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1 Introduction

There is now an extensive literature, beginning with Postlewaite and Schmei-
dler (1986), which studies the problem of Bayesian implementation in envi-
ronments with incomplete information; see, for example, Palfrey and Srivas-
tava (1987, 1989a), Mookherjee and Reichelstein (1990), and Jackson (1991).
The importance of Bayesian incentive compatibility in this context is well
known. This condition is, by the revelation principle, both necessary and
sufficient for truthful Bayesian implementation, i.e., finding a mechanism
where truth-telling is an equilibrium.1 It is for full implementation, requir-
ing the set of equilibrium outcomes of the mechanism to coincide with the
social choice set, that additional conditions become important. This is the
well-known problem of multiplicity of equilibria, and resolving it is our main
concern in this paper. We will argue that Bayesian incentive compatibility
is the only important restriction on a social choice function for full imple-
mentation provided one accepts two kinds of approximations: (a) requiring
virtual instead of exact implementation, and (b) perturbing the environment,
if necessary, to ensure a condition we term type diversity.

Postlewaite and Schmeidler (1986) showed that a necessary condition (in
addition to incentive compatibility) for a social choice set to be Bayesian im-
plementable is Bayesian monotonicity. As the term Bayesian monotonicity
suggests, this condition can be seen as an analog of Maskin monotonicity
(Maskin (1977)) in the presence of incomplete information.2 Palfrey and Sri-
vastava (1989a) found a weakening of incentive compatibility and a variant
of Bayesian monotonicity that turned out to be sufficient for implementa-
tion in exchange economies. The gap after their work between necessary and
sufficient conditions was closed by Jackson (1991) with a strengthening of
Bayesian monotonicity.3 Unfortunately, Bayesian monotonicity is not satis-
fied by any of the well-known social choice functions (SCFs) for exchange

1see, for example, Myerson (1987) and the references therein.
2Recall that Maskin monotonicity is a necessary condition for Nash implementation.

It also turns out to be sufficient in environments where there is a private good and at
least three agents. This condition is satisfied by many correspondences of interest in
exchange economies (such as the Pareto, core and constrainedWalrasian correspondences).
However, it may be quite restrictive in other domains (see, for example, Mueller and
Satterthwaite (1977) and Saijo (1987)).

3Jackson (1991) also provides sufficient conditions that guarantee implementation out-
side of economic environments. He identifies a condition that he terms “monotonicity no
veto” that serves this purpose.
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economies with incomplete information; see Palfrey and Srivastava (1987),
Chakravorti (1992) and Serrano and Vohra (2001).

There is another sense in which the complete information environment
seems to yield more permissive implementation results. Remarkably, the
Maskin monotonicity condition can be entirely dispensed with by slightly
weakening the notion of implementation. This is the main insight of Abreu
and Sen (1991) and Matsushima (1988), who show that under very mild
conditions, any social choice correspondence can be virtually Nash imple-
mented in the sense that, making use of lotteries over social alternatives, it
is possible to exactly implement an SCF that is arbitrarily close to the given
correspondence. See Figure 1, drawn for the case of three social alterna-
tives: since lotteries are allowed in the mechanism, any random outcome x
in the interior of the probability simplex over alternatives satisfies Maskin
monotonicity because the lower contour sets for u and u′ through x are not
nested.4 Moreover, Abreu and Matsushima (1992a) provide a significant im-
provement of these results by showing that under very weak conditions any
SCF can be virtually implemented in the more attractive notion of iteratively
undominated strategies, and this is possible without the use of mechanisms
involving integer games.

Given the power of the virtual approach in the complete information case,
and given that Bayesian monotonicity is often a very strong condition, it is
natural to ask if one can find simpler and/or weaker conditions for virtual im-
plementation in the presence of incomplete information. That some condition
(in addition to incentive compatibility) is needed even for virtual Bayesian
implementation is clear from Example 1 in Serrano and Vohra (2001); there
are environments with incomplete information in which only constant SCFs
can be virtually implemented. Thus, in contrast to the complete information
results, even virtual implementation requires non-trivial restrictions either
on the environment or the SCF. Our aim here is to identify a simple, weak,
and readily interpretable condition for virtual Bayesian implementation of
any incentive compatible SCF.

4Recall that Maskin monotonicity requires the following. Suppose that outcome x is
socially desirable when the true profile of utilities is u, and that in going to another profile
u′, the lower contour set through x of every agent at u′ contains the one when utilities
were u. Then, x should remain socially desirable when utilities are u′.
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Figure 1: Virtual Nash Implementation

Abreu and Matsushima (1992b) dispense with Bayesian monotonicity and
introduce a new condition termed measurability (henceforth A-M measura-
bility) which, under other weak assumptions, is shown to be necessary and
sufficient for virtual implementation in iteratively undominated strategies.
Their sufficiency result applies, a fortiori, to the notion of virtual imple-
mentation in Bayesian Nash equilibrium. Duggan (1997) uses the condition
of incentive consistency and presents a sufficiency result for environments
with at least three agents and “best-element private values.”5 Serrano and
Vohra (2001) criticize A-M measurability and incentive consistency, by show-
ing them to be strong conditions in certain environments (sometimes, even

5In the same endeavor of attempting to dispense with Bayesian monotonicity, Mat-
sushima (1993) shows that this can be done if side payments are allowed.
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stronger than Bayesian monotonicity). Indeed, there are environments where
every SCF is virtually Bayesian implementable, but only constant SCFs sat-
isfy A-M measurability or incentive consistency.

