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Abstract

I introduce a technique to estimate parameters in regressions with reduced

rank parameters in a general setting. The framework can handle a gen-

eral class of parameter restrictions and allows for specifications with het-

eroskedastic and autocorrelated regression errors. Applications of this tech-

nique include: estimation of structural equations, estimation of reduced rank

matrices in cross-section, panel, and time-series analysis, including estima-

tion of cointegration relations in time series and panels.
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1 Introduction

In this paper I derive a new estimation technique called generalized reduced rank re-

gression (GRRR) that can estimate the parameters in regression models in a general

framework. The contribution of this paper is to link the GRRR framework to exist-

ing econometric problems and to provide a useful estimation technique to this class

of regression problems. The novelty of the GRRR method is that it provides a uni-

fied framework for estimation of a general class of regression models by exploiting the

structure of the estimation problem. The class includes models with: (i) reduced rank

parameters, (ii) linear parameter restrictions, and (iii) a general covariance structure;

and standard techniques such as OLS, GLS, RGLS, and reduced rank regression (RRR)

are special (simplified) cases of the GRRR technique.

To illustrate the applicability of the GRRR technique, consider the regression prob-

lem Y = Xπ0 + Zγ0 + ε, where Y, X, Z, and ε have dimensions T × p, T × p1, T × p2,
and T × p respectively, where π and γ have dimensions p× p1 and p× p2 respectively,
and where vec(ε0) ∼ NTp(0,Σ). In special cases OLS or GLS may be applicable for

the parameter estimation, whereas the GRRR method is useful in situations where the

parameters may be subject to restrictions of the form: (i) π = αβ0 where α and β have

dimensions p×r and p1×r respectively, (ii) vec(α, γ) = Gψ+g and vec(β) = Hϕ+h for
known matrices (vectors) H and G (h and g), and (iii) Σ = Σ(θ) where θ are the free

parameters in the Tp× Tp covariance matrix, Σ.
Models with reduced rank parameters are common in econometrics. In some models

the reduced rank parameters are a natural part of the model, in other models the re-

duced rank parameters are introduced in order to reduce the number of free parameters.

Examples of the former include factor models, (see e.g., Bai and Serena, 1999), struc-

tural models, and cointegration models, (see e.g., Johansen, 1988) and recent examples

of the latter include forecasting models (see e.g., Stock and Watson, 1999), instrumental

variable estimation with many (potential weak) instruments, and GMM estimation (see
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e.g., Hall and Inoue, 2001).

It is simple to impose a particular matrix to have reduced rank by expressing it

as a product of two matrices, and the simplest estimation problem with reduced rank

parameters is the RRR problem. RRR is closely related to the analysis of canonical

covariates and canonical correlations of Hostelling (1935, 1936) and Anderson (1951,

1984). Discussion of these relations can be found in Anderson (1951), Izenman (1975),

Tso (1981), Davies and Tso (1982), and Reinsel and Velu (1998). Reduced rank models

with stationary variables have been analyzed by Velu, Reinsel, and Wichern (1986)

and Velu and Reinsel (1987), Gudmundsson (1977) applied reduced rank regression

to select linear combinations that best described the average variation in a vector of

dependent variables. RRR is also used in the analysis of cointegrated variables. The

concept of cointegration was introduced by Granger (1981), although the paper by

Box and Tiao (1977) came close to introducing it.1 Reduced rank regression was later

applied to cointegration models by Johansen (1988) and Ahn and Reinsel (1990) in

the vector autoregressive framework. In a Bayesian setting, reduced rank regression

has been analyzed by Geweke (1996), and Costa, Gardini, and Paruolo (1997) applied

reduced rank regression to test asset pricing models. The book by Reinsel and Velu

(1998) provides an excellent exposition of RRR and its relation to several econometric

estimation problems.

In a regression with unrestricted parameters, it is well known that minimizing the

sum-of-squared residuals is equivalent to the method of maximum likelihood, if the

errors in the regression equation are assumed to be iid Gaussian with an unknown co-

variance matrix. In this case, the parameter estimates are given from the least squares

method. The estimation problem is only slightly more complicated when a reduced

rank condition is imposed on a regression matrix. In this case the estimation problem

1Box and Tiao applied canonical variates to decompose a process into linear combinations that are:
white noise, stationary, and nearly non-stationary, and in relation to the nearly non-stationary variables,
they argue against differencing the data prior to the analysis, due to the possible existence of “stable
contemporaneous linear relationships among the variables” Box and Tiao (1977, p. 362).
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can be solved as an eigenvalue problem, and this simplification is also applicable under

a simple type of parameter restrictions. However, more complicated parameter restric-

tions often appear in econometrics and estimation currently requires the use of general

estimation techniques that do not fully exploit the structure of the likelihood2. The

GRRR technique offers a better solution to this type of estimation problem.

