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1 Introduction

Most countries in the world have witnessed a substiantial increase in human longevity over

the last decades. Higher expected lifetime has been accompanied, at least in the developed

world, by a significant rise of healthcare expenditures. Between 1960 and 2000, for example,

life expectancy in the U.S. rose from 69.8 to 77.1 years, while health expenditures, as a share

of GDP, increased from 5.2% to 13.4% (according to OECD data).

How does this increased longevity translate into welfare gains? A recent empirical literature ar-

gues that higher expected lifetimes have increased welfare substantially. For example, according

to ? welfare improvements induced by mortality reductions between 1960 and 2000 in North

America amount to about 12% of overall welfare gains over this period. Even when accounting

for the corresponding additional health expenditures, ? provide evidence that these welfare

gains remain considerable. While arguing that welfare increases of longer expected lifetimes

are not well captured by standard welfare measures such as GDP per capita, these studies are

silent about the possible repercussions of increasing longevity on the economy’s growth rate,

an issue that is at the heart of a recent theoretical literature finding that the growth effect

of increased longevity can be either positive or negative depending on the particular set-up.

Even though the dynamic relationship between longevity and economic growth should affect

aggregate welfare, there has been little connection between the two literatures.

In this paper, we study the relationship between endogenous investments in longevity, eco-

nomic growth and welfare. For this purpose, we develop an endogenous growth model in which

longevity is endogenously determined by the households’ demand for healthcare services,1 and

analyze how economic growth and welfare reacts to endogenous changes in life expectancy in-

duced by improvements in the healthcare technology. We introduce a theoretical model that is,

on the one hand, rich enough to capture endogenous growth, endogenous lifetime and the costs

of healthcare, and, on the other hand, is parsimonious enough to allow for analytical solutions

both of the individual household’s problem and the aggregate economy. In particular, we em-

ploy the simplest conceivable model bringing together all essential ingredients by combining the

household side of perpetual youth models in the tradition of ? with the production side of an

endogenous growth model in the style of ? amended by a healthcare sector. To capture the wel-

fare effects of increased longevity, we consider two different types of healthcare improvements.

The first type decreases the baseline mortality, which is independent of individual investments

in healthcare. One could think of improvements in the sanitary infrastructure or behavioral

changes such as reduced smoking. The second type increases the marginal productivity of

1 Even though empirical evidence on the relationship between health expenditures and life expectancy is am-
biguous, there is no doubt that expected lifetime is not given per se but can be influenced by investments
in healthcare, such as improving sanitation, buying medication and inoculation, consulting a physician, etc.
(????).
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healthcare expenditures. Examples include better medication or therapeutic breakthroughs,

such as new diagnostic tools or surgeries.2

In our benchmark model specification, we find that improvements in the healthcare technol-

ogy always lead to higher steady state growth rates. Intuitively, longevity influences the age

structure of the economy. Higher longevity increases the relative share of old (“rich”) to young

(“poor”) households and leads ceteris paribus to higher capital per capita accumulation. Our

numerical calculations suggest that the effect on the growth rate is rather small. This lends sup-

port to the empirical literature on the welfare effects of longevity which abstracts from growth

effects of increased longevity. However, for the welfare gains of increased longevity the type

of healthcare improvements matters. For a given increase in longevity, welfare improvements

are substantially higher if increased longevity is induced by improvements of the first type

(baseline mortality decreases) compared to improvements of the second type (higher efficiency

of healthcare treatment). Using the data set of ? amended by data on healthcare expenditures,

we obtain higher welfare improvements than ? in less developed regions, where healthcare im-

provements were predominantly of the first type, and lower welfare improvements in highly

developed regions, where longevity increases were mainly triggered by healthcare improvements

of the second type.

Our results for the growth effects of healthcare investments are very sensitive to the spillover

specification in the production sector, which drives endogenous growth in our model. Gener-

alizing the specification of the spillover effect, we show that longevity increases may lead to

negative growth effects when technological improvements in the health sector trigger higher

healthcare expenditures. Even small changes of the spillover specification yield negative growth

effects which are consistent with real world data but involve welfare losses outweighing the

welfare increase induced by higher longevity, and thus entail a negative overall welfare effect.

By contrast, increases in expected lifetime enjoyed without healthcare expenditures always

induce positive growth and welfare effects independent of the spillover specification. This fur-

ther highlights the importance of the source of longevity increases. Of course, which spillover

specification best describes reality is an empirical question that is beyond the scope of this pa-

per. However, our results emphasize the complex relationship between longevity and aggregate

welfare and the need for more empirical work in this field.

It is obvious that equilibrium health expenditures cannot be efficient when endogenously de-

termined increases in expected lifetimes result in long-run welfare losses. In fact, we identify

two externalities associated with healthcare investments in our model. The first, which is well

2 Our model emphasizes that increases in healthcare expenditures and longevity are mainly driven by the
availability of better healthcare technologies, a view supported, for example, by ?, ?, ? and ?. In particular,
we neglect wealth effects as driving factors for increased healthcare expenditures as discussed by ?. Abstracting
from wealth effects, we focus on homothetic preferences allowing for a balanced growth path. Such preferences
are a common feature in the literature on growth and longevity.
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known, stems from the price taking behavior of households with respect to annuities and leads

to over-investment in healthcare. The second externality is a consequence of our growth model.