The first contribution of this paper is the identification of a generic con-
dition on environments, type diversity, that makes full implementation with
incomplete information rely solely on incentive compatibility. Indeed, we
shall argue that the difficulty with virtual Bayesian implementation is rare.
Type diversity turns out to be generic in the set of all environments with
at least three alternatives, and in its presence, virtual implementation is as
successful as it can be. Our first main result shows that, in environments
satisfying type diversity, any incentive compatible SCF is virtually Bayesian
implementable (even with two agents). While type diversity is a condition
on the domain, and A-M measurability and incentive consistency are con-
ditions on the SCF, type diversity is considerably easier to check and its
interpretation is straightforward: it yields a simple single crossing property
by requiring that the interim (cardinal) preferences over pure alternatives
of different types of an agent be different. In a private values model, it re-
duces to the condition of value-distinguished types introduced in Palfrey and
Srivastava (1989b). Furthermore, in environments satisfying type diversity,
every SCF satisfies A-M measurability and incentive consistency.6 Thus, in
environments satisfying type diversity, there is no need to impose measur-
ability or incentive consistency on the SCF. In environments violating type
diversity, the two conditions are, however, stronger than necessary.

The main advantage of assuming type diversity is simplicity. At the
expense of some simplicity, and inspired by the Bayesian monotonicity con-
dition stated in Jackson (1991), we also provide a characterization of virtual
Bayesian implementation for economic environments. This characterization
also includes the case of two agents and can be expressed in two forms. That
is, the condition of type diversity with respect to deceptions, a weakening
of the simple type diversity condition, can be imposed on the SCF or the
economic environment to obtain a full characterization of virtual Bayesian
implementation in these settings.7 For each deception, the condition as-
sumes the existence of a certain preference reversal for at least one type of

6However, our result is not implied by those of Abreu and Matsushima (1992b) or
Duggan (1997), since they rely on extra conditions.

7Note that type diversity with respect to deceptions is a weaker condition than Bayesian
monotonicity, A-M measurability or incentive consistency; these three conditions are not
necessary for virtual implementation.
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one agent. Thus, without appealing to genericity arguments, we show that in
economic environments an SCF is virtually Bayesian implementable if and
only if it satisfies incentive compatibility and type diversity with respect
to deceptions. Equivalently, the same proof demonstrates that (1) if an eco-
nomic environment does not satisfy type diversity with respect to deceptions,
virtual Bayesian implementation is severely limited; and (2) if it does, any
incentive compatible SCF is virtually Bayesian implementable.

In sum, this paper shows that the problem of multiplicity of equilibrium
in mechanism design under incomplete information can be completely solved
if one takes two degrees of approximation: (a) in the solution concept, by
requiring virtual instead of exact implementation, and (b) in the environ-
ments, by perturbing them if necessary to ensure type diversity. In doing
so, Bayesian incentive compatibility remains the only important restriction
on an SCF for full implementation. The simplicity of the type diversity
condition also gives us hope for its fruitful applications.

2 The Model and Definitions

We shall consider implementation in the context of a general environment
with asymmetric information. Let N = {1, . . . , n} be the finite set of agents.
Let Ti denote the (finite) set of agent i’s types. The interpretation is that
ti ∈ Ti denotes the private information possessed by agent i. We refer to
a profile of types t = (t1, . . . , tn) as a state. Let T =

∏
i∈N Ti be the set of

states. We will use the notation t−i to denote (tj)j �=i. Similarly T−i =
∏

j �=i Tj .
Each agent has a prior probability distribution qi defined on T . We

assume that for every i ∈ N and ti ∈ Ti, there exists t−i ∈ T−i such that
qi(t) > 0. For each i ∈ N and t̄i ∈ Ti, the conditional probability of t−i ∈ T−i,
given t̄i is denoted qi(t−i | t̄i). We shall assume that all agents agree on zero
probability states. Let T ∗ ⊆ T be the set of states with positive probability.

Let A denote the set of social alternatives, which are assumed to be inde-
pendent of the information state. For example, in the context of an exchange
economy, the set A refers to all possible redistributions of a (constant across
states) aggregate endowment. Let A denote the Borel σ-algebra on A and
� denote the set of probability measures on (A,A).

A social choice function (SCF) is a function f : T 	→ �. Two SCFs, f
and h are equivalent if f(s) = h(s) for every s ∈ T ∗ (see Jackson (1991) for
a discussion on equivalent SCFs). We shall concentrate on SCFs rather than
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social choice sets because our main interest lies in virtual implementation
making use of lotteries over A; a social choice set can be understood as a
random function that puts positive measure only on the functions that it
includes.

