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I. Introduction

A large part of macroeconomics deals with recursive equilibria (Markov equilibria) in

recursive economies (Cooley and Prescott, 1995, Stokey and Lucas, 1989, Ljungqvist and

Sargent, 2000). For exchange economies with one infinitely-lived agent, Lucas (1978) has

shown the existence of recursive equilibria (RE) with a state space that only contains exoge-

nous variables. For exchange economies with a finite number of infinitely-lived agents and

incomplete markets, Duffie, Geanakoplos, Mas-Collel, and McLennan (1994) have shown the

existence of RE with a compact state space that includes the exogenous variables and the

endogenous variables consumption, asset prices, and portfolio holdings. In order to prevent

agents from entering into Ponzi schemes, Duffie et.al. (1994) introduce an explicit borrow-

ing (short-sale) constraint that may bind in equilibrium.1 For the same class of economies,

Hernandez and Santos (1996), Levine and Zame (1996), and Magill and Quinzii (1994,1996)

have shown the (generic) existence of sequential equilibria (not necessarily recursive) with

explicit borrowing constraints that never bind in equilibrium. This paper asks whether the

same is true for RE. That is, can we find RE (the focus of Duffie et.al., 1994) with explicit

borrowing constraints that never bind (the focus of Hernandez and Santos,1996, Levine and

Zame,1996, and Magill and Quinzii,1994,1996)?2

A RE is defined by a state space, a law of motion for the endogenous state variable(s),

1This terminology follows Magill and Quinzii (1994) and most of the macroeconomic literature. Duffie
et.al. (1994) only consider assets in positive net-supply and rule out short-selling (borrowing) by assumption.
For this type of borrowing constraint, they prove the existence of a stationary (ergodic) Markov equilibrium
(ME), which implies the existence of a stationary (ergodic) RE. See Duffie et.al. (1994) and this paper for
a discussion of the relationship between RE and ME. Becker and Zilcha (1997) prove the existence of a
stationary equilibrium for production economies with only aggregate productivity shocks (no idiosyncratic
risk), no borrowing, and an endogenous state space that contains only the wealth distribution.

2The introduction of ad-hoc borrowing (short-sale) constraints by Duffie et.al. (1994) is reminiscent of
Radner’s (1972) lower bound on short-sales to ensure existence of equilibrium in finite-horizon economies,
which was subsequently criticized by Hart (1975). Notice, however, that in contrast to Hart (1975) the
non-existence result discussed in this paper is not caused by an asset demand (demand for borrowing) that
goes to infinity when the borrowing constraint is gradually relaxed.
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and a (vector-valued) function mapping current states into current outcomes (Cooley and

Prescott, 1995). Similarly, a Markov equilibrium (ME) is defined by a state space (self-

justified set) and an expectations correspondence (Duffie et.al., 1994). Thus, the state space

is one of the basic ingredients of a RE (ME). This paper shows that for a large class of

exchange economies with incomplete markets, the state space cannot be a compact subset of

IRn if borrowing constraints never bind (and all functions are continuous). In other words,

no RE (ME) with compact state space and non-binding borrowing constraints exists. In

particular, no RE (ME) with finite state space and non-binding borrowing constraints exists

even if the Markov process of exogenous variables has finite support. From the non-existence

of RE (ME) with compact state space and non-binding borrowing constraints it follows that

for large enough (but finite) borrowing limits, no RE (ME) with compact state space exists.

Put differently, as we gradually relax the explicit borrowing constraints used by Duffie et.al.

(1994) to prevent Ponzi schemes, we move from existence to non-existence.

Both Duffie et.al. (1994) and the computational literature on RE with incomplete markets

(Aiyagari, 1994, Huggett, 1993, Lucas and Heaton, 1996, and Krusell and Smith, 1998)

confine attention to RE (ME) with explicit borrowing constraints and compact state space.3

This paper shows that under the maintained assumption of a compact state space, the

explicit borrowing constraint used by Duffie et.al. (1994) and the computational literature

is necessarily ad-hoc in the sense that it always prevents a solvent agent from borrowing

an additional dollar at some date-event. In other words, the borrowing constraint always

introduces a market imperfection in addition to market incompleteness, and this literature

has therefore relied on a framework that does not allow for a clear separation of market

incompleteness from other market imperfections. Furthermore, any future work on the

3The compactness of the state space is essential for many of the arguments put forward in Duffie et.al.
(1994). In particular, the existence of a RE (ME) with compact state space implies, under an additional
convexity assumption on the expectations correspondence, that a stationary (ergodic) RE (ME) exists. The
convexity assumption is satisfied for the class of economies analyzed in this paper.
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existence of RE (ME) with non-binding borrowing constraints must either abandon the

compactness assumption (and therefore go beyond the methods discussed by Duffie et.al.,

1994) or change the definition of RE.4

The basic non-existence argument for an economy without aggregate risk runs as follows.

First, for utility functions that are unbounded from below, zero consumption can never

be an equilibrium outcome.5 Second, for equilibria with strictly positive consumption and

non-binding borrowing constraints, market clearing and agents’ first-order conditions (Euler

equations) taken together imply that if one agent’s equilibrium consumption attains its mini-

mum (maximum), then consumption of this agent must be equal to this minimial (maximal)

value for all future dates (and future shock realizations). Third, no agent’s equilibrium

consumption can be constant if markets are incomplete. In other words, the temporary

equilibrium conditions require that future consumption is constant once minimal (maximal)

consumption is achieved, but the condition of overall equilibrium (the present value budget

constraint) requires that consumption always exhibits some fluctuations. Thus, minimal

consumption can never be achieved. If the consumption allocation is a part of the (endoge-

nous) state space, then this immediately implies the non-existence of RE with compact state

space. If the consumption allocation is not a part of the state space, then an additional

continuity assumption implies non-existence.6

4For example, Duffie et.al. (1994) require that the equilibrium conditions hold for all possible current
states (for all elements of the state space), which could be changed to the requirement that the equilibrium
conditions hold for almost all current states.

