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Abstract

In this paper we develop tests for whether play in a game is consis-

tent with equilibrium behavior when preferences are unobserved. We pro-

vide necessary and sufficient conditions for observed outcomes in extensive

game forms to be rationalized first, partially, as a Nash equilibrium and

then, fully, as the unique subgame-perfect equilibrium. Thus one could use

these conditions to find that play is (a) consistent with subgame-perfect

equilibrium, or (b) not consistent with subgame-perfect behavior but is

consistent with Nash equilibrium, or (c) consistent with neither. Further,

we discuss the relevance of the test outcomes for rationalization of data

by multiple preference profiles.
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1 INTRODUCTION

How can one test whether play in a game is consistent with equilibrium when

we cannot observe the players’ preferences? As a number of recent papers

(Zhou 1997, Sprumont 2000, Ray and Zhou 2001, Sprumont 2001, Bossert and

Sprumont 2002, Carvajal 2002, Zhou 2002, Bossert and Sprumont 2003) have

discussed, one can observe the outcome in a variety of game forms and extend

the lessons of revealed preference theory for individual choice to concepts of

equilibrium play in games.

Sprumont (2000) has taken up the issue for normal form games. Sprumont

considers finite sets of actions, Ai, one for each player, i; the product set, A, is

called the set of joint actions. A joint choice function, f , assigns to every possible

subset B of A a non-empty set. A data set is a realization of a joint choice

function. A data set is Nash rationalizable if there exist preference orderings

on A such that for every B, f(B) coincides with the set of Nash equilibria for

the game defined by the set of actions B with those preferences. Sprumont

provides necessary and sufficient conditions (Persistence under Expansion and

Persistence under Contraction) for a data set to be Nash rationalizable.

As a complement to the work of Sprumont, Ray and Zhou (2001) consider

situations in which the players move sequentially with perfect information. They

fix an extensive game form (tree) G with complete information. A reduced game

form, G′, is obtained from G by deleting branches of G. A unique outcome

is observed for each reduced game form. For Ray and Zhou, the data are

the outcomes of all possible reduced game forms. They provide necessary and

sufficient conditions (Acyclicity of the Base Relation (AC), Internal Consistency

(IC) and Subgame Consistency (SC)) for a data set to be rationalizable as the

unique subgame-perfect equilibrium in every reduced game form.

We are interested in the differences between Nash and subgame-perfect be-

havior in extensive games. Notice that in extensive game forms, we assume we

observe outcomes and not strategies (complete plans of actions), whereas in the

work on normal game forms, strategies (equivalently, actions) are assumed to
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be observed. Thus a data set in the extensive form context has missing obser-

vations compared to the corresponding normal form data set. Therefore, one

cannot use Sprumont’s conditions for Nash rationalization in extensive game

forms by testing the conditions in the corresponding normal game forms. To

see this, consider the data set from the game tree (and all reduced forms) as in

Figure 1a. The tree has two choice nodes; player 1 moves in the first node and

has two choices, namely L and R. Player 2 moves in the second (after player

1 moves L) and also has two choices, namely l and r. There are 3 possible

(non-trivial) reduced game forms as shown in the figure.

[Insert Figures 1a and 1b here]

The corresponding normal game form obviously has a 2x2 structure as shown

in Figure 1b. There are 4 possible (non-trivial) reduced normal forms. Clearly,

if we observe the outcomes in the trees G, G1, G2, and G3, we do not observe

player 2’s choice of action when player 1 chooses to play R in the corresponding

normal game form G4.

It is indeed possible to observe data on extensive game forms that are not

rationalizable by subgame-perfect equilibrium, yet can still be rationalized as

Nash behavior. Consider for example the following two distinct data sets, as

described in Figures 2a and 2b, on the same game trees as in Figure 1a.

[Insert Figures 2a and 2b here]

Neither of these data sets satisfies the subgame consistency condition of Ray

and Zhou and therefore cannot be rationalized as a subgame-perfect equilibrium.