In our benchmark model specification, households under-invest in healthcare, as they do not

take into account that increased longevity on the aggregate level induces a positive effect on the

economy’s growth rate. We show that healthcare investments in the market equilibrium can-

not be inefficiently high and give a condition under which they are inefficiently low. However,

when the growth effect of increased healthcare investments turns negative in the generalized

spillover specification, households over-invest rather than under-invest in healthcare services.

Consequently, we derive conditions for which healthcare investments in the market equilib-

rium are inefficiently high. Thus, the nature of the growth effect of longevity also has direct

implications for healthcare policy.

The paper is organized as follows. The next section relates our paper to the literature. In

Section 3, we introduce the model and provide a detailed discussion of the household’s maxi-

mization problem with respect to healthcare. Section 4 determines the market equilibrium and

derives the dynamics of the aggregate economy. We investigate the effects of improvements

in the healthcare technology on the economy’s steady state dynamics and provide numerical

examples that illustrate the growth and welfare effects in Section 5. In Section 6, we identify

the externalities of the market equilibrium. Section 7 extends the analysis to different spillover

specifications. Finally, Section 8 concludes.

2 Related Literature

As outlined above, our paper combines two strands of the literature. First, our model relates to

the literature on the welfare consequences of increased longevity, for example, ? and ?. These

papers argue that longevity is an important component of aggregate welfare, and neglecting

it, ceteris paribus, underestimates changes in welfare if longevity has increased. In contrast to

our model, these papers abstract from the relationship between longevity and (consumption)

growth, and also do not distinguish between different channels of longevity increases. We show

that (i) the welfare effects of longevity depend on the channel of improvement in the healthcare

technology, and that (ii) growth effects of longevity hinge on both the spillover specification

of the endogenous growth engine and the type of the healthcare technology improvements. In

our benchmark model, growth effects of increased longevity are positive but very small. This

provides a justification for neglecting growth effects of increasing lifetime, at least for studies

capturing relatively short time horizons of a few decades. However, this may not hold anymore

if longevity results in negative growth effects, the corresponding welfare effects of which may

even outweigh the direct welfare increase of longer lifetimes, as suggested by our generalized

spillover set-up.
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Second, our paper is related to the literature exploring the relationship between growth and

life expectancy.3 By now, there exists a considerable body of literature that examines exoge-

nous variations in expected lifetime on economic development. A longer lifetime increases the

returns from (human) capital accumulation, thereby stimulating savings and economic growth

(??). However, if one considers a vintage (human) capital structure, in which later vintages

are more productive, there is an additional effect working in the opposite direction. An in-

crease in longevity increases the average age of agents and, consequently, the average age of

(human) capital. As a consequence, the relationship between longevity and growth takes an

inverted U-shape, i.e. economic growth increases with longevity for small values of expected

lifetime and decreases for large ones (??). The second channel is strengthened if the retirement

age is endogenous (?). As all these models consider longevity to be exogenous, they do not

account for the potential costs associated with longer expected lifetimes. ?, ?, ? and ? analyze

a neoclassical growth model with endogenous longevity, which is determined by either house-

holds’ or government’s investments in health. Although savings and healthcare expenditures

compete for the same resources, they are complements in equilibrium. Thus, higher economic

development is accompanied by longer average lifetime. Combining endogenous growth with

endogenous longevity ? and ? find non-monotonic relationships between longevity and growth.

In these papers longevity is endogenous but determined by an externality of aggregate vari-

ables. In contrast, we set up an endogenous growth model, in which each household’s average

life expectancy directly depends on the household’s investments in healthcare.

3 The Model

The model comprises a continuum of households. Like in ?, households born at time s ∈

(−∞,∞) face a hazard rate p(s) of dying that is constant throughout the lifetime of each

household. In our model, however, the hazard rate may vary among households of different

cohorts, as it is determined by the level of medical treatment the household gets throughout its

lifetime. At time of birth, households choose a level of medical treatment h(s), which is fixed

over the entire lifetime and determines the hazard rate via a healthcare technology H
(

h(s)
)

.

As the hazard rate is constant over the entire lifetime, all households born at time s and still

3 More remotely our paper is also related to the literature on demographic transitions and the literature on the
growth effects of epidemics such as AIDS. The former analyzes the relationship between fertility, mortality
and growth. Longevity is either exogenous (????), endogenously determined via an externality of aggregate
variables such as average income or human capital (?????) or endogenously determined by the healthcare
investments of the parents (?). Within the latter, ? concludes that the AIDS epidemic in South Africa, despite
being a humanitarian disaster, has rather positive effects on long-run growth. ? and ? are less optimistic and
emphasize that epidemics may lead to poverty traps.
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alive face an expected remaining lifetime T (s) at any time t ≥ s given by

T (s) =

∫ ∞

t
(t′ − t)p(s) exp[−p(s)(t′ − t)]dt′ =

1

p(s)
. (1)

