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Abstract

We propose a unified framework to study relational contracting and
hold-up problems in infinite horizon stochastic games. We first illustrate
that with respect to long run decisions, the common formulation of rela-
tional contracts as Pareto-optimal public perfect equilibria is in stark con-
trast to fundamental assumptions of hold-up models. We develop a model in
which relational contracts are repeatedly newly negotiated during relation-
ships. Negotiations take place with positive probability and cause bygones
to be bygones. Traditional relational contracting and hold-up formulations
are nested as opposite corner cases. Allowing for intermediate cases yields
very intuitive results and sheds light on many plausible trade-offs that do
not arise in these corner cases. We establish a general existence result and
a tractable characterization for stochastic games in which money can be
transferred.
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1 Introduction

In many economic relationships, parties can conduct investments, exert efforts or
perform other actions that over shorter or longer time horizons determine their
joint surplus and possibly affect the way how that surplus is distributed. Lim-
itations to formal contracting in economic relationships have inspired two large
branches of economic literature that study relational contracts and hold-up prob-
lems, respectively.

Grout’s (1984) classical article illustrates the essence of hold-up problems.
He shows how firms under-invest in capital because labor unions appropriate a
share of the generated surplus in subsequent wage negotiations.1 The essence of
relational contracting is to use repeated interactions and credible punishments to
implement mutually desirable behavior.2

Despite the common motivation and economists’ immense interest in both
fields, a comprehensive framework for a unified analysis of relational contract-
ing and hold-up problems is still missing. Relational contracts are typically for-
mulated as Pareto-optimal public perfect equilibria (PPE) of infinitely repeated
games.3 A limitation of repeated games is that players face the same stage game
in every period, which restricts the ability to model relationships with long-term
investments and corresponding hold-up problems. We study stochastic games,
in which action spaces in each period depend on a state, which can change over
time and be influenced by players’ actions. They provide a natural framework
for unified analysis of relational contracts, investments and associated hold-up
problems.

While characterizations of Pareto-optimal PPE in stochastic games can quickly
become intractable, scope for simplification arises from the fact that in most ap-
plications of relational contracting and hold-up problems, players have the op-
portunity to conduct monetary transfers with each other. The accompanying
paper, Kranz (2012), shows that in stochastic games in which players can con-
duct voluntary monetary transfers, every PPE payoff can be implemented with a
simple class of equilibria that have a stationary structure on the equilibrium path
and use stick-and-carrot punishments. It also develops results that help to find

1Investment inefficiencies and the interaction with negotiation outcomes lie at the heart of
hold-up problems. See Klein et. al. (1978), Williamson (1985) or Hart & Moore (1988) for
other seminal contributions. See e.g. Schmitz (2002) for a survey.

2Examples for different applications of relational contracting include employment relation-
ships by Levin (2002, 2003), MacLeod and Malcomson (1989) or Schmidt and Schnitzer (1995),
the structure of firms by Baker, Gibbons & Murphy (2002) or Halonen (2002) and team produc-
tion by Doornik (2006) and Rayo (2007), international trade agreements by Klimenko, Ramey
and Watson (2008) or cartels by Harrington and Skrzypacz (2007, 2011). See Malcomson’s
(2010) for a survey.

3 We use the term Pareto-optimal PPE to refer to a PPE that implements a payoff on the
Pareto frontier of all PPE payoffs for a given discount factor. Even though for tractability reasons
relational contracts are sometimes restricted to a simpler class of strategies, like grim-trigger
strategies, the idea that players coordinate on Pareto-optimal equilibria essentially remains.
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Pareto-optimal PPE for any given discount factor.4

We will illustrate, however, that when relational contracting is augmented
for long run decisions then independent of the discount factor many plausible
hold-up problems are fully circumvented by Pareto-optimal PPE. The motivating
example in Section 2 provides a simple illustration of this point with a classical
hold-up example, in which players can conduct cooperative investments and no
simple contractual solutions for the hold-up problem exist (see Che & Hausch,
1999). By flexibly coordinating trade decisions on the conducted investments,
relational contracts in form of Pareto-optimal PPE always fully overcome the
hold-up problem. An important insight is that incomplete formal contracting is
not sufficient for the existence hold-up problems. Crucial is that also relational
contracting is incomplete such that to a certain extend bygones are treated as
bygones. Being able to account for this driving force of hold-up problems in
relational contracting is the key motivation for introducing our concept of repeated
negotiations of relational contracts.

An extreme form of incomplete relational contracting is given if each period
earlier relational contracts are completely neglected and continuation play is al-
ways determined by new negotiations that ignore all payoff irrelevant aspects of
history. This idea follows the spirit of the prevailing solution solution concept for
stochastic games: Markov Perfect equilibria (MPE), in which only payoff relevant
states can determine continuation play. If bygones are always bygones, hold-up
problems fully reemerge. Yet, that assumption is orthogonally opposite to the
essential feature of relational contracting: to coordinate continuation play in a
flexible fashion on the history.

Our model allows a continuum of intermediate cases. We assume that an
existing relational contract can depreciate at the beginning of a period with an
exogenous negotiation probability and is then replaced by a new relational con-
tract. Negotiations of new relational contracts follow a simple random dictator
bargaining procedure in which bygones are bygones in the sense that the new rela-
tional contract does not condition on any payoff irrelevant aspects of the history.
In a repeated negotiation equilibrium (RNE) all selected relational contracts must
be incentive compatible, taking into account future negotiations, and maximize
the expected payoff of the player who can select the new relational contract.

A larger negotiation probability reflects the assumption that history-independent
bargaining power plays a stronger role in the relationship. In the corner case of a
zero negotiation probability, the original relational contract always stays in place
and corresponds to a Pareto-optimal PPE. If the negotiation probability is one
and the game has a unique Markov perfect equilibrium, the RNE corresponds to
that MPE.5 That relational contracts depreciate randomly, i.e. new negotiations

4These results extend the characterizations for repeated games with transfers by Levin (2003)
and Goldlücke and Kranz (2012).

5One difficulty in interpreting MPE is that for sufficiently rich state spaces there often are
multiple MPE, some of which do not well capture an intuitive notion of treating bygones as
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are triggered by sun-spot events, has certain intuitive appeal and allows a simple
way to formalize a continous measure for the importance of history-independent
bargaining power.

From a theoretic perspective, repeated negotiation equilibria are complex ob-
jects. They form a fixed point of mutually optimal relational contracts, chosen by
different players in different states. Relational contracts themselves form a PPE of
a modified infinite horizon stochastic game that accounts for future negotiations.
Given these complexities, there may be little hopes for a general existence result
or a tractable characterization.

Indeed, we illustrate that equilibria do not generally exist if one assumes that
players consider future negotiation outcomes as fixed when contemplating a devi-
ation from a contract choice today.6 An important feature of RNE is that in no
state a player prefers an alternative relational contract that would be profitable
and incentive compatible under the belief that the player would choose that alter-
native contract again when future negotiations take place in the same state. We
will illustrate that this belief follows naturally from the principle that by-gones
shall be treated as by-gones in negotiations.

The main theoretical contribution of this paper is a general existence theorem
for RNE. The theorem also shows that there always exist RNE with a tractable
canonical form: all relational contracts constitute simple equilibria and negotia-
tions affect the path of play only by changing the voluntary transfers that take
place directly after the negotiations.

In infinite horizon games, repeated negotiations shed light on new, intuitive
manifestations of hold-up problems that are closely interconnected with key fea-
tures of relational contracting. Our main illustration is given by a classical rela-
tional contracting application, a principal-agent relationship, that is augmented
for one long run decision: the principal can make herself permanently more vul-
nerable towards the agent by destroying her inside option.

From a traditional relational contracting perspective, increasing the own vul-
nerability is unambiguously beneficial as long as positive efforts by the agent are
optimal on the equilibrium path. The principal will then destroy her inside op-
tion in all Pareto-optimal PPE. That is because a higher vulnerability allows for
harsher punishments and thereby to implement higher effort on the equilibrium
path. There is no drawback for the principal since Pareto-optimal PPE allow to
perfectly coordinate away from any undesired abuse of the created vulnerabilities.
In contrast, from a pure hold-up perspective, it is inadvisable to make oneself
unilaterally more vulnerable, since it deteriorates the own bargaining position in
future negotiations.

bygones. Section 2 exemplifies for such a case how for a negotiation probability of 1 the RNE
corresponds to a MPE that particularly well captures the notion of bygones.

6The existence problem of a formulation that takes future negotiation outcomes as given is
tightly linked to the multiplicity of states in stochastic games, for repeated games a general
existence result could be obtained.
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With a positive negotiation probability, the principal solves a natural trade-off
between these two forces. Intermediate negotiation probabilities allow a simple
analysis of the comparative statics of this trade-off, while the two corner cases of
traditional relational contracting (Pareto-optimal optimal PPE) and pure hold-up
(here, the unique MPE) essentially provide no insights in that respect.

Several more examples explore the interactions between relational contract-
ing, hold-up and repeated negotiations. We show how a positive negotiation
probability extends the outside option principle to relational contracting, renders
blackmailing incredible, or can induce costly arms races even when raising arms
against other players involves costs but no direct gains.

In the special case of an infinitely repeated game, actions have no payoff-
relevant long run effects and negotiation outcomes are therefore not affected
by past decisions. As result, in repeated games our new framework remains
mathematically equivalent to the traditional formulation of relational contracts
as Pareto-optimal PPE. Negotiation can be interpreted as a restart of the rela-
tionship and a positive negotiation probability simply adjusts the discount factor
downwards.

The assumption that negotiation occurs exogenously and with the same prob-
ability in every state provides a natural baseline case to illustrate the interaction
between hold-up problems and relational contracts. We also show that the exis-
tence and characterization results extend to the case that negotiation probabilities
differ between states. Section 6 illustrates that this result is quite powerful. By
transforming the state space and adapting negotiation probabilities, one can, e.g.,
easily extend our main results to a model in which negotiations only take place if
some players actively attempt to force negotiations.

We are only aware of a few papers that have studied the interaction of invest-
ments, hold-up and relational contracting. Baker Gibbons and Murphy (2002),
Halonen (2002) and Blonsky and Spagnolo (2007) study the optimal allocation of
property rights and optimal relational contracting in a repeated game with invest-
ments that always fully depreciate after one period. Ramey and Watson (1997)
and Halac (2012) consider long-term investments but assume that investments
take place only in the first period and afterward players always negotiate new
relational contracts for the ensuing repeated game.7 Our results complement this
literature by providing a framework that allows for much more flexible specifica-
tions of relationships with long run and short run decisions and negotiations of
relational contracts.

The idea that relational contracts can be renegotiated during the relation-
ship has been already explored in the literature on renegotiation-proofness in
repeated games, e.g. Farell and Maskin (1989), Bernheim and Ray (1989) or

7Che and Sákovics (2004) and Pitchford and Snyder (2004) study hold-up problems in
stochastic games with sequential investment decisions but they don’t focus on relational con-
tracting. Instead they assume that once investment stops, the resulting surplus is split via an
enforceable contract.
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Asheim (1991). A key assumption in renegotiation-proofness concepts is that any
player can block any renegotiation that makes her worse off than if the original
relational contract stayed in place. In contrast, a key feature of repeated ne-
gotiation equilibria is that negotiations can make those players worse off whom
the current relational contract grants higher continuation payoffs than the payoffs
consistent with history-independent bargaining power. New negotiations in our
model typically entail a redistribution of surplus from one player to another.

While a positive negotiation probability can severely hamper the scope for co-
operation, renegotiation-proofness does often not restrict the ability to implement
Pareto-efficient PPE if monetary transfers are possible.8 Even though the focus
of this paper differs, the extension in Section 6 also yields a general existence
result for a traditional renegotiation-proofness concept for stochastic games with
imperfect public monitoring and transfers.