The data in Figure 2a, however, can be rationalized by a Nash equilibrium.

The choice of player 1 to play R in the game form G can be justified as a Nash

behavior on his part that assumes that player 2 would play r (although actually,

player 2 prefers to play l when given the choice).1 The data in Figure 2b cannot
1This is precisely the case of “incredible threat” often used to show the difference between

Nash and subgame-perfect equilibrium.
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be rationalized even by Nash equilibrium as there is no choice of player 2 that

would justify player 1’s choice of playing R in the game form G.

Also, notice that, under the (revealed) preferences that rationalize the out-

comes in Figure 2a, the game G has multiple Nash equilibria. There is a Nash

equilibrium (indeed, subgame-perfect) outcome (L, l) in the game, which how-

ever, is not observed, as we assume that only one outcome is observed in each

reduced game form.

We first provide a necessary and sufficient condition for partial Nash ra-

tionalization; i.e., we rationalize the data in each reduced game as one of the

possibly multiple Nash equilibria. For each game form G′, we consider strategies

that are consistent with the observed outcome in the reduced game. If there

exist strict preferences such that any one of these strategies can be shown to

be a best response for each player i, given that the other players’ strategies are

fixed, then clearly the observed outcome is consistent with a Nash equilibrium

outcome. This motivates our necessary and sufficient condition, called Extensive

Form Consistency, which compares the outcomes of a set of reduced extensive

form games, varying the set of feasible strategies for one player while the other

players’ strategies are fixed. For example, in the data in figure 2b, there are

two strategies consistent with the given outcome in the game form G, namely,

(R, l) and (R, r); if we fix player 2’s strategy at either l or r, we see from the

outcomes of the reduced games G2 and G3, that player 1 prefers to play L. Our

extensive form consistency is not satisfied here and R cannot be rationalized as

Nash behavior in game G. In the data set in figure 2a, the condition is satisfied

and the outcome in game G can be rationalized using the strategy profile (R, r),

as from G3, player 1 prefers to play R.

We then provide a condition, Subgame-Perfect Consistency, which uses ob-

servations of reduced game outcomes that are proper subgames below a node

with at least one active player other than the one at that node, to ensure that the

strategies played are not only Nash but are also consistent with subgame-perfect

behavior. The data set in figure 2a does not satisfy this condition because player

2 is active in G1, which is a proper subgame of G, and is observed to move l;
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under this circumstance, we know from G2, player 1 prefers L to R. Thus the

outcome R in G violates subgame-perfect consistency.

Subgame-perfect consistency together with extensive form consistency are

necessary and sufficient for subgame-perfect equilibrium rationalization. There-

fore, these two conditions together are equivalent to the three conditions pro-

posed by Ray and Zhou. The advantage however is that our conditions can be

used to test for Nash alone and also to distinguish between Nash and subgame-

perfect behavior.

Our conditions are also constructed in such a way that violations of these

conditions refer specifically to players and nodes. Checking these conditions can

help identify the players and the nodes where subgame-perfect or Nash behav-

ior are not observed. Thus even though the data come from a collective choice

situation of a multi-player game, we can recover information about individual

rationality. This could be relevant to obtain results to rationalize observed

outcomes using other notions of rationality such as multiple rationales (Kalai,

Rubinstein and Spiegler, 2002). We discuss this further in our concluding sec-

tion.

2 ANALYSIS

2.1 Model

We study n-person extensive form games with perfect information. The struc-

ture is identical to that in Ray and Zhou (2001). We therefore maintain their

terminologies and the notations as much as possible.

An extensive game form G is a finite rooted tree with set of nodes, X , with

a distinct initial node x0, and a precedence function p : X/x0 → X . If p(y) = x,

then x is called an immediate predecessor of y. Also y is called an immediate

successor of x, or y ∈ s(x). Let S(x) denote the set of all successors of x. A

node z is called a terminal node, or an outcome, if there exists no x ∈ X such

that p(x) = z. The set of all terminal nodes is Z. A path ρ is a finite sequence of
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nodes: (xk : k = 0, . . . , m) where xk = p(xk+1) for each k and xm is a terminal

node. A path leading to a terminal node xm, ρ(xm), can be uniquely identified.