Although the lifetime of each household is stochastic, we assume that the size of each cohort is

large enough for cohort sizes to decline deterministically over time. At all times a new cohort

is born. We abstract from fertility choices of households and assume that cohort size grows at

the constant and exogenously given rate ν.4 Normalizing the cohort size at time t = 0 to unity,

we obtain for the size of the population at time t

N(t) =

∫ t

−∞
exp[νs] exp[−p(s)(t − s)]ds . (2)

Households exhibit identical ex ante preferences and face equal hazard rates for the same levels

of medical treatment. Households born at time s maximize expected discounted lifetime utility

derived from consumption U

U(s) ≡

∫ ∞

s
V

(

c(t, s)
)

exp
[

−
(

ρ+ p(s)
)

(t− s)
]

dt , (3)

where V
(

c(t, s)
)

denotes the instantaneous utility derived from consumption c(t, s) at time t

of the household born at time s, and ρ is the constant rate of time preference. We impose

standard curvature properties on the instantaneous utility function (V ′ > 0 and V ′′ < 0).

? showed that optimal investments in healthcare crucially depend on two characteristics of

the instantaneous utility function: (i) the intertemporal elasticity of substitution and (ii) the

difference in instantaneous utility between being alive and dead. As our definition of lifetime

utility (3) normalizes instantaneous utility of being dead to zero, a utility representation with

V (c) > 0 for all c > 0 avoids that households may wish to be dead rather than alive. As

a consequence, we employ an instantaneous utility function with intertemporal substitution

elasticity σ larger than one5

V
(

c(t, s)
)

≡
c(t, s)1− 1

σ

1 − 1
σ

, σ > 1 . (4)

At any time alive, each household is endowed with one unit of labor that is supplied inelastically

to the labor market at wage w(t). In addition, households may save and borrow assets b(t, s)

4 The parameter ν can be mapped into the economy’s fertility rate, which specifies how many children are born
on average by each woman (or by our abstract genderless individual). The fertility rate is independent of the
size of the actual population.

5
?, ? and ? use V

(

c(t, s)
)

= c(t, s)1−
1

σ /(1 − 1/σ) + λ with some positive constant λ. This allows either to
employ intertemporal substitution elasticities of σ < 1 (?) or to calibrate the model to different values of a
statistical life without changing the intertemporal elasticity of substitution (??). We use the functional form
(4) representing homothetic preferences which allow for a balanced growth path.
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at the interest rate r(t). Households are born without assets and may contract against the risk

of leaving unanticipated bequests on a perfectly competitive life insurance market. Each unit

of assets buys a life annuity paying the return a, as long as the household is alive. If insurance

companies learn the probability of dying p(s) of each cohort at no costs, and if cohort sizes

are large enough, so that insurance companies can offer risk free annuities, perfect competition

among insurance companies leads to fair annuity payments a(t, s) = r(t) + p(s). In line with

? and ?, among others, we assume that households take a(t, s) as given. Given that negative

bequests are prohibited, households hold their entire wealth in fair annuities. Denoting the

costs of healthcare by M
(

h(s)
)

, the households’ budget constraint reads

ḃ(t, s) = a(t, s)b(t, s) +w(t) − c(t, s) −M
(

h(s)
)

, t ≥ s , (5)

with b(s, s) = 0.

The economy comprises two production sectors: the consumption-good and the healthcare

sector. We assume that both sectors operate at perfectly competitive conditions. As all firms

have access to the same constant returns to scale production technologies, we restrict the

analysis to one representative firm in each sector.

3.1 Consumption-good production

The representative firm in the consumption-good sector produces a homogeneous consumption

good via a Cobb-Douglas production technology Y (t) ≡ K(t)α
(

A(t)LF (t)
)1−α

, where α ∈

(0, 1) and K(t) and LF (t) denote the aggregate amount of capital and labor employed in

consumption-good production, respectively. A(t) characterizes the technological level of the

economy that is exogenous to the representative firm. We assume a “learning-by-investing”

externality similar to ? but corrected for scale effects: A(t) ≡ K(t)/LF (t).6 Capital depreciates

at the constant rate δ. Profit maximization of the representative firm yields factor prices equal

to the marginal productivities

r(t) = α− δ , (6a)

w(t) = (1 − α)
K(t)

LF (t)
. (6b)

As the interest rate is constant due to the “learning-by-investing” externality, we introduce the

notation r ≡ r(t) = α− δ and a(s) ≡ a(s, t) = r + p(s).

6
? assumes that A(t) ≡ K(t). By specifying the learning externality to be proportional to capital per worker,
we correct for scale effects. This specification was introduced by ?.
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3.2 Healthcare sector

The representative firm in the healthcare sector provides medical treatment by employing

labor. Without loss of generality, we assume that one unit of labor produces one unit of medical

treatment. Given the level of medical treatment h(s) of all cohorts alive, the total amount of

labor employed in the healthcare sector equals

LH(t) =

∫ t

−∞
h(s) exp[νs] exp[−p(s)(t − s)]ds . (7)

In the labor market equilibrium, labor employed in the healthcare sector has to earn the same

wage as labor employed in the consumption-good sector. As a consequence, the healthcare

sector offers medical treatment at marginal costs w(t) and we obtain M
(

h(s)
)

= h(s)w(t) for

the costs of medical treatment of a household born at time s.