5One might conjecture that an Inada condition is sufficient to rule out zero consumption, but this conjec-
ture is not correct if an agent’s initial debt is so large that his initial choice set is a singleton. See footnote 7
for a more detailed discussion of this issue. In the case of CRRA-preferences, the unboundedness assumption
means that the degree of relative risk aversion is greater than or equal to one. Risk aversion coefficients
between one and four are the focus of the computational literature (Aiyagari, 1994, Huggett, 1993, Lucas
and Heaton, 1996, and Krusell and Smith, 1998).

6The argument has the flavor of the reasoning employed by Atkeson and Lucas (1992) and Thomas and
Worrall (1990) to show that the (constrained)-efficient cross-sectional distribution of consumption diverges
in economies with private information. Their analysis, however, confines attention to economies with a
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The non-existence result shown in this paper holds for any two-agent incomplete-markets

economy satisfying the following standard assumptions: preferences are additively-separable

across time and states and one-period utility functions are time- and state-independent;

the endowments are bounded and follow a Markov chain (finite support) with stationary

transition matrix; there is some idiosyncratic risk and no aggregate risk. Moreover, this paper

follows Duffie et.al. (1994) and assumes that the one-period utility function is unbounded

from below. If in addition the marginal utility functions of all agents are convex, then

the non-existence result holds for any number of agents. Finally, non-existence holds for

any number of agents and any Markov chain of endowments (with or without aggregate

risk) if agents have identical homothetic preferences (CRRA utility functions) with degree

of relative risk aversion greater than or equal to one, the case most frequently encountered

in macroeconomics.

Clearly, the class of economies analyzed in this paper is non-pathological. Hence, it is not

the structure of the economy, but the structure of the equilibrium concept in conjunction

with the compactness assumption that is driving the non-existence result. Indeed, for the

same class of economies, Duffie et.al. (1994) prove the existence of RE (ME) with ad-hoc

borrowing constraints (no borrowing) and compact state space. Further, if there is only one

agent or markets are complete, there are RE with finite (and therefore compact) state space

and non-binding borrowing constraints (Lucas, 1978, and this paper), namely the equilibria

corresponding to the Pareto efficient consumption allocations.

There are several papers dealing with the issue of non-existence of RE (Markov equilib-

ria) in general equilibrium models. For OLG economies with multiple goods, Spear (1985)

has shown that no RE (Markov equilibrium) with finite state space exists. For economies

with infinitely-lived agents and incomplete markets, Kehoe and Levine (2001) and Kuebler

continuum of agents and constant interest rate, whereas this paper’s focus is on economies with finitely-
many agents and possibly time-varying interest rate (asset price).

4



and Schmedders (2001) show (generic) non-existence of RE when the state space only con-

tains the exogenous state (finite state space). Kuebler and Schmedders (2002) provide a

numerical example (one particular economy) of non-existence of RE with non-binding bor-

rowing constraints (but not necessarily compact state space) when the endogenous part of

the state space includes the wealth distribution, but in contrast to this paper they argue

that non-existence is related to multiplicity of equilibrium. Finally, Santos (2000) discusses

the non-existence of RE in a deterministic economy with externalities.

II. The Model

a) The Economy

We consider a discrete-time, infinite-horizon exchange economy. The economy is populated

by two (types of) infinitely-lived agents. Time is indexed by t = 0, 1, 2, . . . and agents by

i = 1, 2.

There is an exogenous Markov process, {st}, with state space, S, and stationary transition

function π. We denote a typical element of S by st or simply s. A (partial) history of

exogenous states up to time t is denoted by st = (s0, s1, . . . , st) ∈ St+1 and the probability

that st+1 ∈ S (respectively s′ ∈ S ) occurs in period t + 1 if st ∈ S (respectively s ∈ S)

has occured in period t is denoted by π(s′|s) (respectively π(st+1|st)) . Finally, we assume

that in period 0 one state, s0, occurs with probability one. In the formal analysis we assume

that S is finite, S ≡ {1, . . . , S}. That is, {st} is a Markov chain. Each Markov chain, {st},
with initial state s0, state space S, and transition matrix π induces an event tree with nodes

(date-events) st in the canonical way. We denote the set of successors of st by D(st).

We assume that the exogenous state space is the Cartesian product of two sets, S ≡ Σ×Z,

so that s = (σ, z). Below we introduce the assumption that asset payoffs, one-period utility

5



functions, and endowments are independent of σ. Thus, we can interpret z as a fundamental

shock and σ as a signal (news). If π(z′|σ, z) depends non-trivially on σ, the signal is useful in

predicting future fundamentals. Otherwise, the signal is a sunspot variable. The introduction

of an additional signal variable, z, generalizes the non-existence result and also helps relate

the present framework to the framework used by Duffie et.al.,1994 (see below).

There is one perishable consumption good. Agent i′s initial endowment of the consump-

tion good (labor income) is defined by a (time-invariant) function ei : Z → IR+ whose values

are denoted by ei(z). The function ei in conjunction with the Markov shock process induces

a Markov endowment process in the canonical way.

A consumption plan of agent i is a sequence of functions, {cit}, with cit : St+1 → IR+.

The value, cit(s
t), of the function cit is simply the consumption level of agent i at node

st = (s0, s1, . . . , st). We restrict consumption choices to the space of all sequences that are

bounded in the sup-norm: ‖{cit}‖ = supt,stcit(s
t) < ∞. Clearly, a consumption plan can

also be defined as one function mapping nodes, st, into consumption levels, ct(s
t). Since the

set of all nodes is countable, this means that the consumption space can be identified with

l∞+ .