The set of non-terminal nodes, X/Z, are partitioned into n subsets, {X1,

X2,..., Xn}, where Xi, called the player i’s partition, is the set of nodes at which

player i moves; player i’s moves determine one y ∈ s(x) for each x ∈ Xi. A pure

strategy ti for player i specifies a unique choice at each node in Xi. The set of

pure strategies available to player i is Ti.

Definition 1 A reduced extensive game form G′ of an extensive game form G

is an extensive game form consisting of (i) terminal nodes Z ′ ⊆ Z and (ii) all

the non-terminal nodes that belong to ρ(z′) for any z′ ∈ Z ′.

Thus, any set of terminal nodes Z ′uniquely refers to the reduced game form

G′. As with G, the set of non-terminal nodes in G′ can also be partitioned into

n many player-partitions, {X ′
1,..., X ′

n}.

Let Γ be the set of all possible reduced extensive game forms of an extensive

game form G.

Player i is active in any (reduced) game form G′ if X ′
i is non-empty with at

least one node x ∈ X ′
i such that |s(x)| ≥ 2.

Definition 2 For each reduced extensive game form G′ and a non-terminal

node x ∈ X ′/Z ′, the subgame form beginning at x, G′
x, is the reduced extensive

game form consisting of (i) terminal nodes Z ′(x) = Z ′ ∩ S(x) and (ii) all the

non-terminal nodes that belong to ρ(z′) for any z′ ∈ Z ′ ∩ S(x).2

A pure strategy t′i for player i in G′ specifies a unique choice of an immediate

successor y ∈ s(x) at each node x in X ′
i . The set of pure strategies available to

player i is T ′
i . Clearly, although Z ′ ⊆ Z, T ′

i may not be a subset of Ti.

For any (reduced) extensive game form G′ a strategy profile t′ = (t′1, . . . , t′n)

determines an outcome Ω(t′) = z′, where Ω : ΠiT
′
i → Z ′.

2The subgame form G′
x is thus the reduced game form consisting of the path from x0 to

x and the subgame below the node x.
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Definition 3 For any G′ ∈ Γ and the corresponding pure strategy sets < T ′
1, . . . , T

′
n >,

let T ′′
i ⊆ T ′

i for all i be non-empty sets of pure strategies. A strategy-reduced

extensive game form G′′ is an extensive game form consisting of (i) terminal

nodes Z ′′ ⊆ Z ′ with z′′ ∈ Z ′′ such that z′′ = Ω(t′′) for some t′′ ∈ ΠiT
′′
i and (ii)

all the non-terminal nodes that belong to ρ(z′′) for any z′′ ∈ Z ′′.

Clearly, a strategy-reduced extensive game form G′′ is a reduced game form

(of the original game G).3 Starting from G′ ∈ Γ and a fixed strategy profile

t′, we then look at a set of strategy-reduced extensive game forms in which the

other players’ strategies are fixed, while varying the set of feasible strategies for

player k maintaining the strategy t′k feasible.

Definition 4 For any G′ ∈ Γ and the corresponding pure strategy sets < T ′
1, . . . , T

′
n >,

given a t′ = (t′1, . . . , t
′
n) where t′i ∈ T ′

i , and a particular player k, an individually-

strategy-reduced extensive game form G′′(t′, k) is a strategy-reduced extensive

game form with t′k ∈ T ′′
k ⊆ T ′

k, and T ′′
j = t′j for all j 6= k.

Definition 5 A binary individually-strategy-reduced extensive game form G′′(t′, k; 2)

is an individually-strategy-reduced extensive game form consisting of |Z ′′| = 2.