The level of medical treatment h(s) determines the hazard rate p(s) via the healthcare tech-

nology H
(

h(s)
)

p(s) = H
(

h(s)
)

≡ pmax − ψh(s) . (8)

Without medical treatment (h = 0) households face the hazard rate p(s) = pmax of dying. The

hazard rate p(s) decreases with constant returns ψ in the level of medical treatment h(s). The

parameter ψ < pmax reflects the productivity of healthcare investments and may be interpreted

as the quality level of the health system or the state of the art in medical treatment. It denotes

the maximum amount by which one may reduce the hazard rate against pmax by spending all

wage income on healthcare. While pmax reflects, for example, the sanitary infrastructure of the

economy, ψ increases with the human capital of physicians, the efficiency of hospitals and the

like.

The specification of the healthcare technology (8) implies that improvements in the healthcare

technology may come in two qualitatively different ways. First, the maximal hazard rate pmax

may decrease implying that all households, independently of their levels of healthcare spending,

experience a lower hazard rate of dying. In fact, a decrease in pmax offers higher life expectancy

for free (at least for the individual household). Historic examples in this respect could be new

knowledge about germ theory leading to better hygienic standards and a change in personal

behavior. We also interpret the introduction of most vaccines and drugs as a decrease in pmax,

because these drugs are usually not very expensive. As an example, think of penicillin which led

to substantial declines in mortality in the last century. Second, the state of the art in medical

treatment ψ may increase implying that the same amount of healthcare spending reduces the

hazard rate more than before. However, only households with positive healthcare spending

benefit from the improved healthcare technology. One may think of improvements such as
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magnetic resonance imaging, coronary heart bypass grafting, transplantation, and the like.7 In

Sections 5 and 7 we shall see that these two channels of healthcare technology improvements

differently affect the economy’s growth rate and the households’ lifetime utility.

3.3 The individual household’s problem

Inserting M
(

h(s)
)

= h(s)w(t) into the households’ budget constraint (5) yields

ḃ(t, s) = a(s)b(t, s) +
(

1 − h(s)
)

w(t) − c(t, s) , t ≥ s . (9)

Thus, we can interpret the level of medical treatment h(s) as the fraction of labor income a

household spends throughout its entire life for healthcare services. This implies h(s) ∈ [0, 1],

as households are born without assets and must not be indebted when dying.

Households maximize expected intertemporal utility (3) subject to conditions (9) and b(s, s) =

0 by choosing an optimal level of medical treatment h(s) and an optimal consumption path

c(t, s). We solve this maximization problem in two steps. First, we determine the optimal

consumption path for some given level of healthcare expenditures c⋆(t, s, h). Second, we ob-

tain the optimal healthcare expenditures h⋆(s) by inserting c⋆(t, s, h) back into the expected

intertemporal utility function (3).

For a given level of medical treatment h(s), which implies a given hazard rate p(s) via the

healthcare technology (8), the household’s maximization problem yields the Euler equation

ċ(t, s)

c(t, s)
= σ[a(s) − ρ− p(s)] , t ≥ s . (10)

For given h(s) the behavior of a household born at time s is characterized by the system

of differential equations (9) and (10), the initial condition b(s, s) = 0 and the transversality

condition for the stock of assets limt→∞ b(t, s) exp [−a(s)(t − s)] = 0. Under the assumptions

that (1 − σ)a(s) + σ
(

ρ+ p(s)
)

> 0 and the long-run growth rate of wages w(t) is smaller than

a(s),8 we obtain for the optimal paths of consumption c⋆(t, s, h) and assets b⋆(t, s, h)

c⋆(t, s, h) = c⋆(s, s, h) exp
[

σ
(

a(s) − ρ− p(s)
)

(t − s)
]

, (11a)

b⋆(t, s, h) =
c⋆(t, s, h)

(1 − σ)a(s) + σ
(

ρ+ p(s)
) −

(

1 − h(s)
)

W (t, s) , (11b)

7 Although it makes perfect sense to conceptionally distinguish the two different channels of improvements in
the healthcare technology, we want to emphasize that most real world improvements impact simultaneously
on pmax and ψ. For example, knowledge about germ theory led to better hygienic standards not only in every
day life, thereby decreasing pmax, but also in medical treatment, which increased ψ.

8 Without these assumptions, the household’s problem is not well defined. We shall see in Section 4 that
the condition that the long-run growth rate of wages w(t) is smaller than a(s) always holds in the market
equilibrium.
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c⋆(s, s, h) =
[

(1 − σ)a(s) + σ
(

ρ+ p(s)
)] (

1 − h(s)
)

W (s, s) . (11c)

where W (t, s) ≡
∫ ∞

t w(t′) exp [−a(s)(t′ − t)] dt′ denotes the expected net present value of the

household’s future labor income at time t.