Inference in a model with reduced rank parameters has (at least) three elements.

One is to determine the rank(s), which affects the dimensions of several parameters,

the second is the parameter estimation, and the third concerns the probabilistic prop-

erties of estimators. This paper contributes to the second problem — the estimation

of parameters — whereas the two other aspects are not discussed in details. Deter-

mination of the rank(s) which defines the dimensions of several parameters as well as

the probabilistic properties of the estimators, will depend on the data that are being

analyzed. Fortunately, most of these results are readily available from the existing

literature. For example, in a system with stationary variables, the (asymptotic) distri-

bution of likelihood-based tests for the rank of a matrix of parameters are typically χ2,

see Bartlett (1938) and Anderson (1951), whereas in systems with integrated variables

the tests have a (squared) Dickey-Fuller type asymptotic distributions, see Johansen

(1988).

The paper is organized as follows: Section 2 reviews and describes the reduced rank

regression and estimation techniques for this problem. Section 3 presents the GRRR

technique and Section 4 contains examples that show the applicability of the GRRR

model. Section 5 contains some concluding remarks. Proofs are given in the Appendix.

Bold font is used to denote matrices, diag(A1, . . . ,Am) is used to denote the block-

diagonal matrix that has the matrices A1, . . . ,Am along its diagonal and zeros in other

entries, and Km,n denotes the commutation matrix which is characterized by satisfying

2When general estimation techniques are applied to estimation of restricted reduced rank parameters,
it is not unusual to experience slow convergence or even failure of the algorithm to converge to the global
optimum.
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the identity Km,nvec(A) = vec(A
0) for any m× n matrix A.

2 Reduced Rank Regression

Consider the linear regression equation:

Z0t =ΠZ1t + εt, t = 1, . . . , T, (1)

where Z0t is a p-dimensional vector of dependent variables, Z1t is a p1-dimensional vector

of explanatory variables, {εt} is a sequence of iid Gaussian variables, εt ∼ N(0,Ω), and
Π is an p× p1 matrix.

Reduced rank regression maximizes the Gaussian likelihood subject to the constraint

rank(Π) = r, where 0 ≤ r ≤ min(p, p1). The reduced rank of Π enables us to write

Π = αβ0, where α is a p× r matrix and β is an p1× r matrix, both having full column
rank. It is well known that the estimator for Π is given by the least squares estimator if

r = min(p, p1), whereas the estimator can be obtained by solving an eigenvalue problem

whenever r < min(p, p1). RRR can also be applied to estimate the parameters in the

regression equation Z0t = αβ0Z1t +ΨZ2t + εt, where we have p2 additional regressors,

Z2t, as long as the p×p2 matrixΨ is unrestricted. Johansen (1988) applied this method

to estimate the parameters in the cointegrated vector autoregressive model. He showed

that the estimation problem, for a given cointegration rank, simplifies to a reduced rank

regression problem whereby he obtained the estimators. Johansen’s technique is also

applicable to estimation of parameters, which are subject to restrictions that take the

form α =Gψ and β =Hϕ, for known matrices G and H, while problems of the form

β = (H1ϕ1, . . . ,Hrϕr), for known matrices H1, . . . ,Hr, can be solved by a switching

algorithm of Johansen and Juselius (1992), which reduces the estimation problem to a

simple RRR problem in every iteration.3

3A similar decomposing of the estimation problem was made in Johansen and Swensen (1999) to
test for rational expectation in the cointegrated VAR model.
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Boswijk (1995) derived a more general estimation technique that solves estimation

problems of the form vec(α) = Gψ and vec(β) = Hϕ + h, where vec(·) is the vector-
ization operator, G and H are known matrices, and h is a known vector.

When {εt} is a sequence of iid Gaussian variables with mean zero and constant
variance Ω (a p × p matrix), the techniques yield the maximum likelihood estimators

when Z1t and Z2t are measurable with respect to Ft−1, where Ft = σ(εt, εt−1, . . .).
The (GRRR) technique, derived below, can handle all of the estimation problems

listed above, and the GRRR is applicable to a more general class of parameter restric-

tions, as well as models with a more complex structures of the covariance matrix, includ-

ing heteroskedasticity and autocorrelation. In Section 4, I list a number of econometric

models, where the GRRR technique is useful for estimation. The GRRR technique can

be extended to non-linear restrictions by localized linear approximation, and thereby

include the class of parameter restrictions considered by Elliott (1997, 2000), however,

the non-linear aspect is not treated in this paper. The technique by Elliott (1997, 2000)

uses minimum distance methods applied to the cointegrated regressions, see Engle and

Granger (1987), whereas the technique in this paper is motivated by likelihood analysis.