The Bernoulli utility of agent i for alternative a in state s is ui(a, s).
Abusing notation slightly, given an SCF f , ui(f, s) will refer to agent i’s ex-
pected utility evaluation of lottery f(s) in state s. The (interim/conditional)
expected utility of agent i of type si corresponding to an SCF f is defined
as:

Ui(f |si) ≡
∑

s′−i∈T−i

qi(s
′
−i|si)ui(f, (s

′
−i, si)).

We can now define an environment as E = {A, (ui, Ti, qi)i∈N}.
A mechanism G = ((Mi)i∈N , g) describes a message space Mi for agent i

and an outcome function g :
∏

i∈N Mi 	→ �.
A Bayesian equilibrium of G is a profile of messages, (m̄i) where mi :

Ti 	→ Mi such that ∀i ∈ N , ∀si ∈ Ti,

Ui(g(m̄(s))|si) ≥ Ui(g(m̄−i(s−i), mi)|si) ∀mi ∈ Mi.

Denote by B(G) the set of Bayesian equilibria of the mechanism G. An
SCF f is exactly Bayesian implementable if there exists a mechanism G such
that g(B(G)) = f .8

A direct mechanism is one with Mi = Ti for all i ∈ N .
Consider the following metric on SCFs:

d(f, h) = sup{|f(B | s) − h(B | s)| | s ∈ T ∗, B ∈ A}.

An SCF f is virtually Bayesian implementable if ∀ε > 0 there exists a
mechanism whose (unique) Bayesian equilibrium outcome coincides with an
SCF hε such that d(f, hε) < ε.

A deception is a profile of functions, α = (αi)i∈N , where αi : Ti 	→ Ti,
αi(ti) �= ti for some ti ∈ Ti for some i ∈ N . (Note that the identity function
on T will not be treated as a deception.) A deception is said to be compatible

8Exact implementation in environments with incomplete information has also been de-
fined with respect to solution concepts other than Bayesian equilibrium, such as undomi-
nated Bayesian equilibrium (Palfrey and Srivastava (1989b)), perfect Bayesian equilibrium
(Brusco (1995)), sequential equilibrium (Baliga (1999), Bergin and Sen (1998)). In each
case, the definition of exact implementation requires the set of outcomes selected by the
chosen solution concept in the mechanism to coincide with the social choice set.
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if α(s) ∈ T ∗ for all s ∈ T ∗. For an SCF f and a deception α, f ◦ α denotes
the SCF such that for each s ∈ T , [f ◦ α](s) = f(α(s)). For an SCF f , a
deception α and a type si ∈ Ti, let fαi(si)(s

′) = f(s′−i, αi(si)) for all s′ ∈ T .
The next condition is necessary for exact Bayesian implementation (see

Jackson (1991)).9

An SCF f satisfies Bayesian monotonicity if for any deception α, when-
ever f ◦ α is not equivalent to f , there exist i ∈ N , si ∈ Ti and an SCF h
such that

Ui(h ◦ α | si) > Ui(f ◦ α | si) while Ui(f | s′i) ≥ Ui(hαi(si) | s′i), ∀s′i ∈ Ti.

An SCF, f , is said to be incentive compatible if for all i ∈ N , si ∈ Ti and
all deceptions α,

Ui(f | si) ≥ Ui(fαi(si) | si).

3 Type Diversity

We shall find it convenient in this Section to assume that the set of alterna-
tives is finite; the reader is referred to Section 6 of Abreu and Sen (1991) for
extensions to the case where A is an arbitrary subset of an abstract separable
space.

Let A = {a1, . . . , aK} be the finite set of alternatives. Henceforth, we will
find it convenient to identify a lottery, x ∈ �, as a point in the unit simplex
in RK , i.e., xk denotes the probability assigned by lottery x to alternative k.

Define Uk
i (ti) to be the interim utility of agent i of type ti for the constant

SCF which assigns ak in each state, i.e.,

Uk
i (ti) =

∑
t−i∈T−i

qi(t−i | ti)ui(ak, t).

Let Ui(ti) = (Uk
i (ti))k=1,...,K .

We will show that any incentive compatible SCF is virtually implementable
in Bayesian Nash equilibrium if the environment satisfies the following con-
dition:

An environment E satisfies type diversity if

9There is an extra condition termed closure, that requires the social choice set to be
closed under concatenation of common knowledge events, but this is not too demanding.
In any case, this condition will not be relevant in what follows since we will be dealing
with social choice functions.
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(i) there do not exist i ∈ N , ti, t
′
i ∈ Ti, ti �= t′i such that

Ui(ti) = αUi(t
′
i) + β

for α > 0.

(ii) for every i ∈ N and ti ∈ Ti, there exist ak, ak′ such that Uk
i (ti) �= Uk′

i (ti).