Inserting the optimal consumption path c⋆(t, s, h) into the household’s lifetime utility (3) and

recalling that p(s) = H
(

h(s)
)

, the necessary condition for the optimal level of healthcare

expenditures h⋆(s) reads

∫ ∞

s

∂V
(

c⋆(t, s, h)
)

∂h(s)
exp

[

−
(

ρ+ p(s)
)

(t− s)
]

dt

≤

∫ ∞

s
(t − s)H ′

(

h(s)
)

V
(

c⋆(t, s, h)
)

exp
[

−
(

ρ+ p(s)
)

(t− s)
]

dt .

(12)

For an interior solution the equality sign holds, while the inequality sign applies in case of the

corner solution h(s) = 0. The intuition for this condition is straightforward. In the optimum

the decrease in expected lifetime utility from a marginal increase of healthcare expenditures

due to decreasing lifetime consumption has to equal the increase in expected lifetime utility due

to an increasing expected lifetime.9 If the marginal benefits of healthcare investments do not

outweigh the corresponding costs for any feasible level of healthcare expenditures, the optimal

level of healthcare is given by the corner solution h(s) = 0.10

Inserting equations (4), (11a), and (11c) into equation (12), we obtain for the first-order con-

dition

F
(

h(s)
)

≡
σψ

(σ − 1)
[

(1 − σ)a(s) + σ
(

ρ+ p(s)
)] −

1

1 − h(s)
≤ 0 . (13)

This determines a unique optimal level of healthcare expenditures h⋆(s).

Proposition 1 (Existence and uniqueness of household optimum)

There exists a unique optimal level of healthcare expenditures h⋆(s) which is given by

h⋆(s) =











max

[

0,
σψ − (σ − 1) [(1 − σ)a(s) + σ(ρ+ pmax)]

σψ(2 − σ)

]

, if σ < 2 ,

0 , if σ ≥ 2 .

In the proof of Proposition 1, provided in the appendix, we show that there is no interior

9 The dependence of this trade-off between the quality and quantity of life on the households’ intertemporal
elasticity of substitution σ is discussed in detail in the working paper version (?). There we emphasize that
in our growth model the equilibrium healthcare expenditures follow a U-shaped curve in σ rather than
monotonically declining one as typically found in models that neglect long-run growth (see e.g., ?????).

10 In the first-order condition (12), the trade-off between investments in healthcare and average lifetime involves
not only marginal but also absolute welfare comparisons. This illustrates the importance of the difference in
instantaneous utility between being alive and dead, as mentioned earlier.
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solution for σ ≥ 2. The corner solution h(s) = 1 cannot be optimal, as this implies no con-

sumption and zero lifetime utility, while both are positive for any other value h(s) ∈ [0, 1).

As a consequence, the corner solution h(s) = 0, i.e. no healthcare expenditures, is the optimal

solution. For σ < 2, there exists a local maximum, which is the optimal solution if it is in the

feasible range [0, 1). Otherwise again the corner solution h(s) = 0 is optimal.

4 Market Equilibrium and Aggregate Dynamics

To investigate the aggregate economy, we introduce aggregate household variables per capita

derived by integrating over all living individuals and dividing by the population size of the

economy

z(t) ≡

∫ t
−∞ z(t, s) exp[νs] exp[−p(t − s)] ds

N(t)
, (14)

where z(t) and z(t, s) denote aggregate per capita respectively individual household variables.11

The economy consists of five markets: the labor market, the capital market, the consumption

good market, the market for annuities and the market for healthcare. We assume the economy

to be in market equilibrium at all times t. In particular, this implies that labor demand equals

the population size, LF (t) + LH(t) = N(t) and capital per capita equals aggregate assets per

capita, k(t) = b(t).

As the interest rate r is constant, the equilibrium on the market for annuities, a(s) = r+ p(s),

implies that the first-order condition (13) is identical for all households irrespective of their

date of birth. Consequently, all households spend the same fraction h(s) = h of income for

medical treatment implying that the hazard rate p(s) = p and the population growth rate

Ṅ(t)/N(t) = ν are also constant. By setting a ≡ r + p, we obtain for the optimal healthcare

expenditures in the market equilibrium:

h⋆ =











max

[

0, σ −
(σ − 1) [(1 − σ)r + σρ+ pmax]

ψ

]

, if σ < 2 ,

0 , if σ ≥ 2 .
(15)

Via the healthcare technology (8), the optimal level of healthcare expenditures h⋆ in the market

equilibrium, which is completely determined by the set of exogenous parameters, maps into

the optimal hazard rate p⋆. Introducing the abbreviation12

x(p) ≡ (1 − σ)a(s) + σ(ρ+ p) = r + p− σ(r − ρ) > 0 , (16)

11 We are aware of the slight abuse of notation, which we consider to be justified to keep notation at a minimum.
12 Note that x(p) > 0 is necessary for the household’s maximization problem to be well defined.
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which reflects the difference between the return on annuities r + p and the growth rate of the

households’ consumption σ(r − ρ), we can characterize the aggregate dynamics dependent on

the hazard rate p.