The idea of modeling relational contracting as repeated negotiations is strongly
inspired by Miller and Watson’s (2011) work on contract equilibria in repeated
games. They assume that new negotiations take place in every period and consider
a negotiation procedure with an explicit disagreement point that can depend on
payoff irrelevant aspects of the history. The main factor by which negotiations
reduce the flexibility of relational contracting, is that in periods of disagreement,
players will not conduct transfers to each other. In our framework, the negotiation
probability provides instead a continuous measure for the inflexibility of relational
contracting. While Miller and Watson focus on implications of negotiations and
disagreement in repeated games, our focus lies on the interaction of relational
contract and hold-up problems in stochastic games.

The structure of the remaining paper is as follows. Section 2 motivates our
concept using a classical two period hold-up model. Section 3 introduces stochas-
tic games with transfers and reviews the characterization of Pareto-optimal PPE
with simple equilibria. Section 4 introduces the general formulation and char-
acterization of repeated negotiation equilibria. Section 5 illustrates the concept
for several relational contracting examples with long run decisions. Section 6 dis-
cusses the extensions to state-dependent negotiation probabilities and endogenous
negotiation. Two appendices contain proofs and additional results.

2 Motivating Example

This section motivates our concept with a classical two-period hold-up application.
In period 1, a buyer and a seller, indexed by i = 1, 2, can each perform investments
ai from a compact set Ai. Investment costs for player i are given by a non-negative

8That is because monetary transfers often allow Pareto-efficient asymmetric punishments,
see e.g. Levin, 2003 and Baliga and Evans, 2000. The results depend, however, on the exact
assumptions on the timing and form of renegotiation-proofness. Goldlück and Kranz (forthcom-
ing) provide a comprehensive overview.
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function ci(ai). Investments determine, possibly stochastically, the state x in
period 2, which determines production cost of the seller k(x) and the valuation
of the buyer b(x). The total surplus from trade in period 2 is given by S(x) =
b(x)− k(x).

In period 2, a Nash demand game specifies whether trade takes place and how
the surplus is split. Each player i announces simultaneously the share di ∈ [0, 1]
that she demands of the trade surplus. If d1 + d2 ≤ 1 the distribution is feasible
and each player i receives her share diS(x); otherwise no trade takes place and
players get outside payoffs of 0. Payoffs in the second period are discounted with
a discount factor δ ∈ [0, 1).

First best investments a∗ maximize the sum of expected payoffs given that
trade takes place whenever it is ex-post efficient:

a∗ ∈ arg max
a
Ex[max{δS(x), 0}|a]− c1(a1)− c2(a2).

In the hold-up literature it is commonly assumed that surplus from trade is
split according to the Nash bargaining solution, which in our example corresponds
to an equal split of S(x). It is then not in general possible to implement both first
best investments and ex-post efficient trading decisions, i.e. a hold-up problem
can arise.9 Note that the model allows for cooperative investments, i.e. the seller’s
investments can influence the buyer’s valuation and vice versa. Che and Hausch
(1999) show that in this case, the hold-up problem cannot generally be resolved
with simple contractual solutions.10

The following result states the straightforward observation that if we remove
the assumption that the surplus is split according to the Nash bargaining solution,
a Pareto-optimal subgame perfect equilibrium can always fully mitigate the hold
up problem.

Proposition 1. The buyer-seller game has a Pareto-optimal subgame perfect equi-
librium in which trading takes place and first best investments are conducted.

The proof is simple. Assume that first best investments a∗ are strictly positive
for at least one player (otherwise the result is trivial). The straight line segment
in Figure 1 (left) illustrates the Pareto frontier of subgame perfect continuation
equilibria in period 2 given a state x with strictly positive surplus from trade.
Consider strategies in which a player who has unilaterally deviated from a∗ gets

9For example, assume that only the seller has an investment opportunity, which costs 70
and generates deterministically a joint surplus of 100. Since the Nash bargaining solution gives
the seller half of the surplus, i.e. 50, she would not recoup her investment costs, even though
investments are socially efficient.

10In the case of non-cooperative investments, i.e. the seller’s investments only influence pro-
duction cost and the buyer’s investments only influence her valuation, the hold-up problem can
be effectively mitigated by writing simple option contracts in the first period (e.g. Nöldecke
and Schmidt, 1995), or by having well structured compensation rules in civil law (e.g. Edlin &
Reichelstein, 1996, or Ohlendorf, 2009).
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Figure 1: Set of continuation payoffs in period 2. The thick line segment in
the right figure illustrates the range of expected continuation payoffs that can be
implemented for a negotiation probability of ρ = 0.6.

a continuation payoff of 0 in all states. If no player has unilaterally deviated, we
pick continuation equilibria that split the surpluses S(x) such that each player
gets at least her cost ci reimbursed. Since the expected discounted joint surplus
under first best investments are larger than total investment costs, such a split
of trade surplus always exists. Note that even after a deviation in period 1, all
continuation payoffs are Pareto optimal, i.e. the equilibrium is consistent with a
traditional renegotiation-proofness requirement.

The result simply makes use of the fact that the Nash demand game has a
wide span of Pareto-efficient continuation payoffs in period 2 from which Pareto-
optimal relational contracts can flexibly pick depending on the actually conducted
investments. While the Nash demand game has the non-compelling feature that
players cannot continue bargaining after incompatible demands, there are many
more sensible bargaining games that robustly yield the same Pareto-frontier of
continuation payoffs. For example, Chatterjee and Samuelson (1990) show that
in infinitely repeated simultaneous offer bargaining games every individual ratio-
nal distribution of the trading surplus can be implemented, even when refining
to (trembling-hand) perfect equilibria or to an even stronger notion of universal
perfection. The famous exception is the alternative offer bargaining game by Ru-
binstein (1982), which uniquely implements the Nash bargaining outcome. How-
ever, that uniqueness result is not robust with respect to plausible modifications
of the bargaining game. For example, Avery and Zemsky (1994) show that the
availability of actions that can delay bargaining or destroy value restores the folk
theorem. Since there are many natural ways to generate multiplicity and players
could avoid the hold-up problem if they were allowed in an initial stage to choose
a bargaining game with multiple equilibria, imposing a Rubinstein bargaining
game seems similarly restrictive as imposing an equilibrium selection requirement
in which continuation equilibria are given by the Nash bargaining solution.

Imposing the Nash bargaining solution corresponds to the idea that previous
non-enforceable agreements on how to split trade surplus are considered as by-
gones and ignored once investment costs are sunk. In contrast, Pareto-optimal
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relational contracts are built around the idea that past non-enforceable agree-
ments always remain valid. The former idea constitutes the cornerstone of the
hold-up literature, while the latter idea forms the corner stone of the relational
contracting literature. Our model does not attempt to answer which of those
ideas is more suitable, but rather provides a framework that unites both ideas by
allowing a continuum of intermediate cases.11

In the example, a natural formulation of intermediate cases would be to require
that continuation equilibrium payoffs must lie on a line segment around the Nash
bargaining solution whose span is a certain fraction of the span of the Pareto
frontier of all SPE continuation payoffs. In Figure 2 (right), this is illustrated for
a fraction of 0.4 by the thick line segment on the Pareto frontier.

Our formulation of randomly occurring repeated negotiations provides one
implementation of such intermediate cases, which can be naturally extended to
infinite horizon stochastic games. At the beginning of period 2, the existing re-
lational contract will be replaced by a newly negotiated one with an exogenous
negotiation probability ρ ∈ [0, 1]. If such negotiation takes place, bargaining
follows a simple random dictator protocol: each player is chosen with equal prob-
ability to select the new relational contract (the general model allows players to
have different bargaining weights). Bygones are then considered bygones and the
chosen dictator selects a new relational contract that maximizes her continua-
tion payoff. Hence, independent of conducted investments, player 1 will pick the
contract that implements the right-most payoff from the set subgame perfect con-
tinuation payoffs and player 2 will select the top-most payoff. Thus, conditional
that negotiation takes place, expected payoffs are equal to the Nash bargaining
solution. With probability 1− ρ the old relational contract remains valid, i.e. the
terms of trade can then flexibly depend on the observed investments.12

Consider the case that a player has deviated from required investments and
is supposed to be punished by zero continuation payoffs in all states. Given the
possibility of negotiation in period 2, that player is still able to guarantee herself
an expected continuation payoff of

1

2
ρS(x)

in every state x with positive surplus. Hence, the span of expected continuation
payoffs that can be implemented in state x is a fraction 1 − ρ of the span of the
subgame perfect continuation payoffs. Figure 2 (right) thus shows the range of
implementable expected payoffs for ρ = 0.6.

11See Ellingsen, Tore and Robles (2002) and Tröger (2002) for evolutionary arguments on ap-
propriate equilibrium selection. Ellingsen and Johannesson (2004) investigate hold-up problems
experimentally. Their results support the view that intermediate cases are plausible.

12Since we consider risk-neutral players, only expected continuation payoffs will matter for
players’ incentives to deviate from a given relational contract. Hence, there is little disadvantage
of specifying intermediate cases as probabilistic mixtures of extreme outcomes.
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Example with simple functional form

For further illustration, assume player i can choose investments ai ∈ {0, 1} and
investment costs simply are c(ai) = ai. The state x in period 2 is a deterministic
function of investments and the resulting trade surplus shall be given by

S(x(a)) = γ(a1 + a2)

where γ > 1 is a measure of social desirability of investments. First best invest-
ment levels are

a∗ =

{
(1, 1) if δ ≥ 1

γ

(0, 0) otherwise.

To implement first best investments, it is optimal to split the trade surplus equally
on the equilibrium path and to punish a player who deviates from required in-
vestments with a zero continuation payoff if the relational contract is not newly
negotiated in period 2. Player i then has no incentive to deviate from investing
ai = 1 if and only if

−1 + γδ ≥ 1

2
ρδγ. (1)

In line with Proposition 1, we find that absent repeated negotiation (ρ = 0)
players always implement first best investments since the incentive constraint (1)
then simplifies to the condition that positive investments are conducted in the first
best solution: δ ≥ 1

γ
. Even though a lower discount factor tightens the incentive

constraints for fixed investment levels, it does not affect the ability to implement
first best investments. That is because a lower discount factor also makes high
investments levels less desirable from a social perspective.13

In the limit case of no discounting δ → 1, the incentive constraint for imple-
menting first best investments simplifies to

ρ ≤ 2(γ − 1)

γ
≡ ρ̄.

The term ρ̄ denotes a critical negotiation probability above which it is not
possible to implement first best investments. Similar to the common practice in
repeated games to use critical discount factors, one can use the critical negotia-
tion probability to conduct comparative statics of the players’ ability to imple-
ment efficient long-run decisions. In our example, the comparative statics are

13For infinite horizon games, the following intution will generally be useful. A reduction of the
discount factor has different effects on the ability to implement first-best short-run and long-run
actions, respectively. While implementation of first-best short-run actions generally becomes
harder, the effect on first-best long-run actions is ambiguos since a lower discount factor reduces
the social desirability of current costs compared to future benefits. In contrast, an increase in
the negotiation probability does not change the first best solutions and symmetrically reduces
the ability to implement first best long- and short-run actions.
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not surprising: the critical negotiation probability decreases in the parameter γ
that determines the surplus of investments. In dynamic stochastic games with
long run decisions, critical negotiation probabilities have the conceptual advan-
tage over critical discount factors that the first best decisions are not affected by
the negotiation probability.