3 Generalized Reduced Rank Regression

We define a generalized reduced rank regression as the regression

Z0t = αβ
0Z1t +ΨZ2t + εt, t = 1, . . . , T, (2)

where the parameters are subject to the restrictions

vec(α,Ψ) = Gψ + g,

vec(β) = Hϕ+ h,
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for known matrices G and H and known vectors g and h. The errors are Gaussian

distributed,

ε ≡ vec(ε1, . . . , εT ) ∼ NTp(0,Σ).

The covariance matrix is either known or specified parametrically as Σ = Σ(θ), for

some vector of parameters, θ. To simplify notation, we shall omit the argument “θ”,

except where it is important to make the dependence of θ explicit. The three vectors

of parameters, ψ, ϕ, and θ, are assumed to be variation free.4

It is the general class of restrictions and the general form of Σ, that makes the

GRRR framework a powerful tool. Several estimation problems can be expressed in the

form of a GRRR, and it is useful that one can specify Σ to accommodate heteroskedas-

ticity and/or serial correlation, since an iid assumption is often implausible in economic

applications.

If we set G = I, H = I, g = 0, h = 0, and Σ = IT ⊗Ω, we see that the RRR is a
special case of the GRRR.

A closer inspection of the estimation problem reveals a particular structure. When

holding a subset of the parameters fixed, the partial estimation problem reduces to

a restricted GLS problem, for which a closed-form solution is available. The GRRR

estimation technique exploits this structure, by iterating on different subsets of the

parameters. Since the likelihood function is increased in every iteration the value of

the likelihood function is ensured to converge. Properties of estimation techniques that

switch between subsets of the parameters has been analyzed by Oberhofer and Kmenta

(1974).

Before we can present our main result, we need to introduce some additional nota-

tion. We define the matrices of observations, Zi = (Zi1, . . . , ZiT )0, i = 0, 1, 2, and the

4This requires that the parameter space is a product space of the three parameter spaces of the three
sets of parameters. So there is no functional dependence across parameters, which we need to take into
account when estimating the parameters.
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matrices:

Z1β2 = ((Z1β,Z2)⊗ Ip)),

Z1α = (Z1 ⊗α)Kp1,r,

where Kp1,r is the commutation matrix and where ⊗ denotes the Kronecker product.

Finally, define the matrices:

Nβ,Σ ≡ Z01β2Σ
−1vec(Z00)

0,

Mβ,Σ ≡ Z01β2Σ
−1Z1β2,

Nα,Ψ,Σ ≡ Z01αΣ
−1vec(Z00 −ΨZ02),

Mα,Σ ≡ Z01αΣ
−1Z1α.

With these definitions, we can formulate the main result.

Theorem 1 Let the parameter α, β, and Ψ be restricted by vec(α,Ψ) = Gψ + g and

vec(β) = Hφ+ h and suppose that ε = vec(ε1, . . . , εT ) ∼ N(0,Σ). Then the maximum
likelihood estimators of α, β, Ψ, and Σ satisfy

vec(bα, bΨ) = G
h
G0Mβ̂,Σ̂G

i−1
G0
³
Nβ̂,Σ̂ −Mβ̂,Σ̂g

´
+ g, (3)

vec(bβ) = H
h
H0Mα̂,Σ̂H

i−1
H0
³
Nα̂,Ψ̂,Σ̂ −Mα̂,Σ̂h

´
+ h. (4)

The maximum value of the likelihood function is given by

Lmax(bα, bβ, bΨ, θ̂) = (2π)−Tp
2 |Σ̂|− 1

2 exp

µ
−1
2
ε̂0Σ̂−1ε̂

¶
,

where ε̂ = vec(ε̂1, . . . , ε̂T ), ε̂t = Z0t − bαbβ0Z1t − bΨZ2t, and where Σ̂ = Σ(θ̂).
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In addition to the parameters α, β, and Ψ, we will have a likelihood equation for Σ,

θ̂ = argmax
θ
L(bα, bβ, bΨ, θ) (5)

When (β,Σ) is fixed, the estimation problem for (α,Ψ) reduces to a restricted GLS

problem and so does the estimation problem for β when (α,Ψ,Σ). This is reflected in

the structure of (3) and (4). The likelihood equation for Σ is given in its general form

in (5). The exact form of (5) will depend on the specification chosen for Σ. Section 4

contains some special cases for which a closed-form expression of (5) can be obtained.

The definitions of Nβ,Σ,Mβ,Σ, Nα,Ψ,Σ, andMα,Σ involve the inverse of the Tp×
Tp matrix Σ. If Tp is large it can be quite burdensome to work directly with the

matrix Σ−1. Fortunately, it is possible to simplify the expressions in some cases. If {εt}
is a sequence of independent variables the expressions can be simplified considerably.

Lemma 2 covers the general case whereas the simplified expressions, achieved with

additional assumptions, are given in Lemmas 3 and 4.