This condition has a simple interpretation: it requires (i) that the interim
(cardinal) preferences over pure alternatives of different types of an agent be
different, and (ii) that no type of any agent i is indifferent to all alterna-
tives. Note that condition (i) does not require ordinal preferences over pure
alternatives to differ across types unless |A| = 2. Moreover, the condition
only concerns constant SCFs. In a private values model, this reduces to the
condition that Palfrey and Srivastava (1989b) call value-distinguished types ,
but unlike their condition, it is fully operative regardless of the information
structure, including environments with correlated and common values. Type
diversity has the obvious virtue of being simple and easy to check, especially
compared to other conditions in the literature, such as Bayesian monotonic-
ity, A-M measurability or incentive consistency. Importantly, it is easy to
see that in the space of preferences over pure alternatives, type diversity is
satisfied generically if |A| ≥ 3. In this sense type diversity is indeed a very
weak condition if |A| ≥ 3.10 Yet it is remarkable that it suffices for virtual
implementation.

The following Lemma provides a useful implication of type diversity from
the point of view of implementation.

Lemma 1 Suppose an environment E satisfies type diversity. Then there
exist constant SCFs ((li(ti))ti∈Ti

)i∈N such that for every i ∈ N , ti, t
′
i ∈ Ti,

ti �= t′i,
Ui(li(ti) | ti) > Ui(li(t

′
i) | ti).

Proof. Consider the constant SCF x̄, which prescribes in each state the
lottery x̄, assigning equal probability to each alternative in A, i.e., x̄(t) =

10There is another reason why the weakness of condition (i) relies on there being at least
3 alternatives: if there are only 2 alternatives and an agent has more than 2 types then
this condition cannot hold.
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(1/K, . . . , 1/K)) for all t ∈ T . We will show that for i ∈ N , ti, t
′
i ∈ Ti, ti �= t′i,

there exist constant SCFs x and x′, close to x̄, such that

Ui(x | ti) > Ui(x
′ | ti) and Ui(x

′ | ti) < Ui(x
′ | t′i). (1)

The (interim) indifference curve of agent i of type ti through x̄ is described
by a hyperplane, H , in RK−1

+ :

H = {(x1, . . . xK−1) ∈ RK−1
+ |

K−1∑
k=1

pk(ti)xk = ū},

where pk(ti) = (Uk
i (ti) − UK

i (ti)), for k = 1, . . .K − 1. Consider the indiffer-
ence hyperplane through x̄ of agent i of type t′i where t′i �= ti:

H ′ = {(x1, . . . xK−1) ∈ RK−1
+ |

K−1∑
k=1

pk(t
′
i)xk = ū′}.

Given no total indifference (condition (ii) of type diversity), we must have
p(ti) �= 0 and p(t′i) �= 0. Moreover, p(ti) �= cp(t′i) for a positive number c as
that would mean that Ui(ti) = cUi(t

′
i) + β, violating condition (i) of type

diversity. Thus, either p(ti) = cp(t′i) where c < 0 or there does not exist
c �= 0 such that p(ti) = cp(t′i). In the former case, it is easy to see (using
(ii)) that any point which lies above H must be below H ′ and by choosing
two points (one above H and one below it) close to x̄ one finds constant
SCFs which satisfy (1). In the latter case, it is clear that we can choose two
constant SCFs x and x′ close to x̄ satisfying (1).

Given (1) we can complete the proof by the same argument as in the
Lemma in Abreu and Matsushima (1992a) or Lemma 1 in Abreu and Mat-
sushima (1992b).

To illustrate the Lemma, see Figure 2, again drawn for the case of three
pure alternatives, with alternative a2 ranked above a1, which in turn is ranked
above a3 (for all three types). Note how the picture is identical to Figure 1.
However, its meaning is quite different. In particular, we are able to draw
Figure 2 only because the condition is stated concerning preferences over
constant SCFs. If an SCF is not constant, in principle the final outcome it
prescribes is subject to deceptions, and an agent will find difficulties evalu-
ating such SCFs because his Bernoulli utility or the final lottery prescribed
change from state to state. Preferences over constant SCFs do not encounter
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this difficulty, and the surprising fact is that imposing a condition on prefer-
ences over constant SCFs alone turns out to be so powerful.
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Figure 2: Type Diversity

Type diversity implies that every SCF is A-M measurable; see Abreu and
Matsushima (1992b, Section 4.2), and also the related condition of interim
value distinguished types in Palfrey and Srivastava (1993, definition 6.3).

It is also easy to see that if type diversity is satisfied, the SCF f ∗ =∑
i∈N

li(ti)

n
, where li(ti) satisfy the inequalities in the statement of Lemma 1,

has the property that truth-telling is the only Bayesian equilibrium of the
direct mechanism for f ∗. This implies that, in the presence of type diversity,
every SCF is incentive consistent, a condition which plays a crucial role in
Duggan’s (1997) sufficiency result.
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While type diversity is not weaker than either AM-measurability or incen-
tive consistency for every incentive compatible SCF, it is easier to interpret
and is satisfied generically, as long as |A| ≥ 3. Moreover, as we shall show
below, our first result is not implied by the results of either Abreu and Mat-
sushima (1992b) or Duggan (1997) because of the extra assumptions used by
these authors. Note also that our result applies to environments with n ≥ 2.

4 A Simple Positive Result

Theorem 1 Suppose an environment E satisfies type diversity. Then, any
incentive compatible social choice function f is virtually Bayesian imple-
mentable.