Bygones and Markov Perfect equilibria

We conclude the motivating example with an observation on the relationship
between bygones, negotiation in every period, and Markov perfect equilibria. In
a Markov perfect equilibrium, continuation play in period 2 is only allowed to
depend on the state x. Yet, Markov perfection does not restrict the the ability to
implement first best investments in our (functional form) example since the state
x is sufficiently informative about the investment decisions. The requirement of
Markov perfection does not imply a strong notion of bygones. Yet, the repeated
negotiation equilibria for the case ρ = 1 is equivalent to a specific MPE that
corresponds to a strong notion of bygones.

3 Stochastic Games with Transfers and Simple

Equilibria

This section defines infinite horizon stochastic games with transfers and summa-
rizes the key results in Kranz (2012) that show how every PPE equilibrium payoff
can be implemented with a simple class of equilibria.

3.1 Stochastic Games with Transfers

We consider n-player stochastic games of the following form. There are infinitely
many periods and future payoffs are discounted with a common discount factor
δ ∈ [0, 1). There is a finite set of states X and x0 ∈ X denotes the initial state. A
period is comprised of two stages: a transfer stage and an action stage. There is
no discounting between stages. At the beginning of each period players commonly
observe a public signal from a continuous distribution, which determines whether
negotiations take place and which player can choose the new relational contract.

In the transfer stage, every player simultaneously chooses a non-negative vector
of transfers to all other players.14 Players also have the option to transfer money to
a non-involved third party, which has the same effect as burning money. Transfers
are perfectly observed by all players.

14To have a compact strategy space, we assume that a player’s transfers cannot exceed an
upper bound of δ

1−δ
∑n
i=1

[
max,x∈X,a∈A(x) πi(a, x)−min,x∈X,a∈A(x) πi(a, x)

]
. That bound is

large enough to be never binding given the incentive constraints of voluntary transfers.
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In the action stage, players simultaneously choose actions. In state x ∈ X,
player i can choose a pure action ai from a finite or compact action set Ai(x).
The set of pure action profiles in state x is denoted by A(x) = A1(x)× ...×An(x).

After actions have been conducted, a signal y from a finite signal space Y and
a new state x′ ∈ X are drawn by nature and commonly observed by all players.
We denote by φ(y, x′|x, a) the probability that signal y and state x′ are drawn;
it depends only on the current state x and the chosen action profile a. Player i’s
stage game payoff is denoted by π̂i(ai, y, x) and depends on the signal y, player i’s
action ai and the initial state x. We denote by πi(a, x) player i’s expected stage
game payoff in state x if action profile a is played. If the action space in state x is
compact then stage game payoffs and the probability distribution of signals and
new states shall be continuous in the action profile a.

We assume that players are risk-neutral and that payoffs are additively sepa-
rable in the stage game payoff and money. This means that the expected payoff
of player i in a period with state x, in which she makes a net transfer of pi and
action profile a has been played, is given by πi(a, x)− pi.

When referring to (continuation) payoffs of the dynamic stochastic game, we
mean expected average discounted continuation payoffs, i.e. the expected sum of
continuation payoffs multiplied by (1− δ).

We either restrict attention to pure strategies or, for finite action spaces, also
consider strategies in which players can mix over actions. If equilibria with mixed
actions are considered, A(x) shall denote the set of mixed action profiles at the
action stage in state x otherwise A(x) = A(x) shall denote the set of pure action
profiles. For a mixed action profile α ∈ A(x), we denote by πi(α, x) player i’s
expected stage game payoff taking expectations over mixing probabilities and
signal realizations.

A public history describes the sequence of all states, public signals and mone-
tary transfers that have occurred before a given point in time. A public strategy
σi of player i in the stochastic game maps every public history that ends before
the action stage into a possibly mixed action αi ∈ Ai(x), and every public history
that ends before a payment stage into a vector of monetary transfers. A public
perfect equilibrium (PPE) is a profile of public strategies that constitutes mutual
best replies after every history. If actions can be perfectly monitored, i.e. y = a,
PPE are equivalent to subgame perfect equilibria.

3.2 Simple Equilibria

A simple strategy profile is characterized by n + 2 phases. Play starts in the
up-front transfer phase, in which players are required to make up-front transfers
described by a vector of net payments p0.15 Afterwards play can be either in the

15In a simple equilibrium transfers will always be structured such that no player at the same
time makes transfers and receives transfers.
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equilibrium phase, indexed by k = i, or in the punishment phase of some player i,
indexed by k = i.

A simple strategy profile specifies for each phase k ∈ K = {e, 1, ..., n} and
state x an action profile αk(x) ∈ A(x). We refer to αe as the equilibrium phase
policy and to αi as the punishment policy for player i and call the collection of all
policies (αk)k∈K a policy plan. From period 2 onwards, required net transfers are
described by a vector pk(x′, y, x) that depends on the current phase k, the current
state x′, and the realized signal y and state x of the previous period.

The transitions between phases are simple. If no player unilaterally deviates
from a required transfer, play transits to the equilibrium phase: k = e. If player
i unilaterally deviates from a required transfer, play transits to the punishment
phase of player i, i.e. k = i. In all other situations the phase does not change.

This means that punishments in a simple equilibrium have a stick and carrot
structure. They never last longer than one period and will be settled by a transfer
of the punished player that can be interpreted as payment of a fine to the other
players. Like in a Markov perfect equilibrium, actions on the equilibrium path
only depend on the state. Transfers on the equilibrium path are used to bal-
ance incentive constraints among different players, while upfront transfers allow
a flexible distribution of joint equilibrium payoffs.

Let Ū(x) denote the supremum of the joint PPE continuation payoffs at the
beginning of a period in state x and v̄i(x) the corresponding infimum of player
i’s PPE continuation payoffs. An optimal simple equilibrium shall be a simple
equilibrium that implements in every state x in the equilibrium phase a joint
payoff of Ū(x) and gives each player i in her punishment state a continuation
payoff of v̄i(x).

Theorem 1. (Kranz, 2012) A stochastic game with voluntary transfers has an
optimal simple equilibrium and by adjusting incentive compatible upfront transfers
it can implement every PPE payoff. The set of PPE continuation payoffs in state
x is closed and given by the simplex

{u ∈ Rn|
∑

ui ≤ Ū(x) and ui ≥ v̄i(x)∀i} (2)

where Ū(x) denotes the maximum of joint payoffs and v̄i(x) the minimum of player
i’spayoffs across all PPE starting in state x.

Characterizing the set of PPE continuation payoffs boils down to finding n+1
numbers for each state x: the highest joint payoffs Ū(x) and the lowest payoffs
v̄i(x) for each player i. Furthermore, we can restrict attention to finding an optimal
simple equilibrium for being able to implement any desired PPE payoff. Kranz
(2012) contains results for finding optimal simple equilibria. Figure 2 illustrates
the PPE continuation payoff set for a two player game.

Similar to the Nash demand game studied in Section 2, the Pareto-frontier of
PPE continuation payoffs is always linear.
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u2

u1

v̄(x)

(v̄1(x), Ū(x)− v̄1(x))

(Ū(x)− v̄2(x), v̄2(x))

Figure 2: Set of public perfect continuation equilibrium payoffs at the beginning
of period in state x in a two player stochastic game with transfers.

4 Repeated Negotiation Equilibria

This section formulates and characterizes repeated negotiation equilibria for stochas-
tic games with transfers.

4.1 Key concepts of repeated negotiations

A relational contract shall be an incomplete strategy profile that describes play
just until new negotiations take place. We assume that at the beginning of a
period a sunspot signal is observed with a negotiation probability ρ ∈ [0, 1],
which indicates that new negotiations take place. In the first period of the game
negotiations always take place.

Negotiations shall follow a simple random dictator procedure: one player is
randomly chosen to select the new relational contract. The probability that player
i is chosen is denoted by βi and called i’s bargaining weight. The selected relational
contract shall only depend on the current state x and on the identity of the player
that selects it. Furthermore, relational contracts shall not condition on any event
that occurred before they were negotiated. A helpful picture is that players forget
their history when negotiations take place, i.e. payoff irrelevant aspects of the
history are then completely treated as bygones.

We denote by σ(i,x) the relational contract selected by player i in state x. A
profile of selected relational contracts for all states and players

σ = ×i∈{1,...,n},x∈Xσ(i,x)

is called a contract profile. Every contract profile constitutes a strategy profile
of the stochastic game, in which the sun spot signal at the beginning of a period
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specifies whether negotiations take place and who selects the new relational con-
tract. We denote by σ−(i,x) a contract profile that excludes the relational contract
selected by player i in state x.

For a given contract profile, we denote by rij(x|σ) player j’s continuation
payoff in the stochastic game directly after negotiations have taken place in state
x and player i has selected the new relational contract σ(i,x). Generally, we refer
to a function r that maps every pair (i, x) of player and state into a payoff vector
(bounded by the range of feasible payoffs) as negotiation payoffs and denote by
R the set of negotiation payoffs; r(.|σ) are the negotiation payoffs of the contract
profile σ.

Truncated games Before defining repeated negotiation equilibria, we introduce
a class of truncated games, which provide a convenient tool to analyze negotiation
payoffs and to determine incentive compatibility of relational contracts taking
account of future negotiations. A truncated game Γ(r, xs) is parametrized by
arbitrary negotiation payoffs r and an initial state xs ∈ X. As long as no new
negotiation has taken place, payoffs and action spaces of the truncated game are
the same as in the original game. If negotiations take place in state x and player
i chooses the new contract, play transits to an absorbing state in which players
automatically get fixed payoffs ri(x) in every future period, i.e. the truncated
game essentially ends. The truncated game has no negotiation in the first period,
i.e. there is at least on period of play before an absorbing state is reached.

The definitions directly imply

Lemma 1. A contract profile σ constitutes a PPE of the original game if and
only if for every player i and every state x, the relational contract σ(i,x) constitutes
a PPE of the truncated game Γ(r(.|σ), x).

For a given contract profile σ and some negotiation payoffs r, let gi(x|σ, r)
denote the payoffs of the relational contract σ(i,x) in the truncated game Γ(r, x).
We specify by Gσ : R → R an operator that maps negotiation payoffs into the
payoffs of the corresponding truncated games, i. e.

Gσ(r) ≡ g(.|r,σ).

Let d∞ : R × R → R+
0 be the metric induced by the supremum norm. The

next result establishes a useful link between the negotiation payoffs of a contract
profile and the payoffs of its individual relational contracts in the corresponding
truncated games.

Lemma 2. Gσ is monotone increasing and, in the metric space (R, d∞), a con-
traction mapping that has a unique fixed point given by the negotiation payoffs
induced by σ in the original game. Therefore

r = g(.|r,σ)⇔ r = r(.|σ).
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4.2 Repeated Negotiation Equilibria

Consider a relational contract σ̃(i,x) chosen by player i in state x and take as given
a profile of other contracts σ−(i,x). We say σ̃(i,x) is incentive compatible if σ̃(i,x)

constitutes a PPE of the truncated game Γ(r(.|σ̃(i,x),σ−(i,x)), x), i.e. no player
shall have an incentive to deviate from σ̃(i,x) if player i always selects it in state
x. We say σ̃(i,x) is strictly preferred over another relational contract σ̂(i,x) if

rii(x|σ̃(i,x),σ−(i,x)) > r
i
i(x|σ̂(i,x),σ−(i,x)),

i.e. if always chosen in state x, it grants player i a larger negotiation payoff.

Definition 1. A contract profile σ constitutes a negotiation equilibrium (RNE)
if for every state x and every player i, the relational contract σ(i,x) is incentive
compatible and there exists no relational contract σ̃(i,x) that is also incentive
compatible given σ−(i,x) and is strictly preferred over σ(i,x).

An important element of the definition is that, loosely speaking, selecting an
alternative relational contract is not treated as a one shot deviation: If today
player i selects an alternative relational contract σ̃(i,x) 6= σ(i,x), the incentive
compatibility and profitability of the alternative contract is assessed under the
belief that also in the future player i will select σ̃(i,x) in state x.