Agent i′s preferences over consumption plans allow for a time-additive expected utility

representation

Ui({cit}) =
∞∑

t=0

βt
∑
st

π(st)ui(cit(s
t)) , (1)

where π(st) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0) (recall that only one state, s0, occurs with

positive probability in period 0). In (1) we assumed that the pure discount factor, β, is the

same for both agents. Although this assumption is not essential for our non-existence result,

it shortens the proofs and provides for a simple benchmark (constant consumption) in the

complete-market case with no aggregate risk.
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There is one long-lived asset in positive net-supply. The asset is real in the sense that it

promises the delivery of (state-contingent) quantities of the good. The asset payoff structure

is described by a time-invariant function, d : Z → IR+, with values denoted by d(z). At time

t = 0, agent i has an initial asset endowment of θi0 ∈ IR, which is not a choice variable. We

normalize the aggregate supply of the asset to one: θ10 + θ20 = 1.

In short, an economy E =< S, π, β, u, e, θ0, d > consists of a Markov process with finite

state space S and stationary transition matrix π, preferences defined by a common discount

factor β and one-period utility functions u = u1, . . . , uI , endowments defined by functions

e = e1, . . . , eI and initial values θ0 = θ10, . . . , θI0, and asset payoffs defined by functions

d = d1, . . . , dI .

We make the following assumptions on endowments and preferences:

Assumption 1. All transitions have strictly positive probability: π(s′|s) > 0 ∀s, s′. There

is some risk, that is, there exist shocks z, z′ with ei(z) �= ei(z
′). Asset payoffs are always

strictly positive: ∀z : d(z) > 0.

Assumption 2. Each agent’s one-period utility function, ui : IR++ → IR, is twice con-

tinuously differentiable, strictly increasing, strictly concave, and unbounded from below.

Remark 1. The assumption π(s′|s) > 0 ensures that all nodes have a positive probability

of occurrence. Thus, we do not have to distinguish between statements that hold for all

nodes and statements that hold almost surely. Notice that we do not impose a positivity

assumption on net-endowments, θi0+ei(z), because our non-existence result does not require

it. The unboundedness assumption on utility is also made by Duffie et.al. (1994) and ensures

that zero consumption is never an equilibrium choice. See footnote 7 for a discussion why

the alternative assumption of an Inada condition might not suffice for the non-existence

argument. CRRA-preferences with a coefficient of relative risk aversion greater or equal to

7



one have the property that the utility function is unbounded from below.

The basic argument for non-existence makes the following assumption:

Assumption 3. There is no aggregate risk: d(z) + e1(z) + e2(z) = ω.

Finally, we state an assumption which rules out that the trading of one asset is sufficient

to implement the (Pareto efficient) constant allocation when there are two agents. Clearly,

this assumption is generically satisfied.

Assumption 4. Markets are effectively incomplete: there are no numbers c1, θ1 with

0 < c1 < ω so that c1 − e1(z) = d(z)θ1 for all z and no numbers c2, θ2 with 0 < c2 < ω so

that c2 − e2(z) = d(z)θ2 for all z.

b) Equilibrium

Agents have the opportunity to trade the asset in a sequence of competitive markets. Let

qt stand for the price of one unit of the asset in period t and θit for agent i′s beginning-

of-period holding (before asset trading) of the asset in period t. The asset price system is

defined by a sequence of functions, {qt}, with qt : St+1 → IR+. A portfolio (trading) plan of

agent i is a sequence of functions, {θit}, with θi,t+1 : St+1 → IR. To rule out Ponzi-schemes,

we introduce an explicit debt (borrowing) constraint, M ≥ 0. Thus, a budget-feasible

consumption and portfolio plan has to satisfy the following sequential budget constraint

augmented by an explicit borrowing constraint:

∀t, st : cit(s
t) − ei(zt) = [d(zt) + q(st)] θit(s

t−1) − qt(s
t)θi,t+1(s

t) (2)

qt(s
t)θi,t+1(s

t) ≥ −M.

We adopt the convention θi0(s
−1) = θi0 so that equation (2) also holds for t = 0.

The are several ways of ruling out Ponzi-schemes, and imposing an explicit bound on
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debt, M , is one alternative. However, for large enough M the set of equilibria implied by (2)

is the same as the set of equilibria that would result if one of the alternatives discussed in

Hernandez and Santos (1996), Levine and Zame (1996), and Magill and Quinzii (1994,1996)

was chosen. For example, Hernandez and Santos (1996) show that six different ways of

writing down the budget constraint lead to the same budget set (and therefore the same set

of equilibria) if asset prices and payoffs are arbitrage-free and if the expected present value

of life-time endowment of every agent is finite under some state price process.

Market clearing reads:

∀t, st : θ1,t+1(s
t) + θ2,t+1(s

t) = 1 , c1t(s
t) + c2t(s

t) = e1(zt) + e2(zt) + d(zt) . (3)

Introduce the functions θt+1 : St+1 → IR2 with θt+1(s
t) = (θ1,t+1(s

t), θ2,t+1(s
t)) and

ct : St+1 → IR2
+ with ct(s

t) = (c1t(s
t), c2t(s

t)).

The following definition of a sequential equilibrium (SE) is standard:

Definition 1. For an economy E =< S, π, β, u, e, θ0, d >, a sequential equilibrium (SE)

is a list of sequences, {qt}, {ct}, {θt}, so that:

i) For given asset prices {qt}, the consumption and trading plan, {cit}, {θit}, of each agent i

maximizes expected life-time utility (1) subject to the sequential budget constraint (2).

ii) Market clearing (3) holds.