Lemma 2 Let Σ−1[tτ ] be the p × p sub-matrix of Σ−1, such that the (i, j)th element of
Σ−1[tτ ] is the (p(t− 1) + i, p(τ − 1) + j)th element of Σ−1.

Then

Nβ,Σ = T−1
TX

t,τ=1

vec
³
Σ−1[tτ ]Z0τ (Z

0
1tβ, Z

0
2t)
´
, (6)

Mβ,Σ = T−1
TX

t,τ=1


 β0Z1tZ 01τβ β0Z1tZ 02τ

Z2tZ
0
1τβ Z2tZ

0
2τ

⊗Σ−1[tτ ]
 , (7)

Nα,Ψ,Σ = T−1
TX

t,τ=1

vec
³
Z1t(Z0τ −ΨZ2τ )0Σ−10[tτ ]α

´
, (8)

Mα,Σ = T−1
TX

t,τ=1

h
α0Σ−1[tτ ]α⊗ Z1tZ 01τ

i
. (9)

The advantage of Lemma 2 is that the equations do not involve matrices with a
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dimension larger than p×p. So with specification for Σ−1 rather than Σ, one can avoid
the need to invert a Tp× Tp matrix.

In the following we consider situations where the structure of Σ leads to simplifi-

cations of these equations. In the absence of autocorrelation, Σ has a block diagonal

structure, and we denote the T diagonal matrices of Σ by Ω(t), t = 1, . . . , T, and since

Σ−1[tτ ] = Ω(t)
−1 for t = τ and 0 otherwise, we obtain the simplifications of the following

lemma.

Lemma 3 Suppose that Σ(θ) is block diagonal, with T blocks of size p × p given by
Ω(t), t = 1, . . . , T, then

Nβ,Σ = T−1
TX
t=1

vec
¡
Ω(t)−1Z0t(Z 01tβ, Z

0
2t)
¢
,

Mβ,Σ = T−1
TX
t=1


 β0Z1tZ 01tβ β0Z1tZ02t

Z2tZ
0
1tβ Z2tZ

0
2t

⊗Ω(t)−1
 ,

Nα,Ψ,Σ = T−1
TX
t=1

vec
¡
Z1t(Z0t −ΨZ2t)0Ω(t)−1α

¢
,

Mα,Σ = T−1
TX
t=1

£
α0Ω(t)−1α⊗ Z1tZ 01t

¤
.

Under the assumptions of Lemma 3 the expression of the maximum value of the

likelihood, see Theorem 1, simplifies to

Lmax(bα, bβ, bΨ, θ̂) = (2π)−Tp
2

Ã
TY
t=1

|Ω(t)|− 1
2

!
exp

Ã
−1
2

TX
t=1

ε̂0tΩ(t)
−1ε̂t

!
.

Note that Lemma 3 allows for heteroskedasticity. If {εt} is homoskedastic we obtain
additional simplification. We define the moment matrices, Mij ≡ T−1

PT
t=1ZitZ

0
jt,

i, j = 0, 1, 2.

Lemma 4 If var(εt) = Ω, for all t = 1, . . . , T and cov(εt, εs) = 0 for all s 6= t. We
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have the identities:

Nβ,Σ = vec
¡
Ω−1(M01β,M02)

¢
,

Mβ,Σ =


 β0M11β β0M12

M21β M22

⊗Ω−1
 ,

Nα,Ψ,Σ = vec
¡
(M10 −M12Ψ

0)Ω−1α
¢
,

Mα,Σ =
£
α0Ω−1α⊗M11

¤
.

Under the iid assumptions the generic equation for the covariance parameters, (5),

can be written as Ω̂ = T−1
PT
t=1 ε̂tε̂

0
t, and the maximum value of the likelihood function

simplifies to

L−2/Tmax (bα, bβ, bΨ, Ω̂) = (2π)−p |Ω̂| exp (p) .
Some further simplification can be obtained under additional assumptions and in

situations with less general restrictions, see Hansen (2000a, 2000b).

For a practical implementation of the GRRR technique one can first choose a set

of initial parameter values, (α(0),β(0),Ψ(0), θ(0)), and recursively update the parame-

ter values using equations (3), (4), and (5) until the value of the likelihood function

converges. Since the likelihood function is bounded by its maximum and the value

of the likelihood function is increased in every iteration, the algorithm will eventually

converge. However, it is not clear whether convergence to a local maximum or a saddle

point can occur.5 In practice one can initialize the algorithm at different starting values

and verify that the algorithm leads to the same value of the likelihood function.

5 In simulation experiments where the GRRR algorithm was applied to the same data and initial-
ized at different (randomly chosen) starting values, the algorithm always led to the same value of the
likelihood. Matlab and Ox implementations of the GRRR technique is available from the author.
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4 Applicability: Examples

Example 1 (FIML) Consider the structural equations expressed in the form

ΓYt +ΦXt = ηt, t = 1, . . . , T,

where the matrices Γ and Φ have dimensions is a m× p and m× q respectively, where
and ηt is iid Gaussian with mean zero and covariance matrix Λ.