This assumption is a natural consequence of our notion that in negotiations
by-gones are by-gones, which we symbolized by the picture that players forget
the whole history of play when negotiations take place. If today in state x there
are any reasons for why player i prefers to select the relational contract σ̃(i,x)

and that contract is deemed incentive compatible, players should then rationally
predict that the same reasons apply every time player i can select a relational
contract in state x because the situation in the future will be exactly the same as
today.

An equilibrium concept in which players would not anticipate that profitable
deviations from contract choice would be repeated in future negotiations, would
be plagued by non-existence problems. The black-mailing game in Section 5.1 will
provide a simple illustration for this point.

4.3 Canonical Repeated Negotiation Equilibria and Exis-
tence

We say that σ is an incentive compatible canonical contract profile if all its re-
lational contracts only differ by their upfront payments and constitute optimal
simple equilibria of the truncated games with negotiation payoffs r(.|σ); if σ is
also a RNE, we call it a canonical RNE. Based on Theorem 1 and the fixed point
result in Lemma 2, we can establish

Proposition 2. For every RNE σ there exists a incentive compatible canonical
contract profile σ̃ that has the same negotiation payoffs.
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We cannot generally show, however, that for every RNE there also exists a
canonical RNE that has the same negotiation payoffs. The problem is that if for
player i in state x, one substitutes the original relational contract with an opti-
mal simple equilibrium that has the same payoffs, the substitution might enlarge
the set of incentive compatible relational contracts for other players or in other
states and potentially destroy optimality of some of the current contract choices
(even though all current contracts will remain incentive compatible). Appendix
A provides a sufficient condition on state transitions that rules out this possibility
and ensures that the negotiation payoffs of every RNE can be implemented with a
canonical RNE. That sufficient condition is satisfied by all examples in this paper.

We now state our general existence result for canonical renegotiation equilibria.

Theorem 2. If the action space is finite and mixed actions are allowed then a
canonical RNE exists.

The proof of Theorem 2 is relatively involved and relies on a series of prelimi-
nary results. We refer the reader to Appendix A for a detailed development.

4.4 Regular Negotiation Payoffs

On first thought, it seems intuitive that in a RNE σ with negotiation payoffs r,
player i selects in state x a relational contract that grants her the highest PPE
payoff of the truncated game Γ(r, x). In that case, we say that the relational
contract σ(i,x) has regular negotiation payoffs, which satisfy

rii(x) = Ū(x|r)−
∑
j 6=i

v̄j(x|r),

rij(x) = v̄j(x|r),

where Ū(x|r) denotes the highest joint payoff and v̄j(x|r) the lowest payoff of
player j across all PPE payoffs of the truncated game Γ(r, x) (compare with
Figure 2).

For given negotiation payoffs r we denote by r (in non-bold fonts) the expected
negotiation payoffs assuming that it is not yet known, which player can make the
offer, i.e.

r(x) ≡
n∑
i=1

βir
i(x).

Expected regular negotiation payoffs satisfy

ri(x) = v̄i(x|r) + βi(Ū(x|r)−
n∑
j=1

v̄j(x|r)).

They split the highest joint continuation payoff according to a generalized Nash
bargaining solution in which the threat point is given by the profile of the lowest
PPE payoffs for every player.
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Even though in many examples, RNE have regular negotiation payoffs, this is
not always the case, as the blackmailing game in the next section will illustrate.

5 Examples

This section illustrates the effects of repeated negotiation in relational contract-
ing with simple examples. For the sake of clarity and simplicity all examples
consider games in which actions can be perfectly monitored and restrict atten-
tion to pure strategy equilibria, i.e. every PPE is a subgame perfect equilibrium
(SPE). Appendix B contains proofs of the results in this section.

5.1 The blackmailing game

We first consider a simple game to illustrate that RNE can have irregular negoti-
ation payoffs. Player 1 (the blackmailer) has evidence about some illegal activity
of player 2 (the target) and can decide in the initial state x0 whether to reveal
it a = aR or to keep it secret a = aS. As long as the evidence has not been
revealed, the state stays x0 and once the evidence has been revealed, the game
permanently moves to an absorbing state x1 in which no more actions can be
taken. Stage game payoffs are

π(aS, x0) = (0, 1)

π(x1) = π(aR, x0) = (0, 0).

Revealing the evidence involves no cost for the blackmailer but reduces the target’s
payoffs by 1 in the current and all future periods.

Consider a simple strategy profile in which the blackmailer reveals the evidence
(only) if he punishes the target in state x0 (for not having paid a specified bribe
in the transfer stage). Regular expected negotiation payoffs would then be given
by

r̃1(x0) = β1

r̃2(x0) = −β1.

Regular negotiation payoffs seem intuitive on first sight: the blackmailer extracts
from the target an amount equal to the blackmailer’s bargaining weight β1 mul-
tiplied by the damage (measured in money) that is imposed on the target by
revealing the evidence.

However, simple arguments show that in every RNE, the blackmailer must have
in state x0 a irregular expected negotiation payoff of zero. In state x1 continuation
payoffs are zero for both players. This implies that if and only if the blackmailer
has zero expected negotiation payoffs in state x0, the truncated game Γ(x0, r) has
a subgame perfect equilibrium in which the blackmailer reveals the evidence. That
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is because under a positive negotiation payoff the blackmailer would strictly prefer
to stay in state x0. Having pinned down the blackmailer’s negotiation payoffs, we
can conclude that there is a RNE in which both players decide to neither conduct
transfers nor to reveal the evidence.

Intuitively, one can interpret this RNE as the limit case of the following rela-
tional contracts. The target agrees to pay the blackmailer a very small amount
ε > 0 for not revealing the evidence. Since renegotiation outcomes only depend
on the state, both players know that when renegotiation takes place again, the
blackmailer can again extort an amount of ε-magnitude from the target. Since any
positive ε removes the blackmailer’s incentives to reveal the evidence, the RNE
must correspond to the limit case of ε = 0. While that result may seem surprising
on first sight, it seems intuitive given that the blackmailer has no commitment
device that prevents future extortion of the target.16

Since the blackmailer always gets a payoff of zero, there exist additional RNE
in which the blackmailer selects a relational contract in which he reveals the
evidence with positive probability or forces the target to burn money. Given
the interpretation above, the Pareto-optimal RNE seems more plausible in this
example, however.

Recall from Section 4.2 that the incentive compatibility of a relational contract
in state x is assessed under the common belief that when player i selects an
alternative relational contract today then player i will make the same decision
whenever she selects again a relational contract in state x. A natural alternative
formulation, would have been to hold future negotiation payoffs fixed when a
different relational contract is chosen today. It is simple to see, however, that
an equilibrium defined according to that alternative formulation would fail to
exist in the blackmailing game. Whenever the blackmailer’s negotiation payoff in
state x0 is zero, she could select an incentive compatible relational contract that
extracts a bribe with the credible threat to reveal the evidence otherwise. Under
such a relational contract, the blackmailer’s negotiation payoffs in state x0 would
be positive. Yet, positive negotiation payoffs imply that a contract in which the
evidence is revealed (off the equilibrium path) would not be incentive compatible.

5.2 Repeated games

A repeated game with transfers corresponds to the special case that there is just
a single state.

16The blackmailer could extort larger payments if the game allows to conduct brinkmanship
(see e.g. Schelling, 1960 or Schwarz and Sonin, 2007). The Blackmailer needs an observable
action that reveals the evidence with positive probability smaller 1. For example, he could leave
an envelope with a copy of the evidence addressed to a journalist next to a postal box on the
street and then informing the target about it. There is a positive probability that the envelope
is still be lying on the street if he comes to fetch it, but the envelope might already have been
put into the postal box by some helpful minded pedestrian.
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Proposition 3. In a repeated game, negotiation payoffs are regular and their sum
is equal to the highest joint PPE payoff of the repeated game given an adjusted
discount factor of

δ̃ = (1− ρ)δ.

This result simply reflects the well known fact that in repeated games, a prob-
ability that the relationships ends is equivalent to a lower discount factor: new
negotiation essentially constitute a termination and restart of the relationship.

For the case of perfect monitoring and pure strategies, negotiation payoffs
of canonical RNE have a particularly simple structure. They split joint payoffs
according to a generalized Nash bargaining solution with the threat point given
by each player’s stage game best reply payoff against the action profile played in
her punishment phase.

Proposition 4. In a repeated game with perfect monitoring expected negotiation
payoffs of a canonical RNE with a pure action plan (ak)k satisfy

ri = π∗i (a
i) + βi(Π(ae)−

n∑
j=1

π∗j (a
j)) (3)

where π∗(a) denotes player i’s stage game best-reply payoff

π∗i (a) = max
âi∈Ai

πi(âi, a−i).

5.3 Principal-agent relationship with endogenous inside
option

Our main example studies the effects of negotiations and hold-up in a classical re-
lational contracting application: a principal-agent relationship. We first consider
a simple repeated game, similar to the ones studied by MacLeod and Malcomson
(1998) and Levin (2003). In each period, the agent can choose effort e ∈ [0, ē],
which determines the value of its service to the principal. The principal’s stage
game payoff is given by max{x, e}. The parameter x ∈ (0, ē) describes the princi-
pal’s inside option, i.e. her payoff in a period in which the agent chooses too little
effort.17

The agent has effort costs k(e) that are strictly increasing in e and satisfy
k(e) = 0, i.e. the agent has an inside option fixed to zero. The joint stage game
payoffs Π(e, x) = max{x, e} − k(e) shall be strictly increasing in effort for all
e > x. All transfers and service levels are perfectly observed by the principal and
agent, but no enforceable contracts can be written.

As explained in Section 5.2, we can find negotiation payoffs of this repeated
game by first solving for optimal simple subgame perfect equilibria given an ad-
justed discount factor of δ̃ = δ(1 − ρ). The lowest punishment payoffs that can

17Example 5.4 provides a comparison between inside and outside options.
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Figure 3: Pareto frontiers of SPE payoffs in the repeated principal-agent game
with discount factor δ̃ for a low and high inside option xL and xH , respectively,
with xH < Ū(xH) < Ū(xL).

be implemented are given by players’ inside options. In a simple equilibrium that
implements positive effort, the principal pays the agent an bonus if the agent
chooses the effort that was agreed upon. Using e.g. the results by Goldlücke and
Kranz (2012) or Proposition 13 in Appendix A, one finds that effort e can be
implemented in the equilibrium phase of a simple equilibrium if and only if

e− δ̃−1k(e) ≥ x. (4)

The highest effort level that can be implemented is decreasing in the princi-
pal’s inside option x. That is because under a higher inside option, only weaker
punishments can be imposed on a principal who deviates from a bonus payment
with the consequence that only lower bonus payments and lower effort levels can
be implemented on the equilibrium path.

Figure 5.3 illustrates the corresponding Pareto frontiers of SPE equilibrium
payoffs for a low and a high inside option, respectively. Ũ(x) shall denote the
highest joint SPE payoff of the repeated game with inside option x given discount
factor δ̃. The principal’s (expected) negotiation payoffs are given by

r̃1(x) = (1− β1)x+ β1Ũ(x) (5)

A lower inside option can have two opposing effects on the principal’s negotia-
tion payoff. The positive effect is that due to more effective punishments, the size
of the joint payoff Ũ(x) can increase. The negative effect is that due to the weaker
bargaining position, the principal extracts only a smaller share of the joint pay-
off Ũ(x). The positive effect dominates the negative effect only if the principal’s
bargaining weight β1 is sufficiently large.

Possibility to destroy the inside option Consider now a simple variation
with an endogenous inside option. The principal starts with a high inside option
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xH but has the possibility to destroy it. Destruction shall reduce the inside option
permanently and non-reversibly to a lower level xL from the next period onwards
and involve no direct costs. In other words, the principal makes herself perma-
nently more vulnerable and more dependent on the agent by destroying her inside
option.