Proposition 2 (Aggregate system dynamics)

(i) The dynamics of the aggregate economy is characterized by:

ċ(t) = σ(r − ρ)c(t) − (p+ ν)x(p)k(t) , (17a)

k̇(t) = (1 − δ − ν)k(t) − c(t) . (17b)

(ii) The dynamics of the aggregate economy is governed by a balanced growth path, i.e. aggre-

gate consumption c(t) and aggregate capital k(t) are growing at the same constant rate

g. The sign of the growth rate g is determined by

g T 0 ⇔ x(p)(p + ν) S σ(r − ρ)(1 − δ − ν) .

The proof is given in the appendix. Note that we neglect trivial steady states where c(t) =

k(t) = 0, for all t. The proposition establishes that there is a unique balanced growth path for

any given hazard rate p. As shown in the proof, the growth rate g equals

g(p) =
1

2

[

1 + σ(r − ρ) − δ − ν −
√

[

1 − δ − ν − σ(r − ρ)
]2

+ 4x(p)(p + ν)

]

. (18)

Inserting the optimal hazard rate in the market equilibrium yields the growth rate in the

market equilibrium g⋆ = g(p⋆). Thus, the aggregate system dynamics is fully characterized by

the set (h⋆, p⋆, g⋆).13

5 Improvements in the Healthcare Technology

We are particularly interested in how the aggregate economy is affected by changes in the

healthcare technology. As discussed earlier, the healthcare technology (8) exhibits two param-

eters influencing the hazard rate p of the households. A decline in the parameter pmax reduces

the hazard rate that households face without investments in healthcare. A rise in the parameter

ψ increases the reduction of the hazard rate that is purchased for any given healthcare invest-

ment h. As stated in the following proposition, an improvement of the healthcare technology

either via a decrease in pmax or an increase in ψ leads to a higher rate of growth.

13 As shown in the proof of Proposition 2, the economy does not exhibit transitional dynamics for a given value
of p. This reflects the typical dynamics in AK-models. By neglecting transitional dynamics, we implicitly
assume that all individuals alive at an initial date have chosen health expenditures h⋆. This is a realistic
assumption as choosing h⋆ would have been optimal, given the exogenous parameters have not changed.
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Proposition 3 (Improvements in the healthcare technology)

For interior levels of healthcare in the market equilibrium, the following conditions hold:

(i)
dh⋆

dpmax

< 0 ,
dp⋆

dpmax

> 0 ,
dg⋆

dpmax

< 0 ,

dh⋆

dψ
> 0 ,

dp⋆

dψ
< 0 ,

dg⋆

dψ
> 0 ,

(ii) −
dp⋆

dpmax

=
dp⋆

dψ
= −σ , −

dh⋆

dpmax

<
dh⋆

dψ
.

The proof of Proposition 3, given in the appendix, shows that better healthcare technology

affects the equilibrium growth rate g⋆ in two ways. First, there is a direct effect. Ceteris

paribus, a decrease in pmax or an increase in ψ lowers the hazard rate p⋆, which implies

an increase in the equilibrium growth rate g⋆.14 Second, there is an indirect effect. When

the healthcare technology is more productive, households invest a higher share of income in

healthcare implying an increase in h⋆. This additional reduction in the hazard rate p⋆ further

increases the equilibrium growth rate g⋆.

An important insight is conveyed by the conditions in Proposition 3 (ii). In an interior equilib-

rium (h⋆ > 0), the magnitude by which a marginal improvement in the healthcare technology

increases expected lifetimes is determined by the households’ intertemporal elasticity of sub-

stitution. The higher is the intertemporal elasticity of substitution, the larger is the effect of

a marginal improvement in the healthcare technology on life expectancy. The magnitude of

the effect is independent of whether the improvement results from a decrease in pmax or an

increase in ψ. However, the channel by which the healthcare technology improves is crucial for

the effect on equilibrium healthcare expenditures h⋆: An increase in longevity via a marginal

increase in ψ incurs higher costs in equilibrium relative to a marginal decrease in pmax.

5.1 Magnitude of effects

We provide a numerical example to get an idea of the magnitude of the comparative static

effects induced by an improvement in the healthcare technology. Table 1 illustrates the case

where pmax = 1/60 (implying 60 years of expected lifetime without healthcare investments) and

improvements in the productivity of healthcare expenditures ψ are such that – in equilibrium

– life expectancy is increased in steps of 5 years. For each state of technology characterized

by pmax and ψ, the table gives the corresponding equilibrium levels of healthcare spending h⋆,

14 A detailed discussion on the effect of the economy’s age structure, characterized by p and ν, on the economy’s
growth rate can be found in the working paper version (?).
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pmax 1/60

ψ 0.97% 1.06% 1.13% 1.19% 1.25% 1.30% 1.34%

h⋆ 0 12.12% 21.05% 27.91% 33.33% 37.74% 41.38%

T = 1/p⋆ 60 65 70 75 80 85 90

g⋆ 2.179% 2.187% 2.194% 2.200% 2.204% 2.208% 2.212%

∆g⋆/g⋆ 0% 0.383% 0.310% 0.255% 0.212% 0.179 0.153%

∆UT 0% 0.750% 1.513% 1.933% 2.154% 2.255% 2.282%

∆Ug 0% 0.293% 0.248% 0.212% 0.184% 0.160% 0.141%

∆Up 0% 0.457% 1.265% 1.721% 1.971% 2.094% 2.140%

Table 1: Equilibrium values for healthcare expenditures h⋆, life expectancy T , growth rate g⋆

and relative welfare increase ∆UT (equivalent variation) for different parameters of ψ.