The reduced form of the model is given by

Yt = β
0Xt + εt, t = 1, . . . , T,

where β is a q× p matrix and εt is iid Gaussian with mean zero and covariance matrix
Ω. The relation between the reduced form and the structural form are given by the well

known identities, ΓΩΓ0 = Λ and Γβ0 +Φ = 0.

We define

α = Ip −

 Γ

0p−m×p

 , and Ψ =

 −Φ
0p−m×q

 ,
where the zero matrices are added if the number of structural equations, m, is less that

the number of endogenous variables, p. With these definitions it holds that

Yt = αβ
0Xt +ΨXt + εt, t = 1, . . . , T,

and since linear restrictions on vec(Γ) and vec(Φ), can be formulated as linear restric-

tions on vec(α,Ψ), the structural equations can be estimated using GRRR.

An advantage of the GRRR formulation, is that one can use restrictions on β for

the identification of the structural parameters, as long as the restrictions do not violate

the identity Γβ0 +Φ = 0. On the other hand, the GRRR formulation does not allow
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one to impose restrictions directly on the elements of Λ = var(ηt), but restrictions can

be imposed on the reduced form covariance matrix, Ω.

The use of GRRR for estimation of structural models is similar to the estimation

technique proposed by Hausman (1975). However, the GRRR allows for a more general

specification of the covariance structure of εt (and hence ηt), such as heteroskedasticity

and autocorrelation.

Example 2 (Moving average residuals) The GRRR technique enables estimation

of the cointegrated VARMA models. Since α, β, and Ψ are easily estimated for a fixed

value of Σ, all we need to add is the likelihood equation for Σ. The general covariance

matrix takes the form

Σ =



Ω0 · · · Ω0q 0 · · · 0

...
. . .

...
. . .

...

Ωq · · · Ω0 0

. . .

0 Ω0 · · · Ω0q
...

. . .
...

. . .
...

0 · · · 0 Ωq · · · Ω0



,

under the assumption that {εt} is an MA(q) process, where Ωi = cov(εt, εt−i), i =

1, . . . , q.

For fixed values of bα, bβ, and bΨ, we calculate the residuals, ε̂1, . . . , ε̂T . These can be
used to estimate Σ, by maximization of

max
θ
L(bα, bβ, bΨ, θ) = (2π)−Tp

2 |Σ(θ)|− 1
2 exp

µ
−1
2
ε̂0Σ(θ)−1ε̂

¶
,

where θ contains the elements in Ω0, . . . ,Ωq (without duplication). There does not exist

a closed form solution to this problem, but numeric methods are available, see Osborn
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(1977) or Hamilton (1994). See Lütkepohl and Claessen (1997) for a different approach

to estimation of cointegrated VARMA models.

Example 3 (ARCH-type heteroskedasticity) Let Ω(t)−1 = Q0tDQt, where Q0t =

(Ip,Xt), Xt is a sequence of p × q-dimensional exogenous variables, and D is a (p +

q)× (p+ q) matrix of parameters. The parameter estimate of D satisfies

TX
t=1

Qt(Q
0
t
bDQt)−1Q0t = TX

t=1

Qtε̂tε̂
0
tQ

0
t. (10)

This can be verified from the first order conditions. Let bα, bβ, and bΨ be given, and

define (ε̂1, . . . , ε̂T ) accordingly. The log-likelihood equation for D is given by

l(D) =
TX
t=1

log |Q0tDQt|− tr
(

TX
t=1

ε̂0tQ
0
tDQtε̂t

)
,

and the differential is given by

l(D+ d) =
TX
t=1

log |Q0t(D+ d)Qt|− tr
(

TX
t=1

ε̂0tQ
0
t(D+ d)Qtε̂t

)

= l(D) +
TX
t=1

tr
©
(Q0tDQt)

−1Q0tdQt
ª− tr( TX

t=1

ε̂0tQ
0
tdQtε̂t

)
+O(||d||2).

So the first order condition is given by

TX
t=1

tr
©£
Qt(Q

0
tDQt)

−1Q0t −Qtε̂tε̂0tQ0t
¤
d
ª
= 0

for all d ∈ R(p+q)×(p+q), which shows that (10) is the first order conditions for D.

Example 4 (Structural change) Consider the cointegrated Gaussian VAR with a

structural change in the cointegration relations and covariance matrix, see Hansen
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(2000a). This can be expressed as

∆Xt = (α
o,αo)

 β1 0

0 β2


0 Xt−11(t ≤ T1)

Xt−11(t > T1)

+ Γ1∆Xt−1 + εt, t = 1, . . . , T,

where 1(·) is the indicator function and where εt ∼ iid N(0,Ω1) for t ≤ T1 and εt ∼ iid
N(0,Ω2) for t > T1.