Proposition 5. If a lower inside option is socially more efficient in the repeated
game, i.e. Ũ(xL) > Ũ(xH), then the principal destroys her inside option in every
Pareto-optimal subgame perfect equilibrium (including the RNE for ρ = 0).

Recall that Ũ(xL) > Ũ(xH) always holds, except for the uninteresting cases
that in a Pareto-optimal equilibrium the agent chooses zero effort or first best
effort ē can be implemented for both xL and xH . Destruction of the inside op-
tion can be interpreted as a socially beneficial investment which allows to imple-
ment a higher joint surplus in the future relationship. Proposition 5 states that
Pareto-optimal SPE fully circumvent any hold up problem: the principal always
undertakes the socially efficient long-run decision to make herself more vulnera-
ble towards the agent. The absence of a hold-up problem is based on a similar
intuition as in Section 2. After the inside option is destroyed, players can flexibly
implement any desired continuation payoff from the Pareto-frontier of SPE payoffs
of the repeated game with inside option xL. All that matters for Pareto-optimal
SPE is the fact that the continuation payoff set under xL is strictly larger than
under xH (recall Figure 5.3). Players can permanently, perfectly coordinate away
from any exploitation of the principal’s increased vulnerability on the equilibrium
path.

A positive negotiation probability essentially boils down to the following idea:
After some while, vulnerabilities will be exploited in economic relationships and
history-independent bargaining power will be reflected in continuation payoffs. An
agent will exploit a lower inside option of the principal because in new negotiations
the agent selects relational contracts that push the principal’s payoff down to the
inside option. The following result shows that when fixing the adjusted discount
factor, the principal’s willingness to destroy the inside option is the lower, the
higher is the negotiation probability.

Proposition 6. Holding the adjusted discount factor δ̃ fixed, the principal destroys
her inside option in a RNE if and only if Ũ(xH) ≤ Ũ(xL) and the negotiation
probability is below a critical value ρ̄(β1) that increases in the principal’s bargaining
weight β1.

Of course, the principal’s willingness to destroy the inside option also depends
on the trade-off between the resulting increase in the total surplus and the re-
duction of her share of that surplus in future negotiations. If the principal has
a higher bargaining weight β1, she can generally appropriate a larger share of
the total surplus and her inside option becomes less relevant for the negotiation
outcome; the principal is then more willing to destroy the inside option.
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The trade-off between the increase in joint surplus and weakening of the prin-
cipal’s bargaining position takes a particularly intuitive form in the limit in which
all adjusted discounting is only due to the negotiation probability.

Proposition 7. Fix a negotiation probability ρ ∈ (0, 1) and consider the limit
δ → 1. The principal destroys her inside option if and only if her negotiation
payoff in the repeated game with fixed inside option is larger under the low inside
option, i.e. r̃1(xH) ≤ r̃1(xL).

With a positive negotiation probability continuation, payoffs will after some
while be given by the negotiation payoffs that reflect in each state player’s history
independent bargaining power. In the limit case of δ → 1 payoffs in intermediate
periods get zero weight and only the resulting negotiation payoffs will be relevant
for the principal’s choice of state. The principal thus solves exactly the same
trade-off between social benefits and weakening of her bargaining position that
determines whether she would be better off under a low inside option in the re-
peated game with exogenously given inside options. We get a very simple formula
for this trade-off if bargaining weights are equal, i.e. β1 = β2 = 1

2
. The principal

then destroys the inside option whenever

Ũ(xL)− Ũ(xH) ≥ xH − xL.

The increase in joint payoffs must exceed the decrease in the principal’s inside
option.

As a final observation for this example, we note that the game has a unique
Markov Perfect equilibrium, which is also the unique RNE for ρ = 1. This limit
case does not illuminate any interesting trade-offs. The agent will simply never
choose positive efforts and the principal will consequently never destroy her inside
option.

5.4 Inside options versus outside options

An important insight of non-cooperative bargaining models with enforceable con-
tracts is the distinction between inside options, which describe the payoffs during
periods of disagreement within the relationship, and outside options, which de-
scribe the payoffs if the relationship breaks up without forming a contract. The
famous outside option principle, states that outside options should only influence
bargaining outcomes if they are binding while otherwise only inside options are
relevant, see e.g. Binmore et. al. (1989).

The difference between outside options and inside options can have important
implications for hold-up problems, see e.g. De Meza and Lockwood (1998). In
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contrast, in the relational contracting literature these differences are mostly irrel-
evant and to the best of our knowledge, an outside option principle for relational
contracts has not yet been established or studied.

This example illustrates how repeated negotiations naturally extend the out-
side option principle to relational contracting. Consider a variation of the repeated
principal agent game from the previous section. Within the relationship the prin-
cipal’s and agent’s stage game payoffs shall be given by

π1 = πio1 + e,

π2 = πio2 − k(e).

As before, e ∈ [0, ē] denotes the agent’s effort and k(e) an increasing cost
function with k(0) = 0. The payoff vector πio denotes players’ inside options and
describes the payoffs in case zero quality is delivered.

In each period the principal and agent can also decide to break-up their rela-
tionship. If both want to break up their relationship, the break-up is permanent
and player i gets in the current and all future periods an outside option payoff
of πooi . We assume that πioi ≤ πooi , i.e. both players prefer a break-up compared
to staying in the relationship while never trading with each other. To rule out
that a player is indifferent between breaking up or not if the other player wants
to break-up, we assume that if just one player wants to break up, there is a very
small positive probability ε ≈ 0 that the break up is not successful and players
remain in the relationship next period.

Proposition 8. Let Ū denote the joint payoffs of the RNE. If the negotiation
probability is zero, expected negotiation payoffs are only determined by the outside
options and given by

rooi = πooi + βi(Ū − πoo1 − πoo2 ). (6)

Given a fixed positive negotiation probability ρ > 0 and the limit δ → 1, expected
negotiation payoffs satisfy instead the outside option principle: unless the outside
options are binding, they are solely determined by the inside options and are given
by

rioi = πioi + βi(Ū − πio1 − πio2 ). (7)

These results are straightforward. The lowest subgame perfect equilibrium
payoff of each player is given by her outside option. In the absence of repeated
negotiation, the expected negotiation payoffs rooi therefore simply split the joint
surplus as in the Nash bargaining solution with the outside options as threat
point.

The payoffs rioi correspond to the expected negotiation payoffs inside the rela-
tionship, i.e. in a game in which for no player it is possible or credible to break
up the relationship. In the case ρ > 0 and δ → 1, continuation payoffs are always
approximately equal to subsequent negotiation payoffs. Hence, breaking up the
relationship would only be incentive compatible if at least for one player i the
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outside option payoff is larger than her negotiation payoff inside the relationship
rioi . Otherwise, outside options have no influence on the equilibrium outcome, i.e.
the outside option principle holds.

5.5 A simple arms race

The final example illustrates how repeated negotiations can lead to excessive in-
vestments into means to harm other player in order to gain bargaining power. It
also illustrates that equilibrium payoffs do not necessarily decrease in the negoti-
ation probability but may also increase in it.

Consider two players, e.g. different countries. In certain periods, one or both
players can have the opportunity to spend an amount of money b > 0 in order
to try to acquire a weapon. Whether that opportunity arises or an attempted
acquisitions is successful may be determined in a stochastic fashion. Once a
weapon has been successfully acquired, players can use it in later periods at some
cost c > 0 to inflict a damage d > 0 on the other player. There are no direct
benefits from using a weapon. Players can acquire at most one weapon and the
weapon can be used as often as desired. If no weapons are bought or used, players
get zero payoffs.

Proposition 9. In the unique Markov perfect equilibrium outcome, as well as,
in all Pareto-optimal SPE outcomes no weapons are bought or used; this also
holds true for the corresponding RNE given negotiation in every period (ρ = 1)
or no repeated negotiation (ρ = 0). In contrast, for intermediate negotiation
probabilities, it can be the case that there is a unique RNE outcome in which one
or both players spend money to acquire weapons.

The fact that weapons are not build in the two extreme cases of no repeated
negotiation or negotiation in every period has different reasons.

That costly acquisition of weapons on the equilibrium path cannot be part of a
Pareto efficient SPE, is evident, since joint payoffs are maximized if no investment
cost are incurred. Non-investment can e.g. be sustained if players coordinate to
ignore forever any threat to use weapons.

If negotiations occur in every period (corresponding to the unique MPE),
weapons will never be used since usage is costly and has by definition no impact
on the future state, i.e. attacks cannot induce any future payments.

Under intermediate negotiation probabilities the two factors that block weapon
acquisition can be relaxed simultaneously. Incentive compatible relational con-
tracts in which weapons are used until the other player makes an appeasement
payment exist as long as the negotiation probability is not too high. If at the
same time the negotiation probability is sufficiently high, players may not be able
to prevent themselves from acquiring weapons, since for each player the resulting
gain in future negotiation payoffs is simply too attractive.
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The example illustrates that to prevent an arms race, unfortunately, it is
not sufficient that there are no direct gains from using weapons. Struggles for
power are simply a natural phenomenon under positive negotiation probabilities.
The induced socially inefficient investments can be interpreted as a particular
incarnation of a hold-up problem.

6 Extensions

6.1 State-dependent Negotiation Probabilities

A straightforward extension of our basic model is to allow for heterogeneous ne-
gotiation probabilities that can depend on the current state. In the proofs in
Appendix A, we directly consider this more general model and find

Proposition 10. All results in Section 4, including the existence theorem for
canonical RNE, extend to the case that negotiation probabilities depend on the
state x.

State-dependent negotiation probabilities allow for a rich variety of variants of
our basic model that automatically satisfy the key existence and characterization
results.

One example is to model incompleteness of relational contracts with respect
to certain contingencies. To model the fact that some state x̃ is not considered in
an initial relational contract, one can assign a negotiation probability of 1 to that
state while having smaller or zero negotiation probabilities for states that have
been initially considered.

Another possibility is a model in which negotiation probabilities are reduced
over time as players interact more often. This can reflect the transformation of
relational contracts from initially very loose informal agreements into well estab-
lished social norms. This is a special case of our general framework since one can
simply augment the state space by an additional dimension that keeps track of
the current negotiation probability.

6.2 Endogenous Negotiations

By modifying the original stochastic game, state-dependent negotiation probabil-
ities also allow variants of our model in which new negotiations only take place if
some player actively attempts to force negotiations.

Consider the following modified game. The action space in all states is aug-
mented by a set of binary choices “do or do not attempt new negotiations if in
the next period state x is reached” for each player. Furthermore, every state
x ∈ X of the original game is split into two states: x0 and x1. In state x0 the
negotiation probability is 0 and in state x1 it is 1. The two states have identical
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payoff functions, action spaces and transition probabilities. We call x the base
state and x0 and x1 its variants. State transitions are as follows. First the new
base state x is determined using the same transition probabilities as in the original
game. If no player has attempted negotiation for state x then the variant x0 is
reached, if all players have attempted negotiation then variant x1 is reached, and
if some but not all players have attempted new negotiations, variant x1 is reached
with probability ρ and otherwise variant x0 is reached. Hence, in the game with
endogenous negotiation, ρ measures the probability that a player is able to force
new negotiations against the will of other players.

We say a canonical contract profile σ in the game with exogenous negotiation
is behavioral equivalent to a canonical contract profile σ̃ in a corresponding game
with endogenous negotiation if for every base state x, the variant x1 is reached
with probability ρ and the following values are are the same as in the state x
of the original game: the action profiles and transfers for the punishment and
equilibrium phases in both state variants and the negotiation payoffs in variant
x1.