With the assumptions made so far (concave utility and convex choice set), a standard

argument shows that Euler equations and transversality condition together are sufficient

conditions for individual utility maximization. Although we allowed for the possibility of

unbounded asset prices and portfolio choices, below we show that in equilibrium they will be

bounded, which implies that any transversality condition is automatically satisfied. Hence,

in equilibrium the Euler equation is a sufficient condition for individual utility maximization.

Further, in equilibrium the Euler equation holds with equality when borrowing constraints
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are not binding because the unboundedness of utility from below rules out zero consumption

as an equilibrium choice.7 To summarize, a SE with non-binding borrowing constraints is a

list of bounded sequences, {qt}, {ct}, {θt}, solving (goods market clearing is implied by asset

market clearing and the budget constraint)

∀i , ∀t, st : cit(s
t) − ei(zt) = [d(zt) + qt(s

t)] θit(s
t−1) − qt(s

t)θi,t+1(s
t) (4)

∀i , ∀t, st : qt(s
t)u′

i(cit(s
t)) = β E [ (d(zt+1) + qt(s

t+1))u′
i(ci,t+1(s

t+1)) | st]

∀t, st : θ1,t+1(s
t) + θ2,t+1(s

t) = 1 .

We now turn to a discussion of recursive equilibria (RE). Introduce an endogenous state

space X with elements x and time-invariant functions, f : X × S2 → X, q : X × S → IR+,

c : X × S → IR2
+, and θ : X × S → IR2. For simplicity, we assume that θt is always one

component of xt. Since this paper shows the non-existence of RE, this assumption is without

loss of generality. The functions f, q, c, θ in conjunction with an initial condition (x0, s0)

generate (define) sequences {xt}, {qt}, {ct}, and {θt} through the recursive formula

xt+1(s
t+1) = f(xt(s

t), st, st+1) (5)

qt(s
t) = q(xt(s

t), st)

ct(s
t) = c(xt(s

t), st)

θt+1(s
t) = θ(xt(s

t), st) .

The function f describes the law of motion for the endogenous state variable(s).

To simplify notation, we will assume that xt only contains “current“endogenous variables,

that is, we assume that the largest possible endogenous state is xt is xt = (qt, ct, θt). However,

7Since we do not require net-endowments to be strictly positive, zero consumption could arise in equilib-
rium even if the utility function satisfies an Inada condition (but is bounded from below): if an agent begins
his life with so much debt that his net-endowment is zero, θi0 + ei(z0) = 0, then his choice set at the initial
node is a singleton and no Euler equation has to hold for this agent at the initial node (any further increase
in debt will violate the budget constraint and the agent is forced to consume ci0 = 0).
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the non-existence results proved in this paper immediately extend to the case in which xt

contains a finite number of current and past endogenous variables and a finite number of

past shocks.

When the point of departure is the notion of SE, it seems tempting to define a recursive

equilibrium (RE) as a SE, {qt}, {ct}, {θt}, generated by the recursive formula (5) and an

initial condition (x0, s0). However, in this paper we define a RE as a family of SE, namely

the family of SE generated by the recursive formula (5) when any (x, s) ∈ X × S is a possible

initial state. We therefore introduce the following concept of a RE:

Definition 2. For an economy E =< S, π, β, u, e, θ0, d >, a recursive equilibrium (RE) is

a family of SE generated by a set of initial conditions, X × S, and time-invariant functions

f, q, c, θ with domain X × S.

Most work of the work on RE (see, for example, Prescott and Cooley, 1995) immediately

formulates the individual optimization problem in terms of the corresponding Bellman equa-

tion, which automatically implies that a RE corresponds to a family of SE (in accordance

with the above definition). Put differently,the solution to the Bellman equation corresponds

to a family of solutions to the corresponding optimization problem, one (in our case of strictly

concave utility function and convex choice sets) for each initial condition. In addition to this

“mathematical reason“, there are at least two “non-mathematical“reasons for not identify-

ing a RE with one SE for a fixed initial state. First, such a definition would imply that a

RE depends on the initial condition, and therefore exhibits some sort of infinite memory.

Second, the set of possible future realizations of the state may explicitly depend on time,

again a feature which seems to run counter to the notion of recursivity.

Each RE defines a (time-homogeneous) joint Markov process over endogenous and ex-

ogenous variables. Such a Markov process satisfying all equilibrium conditions is called a
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Markov equilibrium (Duffie et.al., 1994). Duffie et.al. (1994) do not define a Markov equi-

librium indirectly through a RE, but directly through a state space and an expectations

correspondence. If one allows for signal variables, σt, then any Markov equilibrium can be

represented as a RE (Duffie et.al., 1994).

The previous literature has studied the following special cases of the general framework.

In the case of one representative agent (Lucas, 1978) or complete markets (proposition

1 below), there are RE for which equilibrium consumption and asset prices only depend

on the exogenous state s, and for which the portfolio holdings of the long-lived asset are

constant. Thus, we can choose as state space the exogenous set S, which is finite and therefore

compact. The quantitative literature on incomplete markets (Aiyagari, 1994, Heaton and

Lucas, 1996, Huggett, 1993, Krusell and Smith, 1998) in general uses a minimal endogenous

state space, that is, the only endogenous state variable is the wealth distribution: xt = θt

or xt = qt−1θt. Moreover, the possibility of additional signal variables is often neglected

(st = zt). Finally, Duffie et.al. (1994) use xt = (θt, ct, qt) as the endogenous state of the

economy (they also include θt+1 in the current state, but this difference is inessential). For

this choice of a state, Duffie et.al. (1994) prove the existence of a (stationary, conditionally

spot-less) Markov equilibrium, which implies the existence of a (stationary) RE with law

of motion xt+1 = f(xt, zt, zt+1, σt) and functions c, q, and θ defined by the corresponding

projections (Duffie et.al., 1994).