Set α = (αo,αo), β = diag(β1,β2) and Ψ = Γ1. The regression problem can be

written as a GRRR problem by the definitions g = 0, h = 0, and

G =

 G1 0

0 G2

 , G1 =

 1

1

⊗ Ipr, G2 = Ip2 , H =



1

0

0

1


⊗ Ipr

where p denotes the number of rows in α and β, and r denotes the number of columns

in α, β1, and β2. The covariance matrix is given by Σ = diag
¡
IT1 ⊗Ω1, I(T−T1) ⊗Ω2

¢
and the estimators are given by the sum of squares

bΩ1 = T−11
T1X
t=1

ε̂tε̂
0
t

bΩ2 = (T − T1)−1
TX

t=T1+1

ε̂tε̂
0
t,

because the log-likelihood function splits into the sum

l(Ω1,Ω2) ∝ T1 log |Ω1|+ tr
(

T1X
t=1

ε̂tε̂
0
tΩ

−1
1

)

+(T − T1) log |Ω2|+ tr


TX
t=T1+1

ε̂tε̂
0
tΩ

−1
2

 ,
when α, β, and Ψ are taken as given.
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Example 5 (Granger non-causality) Consider a cointegration model whereX2t does

not Granger cause X1t, (see Mosconi and Giannini (1992)). In the VAR(2) model,

∆Xt = ΠXt−1 + Γ1∆Xt−1 + εt, for t = 1, . . . , T, the Granger non-causality is equiva-

lent to the restrictions

Π =

 Π11 Π12

0p2×p1 Π22

 =

 α11 α12

0p2×r1 α22


 β011 β021

0r2×p1 β022


Γ1 =

 Γ1,11 Γ1,12

0p2×p1 Γ1,22

 ,
where p1 is the dimension of X1t, p2 = p − p1 is the dimension of X2t, r2 is the
rank of Π22, and r1 = r − r2. These restrictions are imposed using the matrices G =

diag(G1, Ipr2 ,G3, Ip2p) and H = diag(Ipr1,H2), where

G1 = Ir1 ⊗

 Ip1

0p2

 , G3 = Ip1 ⊗

 Ip1

0p2

 , and H2 = Ir2 ⊗

 0p1

Ip2

 .
Example 6 (Panel cointegration) The panel cointegration model of Larsson, Lyha-

gen, and Lothgren (1998), Larsson and Lyhagen (1999), and Groen and Kleibergen

(1999), take the form


∆X1t

...

∆Xnt

 = αβ0


X1,t−1
...

Xn,t−1

+ Γ1

∆X1,t−1

...

∆Xn,t−1

+

ε1t

...

εnt

 ,

where α has one of three structures: α = diag(α1, . . . ,αn), α = In ⊗ αo,or α is

unrestricted, where β has the structure: β = diag(β1, . . . ,βn), or β = In ⊗ βo, where
Γ1 has the structure: Γ1 = diag(Γ1,1, . . . ,Γ1,n), Γ1 = In ⊗ Γo1, or Γ1 is unrestricted,
and where Σ = IT ⊗ Ω. The covariance matrix, Ω, can either be block diagonal Ω =

diag(Ω1, . . . ,Ωn) or be unrestricted.
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Similar to the examples above, these (sets of) restrictions can be expressed in terms

of G and H matrices.

Example 7 (Sector cointegration) Sector cointegration is similar to panel cointe-

gration. The parameters have a block-diagonal structure except for one set of rows that

corresponds to a common set of variables, X0t. This can be expressed as



∆X0t

∆X1t

...

∆Xnt


= αβ0



X0,t−1

X1,t−1
...

Xn,t−1


+ Γ1



∆X0,t−1

∆X1,t−1
...

∆Xn,t−1


+



ε0t

ε1t

...

εnt


,

where α may have the structure:

α =



α01 · · · α0n

α1 0 0

0
. . . 0

0 0 αn


, α =

 (α01, . . . ,α0n)

In ⊗αo

 ,

or

α =

 (1, . . . , 1)⊗α0
In ⊗αo

 ,
and β may have the structure

β =



β01 · · · β0n

β1 0 0

0
. . . 0

0 0 βn


, β =

 (β01, . . . ,β0n)

In ⊗ βo

 ,
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or

β =

 (1, . . . , 1)⊗ β0
In ⊗ βo

 ,
and a similar structure for Γ1.