Proposition 11. Assume unsuccessful negotiation attempts are unobservable.
For every incentive compatible canonical contract profile without money burning
in the original game with exogenous negotiation there is a behavioral equivalent
incentive compatible canonical contract profile in the game with endogenous nego-
tiation attempts.

While Proposition 11 illustrates common aspects, the outcomes of the models
with exogenous and endogenous negotiation are not in general equivalent. For
example, in a game with imperfect public monitoring, it can become optimal under
an exogenous negotiation probability to burn money in the equilibrium phase as
a collective punishment for bad signals. Yet, with endogenous negotiation, money
burning may never happen since all players could want to newly negotiate such a
continuation equilibrium.

The special case that new negotiations only take place if all players attempt ne-
gotiations, i.e. ρ = 0, can be considered as an extension of renegotiation-proofness
concepts from repeated games to stochastic games with imperfect monitoring and
transfers. Proposition 10 implies general existence for this renegotiation-proofness
concept. We are not aware of any previous formalization, characterization or ex-
istence result of renegotiation-proofness for stochastic games.

If one assumes that unsuccessful negotiation attempts are publicly observed
and can thus be punished, it becomes easier to deter negotiations on the equi-
librium path. Still, the option to attempt negotiations will typically increase the
lowest punishment payoff that can be imposed on a player. In a similar fashion as
in our baseline model, the opportunity to attempt new negotiations would reduce
the flexibility of relational contracting and could cause hold-up problems.
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Appendix A: Existence and Characterization of

canonical RNE

Proofs for results in Section 4 and 6

This appendix proves the results in Section 4 and 6 and develops further results
for characterizing and understanding the structure of RNE. Recall that g(|σ, r)
the payoffs of the relational contracts in the corresponding truncated games and
Gσ : R → R is the following functional operator:

Gσ(r) ≡ g(.|r,σ).

Lemma 2. Gσ is monotone increasing and in the metric space (R, d∞) a
contraction mapping that has a unique fixed point given by the negotiation payoffs
induced by σ in the original game. Therefore

r = g(.|r,σ)⇔ r = r(.|σ).
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Proof. First note that r(.|σ) = g(.|r(.|σ),σ) follows straightforward from our
definitions. If Gσ is a contraction mapping, the contraction mapping theorem
implies that r(.|σ) is the unique fixed point of Gσ. We show that Gσ is a contrac-
tion mapping using Blackwell’s sufficient conditions. The first condition is that
Gσ is monotone increasing in the following form: if two negotiation payoffs r and
r̃ satisfy rij(x) ≤ r̃ij(x)∀i, j, x then gij(x|r,σ) ≤ gij(x|r̃,σ)∀i, j, x. Verbally, pay-
offs of the truncated game are increasing in the negotiation payoffs if the strategy
profile is hold fixed. This monotonicity condition is obviously satisfied.

The discounting condition requires that there exist a scalar γ ∈ (0, 1) such
that for any constant K ≥ 0 and all i, j, x

gij(x|r̂ +K,σ) ≤ gij(x|r̂,σ) + γK

Average discounted payoffs of the truncated game can increase at most by δK if
negotiation payoffs increase by K. because transition to an absorbing state can
only occur after period 1. The discounting condition is therefore satisfied with
γ = δ.

For convenience, we state the following direct consequence of Lemma 2.

Lemma 3. Two contract profiles σ and σ̃ induce the same negotiation payoffs,
i.e.

r(.|σ) = r(.|σ̃),

if and only if they implement the same payoffs in the truncated games given r(.|σ),
i.e.

g(.|r(.|σ),σ) = g(.|r(.|σ), σ̃)

Proposition 2. For any incentive compatible contract profile σ there exists an
incentive compatible canonical contract profile σ̃ which has the same negotiation
payoffs r(.|σ) = r(.|σ̃).

Proof. It follows from Theorem 1 that for every state x there exists an optimal
simple equilibrium σ̃(i,x) that by setting appropriate upfront transfers implement
the same payoffs as σ(i,x) in the truncated game Γ(r(.|σ), x), A profile σ̃ of such
optimal simple renegotiation outcomes thus satisfies

gi(x|r(.|σ),σ) = gi(x|r(.|σ), σ̃)∀i = 1, .., n, x ∈ X

It follows from Lemma 3 that

r(.|σ) = r(.|σ̃).

andσ̃ is therefore indeed incentive compatible.

31



The following result establishes that player i always has an incentive compati-
ble simple relational contract in state x if all other offered relational contracts are
simple strategy profiles. The proof specifies a modified stochastic game and then
exploits Sobel’s (1971) existence result of Markov perfect equilibria in stochastic
games with finite action and state spaces.

Lemma 4. Assume the pure action space is finite. For every profile of simple
relational contracts σ−(i,x), there always exists an incentive compatible simple re-
lational contractσ(i,x) for player i in state x.

Proof. We show that there is always an incentive compatible relational contract
σ(i,x) that forms a MPE of the corresponding truncated game. A MPE is just a
special form of a simple equilibrium in which players conduct no payments and
equilibrium phase and punishment phase policies coincide.

For any pair (i, x) of player and state and given simple contract profile σ−(i,x),
consider the following modified stochastic game G(σ−(i,x)). The modified states
are described by (x′, in, xn) where x′ corresponds to the state of the original game,
xn is the state in which the previous negotiation took place and in describes
the player that has selected the current relational contract. In modified states
(x′, in, xn) with (in, xn) 6= (i, x) players have no choice of actions: play auto-
matically proceeds as in the equilibrium phase of the relational contract σ(in,xn)

in the original game with the same payoffs. In modified states (x′, in, xn) with
(in, xn) = (i, x), the players’ action space is the same as the action space of the
original game in state x′, yet no transfers are possible, i.e. the action space of the
modified game is finite. Stage game payoff functions in a modified state (x′, in, xn)
are as the payoff functions in state x′ in the original game. State transitions of
the component x′ of the modified state are like the state transitions in the original
game and in and xn are updated when new negotiations take place.

The modified game G(σ−(i,x)) is a stochastic game with a finite action space
and a finite state space. Sobel (1971) has shown that it must have a MPE. It fol-
lows straightforward from the construction that the MPE of G(σ−(i,x)) constitutes
an incentive compatible relational contract for player i in state x given σ−(i,x): no
player has an incentive to deviate, holding future negotiation outcomes fixed.

The following result makes use of the fact that the set of simple equilibria is
compact.

Lemma. If for a given contract profile σ−(i,x), player i has an incentive com-
patible relational contract in state x then she has an incentive compatible simple
contract that gives her the supremum of her continuation payoffs across all incen-
tive compatible relational contracts.

Proof. We denote by Σ∗(σ−(i,x)) the set of incentive compatible relational con-
tracts for player i in state x given σ−(i,x). Let

r̄ii = sup
σ̃(i,x)∈Σ∗

i (σ−(i,x))

rii(x|σ̃(i,x),σ−(i,x))
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denote the supremum of player i’s payoffs in state x that can be implemented
with incentive compatible relational contracts. Using similar arguments as in in
the proof of Lemma 2, one can show that every incentive compatible relational
contract chosen by player i in state x can be replaced by an incentive compatible
canonical relational contract that has the same negotiation payoffs.

Let {σ̃(i,x)(m)}∞m=1 and {r̃ii(m)}∞m=1 be sequences of incentive compatible sim-
ple optimal relational contracts and corresponding payoffs for player i such that
{r̃ii(m)}∞m=1 converges towards r̄ii. Since {σ̃(i,x)(m)}∞m=1 is a sequence in a compact
space, it must have a converging subsequence and we denote its limit by σ̄(i,x). It
is straightforward that σ̄(i,x) must be an optimal simple equilibrium that imple-
ments r̄ii in the truncated game Γ(r(σ̄(i,x),σ−(i,x)), x). That is because payoffs are
continuous in mixing probabilities over actions and in payments and all incentive
constraints of a simple equilibrium consists of weak inequalities (see Kranz, 2012,
for a detailed description of those incentive constraints)

We now prove the main existence result. The main idea of the proof is to con-
struct a class of auxiliary games and to connect existence of negotiation equilibria
with existence of Nash equilibria in those auxiliary games.

Theorem 2. If the action space is finite and mixed actions are allowed, a
canonical RNE exists.

Proof. Before proving the result, we prove a simpler result that establishes that
there exists a RNE in which all relational contracts are simple contracts. This is
not yet a canonical RNE, since we do not yet require that all relational contracts
are optimal simple contracts of the truncated game that only differ in their upfront
transfers.

Existence of a RNE in simple contracts We first introduce some definitions
for the original stochastic game. A point of play h(i,x) = (s, k, y, x′, x̃, i, x) shall
be a vector that contains all aspects of a history in the original stochastic game
that is relevant for players’ continuation payoffs given a simple contract profile. A
point of play consists of the current stage s (transfer or action stage), the phase
k ∈ {e, 1, ..., n}, the previously realized signal y, the current state x′, the previous
state x̃, and a pair of player and state (i, x) that identifies the current relational
contract. H((i, x)) shall denote the finite set of all points of play in which the
current relational contract has been selected by player i in state x. For a strategy
profile described by a simple contract profile σ, let

uj(h,σ)

denote player j’s expected continuation payoff at a point of play h. For h ∈
H((i, x)) let

u∗j(h,σ)

denote the maximum of player j’s continuation payoffs if she is allowed to deviate
from the relational contract σ(i,x) but is not allowed to deviate from the other
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relational contracts. With some abuse of notation, we call u∗j(h,σ) player j’s best
reply payoff. Payoffs uj(h,σ) are linear in σ and best-reply payoffs u∗j(h,σ) are
convex in σ. Correspondingly, the gains from an optimal deviation u∗j(h,σ) −
uj(h,σ) are convex in σ. We denote by

∆(i,x)(σ) = max
h∈H(i,x)

max
j∈{1,...,n}

(
u∗j(h,σ)− uj(h,σ)

)
the highest gain from an optimal deviation from the relational contract σ(i,x)

across all players and corresponding points of play. As a maximum over a fi-
nite number of continuous and convex functions, ∆(i,x)(σ) is quasi-convex and
continuous.

We now specify a simultaneous move auxiliary game. Each combination (i, x)
of a player and state of the original stochastic game constitutes a player of the
auxiliary game. The compact action space of an auxiliary player (i, x) is given
by the set of simple contracts of the truncated game starting in state x. Hence,
a simple contract profile σ specifies a strategy profile of this simultaneous move
auxiliary game. A particular auxiliary game is described by a parameter ε > 0.
Payoffs of auxiliary player (i, x) are given by

π(i,x)(σ) = min{rii(x|σ), K − 1

ε
∆(i,x)(σ)}

whereK is positive constant that is larger than the maximum (average discounted)
continuation payoff a player could achieve in the original game. As long as the
incentive constraints of the relational contract σ(i,x) are not violated by too large
an amount, i.e. ∆(i,x)(σ) is not too large, the auxiliary player’s payoff π(i,x)(σ)
is given by player i’s continuation payoff when selecting σ(i,x) in state x in the
original game, i.e. by rii(x|σ). The smaller is ε, the more severe do violations of
the incentive constraints enter the the auxiliary players’ payoffs. The negotiation
payoffs rii(x|σ) are a linear function of σ. As the minimum of a linear and a quasi-
concave function, π(i,x)(σ) is itself a quasi-concave function and also continuous.
Since payoffs are quasi-concave and continuous and the action space is compact,
we can apply the standard Nash equilibrium existence proof to conclude that the
auxiliary game has a Nash equilibrium for all ε > 0.