the expected lifetime T = 1/p⋆ and the corresponding growth rate of the economy g⋆. For all

parameters we choose plausible real world values.15

We observe that the growth rate g⋆ increases very little in response to a higher productivity of

healthcare investments ψ accompanied by a higher expected lifetime T . The relative increase

of the growth rate induced by an additional five years of expected lifetime is shown in the row

labeled ∆g⋆/g⋆ and ranges between 0.383% for an increase of expected lifetime from 60 to 65

and 0.153% for an increase in expected lifetime from 85 to 90 years.

To elicit the welfare gains from increased lifetime, we compare the expected lifetime utilities

of two persons: one person faces a healthcare technology leading to hazard rate p⋆
1 and an

according growth rate g(p⋆
1), while the other person has access to a healthcare technology

leading to a hazard rate p⋆
2 and a growth rate g(p⋆

2). The hazard rates are such that the latter

household’s life expectancy exceeds the one of the former household by five years. We employ

a consumption-equivalent welfare measure and consider an equivalent variation. That is, we

derive the relative change in consumption at any instant of time which the person living in

the environment with hazard rate p⋆
1 must realize such that this person experiences the same

expected lifetime utility as the person living in the environment with hazard rate p⋆
2.16

The results are shown in the row labeled ∆UT of Table 1. The relative consumption increase

ranges between 0.750% for an increase of expected lifetime from 60 to 65 and 2.282% for an

increase in expected lifetime from 85 to 90 years. Our previous analysis showed that these utility

gains of longevity originate from two different sources: (i) the direct utility of a longer lifetime

15 For the intertemporal elasticity of substitution σ we follow ? who suggest a value of ε = (u′(c)c)/u(c) = 0.346
which is also used by ?. For our instantaneous utility function (4) this translates into σ = 1.529, which we
round to σ = 1.5. The remaining parameters are set to α = 0.33, r = 3.5%, ρ = 2%, ν = 0. A sensitivity
analysis (available upon request) shows that our results are qualitatively very robust to reasonable changes
in the parameter values.

16 Details can be found in Appendix A.8.
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and (ii) the utility gain associated with a higher growth rate. Decomposing the relative utility

gain of five year increases in longevity into these two sources, the row labeled ∆Ug shows the

relative utility increase stemming from the second source.17 The residuum to the total relative

utility gain from increased life expectancy is presented in the last row labeled ∆Up. It reflects

the utility gain due to the increase in longevity compared to the economy in which households

live five years less in expectation but face the same growth rate.18 We observe that most of the

utility gain is due to the direct effect of a longer expected lifetime and only a small fraction is

attributable to the increase of the growth rate.

Overall, the utility gains from longevity due to a higher productivity of healthcare investments

seem rather limited. This may change when we consider five-year increases of expected lifetime

resulting from decreases in pmax, as – according to Proposition 3 – a marginal decrease in

pmax induces a smaller rise in the healthcare expenditures compared to a marginal increase in

ψ. In Table 2 we demonstrate the case where ψ is so low that no investments in healthcare

are always optimal and, thus, increases of expected lifetime solely stem from the reduction of

pmax. As a consequence, improvements in longevity come without direct costs to households.

We concentrate on this polar case for two reasons. First, it highlights the difference between

increases in longevity via the two different channels, as utility gains are highest if longevity

increases come without healthcare costs. Second, this case is methodologically identical to

models with exogenous changes in longevity and, hence, allows us to compare our results with

this literature. Apart from ψ and pmax all parameter values are identical to the example shown

in Table 1 (see footnote 15).

We observe the same growth rates as in the previous example, as in our model the growth rate

only depends on the equilibrium life expectancy p⋆ and the other exogenous parameters. As a

consequence, also the relative utility gains attributable to an increase in the growth rate are

identical. However, the relative utility gains stemming from an increase in longevity are now

substantially higher (more than fourfold), leading to an according increase of the total relative

welfare gains.

Thus, our model indicates that improvements in healthcare technology may have a large impact

on overall welfare. However, this impact is rather driven by increasing lifetime utility due to

an increasing life expectancy than by the effects of longevity on economic growth. Therefore,

our model supports the assumption (implicitly) made by several papers on the welfare aspects

of longevity (see, for example, ? and ?) that the welfare gains from an increase in longevity are

17 More precisely, ∆Ug measures the relative increase of consumption at each instant of time for which a hy-
pothetical household with expected lifetime 1/p⋆

2 and growth rate g(p⋆

1) would be equally well of in terms
of expected lifetime utility compared to a household facing life expectancy 1/p⋆

2 and the growth rate g(p⋆

2).
Again 1/p⋆

2 − 1/p⋆

1 = 5 years.
18 The results change minimally when ∆Ug is derived as the residuum and ∆Up is calculated as follows. Household

