to use a specific bid. How-
ever, our adaptive learning rule based on ex-post regret has an important
component of heuristics. Quoting Hart (2005, p. 1403): “We use the term
heuristics for rules of behavior that are simple, unsophisticated, simplistic
and myopic. These are “rules of thumb” that the players use to make their
decisions. We call them adaptive if they induce behavior that reacts to what
happens in the play of the game, in directions that, loosely speaking, seem
“better”.” Our process is related to the regret matching algorithms (e.g.,
Foster and Vohra (1998), Hart and Mas-Colell (2000)) with two important
differences. First, we define regret with respect to the last one-shot inter-
action of a player, instead of the average regret entailed in regret matching,
where a player carries over her time average payoff every period and wonders
how that average payoff would have been affected had she played a differ-
ent action. And second, in regret matching, the probability of switching is
proportional to regret, so such switches are typically likely, whereas in our
case they are infinitesimals, although the rate at which these probabilities go
to zero is determined by the amount of regret. Our assumptions lead to an
ergodic process and we characterize the stochastically stable states: that is,
we identify the bids that will be used in the very long run most of the time,
when behavior is affected by a negligible amount of ex-post regret.

In the second-price auction, our result identifies the truthful bid as the
only one that is stochastically stable. This is understood as a consequence
of this bid being dominant – in fact, the same result obtains in the dou-
ble auction model, whenever it is dominant for a player to bid truthfully.
On the other hand, the result for the first-price auction is sensitive to the
presence of a friction to change one’s bid.4 If no such frictions exist, the
unique stochastically stable bid is half of one’s valuation, independent of the
number of competing bidders – as will be explained below, ex-post versus
interim considerations explain this, since all that matters is the realization
of the highest competitor bid. But if changing bids by much is not feasible,

4The presence of such frictions may be justified by “real-world” considerations. Of-
ten, for a bid to be accepted at an auction, complex legal work is required to back the
plausibility of the bid in question.
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stochastic stability selects essentially truth-telling behavior. This provides
a different rationale to truth-telling or “trustworthy” behavior from others
found in the literature.5

In Section 4 the trading institution is a k-double auction. That is, pri-
vately informed buyers and sellers of an indivisible good are matched in
pairs, and when they are matched, they make simultaneous price announce-
ments. Trade takes place if and only if the buyer’s bid exceeds the seller’s, at
the k-weighted average of the two prices. Inertia and the adaptive learning
rule based on ex-post regret as explained above determine traders’ behav-
ior. Our result shows that, when frictions to change one’s bid do not exist,
the unique bid selected by stochastic stability is a toughening of the lin-
ear equilibrium strategy of the uniform distribution model (Chatterjee and
Samuelson (1983)). As in the first-price auction, if changing one’s bid by
large amounts is not possible, we find that stochastic stability selects bids
close to the truthful valuations.

Section 5 provides a detailed discussion of the intuition behind our results.
Basically, the bids selected by stochastic stability in our adaptive learning
model can be understood as those that equalize the maximum gain from
increasing and decreasing one’s bid. Equivalently, they minimize the maximal
regret, and they can also be seen as the best reply to a “veil of ignorance,” i.e.,
a uniform belief over other bids. In the absence of frictions on the amount
of change in one’s bid, our agents behave as if they held uniform beliefs,
and correspondingly, act tougher than if the corresponding equilibrium of
a uniform game were being played. To enhance the comparison with that
equilibrium, our agents’ behavior leads to not succeeding in trade more often,
but when one does succeed, one obtains a substantially larger payoff. The
paper closes with our brief conclusions, and a section that collects the proofs
of the major results.

2 Second-Price Auction

There is a single indivisible object. Any seller of that indivisible object values
it at 0 and this is known to the potential buyers or bidders. A bidder for
that indivisible object values it at v ∈ V ≡ {0, 1

n
, 2

n
, . . . , n−1

n
, 1}. A bidder’s

5It has been argued that trustworthy behavior arises due to self-interest in maintain-
ing a relationship, other-regrading preferences, moral commitment etc. See Ben-Ner and
Putterman (2001) for a brief discussion.
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valuation is her private information.
For every v ∈ V , there exist a large number of bidders with their valua-

tions equal to v. Let Bv denote the population of bidders with their valuations
equal to v. Let S0 denote the population of sellers.

In each period t, a finite number Mt of sellers are selected randomly
from S0. Each selected seller is then matched with M ′ ≥ 2 bidders that
are selected randomly and independently from B =

⋃
v∈V Bv. Note that Mt

can be a random variable so that the number of auctions can be different in
different periods.6 For simplicity, we shall fix M ′, the size of any auction.7

The trading mechanism used by all the sellers is a second-price sealed-bid
auction. That is, all the bidders matched to a seller submit sealed bids to
the seller. The bidder with the highest bid wins the object. If more than one
bidder bids the highest, then a random tie-breaking rule is used by the seller.
The bidder who wins the object pays a price equal to the second-highest
bid.8 If the object is traded at price p, the winning bidder i’s payoff is vi− p
and all the other bidders matched to the seller get a payoff of 0. The seller’s
payoff is p.

A bidder can bid any number σ ∈ Σ = {0, δ, 2δ, . . . , 1}, where δ is the
indivisible money unit. Assume that δ is small enough so that there exists
an integer N such that Nδ = 1

n
. Otherwise, some bidders will not have the

option to bid truthfully.
Each bidder in this market can be identified by her bidding rule, which

specifies her unique bid in the event she is matched with a seller. So when
we say that a bidder’s bid in period t is σ, we mean that she will bid σ in
case she is matched with a seller in period t.

We assume that the bidders in this market have complete inertia with
respect to their bids, that is, in each period, every bidder uses the same bid
as in the previous period. Thus, the distribution of bids in the market during
any period is exactly the initial distribution. Therefore, without adding more
structure, the model has no predictive power. To answer which of the large

6In that case, we assume that Mt and Mt′ have the same distribution to ensure that
the dynamic process is time homogeneous.

7It is straightforward to make the size of each auction random. In this case, it will be
natural to assume that the bidding rule of a bidder specifies her bids for every possible size
of the auction in which she can play. The result will not change in both the second-price
auction and first-price auction models if one adopts this modification.

8To be precise, if more than one bidder bid the highest amount, then the price is equal
to this bid.
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number of possible distributions of bids will be observed in the long run,
we add a perturbation to the model using a random adaptive learning rule
defined in the next subsection.

2.1 Random Adaptive Learning Rule

A subset of bidders, P , adapt their bid from period t to t + 1 using the
following random adaptive learning rule: suppose in period t a bidder in P
with valuation vi is using the bid σi.

• If this bidder is not matched in period t, then she does not change her
bid if she were matched in period t + 1.

• If this bidder is matched in period t, then let π(vi, σi, σ−i) be her payoff
in that auction, where σ−i is the profile of bids of all other bidders in
that auction. Pick any σ′i ∈ Σ(η, σi) ≡ {σ : 0 < |σ − σi| ≤ ηδ}, where
η ≥ 1. Had she bid σ′i instead of σi in that auction, ceteris paribus, her
payoff would have been π(vi, σ

′
i, σ−i). Let σ∗−i denote the highest bid

among σ−i. We assume that if σ′i = σ∗−i, then π(vi, σ
′
i, σ−i) = 0. That

is, had her bid of σ′i made her one of the more-than-one highest bidders,
then she believes that she would have lost the random tie-breaking rule
of the seller.9

Define ∆(vi, σi, σ
′
i, σ−i) = π(vi, σ

′
i, σ−i)− π(vi, σi, σ−i).

Let ∆(vi, σi, σ
′
i, σ−i) > 0. Then, we refer to this number as valuation

vi’s regret from bidding σi instead of σ′i against σ−i. In this case, the

bidder changes her bid to σ′i in period t+1 with probability ε
1

∆(vi,σi,σ′
i
,σ−i) .

That is, while inertia continues to determine her bid with high probabil-
ity, switches to other bids are an increasing function of the correspond-
ing ex-post regret. However, if ∆(vi, σi, σ

′
i, σ−i) ≤ 0, then she changes

her bid to σ′i in period t+1 with probability ε
1
γ , where γ is positive but

9The assumption of pessimism in the case of tied winning bids is not important. We
could instead assume that they use the tie-breaking rule and expected utility to evaluate
their payoffs over lotteries. In this case, had the bid of σ′

i made a buyer one of the
M∗ multiple highest bidders, then she believes that she would have won the auction
with probability 1

M∗ . Then her payoff in the auction would have been π(vi, σ
′
i, σ−i) =

1
M∗ (vi−σ′

i). The result for the second-price auction would not change with this alternative
assumption. The result for the first-price auction studied in the next section would not
change either for v 6= δ.
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smaller than any regret.10 That is, switches to bids for which there is
no ex-post regret are least likely. All these events entailing switches in
bids are independent across bidders and time.11

The parameter η reflects certain frictions in the environment that prevent
a trader from changing her bid by large amounts: a trader will not be allowed
to change her bid by more than ηδ in one period. A small η implies a high
friction, whereas η ≥ 1

δ
implies no friction at all.

We shall assume that a very small subset of bidders are obstinate. Call
the set of obstinate bidders O. An obstinate bidder never changes her bid,
that is, she bids the same any time she is matched with a seller.

Let Pv denote the size of the population P ∩ Bv. We assume that the
size of any auction is small compared to these populations, that is, M ′ ≤
min{P0, . . . , P1}.

A state of the market in a period, denoted by ω, lists the number of
bidders in P with each valuation v who are using each bid σ in that period.
Let NB(v, σ) denote the number of bidders in P ∩ Bv who use the bid σ.
Therefore, ω = (NB(v, σ))v∈V &σ∈Σ. Let Ω denote the set of states of the
market.

We do not include the distribution of bids among the obstinate bidders
when defining the state of the market. This is because these bidders never
change their bids whereas we are interested in analyzing the dynamic process
of the bidders changing their bids using the learning rule described above.
The only assumption we make about the distribution of bids among the
obstinate bidders is that it is “interior,” that is, for every σ ∈ Σ, there
exists at least one bidder in O who uses the bid σ. Although the number of
obstinate bidders required to satisfy this assumption is large for small values
of δ, this number should be thought of as arbitrarily small relative to the
number of buyers in P .