Consider an infinite sequence of {εm}∞m=1 that converges to 0 and a correspond-
ing sequence of auxiliary games with ε = εm. Let {σm}∞m=1 be the corresponding
sequence of Nash equilibria of those auxiliary games. As an infinite sequence in a
compact space, {σm}∞m=1 has a convergent subsequence. Without loss of general-
ity, we assume that {σm}∞m=1 is already that convergent subsequence and denote
its limit by σ∗. It follows from Lemma 4 that every auxiliary player has a simple
relational contract σ(i,x) that is incentive compatible given σ∗−(i,x). Since viola-
tions of incentive constraints are exceedingly costly as ε→ 0, it thus follows from
our construction that σ∗(i,x) must be incentive compatible given σ∗−(i,x) and that
σ∗ constitutes a RNE.
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Existence of canonical RNE To prove existence of canonical RNE, we use
a variation of the auxiliary game developed above. In addition to the auxiliary
players (i, x) there will be a canonical player indexed by c. The canonical player
specifies a contract profile σ̃ consisting of simple relational contracts that only
differ in their upfront payments. As before, each auxiliary player (i, x) chooses a
relational contract σ(i,x). An auxiliary player’s payoffs of the new game shall be
given by

π(i,x)(σ, σ̃) = min{rii(x|σ(i,x), σ̃−(i,x)), K −
1

ε
∆(i,x)((σ(i,x), σ̃−(i,x)))}.

The payoff function differs from our previous specification in so far that payoffs
and violations of incentive constraints are computed under the assumption that
other relational contracts are given by the canonical player’s choice σ̃−(i,x) instead
of the profile σ−(i,x) of the other auxiliary players. π(i,x)(σ, σ̃) is quasi-concave
and continuous in both σ and σ̃.

The specification of the canonical player’s payoff function is slightly more
involved. Let U (i,x)(σ̃) denote the joint equilibrium phase payoffs of the simple
contract σ̃(i,x) in the truncated game Γ̂(r(.|σ̃), x). In a similar fashion, we denote

by v
(i,x)
j (σ̃) the corresponding punishment payoffs of player j. Let V (i,x)(σ̃) denote

the sum of those punishment payoffs across all player j.
The canonical player’s payoffs shall be given by

π(c)(σ, σ̃) = min{
∑
∀(i,x)

(
U (i,x)(σ̃)− V (i,x)(σ̃)

)
,

K − 1

ε
max
∀j,∀(i,x)

(
rij(x|σ(i,x), σ̃−(i,x))− rij(x|σ̃)

)2
,

K − 1

ε
max
∀(i,x)

∆(i,x)(σ̃)}

Intuitively, the canonical player chooses her contract profile σ̃ such that the com-
mon structure of actions and non-upfront transfers maximize the sum of gaps
between joint equilibrium phase and punishment payoffs in the corresponding
truncated games under the restrictions that i) corresponding negotiation payoffs
rij(x|σ̃) are sufficiently close to the negotiation payoffs rij(x|σ(i,x), σ̃−(i,x)) for ev-
ery player j and each auxiliary player (i, x), and ii) the relational contracts don’t
violate the incentive constraints by too large an amount. As ε decreases, the two
restrictions become exceedingly tighter.

All payoff functions of the new auxiliary game are continuous and quasi-
concave in σ and σ̃, which implies that for every ε > 0 the auxiliary game
has a Nash equilibrium. Similar as above, let {(σ̃m,σm)}∞m=1 denote a converging
subsequence of such Nash equilibria as ε → 0 and let (σ̃∗,σ∗) denote its limit
point.

It follows again from Lemma4 that in this limit the auxiliary contracts σ∗(i,x)

are incentive compatible given σ̃∗−(i,x) and maximize the auxiliary player (i, x)’s

35



payoffs across all incentive compatible contracts. Let r̂ denote the negotiation
payoffs defined by

r̂i = ri(.|σ∗(i,x), σ̃
∗
−(i,x)).

It follows from Theorem 1, that there exists a simple contract profile σ̂ in which
the relational contracts only differ in their upfront payments and for each (i, x) the
relational contractσ̂(i,x) is an optimal simple equilibrium of the truncated game

Γ̂(r̂, x) that implements payoffs r̂i. It follows from Lemma 3 that σ̂ has nego-
tiation payoffs r̂; therefore it is also an incentive compatible canonical contract
profile.

Note that the part ∑
∀(i,x)

(
U (i,x)(σ̃)− V (i,x)(σ̃)

)
in the canonical player’s profit function makes the canonical player want to

choose optimal simple contracts of the truncated game Γ̂(r̂, x). It therefore follows
follows that also σ̃∗ must be an incentive compatible canonical contract profile that
implements negotiation payoffs r̂, since otherwise the canonical player would (in
the limit) strictly prefer choosing σ̂ instead of σ̃∗. (More precisely, for sufficiently
small ε̄ there exist profiles nearby σ̂ that the canonical player would strictly prefer
over σ̃m for all m such that εm < ε̄). The part,∑

∀(i,x)

(
U (i,x)(σ̃)− V (i,x)(σ̃)

)
Since, given σ̃∗−(i,x), the auxiliary player (i, x) has no incentive compatible contract

that implements a higher payoff than r̂ii(x), σ̃∗ constitutes a canonical RNE.

The proofs above already imply Proposition 10in Section 6. We now prove
Proposition 11.

Propositon 11. Assume unsuccessful negotiation attempts are unobservable.
For any incentive compatible canonical contract profile without money burning in
the original game there is a behavioral equivalent incentive compatible canonical
contract profile in the game with endogenous negotiation attempts.

Proof. Without money burning, all continuation payoffs of a canonical contract lie
on the Pareto-frontier of PPE of the corresponding truncated game. This implies
that in every state x and phase there is always at least one player who is weakly
better off if new negotiations take place and another player who is weakly worse
off. Let the contract profile in the game with endogenous negotiation be such
that (at least) one player who weakly prefers new negotiation in state x attempts
negotiations for state x and (at least) one player who does not prefer negotiation
does not attempt negotiations; all other actions and transfers are the same as
in the corresponding state and phase of the original game. It is straightforward
that all relational contracts of that contract profile are incentive compatible and
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the contract profile is a canonical contract profile of the game with endogenous
negotiation.

Sufficient condition that RNE negotiation payoffs can be
implemented with canonical RNE

We now derive a sufficient condition on the stochastic game such that the nego-
tiation payoffs of any RNE can always be implemented with a canonical RNE.
This sufficient condition is satisfied by all examples in this paper. Games with
monotone state transitions shall be stochastic games in which states cannot cycle
in the following sense: if from a state x another state x′ 6= x can be reached with
positive probability after some number of periods under some strategy profile then
x can never be reached from state x′. Monotone state transitions imply that the
game has at least one absorbing state, that can never change once reached. We
say an action plan (αk)k is optimal given negotiation payoffs r if the truncated
game given r has an optimal simple equilibrium with that action plan.18

Proposition 12. For every RNE of a monotone stochastic game there exists a
canonical RNE with the same negotiation payoffs.

Proof. Consider some state x ∈ X in a monotone stochastic game. The relational
contracts chosen in state x do not affect the set of incentive compatible relational
contracts in any state x′ 6= x that can be reached from x, because x cannot be
reached from x′. Furthermore, the set of incentive compatible relational contracts
in any state x′′ that can reach x stays the same for all relational contracts in
state x that yield the same expected negotiation payoffs. For a given RNE, we
can thus replace the relational contracts of each player i in each state x by a
relational contract that constitutes an optimal simple equilibria of the truncated
game Γ̂(r, x) and implements the original negotiation payoff ri without violating
the incentive compatibility or optimality conditions of RNE.

Finding Optimal Simple Equilibria in Truncated Games

While there is no simple general recipe for finding canonical RNE, useful tools are
results that facilitate computation of optimal simple equilibria in truncated games.
For a truncated game with expected negotiation payoffs r, let U(x|αe, r) denote
the expected joint continuation payoffs (summing over payoffs for all players) in
state x of a simple equilibrium with equilibrium phase policy αe and no usage
of money burning. These joint equilibrium payoffs can be easily computed by
solving the following system of linear equations:

U(x|αe, r) = (1− δ)Π(αe, x) + δE[(1− ρ)U(x′|αe, r) + ρR(x′)|αe, x], (8)

18It is straightforward that if the condition holds for the truncated game Γ̂(r, x) of some state
x ∈ X if and only if holds for the truncated games of all states x ∈ X.
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where Π and R denote joint stage game payoffs and joint expected negotiation
payoffs, respectively.

The lowest punishment payoffs that can be imposed on player i given a pun-
ishment policy αi are characterized by the solution vi(.|αi, r) of the following
Bellman equation:

vi(x|αi, r) = max
âi∈Ai(x)

{(1−δ)
(
πi(âi,α

i
−i, x)

)
+δE[(1−ρ)vi(x

′|αi, r)+ρri(x′)|x, âi,αi−i]}.

(9)
It characterizes player i’s best-reply payoffs in the truncated game if we assume
that other players’ action plan is fixed to αi−i and no transfers are conducted.
Adapting Proposition 5 from Kranz (2012), we find:

Proposition 13. Consider a stochastic game with perfect monitoring and let
(αk)k be an action plan in which in every state at least one player plays a pure
strategy. A simple equilibrium with action plan (αk)k exists for the truncated game
with negotiation payoffs r if and only if for every state x ∈ X and every phase
k ∈ {e, 1, ..., n}

(1− δ)Π(αk, x) + δE
[
(1− ρ)U(x|αe, r) + ρR(x′)|αk, x

]
≥

n∑
i=1

max
âi∈Ai(x)

{
(1− δ)πi(âi,αk−i, x) + δE

[
(1− ρ)vi(x

′|αi, r) + ρri(x
′)|âi,αi−i, x

]}
.

(IC-SUM)

If (IC-SUM) is satisfied, the set of subgame perfect equilibrium payoffs that can be
implemented in the truncated game with simple equilibria using action plan (αk)k
is given by the simplex:

{u ∈ Rn|
∑

ui ≤ U(x|αe, r) and ui ≥ vi(x|αi, r)∀i}

Similar results can be adapted for the general case of mixed strategies or for
games with imperfect public monitoring of actions.

Appendix B: Proofs of Results in the Examples

Repeated Games

Proposition 3. In a repeated game, negotiation payoffs are regular and their sum
is equal to the highest joint public perfect equilibrium payoff Ū(δ̃) of the repeated
game given an adjusted discount factor of

δ̃ = (1− ρ)δ.
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Proof. The result is straightforward. For a given strategy profile σ, let π̃(t, σ)
denote the expected payoffs in period t in game with zero negotiation probability.
The expected payoff in the truncated game Γ(r, x) can be written as

u(σ) = ũ(σ) + r

t∑
t=1

δt(1− (1− ρ)t)

where

ũ(σ) =
∞∑
t=0

(δ(1− ρ))t π̃t(t, σ)

is the payoff component corresponding to periods in which renegotiation has not
yet taken place. The payoff function ũ(σ) is identical to the discounted payoff
of a repeated game with discount factor δ̃ = (1 − ρ)δ. Since u(σ) is simply ũ(σ)
plus a constant that does not depend on the strategy profile σ ,the set of public
perfect equilibria of the truncated game is the same as for the repeated game with
discount factor δ̃, independent of the negotiation payoffs r. This independence
also implies that every player i will select a contract with regular negotiation
payoffs. Regular negotiation payoffs are Ū(δ̃) −

∑
j 6=i v̄j(δ̃) for player i and v̄j(δ̃)

for each player j 6= i and have therefore a joint utility of Ū(δ̃).

Proposition 4. In a repeated game with perfect monitoring expected negotia-
tion payoffs of a canonical RNE with a pure action plan (ak)k satisfy

ri = π∗i (a
i) + βi(Π(ae)−

n∑
j=1

π∗j (a
j)) (10)

where π∗(α) denotes player i’s stage game best-reply payoff

π∗i (α) = max
ai∈Ai

πi(ai, α−i).