Before proving this theorem, we consider an example due to Palfrey and
Srivastava (Example 3 in Palfrey and Srivastava (1989b)) to clarify the com-
parison between our result and other related results in the literature. Palfrey
and Srivastava use this example to show the difficulty that may arise in an
environment with common values. There are two alternatives, A = {a, b}
and three agents. Each agent has two possible types, Ti = {ta, tb} and each
type is drawn independently with qi(tb) = q for all i and q2 > 0.5. Agents
have identical preferences, given by

ui(a, t) =

{
1 if at least two agents are of type ta
0 otherwise

ui(b, t) =

{
1 if at least two agents are of type tb
0 otherwise

For each agent, the corresponding interim utilities for the constant SCFs
assigning alternatives a and b are:

Ua
i (ta) = 1 − q2, U b

i (ta) = q2,
Ua

i (tb) = (1 − q)2, U b
i (tb) = 1 − (1 − q)2.

Since q2 > 0.5, this implies that the U b
i (ti) > Ua

i (ti) for all i and ti ∈ Ti;
ordinal preferences do not vary across types. Clearly, then only constant
SCFs satisfy Bayesian monotonicity in this example. For example, the “ma-
joritarian” SCF which chooses a when at least two agents are of type ta and
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b when at least two agents are of type tb is not Bayesian implementable. As
Palfrey and Srivastava (1989b) show, this SCF is not implementable in un-
dominated Bayesian Nash equilibrium either. It can also be checked that in
this environment, only constant SCFs satisfy A-M measurability or incentive
consistency. This environment violates type diversity as well.

However, type diversity is easily satisfied if we modify this example to
have a third alternative c. For example, suppose ui(c, t) = 0 for all i and all
t ∈ T and the preferences over a and b are the same as before. Now, for each
i, Clearly,

U b
i (tb)

Ua
i (tb)

>
U b

i (ta)

Ua
i (ta)

which implies that type diversity holds; and therefore, so do A-M measur-
ability and incentive consistency. Thus, Theorem 1 applies to this modi-
fied example; any incentive compatible SCF is virtually implementable. In
contrast, the results of Abreu and Matsushima (1992b) and Duggan (1997)
cannot be applied to any non-constant SCF even in this example. Abreu and
Matsushima (1992b) use an assumption (their assumption 2) which requires
that in each state the ex-post preferences (over lotteries) of the agents are dif-
ferent, which is clearly not the case in the present example. Duggan’s (1997)
sufficiency theorem uses a weaker version of best element private values. This
too fails in the present example. In addition, Duggan (1997, Theorem 2) as-
sumes that n ≥ 3, while our result also applies to the case where n = 2.

It is of interest to note that even in this modified example, the majoritar-
ian SCF cannot be implemented in undominated Nash equilibrium; it can be
checked that it does not satisfy the necessary condition identified by Palfrey
and Srivastava (1989b). Of course, exact Bayesian implementation of a non-
constant SCF remains impossible; ordinal preferences over the alternatives
remain identical for all types of all agents even after the new alternative is
added, and only constant SCFs satisfy Bayesian monotonicity.

Proof of Theorem 1: The proof constructs a canonical mechanism that
virtually Bayesian implements f . Consider the following mechanism G =
((Mi)i∈N , g), where Mi is agent i’s message space and g is the outcome func-
tion.

Let agent i’s message space be Mi = Ti × Ti × I∗, where I∗ is the set
of positive integers. We shall denote a typical message sent by agent i by
mi = (t1i , t

2
i , ni).
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Let t1 = (t11, t
1
2, . . . , t

1
n) be the profile of first type reports, and t2 =

(t21, t
2
2, . . . , t

2
n) be the profile of types reported in second place by each agent.

Let L = {((li(ti))ti∈Ti
)i∈N)} be the collection of all (constant) SCFs sat-

isfying the condition of Lemma 1. Let m = |L| and L(t) = {(li(ti))i∈N}. For
each i ∈ N and ti ∈ Ti, fix two SCFs l+i (ti) and l−i (ti) such that

l+i (ti) ∈ arg max
l∈L

Ui(l | ti), l−i (ti) ∈ arg min
l∈L

Ui(l | ti).

Note that

Ui(l
+
i (ti) | ti) > Ui(l

−
i (ti) | ti) for all i ∈ N , for all ti ∈ Ti.

For each i ∈ N , ti ∈ Ti and λ ∈ (0, 1) define the following weighted average
of SCFs in L:

l̃i(ti, λ) =
1

m
[2λl+i (ti) + 2(1 − λ)l−i (ti) +

∑
l∈L\{l+i (ti),l

−
i (ti)}

l].

Clearly, for all i ∈ N , ti ∈ Ti, and λ, λ′ ∈ (0, 1) such that λ′ > λ > 1/2,

Ui(l̃i(ti, λ
′) | ti) > Ui(l̃i(ti, λ) | ti) > Ui(

1

m

∑
l∈L

l | ti). (∗)

With these pieces of notation in place, we are ready to write down the
outcome function g of the mechanism. Let ε ∈ (0, 1).

(i) If there exists j ∈ N such that for all i �= j, mi = (ti, ti, 1), and nj = 1:

g(m) = (1 − ε)f(t1) +
ε

2n

∑
i∈N

li(t
1
i ) +

ε

2m

∑
l∈L

l.