Without the random adaptive learning rule, the state of the market does
not change. In that case, every bidder in P uses the same bid as the one

10This minimum (positive) regret exists since the sets of valuations and bids are finite;
thus, γ is well defined.

11The results are robust to any transformation λ of the probability of switching as
follows: for a fixed v, let λv : < → <++ be a positive-monotonic transformation of
∆(v, ·, ·, ·). The result is unaffected if we instead assume that a bidder changes her bid

from σi to σ′
i ∈ Σ(η, σi) with probability ε

1
λvi

(∆(vi,σi,σ′
i
,σ−i)) . Note that the transformation

λv need not be the same as λv′ .
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she used in the previous period. This trivial dynamics can thus be described
as a Markov process on the state space Ω with the transition matrix equal
to the identity matrix. Hence, all states of the market are absorbing and,
as already mentioned, any prediction regarding which states will be more
frequently visited in the long run depends on the initial state, that is, the
initial distribution of bids in the population of bidders P . By adding the
random adaptive learning rule with ε > 0, we have perturbed this dynamics,
to get an irreducible and aperiodic Markov process, Mε, on the state space
Ω. Hence there exists a unique stationary distribution µε that approximates
both the frequency with which a state is visited over a long horizon and
the probability of being in a particular state at a point in time. Following
Kandori, Mailath and Rob (1993) and Young (1993), the states in the support
of limε→0 µε are called stochastically stable states. These are to be interpreted
as our long run prediction, i.e., the states on which the system will spend a
positive proportion of time in the very long run when the switches of bids
are possible, but very unlikely events. Our attempt is to identify such states.

Before we do that, we list some facts that will be used repeatedly to
identify the stochastically stable states in this section.

Facts 2.1. Consider a second-price sealed-bid auction. The following state-
ments are true for any η:

• A bidder with valuation vi would have gained a positive amount had she
increased her bid from σi to σ′i in that auction, ceteris paribus,

· only if such a bidder did not win the object in that auction using
σi (i.e., σi ≤ σ∗−i),

· and only if she would have been the unique highest bidder had she
increased her bid to σ′i (i.e., σ′i > σ∗−i).

· Furthermore, such a gain is possible if and only if σi < vi, and the
maximum such possible gain for a bidder of valuation vi is vi−σi,
which would happen when σ∗−i = σi.

• A bidder with valuation vi would have gained a positive amount had she
decreased her bid from σi to σ′i in that auction, ceteris paribus,

· only if she won the object in that auction using σi (i.e., σi ≥ σ∗−i),

· and only if she would not have been the unique highest bidder after
reducing her bid to σ′i (i.e., σ′i ≤ σ∗−i).
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· Furthermore, such a gain is possible if and only if σi > vi, and the
maximum such gain for a bidder of valuation vi is σi − vi, which
may happen when σ∗−i = σi.

It follows from Facts 2.1 that a bidder with valuation vi who bids σi = vi

would not have gained a positive amount had she increased or decreased her
bid in that auction. This gives a clue to the main finding of this section,
which we proceed to establish formally.

Let r(ω, ω′) be the minimum resistance of going from state ω to state ω′.
Let NB(ω, v, σ) denote the number of bidders in P ∩ Bv who use the bid σ
in state ω. Also, for every v ∈ V and every σ ∈ Σ, define

∆∗∗(v, σ) = max
σ′i∈Σ(η,σ),σ−i∈ΣM′−1

{∆(v, σ, σ′i, σ−i), γ}

The following is an auxiliary result used later in this section.

Lemma 2.2. Suppose ω and ω′ are such that NB(ω′, v, σ) < NB(ω, v, σ) for
some σ ∈ Σ. Then r(ω, ω′) ≥ 1

∆∗∗(v,σ)
.

Proof : In any transition from ω to ω′, it must be that at least one bidder
from P ∩ Bv changes her bid from σ, since NB(ω′, v, σ) < NB(ω, v, σ). Call
this bidder i. The maximum this bidder i could have gained had she changed
her bid from σ in any auction equals ∆∗∗(v, σ). Thus, r(ω, ω′) ≥ 1

∆∗∗(v,σ)
. �

The main result of this section now follows:

Proposition 2.3. If ω is stochastically stable, then NB(ω, v, σ) = 0 for all
σ 6= v.

Thus, our model predicts that if the sellers use a second-price sealed-bid
auction, then only truthful bids are stable in the long run. Recall that it is
a dominant strategy to bid truthfully in a second-price sealed-bid auction.
Interestingly, even though the buyers in our model do not perform such ra-
tional calculations, over the long run, they converge to bids that are truthful.
We will have more to say about this in section 5.

3 First-Price Auction

Consider now exactly the same setup as in the previous section, except that
all the sellers in S0 use a first-price sealed-bid auction as the mechanism to

10



allocate goods. That is, all the bidders matched to a seller submit sealed
bids to the seller. The bidder with the highest bid wins the object. If more
than one bidder bid the highest, then a random tie-breaking rule is used by
the seller. The bidder who wins the object pays a price equal to her bid.

We begin by stating some key facts for the analysis in this section:

Facts 3.1. Consider a first-price sealed-bid auction. The following state-
ments are true for any η:

• A bidder with valuation vi would have gained a positive amount had she
increased her bid from σi to σ′i in that auction, ceteris paribus,

· only if she did not win the object in that auction by using σi (i.e.,
σi ≤ σ∗−i),

· only if she would have been the unique highest bidder had she in-
creased her bid to σ′i (i.e., σ∗−i < σ′i),

· and only if σ′i < vi.

· Furthermore, such a gain would be possible if and only if σi <
vi − δ, and the maximum amount that the bidder with valuation
vi could have gained by such a bid increase equals vi − (σi + δ),
which happens when σ∗−i = σi.

• A bidder with valuation vi would have gained a positive amount had she
decreased her bid from σi to σ′i in that auction, ceteris paribus,

· only if she won the object when she bid σi in that auction (i.e.,
σi ≥ σ∗−i).

· If σi ≤ vi, then she would have been the unique highest bidder
after reducing her bid to σ′i (i.e., σ′i > σ∗−i), which implies that
σi > δ. In such a case (δ < σi ≤ vi), the maximum amount that
the bidder could have gained by decreasing her bid from σi equals
min{ηδ, σi − δ}, which happens when σ∗−i = 0.

· If σi > vi, then she would have gained irrespective of whether she
would have won or lost the auction after reducing her bid to σ′i. In
this case, the maximum amount that the bidder could have gained
by decreasing her bid from σi equals max{min{ηδ, σi − δ}, σi −
vi}. Here min{ηδ, σi − δ} is the highest possible price fall, which
happens when σ∗−i = 0 and σi − vi is the highest loss that she can
avoid, which may happen when σ∗−i = σi.

11



For every v ∈ V , every σ ∈ Σ, and every σ′ ∈ Σ(η, σ), define

∆∗(v, σ, σ′) = max
σ−i∈ΣM′−1

{∆(v, σ, σ′, σ−i), γ}.

What follows is another auxiliary lemma, used later to prove the main
result of the section:

Lemma 3.2. Suppose ω and ω′ are such that a bidder in P∩Bv must change
her bid from σ̌ to σ̃ in any transition from ω to ω′. Then r(ω, ω′) ≥ 1

∆∗(v,σ̌,σ̃)
.

Proof : The maximum a bidder in P∩Bv could have gained had she changed
her bid from σ̌ to σ̃ in any auction equals ∆∗(v, σ̌, σ̃). Thus, r(ω, ω′) ≥

1
∆∗(v,σ̌,σ̃)

. �
We now state the main result of the current section:

Proposition 3.3. If ω is stochastically stable, then NB(ω, v, σ) = 0 for all
σ satisfying any of the following inequalities:

• σ > max{v − ηδ, v+δ
2
}.

• ηδ ≤ σ < v − ηδ − δ.

• σ < min{ηδ, v−δ
2
}.

The content of this proposition is best expressed by the following corol-
lary:

Corollary 3.4. If ω is stochastically stable, then NB(ω, v, σ) > 0 implies
that:

• if η < v−δ
2δ

, σ ∈ [v − ηδ − δ, v − ηδ];

• and if η ≥ v−δ
2δ

, σ ∈ [v−δ
2

, v+δ
2

].

Proof : It follows from rearranging the inequalities in the statement of Propo-
sition 3.3. �

The above corollary tells us that the bids outside the identified intervals
will not be used by the bidders in P ∩ Bv in any stochastically stable state.
Note that the answer obtained depends on the friction parameter η. If η is
very small (e.g., η = 1), there is a strong rigidity to change one’s bid. Then,
the bid that every bidder ends up using almost all the time hovers around
one’s true valuation, i.e., bid shading is not a significant long run prediction
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in this case. On the other hand, if the friction to change bids is insignificant
(corresponding to large values of η, say η = 1

δ
), a unique form of bid shading

is identified as the long run prediction. Indeed, every bidder of valuation v
is very likely to use a bid that approximates as close as possible exactly half
of his valuation, i.e., v

2
. For intermediate values of η, the highest valuations

almost all the time shade their bid as much as the friction allows them, while
the low valuations’ most often used bid is again half of their valuation. To
illustrate the intermediate case, if δ = 0.01 is the monetary unit, n = 50 is
the grid width of valuations, and η = 30 is the friction parameter, then those
bidders whose valuation exceeds 0.60 are very likely to shade their bid by 30
or 31 cents with respect to their valuation, while those with valuations no
greater than 0.60 bid half of their valuation most of the time in the very long
run.

Thus, the model predicts that if the bidders face an auction environment
with high frictions to change their bids, then they are likely to bid very close
to their valuations in the long run. The amount of shading by the bidders
increases as the frictions diminish. However, there is an upper bound on the
shading that bidders will undertake in the long run: even if bidders face a
frictionless auction on the bid updating, they are unlikely to bid below v−δ

2
.

4 k-Double Auction

There is a single indivisible object. A seller of that indivisible object values
it at vs ∈ V = {0, 1

n
, 2

n
, . . . , n−1

n
, 1}, and it is her private information. A

buyer of that indivisible object values it at vb ∈ V , and it is also her private
information.

For every v ∈ V , there exist a large number of buyers and a large number
of sellers with their valuations equal to v. Let Bv denote the population of
buyers with their valuations equal to v. Let Sv denote the population of
sellers with their valuations equal to v.