Suppose each player i has preferences over Z described as a strict ordering

Q∗
i over Z. Let the players play reduced games G′(Q∗) for every G′ ∈ Γ. Let

O : Γ → Z be the outcome function. We observe O(G′) ∈ Z ′ and thus the

unique path ρ(O(G′)) for every G′ ∈ Γ. We do not observe strategies; thus

players’ intended moves off the path cannot be observed.
3Another way to look at the strategy-reduced extensive game forms is to consider the

corresponding normal form representations. Formally, from a reduced extensive game form

G′ one can uniquely define a normal game form H′ as the set of players (1, . . . , n), the set

of strategies for each player T ′
i , and the function Ω : (t′1 , . . . , t′n) → Z′. A reduced normal

game form H′′ of a normal game form H′ consists of a list < T ′′
1 , . . . , T ′′

n > of nonempty

subsets T ′′
i ⊆ T ′

i for all i and the corresponding outcomes Ω(t′′). From every H′′ one can then

uniquely define a corresponding extensive game form G′′ defined by Z′′ ⊆ Z with z′′ ∈ Z′′ iff

z′′ = Ω(t′′) for some t′′ ∈< T ′′
1 , ..., T ′′

n >.
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Definition 6 An outcome function O is partially rationalized by Nash equilib-

rium in strict preferences if for all i, there exists Qi over Z such that O(G′)

coincides with a Nash equilibrium of the game G′(Q) for every G′ ∈ Γ.

Similarly, an outcome function O is fully rationalized by subgame-perfect

Nash equilibrium in strict preferences if for all i, there exists Qi over Z such

that O(G′) coincides with the unique subgame-perfect Nash equilibrium of the

game G′(Q) for every G′ ∈ Γ.

2.2 Conditions

Condition 1 Extensive Form Consistency (XC): For any G′ ∈ Γ and the cor-

responding pure strategy sets < T ′
1, . . . , T

′
n > with the outcome O(G′) = z′, there

exists a t∗ = (t∗1, . . . , t
∗
n) with t∗i ∈ T ′

i for all i and Ω(t∗) = z′ such that for all

i, for all binary individually-strategy-reduced extensive game forms G′′(t∗, i; 2),

O(G′′(t∗, i; 2)) = z′.

Condition 2 subgame-perfect Consistency (SPC): For each game G′, consider

each non-terminal node x ∈ X ′/Z ′ such that x ∈ ρ(O(G′)) with player i such

that x ∈ Xi. For each non-terminal node y ∈ s(x) such that (i) y /∈ ρ(O(G′),

and (ii) there is at least one active player other than i in G′
y, O(O(G′), O(G′

y)) =

O(G′).

2.3 Revealed Preferences

Given an outcome function O, following Ray and Zhou (2001), one can construct

incomplete preference orderings for players over the terminal nodes. Consider

the paths that lead to two different terminal nodes u and v. Take the player i

who has to play at the node where these two paths diverge. Player i’s preference

over u and v can be determined by his choice in the reduced game form G′ which

has only two terminal nodes, u and v. This incomplete order, Pi, for player i,

is known as the revealed base relation. Formally, for any u, v ∈ Z, let x be the

node at which the paths to u and v diverge. If x ∈ Xi, then uPiv if and only
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if u = O(G′), where G′ is the reduced game form which has only two terminal

nodes, u and v.

Lemma 1 If XC is satisfied, then the revealed base relation is acyclic.4

Proof. Suppose we have a cycle in the revealed base relation for some player i

involving the terminal nodes z1, z2, ..., zk such that z1Piz2Pi . . . zkPiz1. Con-

sider the reduced extensive game form G′ characterized by the set of terminal

nodes Z ′ = (z1, z2, . . . , zk). This is clearly a game form where only player i is

active and chooses among the nodes in Z ′. Wlog, suppose, O(G′) = z1. Now XC

implies that the outcome in the individually-strategy-reduced extensive game

form consisting only of z1 and zk is z1, which contradicts zkPiz1. Hence we

cannot have a cycle in the revealed base relation.