(ii) If there exists j ∈ N such that for all i �= j, mi = (ti, ti, 1), and nj > 1:

g(m) = (1 − ε)f(t1) +
ε

2n

∑
i∈N

li(t
2
i ) +

ε

2m

∑
l∈L

l.

(iii) Otherwise, denoting by k the agent with the lowest index among those
who announce the highest integer:

g(m) = (1 − ε)f(t1) +
ε

2n

∑
i∈N

li(t
2
i ) +

ε

2
l̃k(t

2
k,

nk∑
i ni

).
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The proof will be explained in several steps.
Step 1: The strategy profile where for each i ∈ N and each ti ∈ Ti, mi(ti) =
(ti, ti, 1) is a Bayesian equilibrium of the mechanism G. To see this, note
that changing the first type report is not a profitable deviation because f
is incentive compatible and because Ui(li(ti) | ti) > Ui(li(t

′
i) | ti) for any

t′i �= ti. The latter condition also implies that it is not profitable to change
the announcement of the integer and the second type report. Therefore,
the proposed strategy profile is a Bayesian equilibrium of G. Note that the
outcome produced converges to f as ε → 0.
Step 2. There cannot be an equilibrium in case (iii) because the winner
of the integer game, k, can do better by announcing an even higher inte-
ger, which shifts some probability from a least preferred lottery to a most
preferred lottery (among which there is a strict preference); see (*).
Step 3: There cannot be an equilibrium of G under rule (ii) of the outcome
function g. Then, some agent j chooses nj > 1 while ni = 1 for all i �= j.
In such a case, any player i, i �= j, can announce an integer higher than nj ,
trigger the integer game and obtain a higher payoff.
Step 4: There cannot be an equilibrium of G under rule (i) of the outcome
function g in which n− 1 agents report the same type twice and the integer
1, while the other agent reports different types. If this happens, one of the
first n− 1 agents can trigger the integer game and be its winner. Choosing
a sufficiently large integer, by condition (ii) of type diversity, guarantees a
profitable deviation.
Step 5: There cannot be an equilibrium of G under rule (i) where all agents
report the same type twice and the integer 1, but where these type reports
are not truthful. The reason is that, by condition (i) of type diversity, any
agent that is not reporting his true type would increase his expected payoff by
reporting his true type in his second report and choosing an integer greater
than 1.

Remark 1. In environments violating type diversity, virtual implementation
may be impossible. For instance, this is the case in Example 1 of Serrano
and Vohra (2001), where only constant SCFs are virtually implementable in
Bayesian equilibrium, even though the set of incentive compatible SCFs con-
tains many non-constant ones. In fact, in the environment described in that
example, implementation is also impossible in other solution concepts: only
constant SCFs satisfy the necessary condition for undominated Bayesian im-
plementation identified by Palfrey and Srivastava (1989b), and the necessary
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condition for perfect Bayesian implementation identified by Brusco (1995).
Non-constant SCFs in that example also escape the sufficient conditions for
implementation in sequential equilibrium used in Baliga (1999) and in Bergin
and Sen (1998).

Remark 2. Note that the integer game used in our mechanism can be
replaced by a modulo game. Thus virtual implementation, under type diver-
sity, does not require the use of infinite mechanisms for finite environments.
This is to be contrasted with the result of Dutta and Sen (1994) showing
that infinite mechanisms may be unavoidable for exact Bayesian implemen-
tation. While the example used by Dutta and Sen (1994) does not satisfy
type diversity, it can be modified by adding a third alternative which yields 0
utility to each agent in each state to satisfy type diversity. It is easy to check
that their result continues to apply to this modified example but the mech-
anism constructed above, with a modulo game instead of an integer game,
is a finite mechanism that yields virtual Bayesian implementation. Indeed,
according to the Abreu-Matsushima (1992b) result, under their conditions,
virtual implementation can be accomplished through a regular mechanism.

5 A Necessary and Sufficient Condition for

Economic Environments

While we have shown that type diversity is sufficient for virtual implementa-
tion, it is not a necessary condition. This follows from Example 2 in Serrano
and Vohra (2001) which exhibits an economic environment violating type
diversity in which every SCF is virtually Bayesian implementable. In that
example only constant SCFs satisfy Bayesian incentive consistency or AM-
measurability.11 In this section we identify a condition which is necessary
and sufficient for virtual Bayesian implementation in economic environments.
The results in this section can, therefore, be applied even to ‘non-generic’
cases such as Example 2 of Serrano and Vohra (2001).

11To the extent that A-M measurability is a necessary condition for virtual implementa-
tion in iteratively undominated strategies, it follows that, unlike in complete information
environments, virtual implementation in iteratively undominated strategies is less per-
missive than virtual Nash implementation. Also, since A-M measurability is necessary
for virtual implementation using regular mechanisms, integer (or modulo) games seem
essential to implementation in environments like the ones in that example.
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There are two reasons why type diversity, or more precisely its implication
drawn out in Lemma 1, is stronger than necessary for virtual implementation:
(1) it requires a preference reversal for all types of all agents, (2) it is based
exclusively on a comparison of constant SCFs.12 As we shall see, it is possible
to do with a weaker condition which uses a preference reversal only for some
type of some agent; and, by considering general (non-constant) SCFs, it
necessitates the reliance on the notion of deceptions.