In each period t, a finite number Mt of buyers and the same number of
sellers are selected randomly and independently from B =

⋃
v∈V Bv and S =⋃

v∈V Sv, respectively. These selected buyers and sellers are then randomly
paired to transact the indivisible object. Note that Mt itself can be a random
variable so that the number of matches can be different in different periods.12

12In that case, we assume that Mt and Mt′ have the same distribution to ensure that
the dynamic process is time homogeneous.
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The trading mechanism is a k-double auction, k ∈ [0, 1], in which both
players submit sealed bids. Namely, if the buyer bids pb and the seller bids
ps, then the object is traded if and only if pb ≥ ps at a price equal to the
weighted average of the two bids, kpb + (1− k)ps. If the object is traded at
price p, the buyer’s payoff is vb−p while the seller’s payoff is p−vs; otherwise,
they each get a payoff of 0.

A player can bid any number σ ∈ Σ = {0, δ, 2δ, ....., 1}. Again, assume
that δ is small enough so that there exists an integer N such that Nδ = 1

n
.

Each player in this market can be identified by her bidding rule, which
specifies her unique bid in the event she is matched. So when we say that
a player’s bid in period t is σ, we mean that she will bid σ in case she is
matched in period t.

As in the previous two models, we first assume that the players in this
market have complete inertia with respect to their bids, that is, in each pe-
riod, every player uses the same bid as in the previous period. Thus the
distribution of bids in the market during any period is exactly the initial
distribution. Therefore, without adding more structure, the model has no
predictive power. To answer which of the large number of possible distri-
butions of bids will be observed in the long run, we add a perturbation to
the model using a random adaptive learning rule similar to the one defined
earlier.

4.1 Random Adaptive Learning Rule

Let the subscript i denote a buyer or a seller, that is, i = b, s. A subset of
players, P , adapt their bid from period t to t+1 using the following random
adaptive learning rule: suppose in period t a player in P with valuation vi is
using the bid σi.

• If this player is not matched in period t, then she does not change her
bid if matched in period t + 1.

• If this player is matched in period t, then let πi(vi, σi, σ−i) be her payoff
in that double auction, where σ−i is the other player’s bid. Pick any
σ′i ∈ Σ(η, σi) ≡ {σ : 0 < |σ − σi| ≤ ηδ}, where η ≥ 1. Had she bid σ′i
instead of σi in that double auction, ceteris paribus, her payoff would
have been πi(vi, σ

′
i, σ−i).

Define ∆i(vi, σi, σ
′
i, σ−i) = πi(vi, σ

′
i, σ−i)− πi(vi, σi, σ−i).
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As in previous sections, when ∆i(vi, σi, σ
′
i, σ−i) > 0, we refer to this

magnitude as valuation vi’s regret from bidding σi instead of σ′i against
σ−i. Thus, if ∆i(vi, σi, σ

′
i, σ−i) > 0, we shall assume that this player

changes her bid to σ′i in period t + 1 with probability ε
1

∆i(vi,σi,σ′
i
,σ−i) .

That is, although inertia continues to be the main driving force of her
behavior, in the unlikely event that her bid is adjusted, the probability
of switching to another bid is increasing in the corresponding regret.
However, if ∆i(vi, σi, σ

′
i, σ−i) ≤ 0, then she changes her bid to σ′i in

period t + 1 with probability ε
1
γ , where γ is positive but smaller than

any regret. These switches are not being justified by any regret, and
we assume that the probability of such switches is smaller. All these
events entailing switches in bids are independent across players and
time.13

Also as in the previous models, we assume that there is a very small
subset of players who are of the obstinate type, denoted by O. An obstinate
player never changes her bid, that is, she bids the same value any time she is
matched. We also assume that the distribution of bids among the obstinate
buyers and sellers is “interior,” that is, for every σ ∈ Σ, there exist at least
one buyer and one seller in O who use the bid σ.

A state of the market in a period, denoted by ω, lists the number of
buyers and sellers in P with each valuation v ∈ V who are using each bid
σ ∈ Σ in that period. Let NB(vb, σb) denote the number of buyers in P ∩Bvb

who use the bid σb. Let NS(vs, σs) denote the number of sellers in P ∩ Svs

who use the bid σs. Therefore, ω = (NB(vb, σb), NS(vs, σs))vb,vs∈V &σb,σs∈Σ. As
in the previous models, we do not include the distribution of bids among the
obstinate players while defining the state of the market. Let Ω denote the
set of states of the market.

As before, without the random adaptive learning rule, the state of the
market does not change. After we introduce it, we have an irreducible and
aperiodic perturbed Markov process, and we proceed to identify its stochas-
tically stable states.

Facts 4.1. Consider a k-double auction. The following statements are true
for any η:14

13As in the previous models, the result is robust to any positive-monotonic transforma-
tion of the probability of switching.

14We list these facts only for a seller since we write down the proof of the main result
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• A seller with valuation vs would have gained a positive amount had she
decreased her bid from σs to σ′s in that double auction, ceteris paribus,

· only if she did not trade with the buyer when she bid σs (i.e.,
σs > σb),

· only if she would have traded with the buyer had she decreased her
bid (i.e., σ′s ≤ σb),

· only if kσb + (1− k)σ′s > vs.

· Furthermore, such a gain would be possible if and only if σs >
vs + δ, and the maximum amount that the seller with valuation
vs could have gained by decreasing her bid from σs in that double
auction equals σs−δ−vs, which happens if and only if σb = σs−δ.

• If a seller with valuation vs would have gained a positive amount had she
increased her bid from σs to σ′s in that double auction, ceteris paribus,

· then it must be that she traded with the buyer when she bid σs

(i.e., σs ≤ σb).

· If kσb + (1 − k)σs ≥ vs, then it must be that she would have also
traded with the buyer after increasing her bid (i.e., σ′s ≤ σb). In
this case, the maximum such gain for this seller from increasing
her bid from σs equals (1−k) min{ηδ, 1−σs}, which happens when
σb = 1.

· If kσb + (1 − k)σs < vs, then it must be that σs < vs. In this
case, she would have gained irrespective of whether she would have
traded or not after increasing her bid. Moreover, the maximum
such gain for this seller from increasing her bid from σs equals
max{(1−k) min{ηδ, 1−σs}, vs−σs}. Here, (1−k) min{ηδ, 1−σs}
is the highest possible price increase, which happens when σb = 1,
and vs − σs is the highest loss that she can avoid, which happens
if and only if σb = σs.

Let NB(ω, v, σ) denote the number of buyers in P ∩ Bv with valuation v
who bid σ in state ω. Similarly, define NS(ω, v, σ). Also, for i = b, s, define

only for the sellers.
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• for every v ∈ V , every σ ∈ Σ, and every σ′ ∈ Σ(η, σ),

∆∗
i (v, σ, σ′) = max

σ−i∈Σ
{∆i(v, σ, σ′, σ−i), γ};

• for every v ∈ V , and every σ ∈ Σ,

∆∗∗
i (v, σ) = max

σ′i∈Σ(η,σ),σ−i∈Σ
{∆i(v, σ, σ′i, σ−i), γ}

The next two lemmas provide the lower bound on the resistance of a
transition between two states.

Lemma 4.2. Suppose ω and ω′ are such that NB(ω′, v, σ) < NB(ω, v, σ) for
some σ ∈ Σ. Then r(ω, ω′) ≥ 1

∆∗∗
b (v,σ)

. Similarly, if ω and ω′ are such that

NS(ω′, v, σ) < NS(ω, v, σ) for some σ ∈ Σ, then r(ω, ω′) ≥ 1
∆∗∗

s (v,σ)
.

Proof : It must be that at least one buyer in P∩Bv changes her bid from σ in
the transition from ω to ω′ since NB(ω′, v, σ) < NB(ω, v, σ). The maximum
this buyer could have gained had she changed her bid from σ in any double
auction equals ∆∗∗

b (v, σ). Thus, r(ω, ω′) ≥ 1
∆∗∗

b (v,σ)
. We can similarly prove

the second part of the lemma. �

Lemma 4.3. Suppose ω and ω′ are such that a buyer in P ∩Bv must change
her bid from σ̌ to σ̃ in any transition from ω to ω′. Then r(ω, ω′) ≥ 1

∆∗
b (v,σ̌,σ̃)

.

Similarly, if ω and ω′ are such that a seller in P ∩ Sv must change her bid
from σ̌ to σ̃ in any transition from ω to ω′, then r(ω, ω′) ≥ 1

∆∗
s(v,σ̌,σ̃)

.

Proof : The maximum a buyer in P ∩Bv could have gained had she changed
her bid from σ̌ to σ̃ in any double auction equals ∆∗

b(v, σ̌, σ̃). Thus, r(ω, ω′) ≥
1

∆∗
b (v,σ̌,σ̃)

. The other part of the lemma can be proved similarly. �
We can now state the main result of this section:

Proposition 4.4. If ω is stochastically stable, then

• NB(ω, vb, σb) = 0 for all σb satisfying any of the following inequalities:

· σb > max{vb − kηδ, 1
1+k

vb}.
· ηδ − δ ≤ σb < vb − kηδ − δ.

· σb < min{ηδ − δ, 1
1+k

vb − δ}.
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• NS(ω, vs, σs) = 0 for all σs satisfying any of the following inequalities:

· σs < min{vs + (1− k)ηδ, 1
2−k

vs + 1−k
2−k

}.
· vs + (1− k)ηδ + δ < σs ≤ 1 + δ − ηδ.

· σs > max{1 + δ − ηδ, 1
2−k

vs + 1−k
2−k

+ δ}.

Again, the message of the former proposition is best brought out by the
following corollary:

Corollary 4.5. If ω is stochastically stable, then

• NB(ω, vb, σb) > 0 implies that:

· if η < vb

δ(1+k)
, σb ∈ [vb − kηδ − δ, vb − kηδ],

· and if η ≥ vb

δ(1+k)
, σb ∈ [ 1

1+k
vb − δ, 1

1+k
vb].

• NS(ω, vs, σs) > 0 implies that:

· if η < 1−vs

δ(2−k)
, σs ∈ [vs + (1− k)ηδ, vs + (1− k)ηδ + δ],

· and if η ≥ 1−vs

δ(2−k)
, σs ∈ [ 1

2−k
vs + 1−k

2−k
, 1

2−k
vs + 1−k

2−k
+ δ].