Lemma 2 An acyclic base relation can be extended to a strict ordering on Z

which is complete and acyclic (equivalently, transitive, for a complete ordering)

for each player i.

Proof. We are omitting the proof here. It follows from a routine argument

using Zorn’s lemma (cf. Richter 1966, Theorem 1). For details, see the first

part of the proof of the main theorem in Ray and Zhou (2001).

2.4 Results

Theorem 1 XC is necessary and sufficient for partial Nash rationalization in

strict preferences.5

Proof. Necessity is straightforward and hence we only show sufficiency here.

From the previous lemmas we know that if XC is satisfied, we can define a

complete transitive strict ordering Qi on Z for all i that is consistent with

the base preference relation Pi. We will show, for each game G′, there exists
4Ray and Zhou (2001) take acyclicity as one of their conditions.
5This theorem is the extensive game form analog to Sprumont’s Theorem 3 for normal

form games.
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a strategy profile such that the outcome corresponding to the profile is the

observed outcome O(G′) and that the strategy profile is a Nash equilibrium of

the game G′(Q). We know, for each game G′, there exists a t∗ = (t∗1, . . . , t
∗
n) with

t∗i ∈ T ′
i for all i and Ω(t∗) = O(G′) satisfying XC. If every player follows this

strategy, then the outcome is O(G′). Let us show that these strategies indeed

constitute a Nash equilibrium for every G′. Suppose any player i deviates and

plays any other strategy t̃′i to induce a different outcome z̃′. By XC, the outcome

of the binary individually-strategy-reduced extensive game form G′′(t∗, i; 2) with

Z ′′ = {z̃′, z′} is z′. Hence, by the revealed base relation, z′Piz̃′ implying z′Qiz̃′.

Therefore player i cannot deviate and be better off.

Theorem 2 XC and SPC together are necessary and sufficient for full ratio-

nalization by subgame-perfect Nash equilibrium in strict preferences.

Proof. Once again, necessity is straightforward and hence we only show suffi-

ciency here. From the previous theorem we know that for each game G′, there

exists a t∗ = (t∗1, . . . , t∗n) with t∗i ∈ T ′
i for all i and Ω(t∗) = O(G′) that con-

stitutes a Nash equilibrium for every G′. We will prove that these outcomes

coincide with the outcomes of the subgame perfect Nash equilibrium that can

be constructed using the complete transitive revealed strict ordering Qi as in

Lemma 2. Suppose this is not true. Then there must exist a reduced game G′

in which there exists a node x such that these outcomes do not constitute a

subgame perfect equilibrium for the subgame form beginning at x, G′
x, but they

do for G′
w, for all w ∈ s(x). For, if such an x does not exist, we would be able

to find an infinite sequence of nodes {xk} with xk = p(xk+1), for each k, which

contradicts the assumption that the game always ends. Suppose at G′
x, player

i is active, that is, x ∈ X ′
i . As play at G′

x is not subgame-perfect but is for all

subgames succeeding x, then it must be true that, given Qi, player i can deviate

at x from the outcome path ρ(O(G′)) and obtain an outcome that he prefers to

O(G′). If x /∈ ρ(O(G′)) then player i cannot change the outcome by deviating

at x. So let us assume x ∈ ρ(O(G′)). Suppose player i deviates and moves to

a successor y ∈ s(x) such that y /∈ ρ(O(G′). If y is a terminal node then con-
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sider the binary individually-strategy-reduced extensive game form G′′(t∗, i; 2)

with Z ′′ = {O(G′), y}. If y is a non-terminal node and the subgame G′
y has

player i as the only active player then consider the binary individually-strategy-

reduced extensive game form G′′(t∗, i; 2) with Z ′′ = {O(G′), O(G′
y)}. By XC,

the outcome of either binary individually-strategy-reduced extensive game form

is O(G′). Hence, by the revealed base relation, player i cannot deviate and be

better off. Now suppose y is a non-terminal node and the subgame G′
y has at

least one active player other than i. Then by SPC, O(O(G′), O(G′
y)) = O(G′).