III. Two Agents and No Aggregate Risk

We begin with two positive results on the existence question:

Proposition 1. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A3.

i) For the debt constraint M = 0 (no borrowing) there exists a RE with compact, finite-

dimensional state space (and possibly binding borrowing constraints).
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ii) If markets are effectively complete (A4 does not hold), then there is a debt constraint M <

∞ so that a RE with finite (and therefore compact) state space and non-binding borrowing

constraints exists.

Proof .

i) Follows from Duffie et.al.(1994) who prove that if short-sales of assets are prohibited (M =

0), a (stationary) Markov equilibrium with compact state space exists if xt = (θt, ct, qt, zt),

which implies the existence of a RE with compact state space (see the above remark).

ii) Assume first that there exist c1, θ1 ∈ IR with 0 < c1 < ω so that c1 − e1(z) = d(z)θ1 for

all z. Let equilibrium consumption be c1(s) = c1 < ω and c2(s) = ω − c1. By construction,

this allocation satisfies goods market clearing. If we let asset prices be the unique bounded

solution (contraction mapping theorem) to

q(s) = β
∑
s′

(d(z′) + q(s′)) π(s′|s) , (6)

then each agent’s Euler equation also holds. Suppose portfolio choices are constant θi(s) = θi.

In this case, the budget constraint of agent 1 reads ∀z : c1 − e1(z) = d(z)θ1. By assumption,

there exists a θ1 so that this equation holds. If we choose θ2 = 1 − θ1, the asset market

clears. By Walras’ law, the budget constraint of agent 1 is then satisfied. Choosing S as

the state space, state-invariant functions for consumption and portfolio allocations, and the

asset price function defined by (6) , we have constructed a RE with finite (and therefore

compact) state space and non-binding borrowing constraints. If there are no numbers c1, θ

but numbers c2, θ2 with 0 < c2 < ω so that c2 − e2(z) = d(z)θ2 for all z, a similar argument

applies.

We now turn to the non-existence argument. The first lemma establishes that asset

prices and portfolio holdings are bounded. The important point to note about lemma 1

is that the bounds are independent of the debt constraint M . To state the lemma, define

(ei/d)min
.
= min{ei(1)/d(1), . . . , ei(S)/d(S)}.

13



Lemma 1. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A3. Then for

any SE (with or without binding borrowing constraints) we have:

i) There are q > 0 and q̄ < ∞ so that ∀t, st : q ≤ qt(s
t) ≤ q̄ . Moreover, q and q̄ are

independent of the debt constraint M .

ii) For all debt constraints M and ∀t, st : θi,t+1(s
t) ≥ −(ei/d)min .

Proof . The upper bound on the asset price is derived in Kehoe and Levine (2001). They

consider an economy with a debt constraint M = 0, but their proof immediately extends to

the case with any finite borrowing constraint. Similarly, we could use the result that for the

economy considered here, there are no bubbles for long-lived assets in positive net-supply

(Santos and Woodford, 1997). This upper bound on asset prices depends on preferences and

endowments, but not on M .

To construct a strictly positive lower bound, fix an equilibrium and the corresponding

optimal plan of both agents. If at node st we have qt(s
t) = q, then the fact that agent i is

choosing an optimal plan implies the following inequality:

q u′
i(cit(s

t)) ≥
∞∑

n=1

βn
∑

st+n ∈D(st)

u′
i(ci,t+n(st+n))d(st+n)π(st+n|st) . (7)

If the inequality (7) did not hold, agent i′s plan could not be optimal because it would pay

to buy one unit of the asset at node st and to hold this additional unit forever consuming

the dividend payments. Define dmin = min{d(1), . . . , d(S)}. Since ci,t+n(st+n) ≤ ω for both

agents and cit(s
t) ≤ ω/2 for at least one agent i, say agent i = 1, we must have:

q u′
1(ω/2) ≥ βdmin

1 − β
u′

1(ω) . (8)

This establishes the strictly positive lower bound on the asset price.

The lower bound on portfolio holdings, −(ei/d)min, follows from the sequential budget

constraint (2) and non-negativity of consumption. More specifically, if agent i′s portfolio
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holding drops below this bound, there is a history for which the corresponding sequence

of portfolio holdings is unbounded from below, which violates any finite debt constraint

because the asset price is bounded away from zero. To be more precise, notice first that

θi,t+1(s
t) − θit(s

t−1) < −ε for some ε > 0 if and only if (using the budget constraint):

eit(zt) − cit(s
t)

qt(st)
+

dt(zt)

qt(st)
θit(s

t−1) < −ε . (9)

Since cit ≥ 0, the inequality (9) holds if

eit(zt) < −dt(zt)θit(s
t−1) − εqt(s

t) . (10)

Let ŝ be the state for which ei(ŝ)/d(ŝ) = (ei/d)min and consider a history s∞ with st̂ =

st̂+1 = . . . = ŝ. If θit̂(s
t̂−1) < (ei/d)min , then at st̂ the inequality (10) holds for small

enough ε > 0 since qt(s
t̂) ≤ q̄ < ∞. Hence, θi,t̂+1(s

t̂) − θit̂(s
t̂−1) < ε. Moreover, this

and θit̂(s
t̂−1) < (ei/d)min imply that (10) also holds for the subsequent node st̂+1 for the

same ε. More generally, (10) holds for all st̂+n, n = 1, 2, . . . and fixed ε, and the portfolio

sequence, {θit(s
t)}, associated with this history is therefore unbounded from below. Since

the asset price is bounded away from zero, this implies that the corresponding sequence of

debt, {qt(s
t)θi,t+1(s

t)}, is unbounded from below, therefore violating the debt constraint for

any debt constraint M at some t = t̂ + T .

The next two lemmas (lemma 2 and 3) state two properties of the equilibrium consump-

tion set of any SE. The first lemma says that equilibrium consumption cannot be constant.