An SCF x is said to be interim top ranked for agent i if there does not exist
another SCF y and a type si ∈ Ti such that Ui(y|si) > Ui(x|si). Of course,
given our assumption of a finite number of alternatives, there exists a top
ranked SCF for each i ∈ N . Denote by f̂ the constant SCF that prescribes
the uniform probability distribution over alternatives in each state.

An environment E is said to be economic if:

(i) there exist at least two agents i and j for whom f̂ is not interim top
ranked;

(ii) for each i ∈ N there exists an interim top ranked SCF ωi with the
property that there exists another agent j for whom ωi is not a top
ranked SCF.

In an exchange economy, under the standard assumptions, ωi can be
taken to be the SCF which allocates the aggregate endowment to agent i
in each state. However, an economic environment is not restricted to be an
exchange economy. Our notion of an economic environment is similar, but
slightly weaker, than the one used in Jackson (1991). In particular, it does
not rule out the possibility that there is some SCF that is interim top ranked
by all agents.

For smoothness in the presentation, we first present a new condition on
environments, and then we shall turn it into a condition on the SCF.

An environment E satisfies type diversity with respect to deceptions if for
every deception α, there exists i ∈ N , si ∈ Ti, and SCFs x and y such that

Ui(y ◦α | si) > Ui(x ◦α | si) while Ui(x | s′i) ≥ Ui(yαi(si) | s′i), ∀s′i ∈ Ti. (∗∗)

An SCF f satisfies type diversity with respect to deceptions if for every
deception α satisfying that f �= f ◦ α, there exists i ∈ N , si ∈ Ti, and SCFs
x and y such that equation (**) holds.

12These are also the reasons why it is a simple condition.
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To get a feel for this condition, the reader will notice how it is inspired by
the statement of Bayesian monotonicity, except that the preference reversal
does not necessarily involve f , our SCF of interest. Therefore, as a condition
on the environment, for each deception α we have a set of test-agents: those
agents for whom some of their types exhibit a preference reversal between
two SCFs as specified in (**). As a condition on the SCF, the same is
true only for those deceptions that turn f into a non-equivalent SCF. Note
that, when written as a condition on the SCF, type diversity with respect
to deceptions is clearly weaker than Bayesian monotonicity. We obtain the
following characterization, to be compared to Jackson’s (1991) Theorem 1.

Theorem 2 In an economic environment, a social choice function f is virtu-
ally Bayesian implementable if and only if it satisfies incentive compatibility
and type diversity with respect to deceptions.

The proof of this result is identical to that of Theorem 3. Necessity
follows from a minor modification of the proof of part (1) of Theorem 3,
and sufficiency from the proof of part (2). Although Theorem 2 conforms to
the standard way of stating characterization results, it is Theorem 3 which
relates most directly with Theorem 1. Drawing on Theorem 1 and the weak
condition on environments used there (type diversity), one gets a good feel
for the meaning of the more involved condition using deceptions.

Theorem 3 (1) Suppose f is a social choice function with the property that
f(t) �= f(t′) for all t, t′ ∈ T ∗. If f is virtually implementable in Bayesian
equilibrium, then the environment E satisfies type diversity with respect to
deceptions.
(2) Suppose an economic environment E satisfies type diversity with respect
to deceptions. If f is incentive compatible, it is virtually Bayesian imple-
mentable.

Part (1) of the theorem says that type diversity with respect to deceptions
(as a condition on the environment) is essentially a necessary condition for
the success of virtual Bayesian implementation, in the sense that “most”
SCFs satisfy the hypothesis stated: recall that an SCF is a mapping from
T to �, and thus, the hypothesis of part (1) is satisfied by an open and
dense set of SCFs. Conceptually, the assumption is also pretty minor: one
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should be indifferent between virtually implementing f or an arbitrarily small
perturbation thereof.

In contrast, part (2) states that type diversity with respect to decep-
tions (on the environment) is sufficient for any incentive compatible SCF to
be virtually Bayesian implementable over economic environments. Thus, in
these environments, the multiplicity of equilibrium problem disappears and
virtual implementation is as successful as it can be: its limits are given only
by incentive compatibility. Type diversity with respect to deceptions is a
weaker condition than type diversity, identified in Section 3. However, it
is not a trivial condition either: for instance, as implied by the remark at
the end of last section, Example 1 in Serrano and Vohra (2001) describes an
environment that violates it, where virtual implementation is impossible.

Proof of Theorem 3, part (1). The argument follows closely from the
Bayesian monotonicity condition (see the definition given in Section 2). If
the environment does not satisfy type diversity with respect to deceptions,
there exists a deception α for which condition (**) is violated. Therefore, f ,
which is non-constant everywhere, is not exactly implementable. But it is
not virtually implementable either: in order to virtually implement f , one
would need to find a sequence of exactly implementable SCFs hε, which are
also non-constant everywhere. But by the same argument as above, these hε

cannot be exactly implementable either (otherwise, (**) would be satisfied,
which is a contradiction).