Proof : It follows from rearranging the inequalities in the statement of Propo-
sition 4.4. �

The above corollary tells us that the bids outside the identified intervals
will not be used by the traders in the non-obstinate populations. Again, note
how the answer depends on the friction parameter η. If frictions to change
one’s bid are very large (e.g., as in η = 1), a buyer of valuation vb is extremely
likely to shade her bid between (k+1) and k times δ, and a seller of valuation
vs is extremely likely to bump her ask between (1−k) and (2−k) times δ. If,
on the other hand, frictions are small (corresponding to large values of η, say
η = 1

δ
), the long run behavior of each of these populations of traders is also

well identified. Indeed, while a buyer of valuation vb is then very likely to bid
vb

1+k
, each seller of valuation vs would ask most of the time an amount vs+1−k

2−k
.

For intermediate values of η, the high surplus traders (high valuation buyers
and low valuation sellers) bid according to the first items in the corollary,
and they misrepresent their valuations with their bids and asks in a lower
percentage than do low surplus traders, who bid according to the second
items in it. To illustrate this intermediate case, suppose again that δ = 0.01
is the indivisible money unit, n = 50 is the grid width of valuations, and
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η = 30 is the friction parameter, and consider the case k = 1
2
. Then, buyers

with valuation vb ≤ 0.44 are very likely to offer the bid closest to 2
3
vb, while

buyers with valuation vb ≥ 0.46 will bid shading their valuation by either
15 or 16 cents. On the other hand, sellers with valuation vs ≥ 0.56 will ask
for the amount closest to 1

3
+ 2

3
vs, while sellers with valuation vs ≤ 0.54 will

ask for 15 or 16 cents more than their valuation in any stochastically stable
state.

It also follows from Corollary 4.5 that if k = 0, then the buyers in P ∩Bvb

are likely to use only the bids in [vb − δ, vb] in the long run irrespective of
η. Thus, when the buyer’s bid does not determine the price of the good, all
the buyers will eventually bid within δ of their valuation. It is interesting to
note that it is a dominant strategy for a buyer to bid equal to her valuation
in a k-double auction when k = 0. The buyers in our model will converge to
almost truthful bids over the long run when k = 0 but without using similar
rational calculations. Similarly, if k = 1, then the sellers in P ∩Svs are likely
to use only the bids in [vs, vs + δ] in the long run irrespective of the friction
η. That is, when the seller’s bid does not determine the price of the good,
all the sellers will eventually bid within δ of their valuation. Again, it is a
dominant strategy for a seller to bid equal to her valuation in a k-double
auction when k = 1.

On the other hand, we see that when k > 0, the set of bids that are
likely to be used by the buyers in the long run will depend on η. Starting
from [vb − (1 + k)δ, vb − kδ] when η = 1, the set of bids that are likely to
be used by the buyers in the long run keeps “shifting down” as the friction
to switch one’s bid becomes less severe. Once η ≥ vb

(1+k)δ
, then only the

bids in [ 1
1+k

vb − δ, 1
1+k

vb] are likely to be used by the buyers in the long run
irrespective of η. Similarly, if k < 1, then the bids that are likely to be used
in the long run by the sellers depend on the friction as well. When η = 1,
then they are likely to use only the bids in [vs +(1− k)δ, vs +(2− k)δ] in the
long run. As the friction is removed when one increases η, this set of bids
keeps “shifting up”. However, there is a limit to how much this set will “shift
up”. Once η ≥ 1−v

(2−k)δ
, then only the bids in [ 1

2−k
vs + 1−k

2−k
, 1

2−k
vs + 1−k

2−k
+ δ] are

likely to be used by the sellers in the long run regardless of the value of η.
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5 Discussion

To discuss our results, we shall begin by explaining the intuition of how
they are obtained. The bids that will be used in the stochastically stable
states (approximately) satisfy the following balance condition: at these bids,
a player’s maximal gain from increasing her bid equals her maximal gain from
decreasing it.

In the second-price auction, if a bidder with valuation v uses a bid σ > v,
there is no gain at all from increasing her bid over σ, while the maximal gain
from decreasing it is σ − v > 0 (see Facts 2.1). In this case, such a bid will
be adjusted downwards to find the path of least resistance. On the other
hand, if she uses a bid σ < v, the maximal gain from increasing her bid is
v − σ > 0 while there is no gain at all from decreasing it (see again Facts
2.1). Therefore, such a bid will be adjusted upwards. From the combination
of both arguments, it follows that in the long run one will see almost all the
time the bid σ = v. Furthermore, note how the two maximal gains are equal
only at σ = v, where both vanish.

In the first-price auction, if a bid σ ≥ v is being used, there is no gain
whatsoever from increasing it, while the maximum gain from decreasing it,
consisting of avoiding a loss, is max{min{ηδ, σ − δ}, σ − v} (see Facts 3.1).
This means that no bids σ > v will be observed a positive proportion of time
in the long run, since in this case the gain from decreasing one’s bid is strictly
positive. Further, the same is true for σ = v whenever v > δ. (If v = 0 or
v = δ, bidding one’s valuation will still be stochastically stable.) What
remains now is to study the dynamic forces for bids below one’s valuation.
If a bidder uses a bid σ < v, the maximal gain from increasing it over
σ, which will happen when she turns from losing to winning the auction,
is v − σ − δ (see Facts 3.1). On the other hand, the maximal gain from
decreasing her bid under σ, which results in the highest possible price savings,
is min{ηδ, σ − δ} (see again Facts 3.1). Thus, for v > δ, the two are equal
only at σ = max{v − ηδ − δ, v

2
}.

Consider now the k-double auction. Suppose a seller uses an asking bid
σs < vs. Then, there is no possible gain associated with decreasing it, while
the maximal gain from increasing it, resulting in the highest possible price
increase or the avoidance of a loss, is max{(1 − k) min{ηδ, 1 − σs}, vs − σs}
(see Facts 4.1). It follows that no asking bid σs < vs will be ever part of
the long run prediction, as the dynamic forces will push to increase it. This
already pins down the long run behavior of a seller with valuation vs = 1.

20



In addition, for bids σs ≥ vs, the maximal gain a seller gets from increasing
her asking bid over σs, now simply consisting of the highest price increase, is
(1−k) min{ηδ, 1−σs}. On the other hand, the maximal gain of a seller from
decreasing her ask below σs, turning a situation of no-trade into trade, is
σs−δ−vs if σs > vs, while no gain is possible from such a decrease if σs = vs

(see Facts 4.1). Thus, for vs < 1, the two maximal payoff gains are equal
only at σs = min{vs + (1 − k)ηδ + δ, 1

2−k
vs + 1−k

2−k
+ δ

2−k
}. We can similarly

argue that the balance condition for the buyers is never possible for σb > vb

since there is no possible gain associated with increasing one’s bid, while a
positive gain exists if one decreases it. Further, when vb > 0, the balance
condition only holds at σb = max{vb − kηδ − δ, 1

1+k
vb − δ

1+k
}.

To sum up, the stability of the bids that are likely to be used in stochas-
tically stable states can thus be seen as stemming from a balance between
two opposing forces. Indeed, it is not difficult to see that the proofs we have
constructed implicitly use this balance condition. Basically, we argue that
the gain that a player in some population could have got in a particular tran-
sition along the added branch to the rooted tree is greater than the gain that
a player in that population could have got on any transition along the deleted
branch. The gain along the added branch is always at least the maximal gain
from increasing (decreasing) the bid, whereas the gain on the deleted branch
is at most approximately the maximal gain from decreasing (increasing) the
bid. The last interaction of a player makes her ponder whether she has an
incentive to increase, decrease or not change her bid. The strength of this
incentive is a function of the two opposing forces: the maximal gain she could
have got by increasing her bid and the maximal gain she could have got by
decreasing it. If the former force dominates, then it is much more likely to
see the player increasing her bid, whereas if the latter dominates, the system
will move much more often toward states in which she decreases her bid.
Only at those bids that are used in stable states do the two opposing forces
balance.

Another way to see our results is that stochastically stable bids minimize
the maximal regret. Recall that we can interpret max{∆(vi, σi, σ

′
i, σ−i), 0}

as the regret of player i associated with playing σi instead of σ′i in the last
period. For all v ∈ V and σ ∈ Σ define:

R(v, σ) = max
σ′i∈Σ(η,σ),σ−i∈Σ−i

max{∆(v, σ, σ′i, σ−i), 0}.

Thus, R(v, σ) is the maximal regret that a player with valuation v can
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have if she plays σ in any period. We shall argue next that, in all three mod-
els, stochastically stable bids minimize this maximal regret, that is, stochas-
tically stable bids belong to arg minσ∈Σ R(v, σ).15

In the second-price auction, R(v, σ) = |v − σ| (see Facts 2.1). Thus,
bidding truthfully minimizes the maximal regret and we have already seen
that it is also the unique stochastically stable bid.

In the first-price auction, R(v, σ) = max{min{ηδ, σ − δ}, σ − v} if σ ≥ v
whereas R(v, σ) = max{min{ηδ, σ − δ}, v − σ − δ} if σ < v. (Recall our
discussion of the balanced condition, earlier in this section.) For simplicity
assume that δ is small enough so that R(v, σ) ≈ max{min{ηδ, σ}, |v − σ|}.
Thus for v < 2ηδ, R(v, σ) is minimized at bids that approximately equal
v
2

whereas for v ≥ 2ηδ, R(v, σ) is minimized at bids that approximately lie
in the interval [v − ηδ, v + ηδ]. Corollary 3.4 tells us that when v < 2ηδ,
the stochastically stable bids are approximately equal to v

2
whereas for v ≥

2ηδ, stochastically stable bids are approximately equal to v − ηδ. Thus,
stochastically stable bids minimize the maximal regret.

In the k-double auction, Rs(vs, σs) = max{(1−k) min{ηδ, 1−σs}, vs−σs}
if σs < vs whereas Rs(vs, σs) = max{(1 − k) min{ηδ, 1 − σs}, σs − δ − vs}
if σs ≥ vs. (Again, the discussion on the balance condition shows this.)
Again for simplicity assume that δ is small so that Rs(vs, σs) ≈ max{(1 −
k) min{ηδ, 1 − σs}, |vs − σs|}. Thus for 1 − vs < (2 − k)ηδ, Rs(vs, σs) is
minimized at bids that approximately equal 1

2−k
vs + 1−k

2−k
whereas for 1−vs ≥

(2−k)ηδ, Rs(vs, σs) is minimized at bids that approximately lie in the interval
[vs−(1−k)ηδ, v+(1−k)ηδ]. Corollary 4.5 tells us that when 1−vs < (2−k)ηδ,
the stochastically stable bids are approximately equal to 1

2−k
vs + 1−k

2−k
whereas

for 1− vs ≥ (2− k)ηδ, the stochastically stable bids are approximately equal
to vs + (1 − k)ηδ. A similar argument works for the buyer. Thus, the
stochastically stable bids in the k-double auction also minimize the maximal
regret.