Therefore, again by the revealed base relation, player i cannot deviate and be

better off.6

3 REMARKS

In this paper we provide separate testable restrictions for Nash and subgame-

perfect equilibrium. One possible criticism of our test for Nash behavior could

be that the restrictions are described over observable outcomes and unobservable

strategies. Note that, however, for the class of games we consider, the set of

unobservable strategies that are consistent with an observed outcome is finite.

Thus the tests can be carried out in finite time for a given data set. Tests of

this form have been used in the previous literature. For example, Diewert and

Parkan (1985) developed nonparametric tests that require checking whether

there exists a real solution to a (linear) programming problem defined over

observed and unobserved variables.

3.1 Consistency

To understand the XC condition, it is useful to first look at the following two

mutually exclusive consistency conditions.
6As in Ray and Zhou’s (2001) proof, this argument uses the one deviation property (as in

Lemma 98.2 of Osborne and Rubinstein, 1994) which is a necessary and sufficient condition

for subgame-perfect equilibrium.
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Condition 3 Game Internal Consistency (GIC): For any G′ ∈ Γ and the cor-

responding pure strategy sets < T ′
1, . . . , T

′
n > with the outcome O(G′) = z′, and

a t∗ = (t∗1, . . . , t
∗
n) with t∗i ∈ T ′

i for all i and Ω(t∗) = z′ such that for all i,

the individually-strategy-reduced extensive game form G′′(t∗, i) where T ′′
i = T ′

i ,

O(G′′(t∗, i)) = z′.

Condition 4 Individual Internal Consistency (IIC): For any G′ ∈ Γ and the

corresponding pure strategy sets < T ′
1, . . . , T

′
n > with the outcome O(G′) = z′,

and a t∗ = (t∗1, . . . , t∗n) with t∗i ∈ T ′
i for all i and Ω(t∗) = z′ such that for all i, for

all individually-strategy-reduced extensive game forms G′′(t∗, i), O(G′′(t∗, i)) =

z′.

GIC and IIC are two different “independence of irrelevant strategies” con-

ditions. Both conditions refer to consistent behavior of all players in a strategy

profile that corresponds to the observed outcome. GIC implies if player i chooses

a strategy in a game G′ when all other players choose strategy t∗, then player

i will not choose a strategy that leads to a different outcome in the reduced

game where other players’ strategies are fixed at t∗. Thus the observed outcome

that results from player i’s strategy does not change depending on what other

“irrelevant” strategies are available to the other players.

IIC is a condition relating to the internal consistency of an individual player.

Given Condition 3, this is essentially condition α of individual choice theory

(Sen, 1971). Thus the observed outcome that results from player i’s strategy

does not change based on other “irrelevant” strategies available to himself.

For (partial) Nash rationalization, we require the existence of a strategy

profile that corresponds to the observed outcome in every reduced game, such

that GIC and IIC are satisfied. For our purpose, it suffices to check consistency

defined over binary reduced games only, as formulated in XC.

3.2 Comparison with Ray and Zhou (2001)

Our two conditions (XC and SPC) together are clearly equivalent to Ray and

Zhou’s three conditions (AC, IC and SC). As Lemma 1 shows, our XC implies
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AC. XC implies neither IC nor SC. There are however some data sets – in which

either IC or SC is violated and therefore the data set cannot be rationalized

as subgame-perfect – where XC is also violated and the data set cannot be

rationalized even as Nash. One such example has been illustrated in Figure 2b

where SC and XC are violated. The data set in Figure 3 on the same game tree

violates IC and XC.

[Insert Figure 3 here]

If a data set suffers from any violation of IC or SC involving only either (i)

off-the-path terminal nodes or (ii) subgames below a node with only one active

player who is the same player at that node, then it is easy to show that XC is also

violated in the data set, by considering the binary individually-strategy-reduced

extensive game forms.