Proof of Theorem 3, part (2). We shall construct a canonical mechanism,
G = ((Mi)i∈N , g). Before we describe strategy sets and outcome function, we
introduce some useful notation.

Denote by Di the set of deceptions for which i is a test-agent. For each
test-agent i and each deception α ∈ Di, fix two SCFs xi(α) and yi(α) satis-
fying (**). Let

Ci = {(zi(α))α∈Di
},

where for each α ∈ Di, zi(α) can take one of two possible values, either xi(α)
or yi(α). Thus, a typical element of the set Ci is a list of |Di| components.
Each component is one of the two SCFs in (**) associated with a deception
α for which agent i is a test-agent. Let xi ∈ Ci be such that for all α ∈ Di,
zi(α) = xi(α). Also, if agent i is not a test-agent for any deception α, let
Ci = {xi} for some arbitrary SCF xi.

Let (ωi) denote a collection of top ranked SCFs satisfying the definition
of an economic environment.
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Next, we define the message set Mi in the mechanism G: let Mi = Ti ×
Ci × I∗, where I∗ is the set of positive integers. Denote by (m1

i , m
2
i , m

3
i ) a

typical message sent by agent i.
For ε ∈ (0, 1), the outcome function is defined in the following rules:

(i) If at least n− 1 agents announce m2
i = (zi(α))α∈Di

= xi and m3
i = 1:

g(m) = (1 − ε)f(m1) +
ε

2
f̂ +

ε

2n

∑
i∈N

[
1

max{1, |Di|}
∑

α∈Di

zi(α)].

(ii) Otherwise, denoting by k the agent with the lowest index among those
who announce the highest integer, we have:

g(m) = (1 − ε)f(m1) +
ε

2
ωk +

ε

2n

∑
i∈N

[
1

max{1, |Di|}
∑

α∈Di

zi(α)].

To prove the theorem, we take the following steps:
Step 1: The strategy profile where for each i ∈ N and each ti ∈ Ti,
mi(ti) = (ti, xi, 1) is a Bayesian equilibrium of G. To see this, note that
this strategy profile corresponds to the outcome of rule (i). Moreover, no
unilateral deviation from it can trigger rule (ii). Since f is incentive com-
patible, reporting a false type is not a profitable deviation for any agent. By
(**), changing the second component (or both the first and the second com-
ponents at the same time) of the message is not profitable either. Changing
the reported integer does not change the outcome in this case. Thus, as
claimed, this profile is a Bayesian equilibrium of G. Note that as ε → 0, the
equilibrium outcome converges to f .
Step 2: An equilibrium under rule (ii) of the outcome function is impossible.
Suppose not, i.e., suppose there is an equilibrium in which agent k wins the
integer game. Because the environment is economic, there is some agent
j �= k for whom ωj interim dominates ωk. Thus agent j has an incentive
to deviate and announce an integer higher than nk, thereby becoming the
winner of the integer game.
Step 3: An equilibrium under rule (i) of the outcome function g where
exactly n− 1 agents j are announcing m2

j = xj and m3
j = 1, while agent i is

announcing something else, is also impossible. For a strategy profile of this
kind, any agent j �= i can trigger the integer game and become its winner
by announcing a high enough integer. By the definition of an economic
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environment, there exists j �= i for whom ωi interim dominates f̂ . But then
j has an incentive to deviate and trigger the integer game.
Step 4: Finally, it is also impossible to have an equilibrium of G under
rule (i) where each agent i announces m2

i = xi and m3
i = 1, but where a

deception α is being used to misreport the types. In this case, for this α and
by type diversity with respect to deceptions, there exists an agent i and two
SCFs xi(α) and yi(α) satisfying (**). Therefore, type si of agent i has an
incentive to deviate and change the second component of his announcement
to (yi(α), xi(Di \ {α})).

6 Concluding Remarks

We have shown that the difference between truthful implementation (the
approach based on the revelation principle) and full implementation in in-
complete information environments is perhaps smaller than at first thought.
Indeed, thanks to the type diversity condition, we have established that in
almost every environment any incentive compatible SCF is virtually Bayesian
implementable. Furthermore, we have provided a characterization of virtual
Bayesian implementation in economic environments using a weakening of
type diversity (type diversity with respect to deceptions).

A final observation is in order, given the extremely positive results re-
ported in this paper. One may wonder how much the results depend on the
expected utility assumption. To the extent that this is just an approxima-
tion of the preferences that agents may have in the “real world,” it would
be desirable that the assumption of expected utility be not a crucial one
for the theory. Indeed, one can easily see that all our conclusions extend
to preferences over lotteries that are monotonic in the sense of first-order
stochastic dominance. Reflection on Figure 2 should suffice to convince the
reader of this assertion: note that what is needed is that the relevant in-
difference surfaces yield non-nested lower contour sets in the interior of the
probability simplex. This is completely independent from having a map of
parallel straight lines (see Abreu and Sen (1991) for a similar observation in
the context of virtual Nash implementation).
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