Hyafil and Boutilier (2004) propose minimizing the maximal regret as a
decision criterion when the players do not have any quantifiable prior beliefs
over the type space – they refer to this environment as one with strict type
uncertainty. They define a strategy of a player to be a minimax best response
to a given strategy profile of other players if the action of each type of that

15Because of the friction η, this is not an “if and only if” statement, that is, there
will exist bids that minimize the maximal regret but they are not stochastically stable.
However, if η ≥ 1

δ , then one can make it an “if and only if” statement.
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player minimizes her maximal regret for any ex-post realization of types of
the other players. They go on to define a minimax-regret equilibrium as the
profile of strategies such that the strategy of each player is a minimax best
response to the strategy profile of the other players. We now argue that
the profiles of stable bids define a minimax-regret equilibrium appropriately
redefined when the model has obstinate types. In our models, a type of a
player is a pair describing her valuation and whether she is obstinate or not.
Therefore, lets assume that the environment is that of strict type uncertainty
over this extended type space. We have shown above that the stable bids of
each valuation type of each non-obstinate type player minimizes her maximal
regret with respect to any realization of the bid profile of the other players.
Along with the “interiority” assumption on the set of bids of the obstinate
type players, this implies that the strategy of every non-obstinate type player
in the stable states is a minimax best response to the strategy profile of the
other players in the stable states. Thus, the strategy profile of non-obstinate
type players in the stable states defines a minimax-regret equilibrium.16

Our agents are far from being able to play an equilibrium in the corre-
sponding static Bayesian game, let alone its dynamic counterpart, since there
are no prior beliefs that are common knowledge among them. In this sense,
it is as if they play the game “in the veil of ignorance.” We argue now that,
in the three models we have studied, one can find a belief such that the sta-
ble bid is an optimal response to that belief, and that belief is that each bid
chosen by the opponents is equally likely. We shall refer to this as “uniform
belief rationalization.” A bid rationalized in this way satisfies the first-order
condition of payoff maximization given uniform beliefs, i.e., marginal gain
must equal marginal loss at that bid. As we shall see, the reason why stable
bids can be “uniform-belief rationalized” is that the balance condition that
is satisfied at such a bid (maximal gain from increasing the bid equal to
the maximal gain from decreasing it) is exactly the same as the first-order
condition.

The balance condition is v − σ = 0 in the second-price auction model.
This implies that only truthful bid is stable. Clearly, truthful bid is also
“rationalizable” for any belief, since it is a dominant strategy to bid truthfully
in a second-price sealed-bid auction.

16Of course, the bid of the obstinate type player is not a minimax best response to the
strategy profile of the other players. It is standard to define only the strategy profile of the
non-obstinate types as an equilibrium when the model has obstinate types. For instance,
see Abreu and Gul (2000).
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Thus, the argument of “rationalization” for the second-price auction is
fairly robust, independent of the friction η. However, for most of the analysis
in the first-price and k-double auctions, we assume in the ensuing discussion
that η ≥ 1

δ
, so that effectively the friction to change one’s bid in our dynamic

models has been removed. Recall that also in these trading procedures, when-
ever a trader has a dominant strategy, our conclusions for her are independent
of η.

The bid v
2

is stable for the bidders in the first-price sealed-bid auction
when η ≥ 1

δ
. In this case, the balance condition is

v − σ − δ = σ − δ =⇒ v − σ = σ.

The bid of v
2

can also be “rationalized” in the following sense. Recall that
bidding half of one’s valuation is the equilibrium strategy of a two-bidder first-
price auction where the valuations are independently drawn from a uniform
distribution and the seller’s reservation price is zero. In this case, the belief
of bidder i is that the other bidder is bidding half of her valuation. So the
first-order condition of that problem is

(v−σi)g(σi) = G(σi) =⇒ (v−σi)2 = 2σi =⇒ v−σi = σi.

(Here, g and G are the density and distribution functions of the other bidder’s
bid.) In our model, a bidder’s incentive to switch her bid is based on an ex-
post calculation. So all she cares about is the ex-post realization of σ∗−i. In
contrast, a rational bidder in a first-price auction cares about the expected
value of σ∗−i, which in particular depends on the number of bidders in the
auction. Equivalently, one can argue the “rationalization” of our stable bid
if each bidder believes that the distribution of σ∗−i is uniform over an interval
[0, κ] with 0.5 ≤ κ ≤ 1 – for example, if she believes there is no shading at
all when the underlying distribution is uniform.

We turn now to k-double auctions. If k = 1, then the truthful bid is stable
for the sellers in the k-double auction. The balance condition at σs = vs in
this case is

max{0, vs − σs} = 0 =⇒ vs − σs = 0.

Bidding truthfully can also be “rationalized” since doing so is a dominant
strategy for a seller in the k-double auction when k = 1. All these conclusions
are similar for a buyer when k = 0.
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The bid 1
2−k

vs + 1−k
2−k

is stable for all the sellers in the k-double auction

when η ≥ 1
δ
. In this case, the balance condition is

σs − δ − vs = (1− k)(1− σs).

For small δ, we can write it as

σs − vs ≈ (1− k)(1− σs).

Bidding 1
2−k

vs + 1−k
2−k

can be “rationalized” since if a seller with valuation
vs believes that the bid of the buyer is distributed uniformly on [0, 1], then
that bid is optimal for her. For that belief, the first-order condition of payoff
maximization for the seller is

(vs − σs)ĝ(σs) = (1− k)(1− Ĝ(σs)) =⇒ vs − σs = (1− k)(1− σs).

(Here, ĝ and Ĝ are the density and distribution functions of the buyer’s
bid.) Note that if the buyer’s bidding function is linear, then Ĝ(σs) =
ĝ(σs)σs + constant. Therefore, the slope of the seller’s bidding function
is always 1

2−k
as long as the buyer’s bidding function is linear. Similarly, the

bid 1
1+k

vb is stable for all the buyers in the k-double auction when η ≥ 1
δ
. It

is also“rationalized” since if a buyer with valuation vb believes that the bid
of the seller is distributed uniformly on [0, 1], then the bid that is optimal
for her is exactly 1

1+k
vb.

Finally, it is interesting to compare the linear equilibrium of the k-double
auction when the valuation distributions are uniform over the interval [0, 1]
with the behavior uncovered by our evolutionary process. The beliefs de-
scribed to “rationalize” the bids uncovered in our analysis are that no mis-
representation of valuations takes place when traders play the game. Corre-
spondingly, each side plays “tougher” than in equilibrium. The reader will
recall that the linear equilibrium strategies for the case of uniform distribu-
tions are 1

2−k
vs + 1−k

2
for the seller and 1

1+k
vb +

k(1−k)
2(1+k)

for the buyer. So, in our
model, both players are “tougher” than they would be in equilibrium, and
the amount of extra toughness over equilibrium bids on each side is k(1−k)

2(2−k)
for

the seller, and k(1−k)
2(1+k)

for the buyer. If k = 1/2, this extra toughness exhibited
by each side is the same on both sides. The highest toughness by the seller
is when k = 2 −

√
2 and by the buyer is when k =

√
2 − 1. On the other

hand, if either k = 0 or k = 1, our model supports equilibrium play on both
sides – no extra toughness is found.
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6 Conclusion

We have applied stochastic stability to the analysis of bidding behavior in
private-values auctions and double auctions. The assumed bidding behavior
has a strong component of inertia, and it is modified in the direction of
regrets. The results obtained are sharp, identifying a unique bid to be used
by each type most of the time in the very long run. Such a bid is the one
that minimizes the maximal regret. It would be interesting to explore general
Bayesian games and see to what extent our conclusions can be generalized.

7 Proofs

Proof of Proposition 2.3:

Case 1 : Suppose ω is stochastically stable but NB(ω, v, σ) > 0 for some v ∈ V
and some σ > v. Let σ̂ be the highest σ′ > v such that NB(ω, v, σ′) > 0.

Consider state ω′ such that the distribution of bids in ω′ is exactly the
same as in ω except that NB(ω′, v, σ̂) = NB(ω, v, σ̂)−1 and NB(ω′, v, σ̂−δ) =
NB(ω, v, σ̂− δ) + 1. Any transition from ω to ω′ involves at least one bidder
in P ∩ Bv changing her bid from σ̂ to something else. Pick any bidder in
P ∩ Bv who is using the bid σ̂ in state ω. Call her bidder i. In state ω,
there is a positive probability that bidder i is matched with a seller, a single
bidder from O who bids σ̂ and other M ′−2 bidders from P∩Bv (here we are
using the assumption that M ′ ≤ min{P0, . . . , P1}). Since σ∗−i = σ̂, there is a
positive probability that bidder i wins the object and gets a negative payoff
v − σ̂. If she had bid σ̂ − δ, she would have avoided this loss. Thus, bidder
i would have gained σ̂ − v had she reduced her bid from σ̂ to σ̂ − δ in that
auction. Moreover, the state of the market will move from ω to ω′ with this
single change. Therefore, r(ω, ω′) ≤ 1

σ̂−v
. However, σ̂ − v is the maximum

amount that this buyer could have gained by changing her bid from σ̂ > v
(see Facts 2.1). Thus r(ω, ω′) = 1

σ̂−v
(using Lemma 2.2).

Consider a minimal ω-rooted tree. In it, there must exists an edge from
state ω′

j to ω′
j+1 (on the directed path from ω′ to ω) such that at least one

bidder in P ∩ Bv changes her bid from σ̂ − δ to something else. That is,
NB(ω′

j+1, v, σ̂ − δ) < NB(ω′
j, v, σ̂ − δ). A bidder in P ∩ Bv who is using the

bid σ̂ − δ could not have gained had she increased her bid in any auction
since σ̂− δ ≥ v (see Facts 2.1). Also, σ̂− δ− v is the maximum amount that
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a bidder in P ∩ Bv could have gained by decreasing her bid from σ̂ − δ (see
Facts 2.1). Thus, the maximum gain of a bidder in P ∩ Bv from changing
her bid from σ̂− δ is less than σ̂− v. Therefore, r(ω′

j, ω
′
j+1) > 1

σ̂−v
= r(ω, ω′)

(using Lemma 2.2).
Now, if we add the directed edge (ω, ω′) and delete the directed edge

(ω′
j, ω

′
j+1) from the minimal ω-rooted tree, we get a ω′

j-rooted tree with a
total resistance less than the stochastic potential of ω, a contradiction.