For all other types of violations of IC or SC, the data set may be rationalized

as Nash as XC is satisfied. The data set in Figure 2a satisfies XC but violates SC.

Consider the game form G and the (partial) data set in Figure 4 that violates

IC but satisfies XC. Such an outcome clearly is not subgame-perfect but can be

justified as Nash.

[Insert Figure 4 here]

Our SPC considers only off-the-path non-terminal nodes and subgames be-

low a node with at least one active player other than the one at that node.

Clearly SPC is violated in the data set in Figures 2a and 4.

3.3 Individual Choice Problems; Multiple Rationales

Consider the game tree as in Figure 5 (similar to the previous figures), however,

view it as an individual choice problem with the choice set as the set of terminal

nodes in G′ for every G′ ∈ Γ.

[Insert Figure 5 here]
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It is already known that the conditions for subgame-perfect rationalization in

multi-person games are not enough for the existence of one preference ordering

over all terminal nodes of G (See Example 4 in Ray and Zhou, 2001).

Recently, Kalai, Rubinstein and Spiegler (2002) proposed rationalization of

individual choice functions by multiple preference orderings. One could directly

apply their results to the above individual choice problem (as in Figure 5).

By their results (Proposition 1) with N = |Z| = 3 alternatives, the upper

bound on the minimal number of orderings that is required to rationalize an

arbitrary outcome function O(G′) is N−1 = 2. This suggests that any individual

choice function over the choice problem as in Figure 5 can be justified using

two preference orderings (selves) of the same individual, say, 1.1 and 1.2. A

natural way to connect their result with our paper is to interpret these multiple

rationales 1.1 and 1.2 as two different players at the different choice nodes in a

game as shown in Figure 6.

[Insert Figure 6 here]

Clearly, this naive interpretation of Kalai, Rubinstein and Spiegler’s result

does not hold as we know there are data sets, with two different players at

two different choice nodes in the game tree, that do not satisfy our conditions

and therefore cannot be rationalized. This is due to two reasons. The first

is the dynamic structure of the game tree. The second is that by using the

structure of the game, we place a restriction on the assignment of the two

different preferences to the choice sets while Kalai, Rubinstein and Spiegler can

assign the two preferences freely over the choice sets.

We might still want to use the concept of multiple rationales if we cannot

rationalize the data with one preference ordering for each player, i.e., when the

conditions for Nash or subgame-perfection are violated in a multi-player game.

Consider the example again in Figures 2a and 2b. In Figure 2b, play is

not consistent with subgame-perfect or Nash equilibrium, as condition XC is

violated. It is the play of player 1 at the first node that leads to the violation of

XC; player 1’s choice in game G to play R is not consistent with the outcomes of
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games G2 and G3, where player 1 plays L. Thus we can unambiguously identify

player 1 as the “inconsistent player” of this game. We can rationalize this data

set by assigning two preference orderings for player 1 (with one ordering for

player 2).

On the other hand, in Figure 2a player 1 is playing optimally in game G by

playing R if he believes that player 2 is playing r, and condition XC is satisfied.

The play is not subgame-perfect however. Here we cannot unambiguously define

an “inconsistent player”; in the game G, either player 1 or player 2 is playing

in a way that is not consistent with our observations of G1 and G2. There are

two ways to implement different rationales to justify the data. We can assign

two preference orderings for player 1 (with one ordering for player 2) or two

preference orderings for player 2 (with one ordering for player 1).

These observations suggest a further use of our conditions for Nash and

subgame-perfect behavior beyond testing. The violation of these conditions can

also provide information that we can use to form beliefs about the consistency

of individual decision making within games, and thereby rationalize outcomes

with alternative hypotheses of behavior such as multiple preference orderings.

It would be interesting to find general results analogous to Kalai, Rubinstein

and Spiegler (2002) in this context.
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