The proof uses the Euler equation and budget constraint. The second lemma shows that if

one agent’s equilibrium consumption takes on its minimum (maximum) at one node, then it

has to be equal to this minimum (maximum) for all subsequent nodes. The proof uses the

Euler equation and market clearing. These two lemmas (2 and 3) imply that the equilibrium

consumption set of any RE cannot be compact (lemma 4), which immediately leads to the

non-existence of RE (proposition 2 and corollary 1).
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To state the next two lemmas, define for each SE the set of all possible consumption levels

of agent i : Ci
.
= {ci ∈ IR+| ∃ st : cit(s

t) = ci}. Define further the supremum ci,sup
.
= supCi

and infimum ci,inf
.
= inf Ci, which always exist since Ci is a bounded subset of IR.

Lemma 2. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A4. Then for

any SE with non-binding borrowing constraints, individual consumption displays some fluc-

tuations: the set Ci is not a singleton.

Proof . Suppose not, that is, there is a real number ci so that cit(s
t) = ci for all st. Notice

first that solving the Euler equations forward yields the standard present value representation

of asset prices (asset prices are bounded, lemma 1). For constant consumption, this implies

history-independent asset prices:

∀ st : qt(s
t) =

∞∑
n=1

βn
∑

st+n∈D(st)

d(zt+n)π(zt+n|st) (11)

= q(st) .

For any infinite history s∞, solving forward the sequential budget constraint (2) yields

θit(s
t−1) =

1

q(st) + d(zt)

∞∑
n=0

(
n∏

k=1

q(st+k−1)

q(st+k) + d(zt+k)

)
[ci − ei(zt+n)] (12)

+

(
T∏

k=0

q(st+k)

q(st+k) + d(zt+k)

)
θi,t+T+1(s

t+T ) ,

where we adopted the convention
∏0

k=1 xk = 1. Using the fact that portfolio holdings are

bounded (lemma 1) and that dividend payments are bounded away from zero, we find

limT→∞
(∏T

k=1
q(st+k)

q(st+k)+d(zt+k)

)
θi,t+T+1(s

t+T ) = 0. Hence, taking the limit T → ∞ in (12)

leads to

θit(s
t−1) =

1

q(st) + d(zt)

∞∑
n=0

(
n∏

k=1

q(st+k−1)

q(st+k) + d(zt+k)

)
[ci − ei(zt+n)] . (13)

The series (13) converges since

lim
T→∞

(
n∏

k=1

q(st+k−1)

q(st+k) + d(zt+k)

)
[ci − ei(zt+n)] (14)
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= lim
T→∞

q(st)

q(st+n)

(
n∏

k=1

q(st+k)

q(st+k) + d(zt+k)

)
[ci − ei(zt+n)]

= 0 .

Notice that (14) holds because asset payoffs and prices are bounded away from zero and

bounded from above. Since the right-hand-side of (13) neither depends on st−1 nor explicitly

on t, equation (13) says that portfolio choices are time- and state-independent: θit(s
t−1) = θ̄i

for all st−1. In this case the sequential budget constraint reads

∀zt : ci − ei(zt) = d(zt)θ̄i , (15)

which does not hold because of A4.

Remark 2. Lemma 2 also shows that for the incomplete-markets economy analyzed in

this paper, the equilibrium is never efficient. Kuebler and Schmedders (2001) analyze a

framework more general than the model considered in this paper, and show that for a

generic set of economies (which might not contain the constant-aggregate-endowment case)

the equilibrium is Pareto inefficient.

The next lemma contains the paper’s main idea: if consumption attains one of the extreme

points of the equilibrium consumption set, then it has to stay there forever. The argument

heavily relies on the fact that first-order conditions (Euler equations) have to hold with

equality when consumption is strictly positive and borrowing constraints are not binding.

Lemma 3. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A3. Then for

any SE with non-binding borrowing constraints, minimal (maximal) consumption for agent

i at a particular node implies minimal (maximal) consumption at all subsequent nodes: for

any SE, if there exists a node st so that cit(s
t) = ci,inf , then ci,t+n(st+n) = ci,inf for all

subsequent nodes st+n ∈ D(st); for any SE, if there exists a node st so that cit(s
t) = ci,sup,

then ci,t+n(st+n) = ci,sup for all subsequent nodes st+n ∈ D(st).
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Proof . Fix a SE. If borrowing constraints do not bind, the Euler equations are given by

(4). Define a new measure through

π̃(st+1|st)
.
=

[qt+1(s
t+1) + d(zt+1)]π(st+1|st)∑

st+1
[qt+1(st+1) + d(zt+1)]π(st+1|st)

.

For any st, the two measures π(.|st) and π̃(.|st) are equivalent measures because asset prices

and dividends are strictly positive. With this definition, the Euler equations (4) become

∀i : qt(s
t)u′

i(cit(s
t)) = β

∑
st+1

u′
i(ci,t+1(s

t+1))π̃(st+1|st) . (16)

Clearly, (16) are the Euler equations for a one-period, risk-free bond.

Suppose now that there is a st with c1t(s
t) = c1,inf . Fix this node st. Because of market

clearing and the assumption of no aggregate risk, we also have c2t(s
t) = c2,sup. Since marginal

utility functions are non-increasing in consumption, the Euler equations (16) at st imply

i) qt(s
t) ≤ β (17)

ii) qt(s
t) ≥ β .

In words: the fact that agent 1 expects an increase in consumption (he has hit bottom)

imposes an upper bound on the asset price (a lower bound on the interest rate) and the fact

that agent 2 expects a decrease in consumption imposes a lower bound on the asset price

(an upper bound on the interest rate).