The above analysis implies that in any stochastically stable state ω,
NB(ω, v, σ) = 0 for all v ∈ V and all σ > v. In particular, this implies
that in any stochastically stable state ω, NB(ω, 0, 0) = P0, that is, all buyers
in the population P ∩ B0 bid exactly 0.

Case 2 : Suppose ω is stochastically stable but NB(ω, v, σ) > 0 for some
v ∈ V and some σ < v.

Consider state ω′′ such that the distribution of bids in ω′′ is exactly the
same as in ω except that NB(ω′′, v, σ) = NB(ω, v, σ)−1 and NB(ω′′, v, σ+δ) =
NB(ω, v, σ + δ) + 1. Any transition from ω to ω′′ involves at least one bidder
in P∩Bv changing her bid from σ to something else. Pick any such bidder in
P ∩Bv who is using the bid σ in state ω. Call her bidder i. In state ω, there
is a positive probability that bidder i is matched with a seller, a single bidder
from O who bids σ and other M ′− 2 bidders from P ∩B0 (here again we are
using the assumption that M ′ ≤ min{P0, . . . , P1}). All bidders from P ∩ B0

bid 0 in state ω since ω is stochastically stable. Therefore, σ∗−i = σ. Thus,
there is a positive probability that bidder i looses the auction. If she had
bid σ + δ, she would have won the auction with a payoff of v − σ∗−i = v − σ.
Thus, bidder i would have gained v − σ had she increased her bid from σ to
σ + δ in that auction. Moreover, the state of the market will move from ω
to ω′′ with this single change. Thus r(ω, ω′′) ≤ 1

v−σ
. Moreover, v − σ is the

maximum amount that this bidder could have gained by changing her bid
from σ < v (see Facts 2.1). Thus r(ω, ω′′) = 1

v−σ
(using Lemma 2.2).

Consider a minimal ω-rooted tree. In it, there must exist an edge from
state ω′′

j to ω′′
j+1 (on the directed path from ω′′ to ω) such that at least one

bidder in P ∩ Bv changes her bid from σ + δ to something else. That is,
NB(ω′′

j+1, v, σ + δ) < NB(ω′′
j , v, σ + δ). A bidder in P ∩ Bv could not have

gained had she decreased her bid from σ + δ in any auction since σ + δ ≤ v
(see Facts 2.1). Also, v − (σ + δ) is the maximum amount that a bidder in
P ∩ Bv could have gained by increasing her bid from σ + δ (see Facts 2.1).
Thus, the maximum gain of a bidder in P ∩ Bv from changing her bid from
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σ + δ is less than v − σ. Therefore, r(ω′′
j , ω

′′
j+1) > 1

v−σ
= r(ω, ω′′) (using

Lemma 2.2).
Now, if we add the directed edge (ω, ω′′) and delete the directed edge

(ω′′
j , ω

′′
j+1) from the minimal ω-rooted tree, we get a ω′′

j -rooted tree with a
total resistance less than the stochastic potential of ω, a contradiction.

The above analysis implies that in any stochastically stable state ω,
NB(ω, v, σ) = 0 for all v ∈ V and all σ < v. �

Proof of Proposition 3.3:

Case 1 : Suppose ω is stochastically stable but NB(ω, v, σ) > 0 for some v ∈ V
and some σ > v. Let σ̂ be the highest σ′ > v such that NB(ω, v, σ′) > 0.

Consider state ω′ such that the distribution of bids in ω′ is exactly the
same as in ω except that NB(ω′, v, σ̂) = NB(ω, v, σ̂)−1 and NB(ω′, v, σ̂−δ) =
NB(ω, v, σ̂− δ) + 1. Any transition from ω to ω′ involves at least one bidder
in P ∩ Bv changing her bid from σ̂ to something else. Pick any bidder in
P ∩ Bv who is using the bid σ̂ in state ω. Call her bidder i. In state ω,
there is a positive probability that this bidder i is matched with a seller and
M ′ − 1 bidders from P ∩ Bv (here we are using again the assumption that
M ′ ≤ min{P0, . . . , P1}). Since σ∗−i ≤ σ̂, there is a positive probability that
bidder i wins the object and gets a negative payoff v − σ̂. If she had bid
σ̂ − δ, she would have gained a positive amount irrespective of whether she
would have won or lost the auction after such a reduction in her bid (see
Facts 3.1). Moreover, the state of the market will move from ω to ω′ with
this single change. Thus, r(ω, ω′) < 1

γ
.

Consider a minimal ω-rooted tree. Note that
∑

σ′>σ̂−δ NB(ω′, v, σ′) <∑
σ′>σ̂−δ NB(ω, v, σ′). Therefore, there must exist states ω′

j and ω′
j+1 on the

directed path from ω′ to ω in the ω-tree, such that
∑

σ′>σ̂−δ NB(ω′
j+1, v, σ′) >∑

σ′>σ̂−δ NB(ω′
j, v, σ′). That is, at least one bidder in P ∩ Bv increases her

bid from some σ̌ ≤ σ̂− δ to some σ̃ > σ̂− δ in the transition from ω′
j to ω′

j+1.
However, this bidder could not have gained by such an increase in her bid
since σ̃ > σ̂− δ ≥ v (see Facts 3.1). Hence, r(ω′

j, ω
′
j+1) ≥ 1

γ
> r(ω, ω′) (using

Lemma 3.2).
Now, if we add the directed edge (ω, ω′) and delete the directed edge

(ω′
j, ω

′
j+1) from the minimal ω-rooted tree, we get a ω′

j-rooted tree with a
total resistance less than the stochastic potential of ω, a contradiction.

The above analysis implies that in any stochastically stable state ω,
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NB(ω, v, σ) = 0 for all v ∈ V and all σ > v. In particular, this implies
that in any stochastically stable state ω, NB(ω, 0, 0) = P0, that is, all bid-
ders in the population P ∩ B0 bid exactly 0.

Case 2 : Suppose ω is stochastically stable but NB(ω, v, σ) > 0 for some
v ∈ V and some σ such that max{v − ηδ, v+δ

2
} < σ ≤ v. This inequality will

only hold for v > δ, which in turn implies that σ > δ.
Consider state ω′′ such that the distribution of bids in ω′′ is exactly the

same as in ω except that NB(ω′′, v, σ) = NB(ω, v, σ)−1 and NB(ω′′, v, max{σ−
ηδ, δ}) = NB(ω, v, max{σ− ηδ, δ}) + 1. Any transition from ω to ω′′ involves
at least one bidder in P∩Bv changing her bid from σ to something else. Pick
any such bidder in P ∩Bv who is using the bid σ in state ω. Call her bidder
i. In state ω, there is a positive probability that bidder i is matched with
a seller and M ′ − 1 bidders from P ∩ B0 (here again we use the assumption
that M ′ ≤ min{P0, . . . , P1}). All bidders in P ∩ B0 use the bid 0 in state ω
since ω is stochastically stable. Therefore, σ∗−i = 0. Thus, bidder i wins the
auction and gets v − σ. If she had bid max{σ − ηδ, δ}, she would have still
won the auction with a payoff of v −max{σ − ηδ, δ}. Thus, bidder i would
have gained min{ηδ, σ−δ} had she reduced her bid from σ to max{σ−ηδ, δ}
in that auction. Moreover, the state of the market will move from ω to ω′′

with this single change. Thus r(ω, ω′′) ≤ 1
min{ηδ,σ−δ} .

Consider now an ω-tree of minimal resistance. Since
∑

σ′<σ NB(ω′′, v, σ′) >∑
σ′<σ NB(ω, v, σ′), there must exist states ω′′

j and ω′′
j+1 on the directed

path from ω′′ to ω on the ω-rooted tree, such that
∑

σ′<σ NB(ω′′
j+1, v, σ′) <∑

σ′<σ NB(ω′′
j , v, σ). That is, at least one bidder in P ∩ Bv changes her bid

from σ̌ < σ to some σ̃ ≥ σ in the transition from ω′′
j to ω′′

j+1. Facts 3.1 tell
us that this bidder would have gained a positive amount had she increased
her bid from σ̌ to σ̃ in some auction only if σ̃ < v. Thus, if σ̃ ≥ v, then
r(ω′′

j , ω
′′
j+1) ≥ 1

γ
(using Lemma 3.2). On the other hand, if σ̃ < v, then the

maximum amount she could have gained by increasing her bid from σ̌ to σ̃
equals v − σ̃ (see Facts 3.1). Thus, in this case, r(ω′′

j , ω
′′
j+1) ≥ 1

v−σ̃
≥ 1

v−σ

(using Lemma 3.2). Also, v−σ < min{ηδ, σ−δ} since σ > max{v−ηδ, v+δ
2
}.

This implies that r(ω′′
j , ω

′′
j+1) > r(ω, ω′′). Therefore, by adding the directed

edge (ω, ω′′) and deleting the directed edge (ω′′
j , ω

′′
j+1) from the minimal ω-

rooted tree, we will get a ω′′
j -rooted tree with a total resistance less than the

stochastic potential of ω, a contradiction.
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Case 3 : Suppose ω is stochastically stable but NB(ω, v, σ) > 0 for some
v ∈ V and some σ such that ηδ ≤ σ < v − ηδ − δ.

Consider state ω̂ such that the distribution of bids in ω̂ is exactly the
same as in ω except that NB(ω̂, v, σ) = NB(ω, v, σ)−1 and NB(ω̂, v, σ+δ) =
NB(ω, v, σ + δ) + 1. Any transition from ω to ω̂ involves at least one bidder
in P ∩ Bv changing her bid from σ to something else. Pick any such bidder
in P ∩ Bv who is using the bid σ in state ω. Call her bidder i. In state ω,
there is a positive probability that bidder i is matched with a seller, a single
bidder from O who bids σ and M ′−2 bidders from P∩B0 (here again we use
the assumption that M ′ ≤ min{P0, . . . , P1}). All bidders in P ∩ B0 use the
bid 0 in state ω since ω is stochastically stable. Therefore, σ∗−i = σ. Thus,
bidder i looses the auction with positive probability and gets 0. If she had
bid σ + δ, she would have won the auction with a payoff of v− (σ + δ). Thus,
bidder i would have gained v − (σ + δ) had she increased her bid from σ to
σ + δ in that auction. Moreover, the state of the market will move from ω
to ω̂ with this single change. Thus, r(ω, ω̂) ≤ 1

v−(σ+δ)
.