5 Conclusion

We have derived an estimation technique that applies to parameter estimation of re-

duced rank parameters. The GRRR technique is applicable to a general class of esti-

mation problems, which allows for a general specification of the covariance structure

and where the parameter may be subject to restrictions. As illustrated by examples,

the GRRR technique is applicable to several econometric models, including time-series,

cross-section, and panel models. In the analysis of the cointegrated VAR the technique

may prove particularly useful, as it allows for covariance specifications that include au-

tocorrelation and heteroskedasticity, including multivariate ARCH-type specifications.
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Appendix of Proofs

Proof of Theorem 1. We express (2) in the matrix notation

Z0 = Z1βα
0 + Z2Ψ0 + ², (11)
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where ² = (ε1, . . . , εT )0, (note that vec(²) = ε). The regression problem can be simplified

to two partial regression problems, that take the restrictions into account individually.

Applying the vec operation to (11), see Magnus and Neudecker (1988), yields the

equation

vec(Z0) = (Z01β ⊗ Ip)vec(α) + (Z02 ⊗ Ip)vec(Ψ) + ε

=
£
(Z01β,Z

0
2)⊗ Ip)

¤
vec(α,Ψ) + ε

= Z1β2(Gψ + g) + ε,

which may be rewritten as

vec(Z0)− Z1β2g = Z1β2Gψ + ε.

For fixed values of β and Σ this is a restricted GLS problem with the well know solution

given by (3), where we have used the identities preceding Theorem 1.

Similarly, for fixed α, Ψ, and Σ, we have the equation

vec(Z0 −ΨZ2) = vec(αβ0Z1) + ε

= (Z01 ⊗α)vec(β0) + ε

= (Z01 ⊗α)Kp1,rvec(β) + ε

= Z1αvec(β) + ε

= Z1α(Hφ+ h) + ε,

which we rewrite as

vec(Z0 −ΨZ2)− Z1αh = Z1αHφ+ ε.

This is also a restricted GLS problem, with the solution given by (4).
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Proof. of Lemmas 2, 3, and 4. The identity, (8), is proven by

Z01αΣ
−1vec(Z0 −ΨZ2) = Kr,p1

TX
t,τ=1

(Z1t ⊗α0)Σ−1[tτ ]vec(Z0τ −ΨZ2τ )

= Kr,p1

TX
t,τ=1

(Z1t ⊗α0Σ−1[tτ ])vec(Z0τ −ΨZ2τ )

= Kr,p1

TX
t,τ=1

vec(α0Σ−1[tτ ] (Z0τ −ΨZ2τ )Z01t)

=
TX

t,τ=1

vec
³
Z1t(Z0τ −ΨZ2τ )0Σ−10[tτ ]α

´
,

and (9) is proven by

Z01αΣ
−1Z1α = K0

p1,r(Z1 ⊗α0)Σ−1(Z 01 ⊗α)Kp1,r

= Kr,p1

TX
t,τ=1

(Z1t ⊗α0)Σ−1[tτ ](Z01τ ⊗α)Kp1,r

= Kr,p1

TX
t,τ=1

(Z1t ⊗α0Σ−1[tτ ])(Z01τ ⊗α)Kp1,r

= Kr,p1

TX
t,τ=1

(Z1tZ
0
1τ ⊗α0Σ−1[tτ ]α)Kp1,r

=
TX

t,τ=1

(α0Σ−1[tτ ]α⊗ Z1tZ 01τ ).

The other identities, (6) and (7), are proven similarly. The eight identities in Lemmas

3 and 4 follow by setting Σ−1[tτ ] = Ω(t)
−1 or Σ−1[tτ ] = Ω

−1 for t = τ and zero otherwise.

References

Ahn, S. K., and G. C. Reinsel (1990): “Estimation for Partially Non-Stationary
Multivariate Autoregressive Models,” Journal of the American Statistical Association,
85, 813—823.

Anderson, T. W. (1951): “Estimating Linear Restrictions on Regression Coefficients
for Multivariate Normal Distributions,” Annals of Mathematical Statistics, 22, 327—
351.

19



Anderson, T. W. (1984): An Introduction to Multivariate Statistical Analysis. New
York: John Wiley and Sons, 2nd edn.

Bai, J., and S. Ng (1999): “Determining the Number of Factors in Approximate
Factor Models,” Boston College, Working Paper 440.

Bartlett, M. S. (1938): “Further Aspects of the Theory of Multivariate Regression,”
Proceedings of the Cambridge Philosophical Society, 34, 33—40.

Boswijk, P. H. (1995): “Identifiability of Cointegrated Systems,” Working paper,
Tinbergen Institute.

Box, G. E. P., and G. C. Tiao (1977): “A Canonical Analysis of Multiple Time
Series,” Biometrica, 64, 355—365.

Costa, M., A. Gardini, and P. Paruolo (1997): “A Reduced Rank Regression
Approach to Tests of Asset Pricing,” Oxford Bulletin of economics and statistics, 59,
163—181.

Davies, P. T., and M. K.-S. Tso (1982): “Procedures for Reduced-Rank Regression,”
Applied Statistics, 31, 244—255.