Proof. Consider a canonical RNE with action plan (ak)k. We find from (8) that
joint equilibrium phase payoffs and negotiation payoffs r satisfy in a repeated
game

U s = (1− δ)Π(ae) + δ ((1− ρ)U s + ρR)

=
1− δ
1− δ̃

Π(ae) +
δ − δ̃
1− δ̃

R

In a similar fashion it follows from (9) that player i’s punishment payoffs satisfy

vi = (1− δ)π∗i (αi) + δ ((1− ρ)vi + ρri)

=
1− δ
1− δ̃

π∗i (α
i) +

δ − δ̃
1− δ̃

ri
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Since negotiation payoffs are regular, they satisfy

ri = vi + βi(U −
n∑
j=1

v)

=
δ − δ̃
1− δ̃

ri +
1− δ
1− δ̃

(
π∗i (α

i) + βi

(
Π(ae)−

N∑
i=1

π∗i (α
i)

))
.

Solving for ri yields

ri = π∗i (α
i) + βi

(
Π(ae)−

N∑
i=1

π∗i (α
i)

)
.

Principal-Agent Game with Endogenous Inside Option

Proposition 5. If a lower inside option is socially more efficient in the repeated
game, i.e. Ũ(xL) > Ũ(xH), then in every Pareto-optimal subgame perfect equilib-
rium the principal destroys her inside option.

Proof. We first note that minimal punishment payoffs in state x satisfy v̄1(x) = x
for the principal and v̄2(x) = 0 for the agent. Given that the SPE payoff set is the
simplex described in Theorem 1, it suffices to show that Ũ(xL) > Ũ(xH) implies
that a higher joint payoff can be implemented in state xH if the inside option
is immediately destroyed. For a proof by contradiction assume Ũ(xL) > Ũ(xH)
holds but it is Pareto-optimal not to destroy the inside option. Highest joint
payoffs SPE are then given by Ū(xH) = Ũ(xH). Since Ū(xL) = Ũ(xL) this
implies Ū(xH) < Ū(xL). Consider the joint incentive constraint from Proposition
13 for implementing effort eH in state ˙xH with zero negotiation probability. If the
inside option is destroyed, it is

δŪ(xL) ≥ (1− δ)k(eH) + δxH

and otherwise
δŪ(xH) ≥ (1− δ)k(eH) + δxH .

Since Ū(xH) < Ū(xL), higher effort levels and thus higher joint payoffs can be im-
plemented in state xH if the inside option is simultaneously destroyed, contradict-
ing the assumption that it is Pareto-optimal not to destroy the inside option.

Preliminary observations for the proofs of Propositions 6 and 7 We will
omit some straightforward but tedious case distinctions, and assume henceforth
that it is a best-reply for the principal not to destroy the inside option when
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punished, the agent chooses zero effort in the principal’s punishment phase and
the principal does not destroy her inside option in the agent’s punishment phase.

Once state xL is reached, players face a repeated game with negotiation pay-
offs r̃(xL) and maximal joint payoffs Ũ(xL). We derive a convenient form of the
incentives constraints for the equilibrium phase in state xH for simple relational
contracts of the truncated game for the two cases that the inside option is de-
stroyed or not.

First consider simple equilibria, in which in the equilibrium phase in state xH
the principal destroys her inside option and effort eH is chosen; in state xL a joint
repeated game payoff of Ũ(xL) is implemented. For all levels of eH , the joint
incentive constraint (SUM-IC) can be reformulated as

δ̃
(
Ũ(xL)− xH

)
− (1− δ̃)k(eH) ≥ ω

1− ω
(r1(xH)− r̃1(xL)) . (11)

with

ω ≡ δ − δ̃
1− δ̃

∈ [0, 1).

The parameter ω can be interpreted as the relative share of adjusted discounting
(1 − δ̃), that is due to the negotiation probability ρ, while 1 − ω = 1−δ

1−δ̃ can be

interpreted as the relative share explained by the discount factor δ. When δ̃ is
fixed, a larger ω is equivalent to a larger negotiation probability ρ.

The joint incentive constraint for a simple contract in which the outside op-
tion is not destroyed and maximum joint payoffs Ū(xH) are implemented can be
reformulated as

δ̃
(
Ū(xH)− xH

)
− (1− δ̃)k(eH) ≥ 0. (12)

We now prove
Proposition 6. Holding the adjusted discount factor δ̃ fixed, the principal

destroys her inside option in a RNE if and only if Ũ(xH) ≤ Ũ(xL) and the nego-
tiation probability is below a critical value ρ̄(β1) that increases in the principal’s
bargaining weight β1.

Proof. It is straightforward to show that if Ũ(xH) > Ũ(xL) then the inside option
will never be destroyed in a RNE. We thus assume that Ũ(xH) ≤ Ũ(xL). Recall
that negotiation payoffs in the repeated game with fixed inside option are given
by

r̃1(x) = (1− β1)x+ β1Ũ(x).

Whenever the principal’s bargaining weight β1 exceeds the critical value

β∗1 ≡
xH − xL(

Ũ(xL)− xL
)
− (Ũ(xH)− xH)

∈ (0, 1)

we have r̃1(xH) ≤ r̃1(xL), and it is in both the principal’s and agent’s interest to
select a contract in which the inside option is destroyed.

41



Consider now the case r̃1(xH) ≥ r̃1(xL). It always holds true that r1(xH) ≥
r̃1(xH) and the incentive constraint for destroying the inside option is easiest
satisfied for r1(xH) = r̃1(xH). For this value of negotiation payoffs the incentive
constraint for destroying the inside option (11) when choosing effort eH in state
xH becomes

δ̃
(
Ū(xL)− xH

)
−(1−δ̃)k(eH) ≥ ω

1− ω
(
xH − xL − β1

((
Ū(xL)− xL

)
−
(
Ū(xH)− xH

)))
.

If β1 < β∗1 the term in the brackets on the right hand side is positive and for
any fixed level of eH for which the left hand side is positive, there exist a maximum
value of ω̄(β1) ∈ (0, 1) for which this condition can be satisfied. The result follows,
because a contract in which the inside option is destroyed is feasible only if the
condition can be satisfied for eH = 0 and desirable only if the condition can be
satisfied for sufficiently high values of eH .

Proposition 7. Fix a negotiation probability ρ ∈ (0, 1) and consider the limit
δ → 1. The principal destroys her inside option if and only if her negotiation
payoff in the repeated game with fixed inside option is larger under the low inside
option, i.e. r̃1(xH) ≤ r̃1(xL).

Proof. For the case Ũ(xL) ≤ xH it is straightforward that r̃1(xH) ≥ r̃1(xL) and
that the principal will not destroy the inside option in any RNE. Assume therefore
Ũ(xL) ≥ xH , which implies Ũ(xL) > Ũ(xH). We see from (11) that the destruction
of the inside option can be easiest implemented if the agent chooses zero quality
in the first period, i.e. qH = 0. Intuitively, this relaxes the agent’s incentives to
deviate as much as possible and allows the largest incentive compatible reward
payment from agent to principal for destroying the inside option. For qH = 0, the
destruction of the inside option can be implemented if and only if the principal’s
negotiation payoff satisfies

r1(xH) ≤ r̃1(xL) + ε(ω)

where ε(ω) is a strictly positive function with limω→1 ε(ω) = 0. The limit of
ω → 1 corresponds to the case that for a fixed negotiation probability ρ > 0
the discount factor δ converges towards 1. Intuitively, in this limit of δ → 1,
continuation payoffs will always be approximately equal to negotiation payoffs
and the principal will pick the state with the higher negotiation payoffs. Since
the principal has the option not to destroy the inside option, she can guarantee
herself the same negotiation payoff as if the state were fixed to xH , i.e.

r1(xH) ≥ r̃1(xH).

The two inqualities imply that the principal will not destroy her inside option if
r̃1(xL) < r̃2(xH).
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Now consider the case r̃1(xL) > r̃1(xH). Consider the limit δ → 1 and first
consider the case that there would exist a RNE with immediate destruction of
the inside option that has regular negotiation payoffs. These regular negotiation
payoffs then satisfy r1(xH) > r̃1(xL) because the joint payoff in state xH is ap-
proximately Ũ(xL) but the principal gets a strictly higher share in state xH since
an initial offer by the agent must grant the principal at least xH . Such regu-
lar payoffs can, of course, not be implemented for sufficiently large ω, since they
would violate the limit condition r1(xH) ≤ r̃1(xL), i.e. the principal could not
be incentivized to destroy her inside option. Yet, if r̃1(xL) > r̃1(xH), the prin-
cipal can and wants to offer (irregular) relational contracts in which the inside
option is destroyed that grant her expected negotiation payoffs r1(xH) satisfying
r̃1(xH) < r1(xH) ≈ r̃1(xL). In a related fashion, one can also show that for the
knife-edge case r̃1(xL) = r̃1(xH), both destruction and non-destruction can be
implemented in a RNE.

Inside Options vs Outside Options

The proof follows straightforward from the arguments given in the text.

A simple Arms Race

Proposition 9. In the unique Markov perfect equilibrium outcome, as well as, in
all Pareto-optimal subgame perfect equilibrium outcomes no weapons are bought
or used; this also holds true for the corresponding RNE in the extreme cases of
renegotiation in every period (ρ = 1) or no renegotiation (ρ = 0). In contrast, for
intermediate renegotiation probabilities, it can be the case that there is a unique
RNE outcome in which one or both players build weapons.

Proof. In a Markov perfect equilibrium players will not conduct transfers nor use
weapons, since both reduce own payoffs without affect the state, i.e. they cannot
have an effect on future play. It follows immediately that no player will spend
the cost to buy a weapon in a MPE. Hence, the MPE is unique and implements
the highest feasible joint payoff of zero. If we have renegotiation in every period
(ρ = 1), continuation play only depends on the current state and the unique
RNE is equal to the unique MPE. It follows from the linear Pareto-frontier of
subgame perfect equilibrium payoffs, that also every Pareto-optimal optimal SPE
equilibrium, and the corresponding RNE given no renegotiation (ρ = 0) must
implement a joint payoff of zero.

Consider now the case of intermediate renegotiation probabilities. To illustrate
that there can exist RNE in which one player builds weapons, consider the simple
variant that only player 1 has the opportunity to build a weapon and that this
opportunity only occurs in period 1. From period 2 onwards the state is fixed and
players essentially play a repeated game.
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Consider this repeated game for the case that player 1 has bought a weapon
in period 1. Punishment of player 2 is punished by player 1 using the weapon
can be implemented in this repeated game, whenever the following joint incentive
constraint (see Proposition 13) is satisfied:

(1− δ̃)ε ≤ δ̃d

Cost of weapon usage must be sufficiently small compared to the induced damage,
and the adjusted discount factor cannot be too high. If that condition is satisfied,
then if renegotiation take place in period 2 or later, player 1 select a relational
contract that in which player 2 pays a transfer of d on the equilibrium phase in
order to avoid punishment with the weapon. Player 2 obviously selects a contract
in which he does not transfer anything. Expected negotiation payoffs of player 1
are then given by β1d.

By rearranging the joint incentive constraint (IC-SUM), we find that there
exists no relational contract in period 1 that prevents player 1 from buying a
weapon whenever

(1− δ)b < ωβ1d.

If the negotiation probability is zero (ω = 0) then this condition is always satisfied:
one simply chooses continuation equilibria in which transfers are never conducted,
irrespective of the potential damage that a player with weapons can impose. As
long as it is credible to use weapons, a higher negotiation probability makes it
harder to prevent acquisition of weapons since players can earlier monetize their
potential to harm the other player. Once the negotiation probability is too large,
it is no more credible to use weapons, however.
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