Consider now an ω-tree of minimal resistance. Note that NB(ω̂, v, σ+δ) >
NB(ω, v, σ + δ). Therefore, there must exist states ω̂j and ω̂j+1 on the di-
rected path from ω̂ to ω on the ω-rooted tree such that NB(ω̂j+1, v, σ + δ) <
NB(ω̂j, v, σ + δ). That is, at least one bidder in P ∩Bv changes her bid from
σ + δ in the transition from ω̂j to ω̂j+1. The maximum a bidder in P ∩ Bv

would have gained had she increased her bid from σ + δ < v − ηδ ≤ v − δ in
any auction equals v − (σ + 2δ) < v − (σ + δ) (see Facts 3.1). On the other
hand, the maximum a bidder in P ∩Bv would have gained had she reduced
her bid from σ + δ < v in any auction equals min{ηδ, σ} = ηδ < v − (σ + δ)
(see Facts 3.1). In either case, the gain is less than v − (σ + δ). Therefore,
Lemma 3.2 tells us that r(ω̂j, ω̂j+1) > 1

v−(σ+δ)
≥ r(ω, ω̂). So, by adding

the directed edge (ω, ω̂) and deleting the directed edge (ω̂j, ω̂j+1) from the
minimal-resistance ω-rooted tree, we will get a ω̂j-rooted tree with a total
resistance less than the stochastic potential of ω, a contradiction.

Case 4 : Suppose ω is stochastically stable but NB(ω, v, σ) > 0 for some
v ∈ V and some σ such that σ < min{ηδ, v−δ

2
}. Note that there will exist a

σ ≥ 0 satisfying this inequality only if v ≥ 2δ.
Consider state ω̂′ such that the distribution of bids in ω̂′ is exactly the

same as in ω except that NB(ω̂′, v, σ) = NB(ω, v, σ)−1 and NB(ω̂′, v, σ+δ) =
NB(ω, v, σ + δ) + 1. Any transition from ω to ω̂′ involves at least one bidder
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in P ∩ Bv changing her bid from σ to some other bid. Pick any such bidder
in P ∩ Bv who is using the bid σ in state ω. Call her bidder i. In state ω,
there is a positive probability that bidder i is matched with a seller, a single
bidder from O who bids σ and M ′ − 2 bidders from P ∩ B0 (here again we
use the assumption that M ′ ≤ min{P0, . . . , P1}). All bidders from P ∩ B0

use the bid 0 in state ω since ω is stochastically stable. Therefore, σ∗−i = σ.
Thus, bidder i looses the auction with positive probability and gets 0. If she
had bid σ + δ, she would have won the auction with a payoff of v − (σ + δ).
Thus, bidder i would have gained v− (σ + δ) had she increased her bid from
σ to σ + δ in that auction. Moreover, the state of the market will move from
ω to ω̂′ with this single change. Thus r(ω, ω̂) ≤ 1

v−(σ+δ)
.

Consider now an ω-tree of minimal resistance. Note that NB(ω̂′, v, σ +
δ) > NB(ω, v, σ + δ). Therefore, there must exist states ω̂′

j and ω̂′
j+1 on the

directed path from ω̂′ to ω on the ω-rooted tree such that NB(ω̂′
j+1, v, σ+δ) <

NB(ω̂′
j, v, σ + δ). That is, at least one bidder in P ∩Bv changes her bid from

σ + δ in the transition from ω̂′
j to ω̂′

j+1. If σ + δ ≥ v − δ, a bidder in P ∩ Bv

could not have gained a positive amount by increasing her bid from σ + δ
(see Facts 3.1). Whereas, if σ + δ < v − δ, the maximum a bidder in P ∩ Bv

could have gained had she increased her bid from σ + δ in any auction equals
v− (σ + 2δ) < v− (σ + δ) (see Facts 3.1). Finally, the maximum a bidder in
P ∩ Bv could have gained had she decreased her bid from σ + δ < v+δ

2
< v

(since v ≥ 2δ) in any auction equals min{ηδ, σ} = σ (see Facts 3.1). But
σ < min{ηδ, v−δ

2
} implies that σ < v − (σ + δ). In any case, the gain is less

than v− (σ+δ). So Lemma 3.2 tells us that r(ω̂′
j, ω̂

′
j+1) > 1

v−(σ+δ)
≥ r(ω, ω̂′).

Therefore, by adding the directed edge (ω, ω̂′) and deleting the directed edge
(ω̂′

j, ω̂
′
j+1) from the minimal-resistance ω-rooted tree, we will get a ω̂′

j-rooted
tree with a total resistance less than the stochastic potential of ω, a contra-
diction. �

Proof of Proposition 4.4: To avoid repetitions, we shall write down the
proof only for the population of sellers. Thus, for the rest of the proof, let v
stand for vs and σ for σs.

Case 1 : Suppose ω is stochastically stable but NS(ω, v, σ) > 0 for some
v ∈ V and some σ < min{v + (1 − k)ηδ, 1

2−k
v + 1−k

2−k
}. Note that min{v +

(1− k)ηδ, 1
2−k

v + 1−k
2−k

} ≤ 1 for all v ∈ V , η ≥ 1 and k ∈ [0, 1].
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Sub-case 1 : k = 1. In this case, min{v + (1 − k)ηδ, 1
2−k

v + 1−k
2−k

} = v.
Consider state ω′ such that the distribution of bids is exactly the same as in ω
except that NS(ω′, v, σ) = NS(ω, v, σ)−1 and NS(ω′, v, σ+δ) = NS(ω, v, σ+
δ) + 1. Any transition from ω to ω′ must involve at least one seller in P ∩Sv

changing her bid from σ to some other bid. Pick any such seller in P ∩ Sv

who is using the bid σ in state ω. In state ω, there is a positive probability
that this seller meets with a buyer in O who bids σ. The seller trades in
this interaction and gets a negative payoff of σ− v. If she had bid σ + δ, she
would have avoided this loss. Thus, she would have gained v − σ had she
increased her bid from σ to σ + δ in that interaction. Moreover, the state
of the market will move from ω to ω′ with this single change. Therefore,
r(ω, ω′) ≤ 1

v−σ
. Moreover, v − σ is the maximum amount that this seller

could have gained by increasing her bid from σ since k = 1 (see Facts 4.1).
Thus, r(ω, ω′) = 1

v−σ
(using Lemma 4.2).

Consider the directed path from ω′ to ω on an ω-rooted tree of minimal
resistance. Note that NS(ω′, v, σ + δ) > NS(ω, v, σ + δ). Thus, there must
exist states ω′

j and ω′
j+1 on the path from ω′ to ω on the ω-rooted tree such

that NS(ω′
j+1, v, σ + δ) < NS(ω′

j, v, σ + δ). That is, at least one seller in
P ∩Sv changes her bid from σ + δ in the transition from ω′

j to ω′
j+1. A seller

in P ∩ Sv would not have gained by reducing her bid from σ + δ ≤ v (see
Facts 4.1). Moreover, a seller in P ∩ Sv could not have gained more than
v− (σ+δ) by increasing her bid from σ+δ since k = 1 (see Facts 4.1). Thus,
r(ω′

j, ω
′
j+1) ≥ 1

v−σ−δ
(using Lemma 4.2). Therefore, r(ω′

j, ω
′
j+1) > r(ω, ω′).

Hence, by adding the directed edge (ω, ω′) and deleting the directed edge
(ω′

j, ω
′
j+1) from the minimal ω-rooted tree, we will get a ω′

j-rooted tree with
lower total resistance. This is a contradiction.

Sub-case 2 : k < 1. Let ω′′ be the state in which all the players bid the
same as in ω except NS(ω′′, v, σ) = NS(ω, v, σ) − 1 and NS(ω′′, v, min{σ +
ηδ, 1}) = NS(ω, v, min{σ + ηδ, 1}) + 1. Any transition from ω to ω′′ must
involve at least one seller in P ∩ Sv changing her bid from σ to something
else. Pick any such seller in P ∩ Sv who is using the bid σ in state ω. In
state ω, there is a positive probability that this seller is matched with a buyer
in O who bids 1. The seller could have gained in this interaction had she
increased her bid to min{σ + ηδ, 1}. Her gain in payoff would have been
(1− k) min{ηδ, 1− σ}. Moreover, the state of the market will move from ω
to ω′′ with this single change. Thus, r(ω, ω′′) ≤ 1

(1−k)min{ηδ,1−σ} .
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Consider the directed path from ω′′ to ω on a minimal-resistance ω-rooted
tree. Note that

∑
σ′>σ NS(ω′′, v, σ′) >

∑
σ′>σ NS(ω, v, σ′). Therefore, there

must exist states ω′′
j and ω′′

j+1 on the path from ω′′ to ω on the ω-rooted
tree such that

∑
σ′>σ NS(ω′′

j+1, v, σ′) <
∑

σ′>σ NS(ω′′
j , v, σ′). Thus, at least

one seller in P ∩ Sv reduces her bid from some σ̌ > σ to some σ̃ ≤ σ in
the transition from ω′′

j to ω′′
j+1. A seller in P ∩ Sv could have gained a

positive amount had she reduced her bid from σ̌ to σ̃ only if σ̌ > v + δ and
k(σ̌ − δ) + (1− k)σ̃ − v > 0 (see Facts 4.1).