Elliott, G. (1997): “Minimum Distance Methods and Cointegrated Models,” UCSD
manuscript.

(2000): “Estimating Restricted Cointegrating Vectors,” Journal of Business
and Economic Statistics, 18, 91—99.

Engle, R. F., and C. W. J. Granger (1987): “Co-Integration and Error Correction:
Representation, Estimation and Testing,” Econometrica, 55, 251—276.

Geweke, J. (1996): “Bayesian Reduced Rank Regression in Econometrics,” Journal
of Econometrics, 75, 121—146.

Granger, C. W. J. (1981): “Some Properties of Time Series Data and their Use in
Econometric Models Specification,” Journal of Econometrics, 16, 121—130.

Groen, J. J. J., and F. R. Kleibergen (1999): “Likelihood-Based Cointegration
Analysis in Panels of Vector Error Correction Models,” Tinbergen Institute Discussion
Paper TI 99-055/4.

Gudmundsson, G. (1977): “Multivariate Analysis of Economic Variables,” Applied
statistics, 26, 48—59.

Hall, A., and A. Inoue (2001): “A Canonical Correlations Interpretation of GMM
Estimation with Applications to Moment Selection,” NCSU Mimeo.

Hamilton, J. D. (1994): Time Series Analysis. Princeton N.J.: Princeton University
Press.

Hansen, P. R. (2000a): “Structural Changes in Cointegrated Processes,” Ph.D. thesis,
University of California at San Diego.

20



(2000b): “Structural Changes in the Cointegrated Vector Autoregressive
Model,” Brown University Economics Working Paper.

Hausman, J. A. (1975): “An Instrumental Variable Approach to Full Information
Estimators for Linear and Certain Nonlinear Econometric Models,” Econometrica,
43, 727—738.

Hostelling, H. (1935): “The Most Predictable Criterion,” Journal of education psy-
chology, 26, 139—142.

(1936): “Relations Between Two Sets of Variables,” Biometrica, 28, 321—377.

Izenman, A. J. (1975): “Reduced-Rank Regression for the Multivariate Linear Model,”
Journal of multivariate analysis, 5, 248—264.

Johansen, S. (1988): “Statistical Analysis of Cointegration Vectors,” Journal of Eco-
nomic Dynamics and Control, 12, 231—254.

Johansen, S., and K. Juselius (1992): “Testing Structural Hypotheses in a Multi-
variate Cointegration Analysis of the PPP and the UIP for UK,” Journal of Econo-
metrics, 53, 211—244.

Johansen, S., and A. R. Swensen (1999): “Testing Exact Rational Expectations in
Cointegrated Vector Autoregressive Models,” Journal of Econometrics, 93, 73—91.

Larsson, R., and J. Lyhagen (1999): “Likelihood-Based Inference in Multivariate
Panel Cointegration Models,” Working Paper Series in Economics and Finance, No.
331, Stockholm School of Economic.

Larsson, R., J. Lyhagen, and M. Lothgren (1998): “Likelihood-Based Cointegra-
tion Test in Heterogeneous Panels,”Working Paper Series in Economics and Finance
No. 250, Stockholm School of Economics.

Lütkepohl, H., and H. Claessen (1997): “Analysis of Cointegrated VARMA
Processes,” Journal of Econometrics, 80, 223—239.

Magnus, J. R., and H. Neudecker (1988): Matrix Differential Calculus with Appli-
cations in Statistics and Economics. New York: Wiley.

Mosconi, R., and C. Giannini (1992): “Non-Causality in Cointegrated Systems:
Representation Estimation and Testing,” Oxford Bulletin of Economics and Statistics,
54, 399—417.

Oberhofer, W., and J. Kmenta (1974): “A General Procedure for Obtaining Max-
imum Likelihood Estimates in Generalized Regression Models,” Econometrica, 42,
579—590.

Osborn, D. R. (1977): “Exact and Approximate Maximum Likelihood Estimators for
Vector Moving Average Processes,” Journal of Royal Statistical Society. Series B, 39,
114—118.

Reinsel, G. C., and R. P. Velu (1998): Multivariate Reduced-Rank Regression. New
York: Springer.

21



Stock, J., and M. Watson (1999): “Diffusion Indexes,” Working Paper.

Tso, M. K.-S. (1981): “Reduced-Rank Regression and Canonical Analysis,” Journal
of Royal Statistical Society, series B, 43, 183—189.

Velu, R. P., and G. C. Reinsel (1987): “Reduced Rank Regression with Autore-
gressive Errors,” Journal of Econometrics, 35, 317—375.

Velu, R. P., G. C. Reinsel, and D. W. Wichern (1986): “Reduced Rank Models
for Multiple Time Series,” Biometrica, 73, 105—118.

22