Clearly, (17) only holds if qt(s
t) = β. But then the Euler equations (16) imply c1,t+1(s

t+1) =

c1,inf for all st+1 ∈ D(st) and c2,t+1(s
t+1) = c2,sup for all st+1 ∈ D(st). This must hold for

all st+1 ∈ D(st) because of assumption A1 (all transition probabilities are strictly posi-

tive) and the fact that π and π̃ are equivalent measures. An identical argument shows that

c1,t+2(s
t+2) = c1,inf for all st+2 ∈ D(st) and c2,t+2(s

t+2) = c2,sup for all st+2 ∈ D(st). More

generally, c1t(s
t) = c1,inf implies c1,t+n(st+n) = c1,inf for all st+n ∈ D(st) and c2t(s

t) = c2,sup

implies c2,t+n(st+n) = c2,sup. An analogous argument shows that c1t(s
t) = c1,sup implies

18



c1,t+n(st+n) = c1,sup for all st+n ∈ D(st) and c2t(s
t) = c2,inf implies c2,t+n(st+n) = c2,inf for

all st+n ∈ D(st).

The final lemma combines lemma 2 and 3 to derive that a statement about the nature

of RE. In order to state the lemma, define for a particular RE the equilibrium consumption

set of agent i as C̃i
.
= {ci ∈ IR+ | ∃ (x, s) ∈ X × S : ci(x, s) = ci}. Clearly, the equilibrium

consumption set of a RE is the union of the equilibrium consumption sets of those SE

associated with the RE.

Lemma 4. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies assumptions A1-A4.

Then for any RE with non-binding borrowing constraints, the equilibrium consumption set,

C̃i, is not compact (closed).

Proof. Suppose not, that is, suppose C̃i is compact. Then C̃i contains its supremum:

c̃i,sup ∈ C̃i. Put differently, there exists a state (x̂, ŝ) ∈ X × S with ci(x̂, ŝ) = c̃i,sup. Each

RE is associated with a family of SE, one for each initial state, (x0, s0) ∈ X × S. For the SE

with initial state (x0, s0) = (x̂, ŝ), we have that ci,sup = c̃i,sup, which implies that in this SE

consumption of agent i in period t = 0 must be maximal: ci0 = ci(x0, s0) = c̃i,sup = ci,sup.

Lemma 3 then implies that for this particular SE, consumption of agent i is maximal in all

subsequent periods: cit(s
t) = ci,sup ∀st. But this contradicts lemma 2.

Proposition 2. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A4. Then

there is no RE with non-binding borrowing constraints that is defined by continuous functions,

f, q, c, θ, on a compact domain,X× S .

Proof. The equilibrium consumption set, C̃i, is the image set of the consumption policy

function, ci : X × S → IR+. If this function is continuous with compact domain, its image

set is compact. This contradicts lemma 4.

Using lemma 1, we can rephrase proposition 2 as follows:
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Corollary 1. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A4. Then

there is no RE with debt constraint M > q̄ max {(e1/d)min, (e2/d)min} that is defined by

continuous functions, f, q, c, θ, on a compact domain, X × S.

Proof. Lemma 1 says that for arbitrary, but finite, debt constraint, M , agent i will only

choose a portfolio plan that satisfies qt(s
t)θi,t+1(s

t) ≥ −qt(s
t)(ei/d)min for all st. Thus, we

have qt(s
t)θi,t+1(s

t) ≥ −q̄(ei/d)min for all st. This means that for any M > q̄(ei/d)min, agent

i′s borrowing constraint never binds. But if the borrowing constraint never binds, then

proposition 2 says that no RE exists.

Remark 3. If β1 �= β2, then the proof of non-existence follows similar lines. The proofs of

lemma 2 and 3 go through without change, and lemma 4 is replaced by the statement that

either ci,sup /∈ Ci or ci,inf /∈ Ci.

IV. Extensions

In this section, we discuss possible extensions of the non-existence argument. We begin

with the extension to more than two agents. The definition of SE and RE provided in

section 2 immediately extends to the case of any finite number, I, of agents. Although the

non-existence result stated below also applies to economies with a continuum of agents, to

save space the argument is presented for the case of a finite number of agents. Clearly, with

the exception of lemma 3, all results derived in the last section still hold for more than two

agents. The analog of lemma 3 for the case of more than two agents is:

Lemma 5. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A3 and there are

at least two agents, I ≥ 2. If the marginal utility function, u′
i, of each agent i = 1, . . . , I

is convex, then in any SE with non-binding borrowing constraints, minimal consumption for

one agent i at a particular node implies minimal consumption for this agent at all subsequent
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nodes: for any SE, if there exists a node st so that cit(s
t) = ci,inf , then ci,t+n(st+n) = ci,inf

for all subsequent nodes st+n ∈ D(st).

Proof. Without loss of generality, we choose i = 1. Fix a SE with non-binding borrowing

constraints and suppose there exists a node st for which c1t(s
t) = c1,inf . We fix this node st

throughout the analysis. After introducing an equivalent measure, the Euler equations at st

are given by (16). The Euler equation for agent i = 1 again implies

qt(s
t) ≤ β . (18)

Since c1t(s
t) = c1,inf and there is no aggregate risk, there exists a î ∈ {2, . . . , I} with

cît(s
t) ≥ ∑

st+1

cî,t+1(s
t+1)π̃(st+1|st) . (19)

The proof of (19) is shown below. Since the marginal utility function is non-increasing and

convex, we have (using 19):

qt(s
t) = β

∑
st+1

u′
î
(cî,t+1(s

t+1))π̃(st+1|st)

u′
î
(cît(s

t)
(20)

≥ β
u′

î

(∑
st+1

cî,t+1(s
t+1)π̃(st+1|st)

)
u′

î
(cît(s

t)

≥ β .

Clearly, (18) and (20) can only hold if qt(s
t) = β, which implies c1,t+1(s

t+1) = c1,inf for all

st+1 ∈ D(st). An identical argument shows that c1,t+2(s
t+2) = c1,inf for all st+2 ∈ D(st).