Thus, if either σ̌ ≤ v+δ or k(σ̌−δ)+(1−k)σ̃−v ≤ 0, then r(ω′′
j , ω

′′
j+1) ≥ 1

γ

(using Lemma 4.3). Then delete the directed edge (ω′′
j , ω

′′
j+1) and add the

directed edge (ω, ω′′) to the ω-rooted tree. We get a ω′′
j -rooted tree with a

lower total resistance, a contradiction.
If on the other hand σ̌ > v+δ and k(σ̌−δ)+(1−k)σ̃−v > 0, the maximum

possible gain that the seller could have made by reducing her bid from σ̌ to σ̃
is k(σ̌− δ) + (1− k)σ̃− v (see Facts 4.1). Thus r(ω′′

j , ω
′′
j+1) ≥ 1

k(σ̌−δ)+(1−k)σ̃−v

(using Lemma 4.3).
Recall that we know that σ̌ > v + δ and that σ̌ ≥ σ + δ. Therefore, one

can have two cases:

(i) Suppose σ̌ = σ + δ. Then, r(ω′′
j , ω

′′
j+1) ≥ 1

kσ+(1−k)σ̃−v
≥ 1

σ−v
. By as-

sumption, σ < min{v + (1 − k)ηδ, 1
2−k

v + 1−k
2−k

}, which implies that
σ − v < (1 − k) min{ηδ, 1 − σ}. Thus, r(ω′′

j , ω
′′
j+1) > r(ω, ω′′). Then,

by deleting the directed edge (ω′′
j , ω

′′
j+1) and adding the directed edge

(ω, ω′′) to the ω-rooted tree, we get a ω′′
j -rooted tree that has a lower

total resistance than the minimal ω-rooted tree, a contradiction.

(ii) Suppose σ̌ > max{σ+δ, v+δ}. Since σ̃ ≤ σ, some seller in P∩Sv reduces
her bid by more than δ in the transition from ω′′

j to ω′′
j+1. Then consider

the state ω′′
l such that the distribution of bids in ω′′

l is the same as in
ω′′

j except that NS(ω′′
l , v, max{σ + δ, v + δ}) = NS(ω′′

j , v, max{σ + δ, v +
δ}) + 1 and NS(ω′′

l , v, σ̌) = NS(ω′′
j , v, σ̌)− 1. Any transition from ω′′

j to
ω′′

l must involve at least one seller in P ∩Sv changing her bid from σ̌ to
some other bid. Pick any seller in P∩Sv who is using the bid σ̌ in state
ω′′

j . In state ω′′
j , there is a positive probability that this seller meets

with a buyer in O who bids σ̌ − δ. The seller does not trade in this
interaction but would have traded had she reduced her bid to σ̌−δ and
thus gained σ̌− δ− v > 0. Moreover, the state of the market will move
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from ω′′
j to ω′′

l with this single change. Therefore, r(ω′′
j , ω

′′
l ) ≤ 1

σ̌−δ−v
.

Since σ̃ ≤ σ < σ + δ < σ̌, we conclude that r(ω′′
j , ω

′′
j+1) > r(ω′′

j , ω
′′
l ).

Now, if by deleting the directed edge (ω′′
j , ω

′′
j+1) and adding the directed

edge (ω′′
j , ω

′′
l ) to the minimal ω-rooted tree, we get another ω-rooted

tree, then we have a contradiction. So suppose by such a deletion and
addition we do not get a ω-rooted tree. This is possible only if ω′′

j is in
the path from ω′′

l to ω in the minimal ω-rooted tree.

So, consider the path from ω′′
l to ω′′

j on the minimal ω-rooted tree.
Note that NS(ω′′

l , v, max{σ + δ, v + δ}) > NS(ω′′
j , v, max{σ + δ, v + δ}).

Therefore, there must exist states ω′′
z and ω′′

z+1 on the path from ω′′
l

to ω′′
j , such that NS(ω′′

z+1, v, max{σ + δ, v + δ}) < NS(ω′′
z , v, max{σ +

δ, v + δ}). That is, at least one seller in P ∩ Sv changes her bid from
max{σ + δ, v + δ} to some other bid in the transition from ω′′

z to ω′′
z+1.

• If this seller increases her bid, then the maximum possible gain
from any such increase in the bid equals (1−k) min{ηδ, 1−max{σ+
δ, v + δ}} since max{σ + δ, v + δ} > v (see Facts 4.1). But (1 −
k) min{ηδ, 1−max{σ + δ, v + δ}} ≤ (1− k) min{ηδ, 1− σ}.

• If σ ≤ v, then this seller would not have gained a positive amount
by a reduction in her bid since max{σ+δ, v+δ} = v+δ (see Facts
4.1). If, on the other hand, σ > v, then the maximum amount a
seller in P ∩ Sv could have gained by such a reduction in her bid
equals σ − v (see Facts 4.1). By assumption, σ < min{v + (1 −
k)ηδ, 1

2−k
v+ 1−k

2−k
}, which implies that σ−v < (1−k) min{ηδ, 1−σ}.

The above analysis implies that r(ω′′
z , ω

′′
z+1) ≥ 1

(1−k)min{ηδ,1−σ} (using

Lemma 4.2). Now, delete the directed edges (ω′′
j , ω

′′
j+1) and (ω′′

z , ω
′′
z+1)

and add the directed edges (ω, ω′′) and (ω′′
j , ω

′′
l ) to get an ω′′

z -rooted
tree. Since r(ω′′

j , ω
′′
j+1) > r(ω′′

j , ω
′′
l ) and r(ω′′

z , ω
′′
z+1) ≥ r(ω, ω′′), the ω′′

z -
rooted tree has a lower total resistance than the minimal ω-rooted tree,
also a contradiction.

Case 2 : Suppose ω is stochastically stable but NS(ω, v, σ) > 0 for some v ∈ V
and some σ such that v+(1−k)ηδ+δ < σ ≤ 1+δ−ηδ. Let ω̂ be the state in
which all the players bid the same as in ω except NS(ω̂, v, σ) = NS(ω, v, σ)−1
and NS(ω̂, v, σ − δ) = NS(ω, v, σ − δ) + 1. Any transition from ω to ω̂ must
involve at least one seller in P ∩ Sv changing her bid from σ to something
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else. Pick any seller in P ∩ Sv who is using the bid σ in state ω. In state ω,
there is a positive probability that this seller meets with a buyer in O who
bids σ−δ. The seller does not trade in this interaction but could have traded
by bidding equal to the buyer’s bid of σ − δ instead of σ. Thus, her gain in
payoff would have been σ− δ− v > 0. Moreover, the state of the market will
move from ω to ω̂ with this single change. Therefore, r(ω, ω̂) ≤ 1

σ−δ−v
.

Consider the directed path from ω̂ to ω on an ω-rooted tree of minimal
resistance. Note that NS(ω̂, v, σ − δ) > NS(ω, v, σ − δ). Therefore, there
must exist states ω̂j and ω̂j+1 on the path from ω̂ to ω on the ω-rooted tree
such that NS(ω̂j+1, v, σ − δ) < NS(ω̂j, v, σ − δ). Thus, at least one seller in
P ∩ Sv changes her bid from σ − δ in the transition from ω̂j to ω̂j+1. Note
that σ−δ > v. If σ−δ = v+δ, then a seller in P∩Sv would not have gained
a positive amount had she reduced her bid from σ − δ (see Facts 4.1). If
σ−δ > v+δ, then the maximum a seller in P∩Sv could have gained had she
reduced her bid from σ−δ equals σ−2δ−v < σ−δ−v (see Facts 4.1). On the
other hand, the maximum a seller in P ∩Sv could have gained by increasing
her bid from σ−δ > v equals (1−k) min{ηδ, 1−σ+δ} = (1−k)ηδ < σ−δ−v
(see Facts 4.1). Thus, in any case, the gain is less than σ− δ− v. Therefore,
Lemma 4.2 tells us that r(ω̂j, ω̂j+1) > 1

σ−δ−v
≥ r(ω, ω̂). So, by deleting the

directed edge (ω̂j, ω̂j+1) and adding the directed edge (ω, ω̂) to the minimal
ω-rooted tree, we will get a ω̂j-rooted tree with a lower total resistance, which
is a contradiction.

Case 3 : Suppose ω is stochastically stable but NS(ω, v, σ) > 0 for some v ∈ V
and some σ such that σ > max{1+δ−ηδ, 1

2−k
v+1−k

2−k
+δ}. Let ω̂′ be the state in

which all the players bid the same as in ω except NS(ω̂′, v, σ) = NS(ω, v, σ)−1
and NS(ω̂′, v, σ − δ) = NS(ω, v, σ − δ) + 1. Any transition from ω to ω̂ must
involve at least one seller in P ∩ Sv changing her bid from σ. Pick a seller
in P ∩ Sv who is using the bid σ in state ω. In state ω, there is a positive
probability that this seller meets with a buyer in O who bids σ − δ. The
seller does not trade in this interaction but would have traded had she bid
equal to the buyer’s bid of σ− δ instead of σ. Her gain in payoff would have
been σ − δ − v > 0. Moreover, the state of the market will move from ω to
ω̂′ with this single change. Therefore, r(ω, ω̂′) ≤ 1

σ−δ−v
.

Consider now the directed path from ω̂′ to ω on a minimal-resistance ω-
rooted tree. Note that NS(ω̂′, v, σ − δ) > NS(ω, v, σ − δ). Therefore, there
must exist states ω̂′

j and ω̂′
j+1 on the path from ω̂′ to ω on the ω-rooted tree

such that NS(ω̂′
j+1, v, σ − δ) < NS(ω̂′

j, v, σ − δ). Thus, at least one seller
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in P ∩ Sv changes her bid from σ − δ to something else in the transition
from ω̂′

j to ω̂′
j+1. Note that σ − δ > v. If σ − δ = v + δ, then a seller in

P ∩ Sv would not have gained a positive amount had she reduced her bid
from σ − δ (see Facts 4.1). If σ − δ > v + δ, then the maximum a seller in
P ∩ Sv could have gained had she reduced her bid from σ − δ > v equals
σ − 2δ − v < σ − δ − v (see Facts 4.1). On the other hand, the maximum a
seller in P ∩ Sv could have gained had she increased her bid from σ − δ > v
equals (1− k) min{ηδ, 1− σ + δ} = (1− k)(1− σ + δ) < σ− δ− v (see Facts
4.1). Thus in any case, the gain is less than σ − δ − v. Therefore, Lemma
4.2 tells us that r(ω̂′

j, ω̂
′
j+1) > 1

σ−δ−v
≥ r(ω, ω̂). So by deleting the directed

edge (ω̂′
j, ω̂

′
j+1) and adding the directed edge (ω, ω̂′) to the minimal ω-rooted

tree, we will get a ω̂′
j-rooted tree with lower total resistance, which is our

final sought contradiction. �
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