More generally, c1t(s
t) = c1,inf implies c1,t+n(st+n) = c1,inf for all st+n ∈ D(st).

It remains to be shown that (19) holds. Notice first that market clearing reads

I∑
i=2

cit(s
t) = ω − c1,inf (21)

∀ st+1 ∈ D(st) :
I∑

i=2

ci,t+1(s
t+1) = ω − c1,t+1(s

t+1) .
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Equation (19) implies

∀ st+1 ∈ D(st) :
I∑

i=2

cit(s
t) −

I∑
i=2

ci,t+1(s
t+1) = c1,t+1(s

t+1) − c1,inf , (22)

which in turn implies

I∑
i=2

cit(s
t) ≥

I∑
i=2

∑
st+1

ci,t+1(s
t+1)π̃(st+1|st) . (23)

Clearly, (23) can only hold if (19) holds.

Proposition 2 and the corollary 1 now read as follows:

Proposition 3. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A4 and there

are at least two agents, I ≥ 2. If agents’ marginal utility functions are all convex, then there

is no RE with non-binding borrowing constraints that is defined by continuous functions,

f, q, c, θ, on a compact domain, X × S.

Corollary 2. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies A1-A4 and there

are at least two agents, I ≥ 2. If agents’ marginal utility functions are all convex, then

there is no RE with debt constraint M > q̄ max {(e1/d)min, . . . , (eI/d)min} that is defined by

continuous functions, f, q, c, θ, on a compact domain, X × S.

Next we discuss an assumptions on preferences that leads to non-existence for all endow-

ment vectors (including those with a large amount of aggregate risk). Interestingly, this is

the preference assumption most often made in macroeconomics.

Assumption 5. Agents have identical CRRA-preferences with degree of relative risk aver-

sion greater or equal to one: ui(cit) = c1−γ
it /(1 − γ), γ > 1, or ui(cit) = logcit.

Proposition 4. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies assumptions

A1,A2,A4, and A5 (but not necessarily assumption A3) and there are at least two agents,

I ≥ 2. Then there is no RE with non-binding borrowing constraints that is defined by
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continuous functions, f, q, c, θ, on a compact domain, X × S.

Proof . With this preference specification, the equilibrium conditions (5) for an economy

with aggregate risk can be transformed into the equilibrium conditions of an economy with

constant (unit) aggregate endowment and effective discount factor β̃ = βω−γ
t . Simply in-

troduce the scaled variables c̃it = cit/ωt, ẽit = eit/ωt, d̃t = dt/ωt, and q̃t = qt/ωt. This new

economy is an economy with no aggregate risk and common, multiplicative taste shocks,

which has no recursive equilibrium with non-binding borrowing constraints for the following

reason. Step 1 (lemma 3) goes through because constant consumption still implies constant

portfolio holdings (even though it does not imply constant prices), which in turn violates

the budget constraint. Step 2 (lemma 4) remains almost unchanged because common taste

shocks disappear from the equilibrium conditions once an appropriate equivalent measure is

introduced. Because for this preference specification the marginal utility function is strictly

convex, proposition 3 applies and the non-existence holds for any number of agents.

Corollary 3. Suppose the economy E =< S, π, β, u, e, θ0, d > satisfies assumptions

A1,A2,A4, and A5 (but not necessarily assumption A3) and there are at least two agents,

I ≥ 2. Then there is no RE with debt constraint M > q̄ max {(e1/d)min, . . . , (eI/d)min} that

is defined by continuous functions, f, q, c, θ, on a compact domain,X× S.

V. Concluding Remarks

This paper showed that for incomplete-market economies with no aggregate risk and

utility functions that are unbounded from below, no RE (ME) with compact state space and

non-binding borrowing constraints exists. This conclusion discusses possible extensions of

the non-existence result in addition to the extensions discussed in the previous Section.

A straightforward (but lengthy) extension of the argument put forward in this paper
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shows that the same type of non-existence result holds for an open set of economies with

small amount of aggregate risk. In other words, non-existence is robust with respect to

perturbations of endowments. For this type of extension, lemma 2 has to be sharpened to

the statement that there is a lower bound on consumption fluctuations that is bounded away

from zero, and the new version of lemma 3 would state that future consumption fluctuations

can be made arbitrarily small. An essential requirement for this argument to be valid is that

all functions involved are continuous functions restricted to a compact set, and are therefore

bounded. A similar extension is possible for small taste shocks.

The non-existence argument does not extend, however, to a non-compact state space

because this could lead to marginal utility functions that are unbounded even if restricted

to the equilibrium domain. Thus, this paper cannot rule out that there are RE (ME)

with non-compact state space and non-binding borrowing constraints for which the implied

equilibrium consumption set is C̃ ≡ {(c1, c2) ∈ IR2
++|c1 + c2 = ω}.

In the case of bounded utility functions the contradiction leading to the non-existence

result might be avoided by including zero consumption in the equilibrium consumption set

as an isolated point. As mentioned in footnote 7, zero consumption could be an equilibrium

outcome even if an Inada condition is satisfied (but not with utility unbounded from below)

when an agent begins his life with so much debt that his net-endowment is zero: θi0+ei(z0) =

0. In this case the agent’s choice set at the initial node is a singleton and no Euler equation

has to hold for this agent at the initial node (any further increase in debt will violate the

budget constraint and the agent is forced to consume ci0 = 0). Clearly, such an approach to

the existence of RE (ME) requires one to abandon the common assumption (Hernandez and

Santos, 1996, Levine and Zame, 1996, Magill and Quinzii, 1994,96) that net-endowments are

strictly positive at all date-events.8

8To the best of my knowledge, RE (ME) of this type have not been studied by the literature.
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