1 exhibits the lifetime 1/p⋆

1 which is five years less than the life expectancy 1/p⋆

2 of household 2. Both
households experience the growth rate g(p⋆

2).
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pmax 1/60 1/65 1/70 1/75 1/80 1/85 1/90

ψ 0.5%

h⋆ 0 0 0 0 0 0 0

T = 1/p⋆ 60 65 70 75 80 85 90

g⋆ 2.179% 2.187% 2.194% 2.200% 2.204% 2.208% 2.212%

∆g⋆/g⋆ 0% 0.383% 0.310% 0.255% 0.212% 0.179 0.153%

∆UT 0% 14.647% 12.997% 11.625% 10.469% 9.485% 8.639%

∆Ug 0% 0.293% 0.248% 0.212% 0.184% 0.160% 0.141%

∆Up 0% 14.354% 12.749% 11.413% 10.286% 9.325% 8.498%

Table 2: Equilibrium values for healthcare expenditures h⋆, life expectancy T , growth rate g⋆

and relative welfare increase ∆UT (equivalent variation) for different parameters of pmax.

not well reflected in the GDP-growth rate. However, our numerical example also shows that

the magnitude of the welfare gains due to a higher expected lifetime strongly depends on the

channel by which this increase in longevity is reached, and, in particular, by the accompanied

rise in health expenditures. Welfare gains are considerably higher if increases in expected

lifetime come as windfall gains from a decrease in the maximal hazard rate pmax together

with no healthcare expenditures compared to improvements in the productivity of healthcare

treatment ψ.

5.2 Welfare gains between 1960 and 2000

The previous discussion indicates that the welfare consequences of increased longevity depend

substantially on the healthcare costs associated with it. Consequently, it is interesting to ask

by how much welfare increased due to the the longevity increases over the last decades. For

this purpose, we apply our model to the development of healthcare expenditures and average

lifetime between the years 1960 and 2000 for seven world regions.19 The results for all seven

regions and details on the data for the numerical exercise are given in the appendix. In the

following discussion, we concentrate on a developed (North America) and a developing (South

Asia) region.

The levels of h given in Table 3 are the observed health expenditures per GDP multiplied by

3/4. This factor has been chosen for the following reason: On the one hand, h in our model is

the share of labor income spent on healthcare rather than the share of total GDP. Assuming

a labor share of 2/3, we divide data on health expenditures per GDP by this number. On the

other hand, not all health expenditures are effective in prolonging life. Assuming that half of

the expenditures affect the individuals’ life expectancy leads to the factor of 3/4 given above.

19 To be able to compare our results with previous studies, we use the original data set of ?, which we amend
by data on healthcare expenditures.
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Region N. America N. Am. (exo. p) S. Asia

Year 1960 2000 1960 2000 1960 2000

T = 1/p⋆ 69.9 77.3 69.9 77.3 44.0 62.7

h⋆ 3.9% 9.8% 0% 0% 0% 3.1%

g⋆ 2.44% 2.45% 2.44% 2.45% 2.38% 2.45%

r 3.69% 3.69% 3.74%

ν 1.14% 1.14% 2.22%

g∅ 2.44% 2.44% 2.42%

ĝ 2.57% 2.65% 3.30%

∆UT /∆U 5.63% 8.50% 23.26%

∆Ug/∆U 0.31% 0.28% 1.02%

∆Up/∆U 5.31% 8.22% 22.24%

Table 3: Welfare gains for North America and South Asia from 1960 to 2000.

We have no data on health expenditures for South Asia in 1960, which we estimate to be (close

to) zero.20 In line with our theoretical model, we assume that increases in average lifetime stem

from improvements of the healthcare technology. This implies that the growth rate increases

accordingly. We assume that between 1960 and 1980 the respective world region experienced

growth of income per capita consistent with the healthcare expenditure and average lifetime

data of 1960, and between 1980 and 2000 income per capita grew consistently with 2000 data.

Using the parameters α = 0.33, σ = 1.5 and ρ = 0.02 of the previous numerical example, the

depreciation rate has been adjusted such that the simulated average growth rate in each region

is identical to the observed average growth rate between 1960 and 2000.

Table 3 shows the results. In North America average life expectancy increased from 69.9 in

1960 to 77.3 years in 2000. At the same time the healthcare expenditures (in percentage of

labor income) increased from 3.9% to 9.8%. In South Asia, life expectancy rose from 44.0 in

1960 to 62.7 years in 2000. Healthcare expenditures equalled 3.1% in 2000 and are estimated

(close to) zero for 1960. Over this 40 year period the average annual growth rate of income

per capita equalled 2.44% for North America and 2.42% for South Asia. Population grew by

an average annual rate of 1.14% in North America and 2.22% in South Asia.

Now we compare the expected lifetime utility of a person born under the conditions of the

year 2000 with that of a person born in 1960 in the same region. Let us denote the overall

consumption equivalent welfare increase between 1960 and 2000 by ∆U .21 Of course, due to

20 As further discussed in the appendix, our qualitative results are very robust with respect to reasonable
variations of the level of health expenditures.

21 According to our earlier definition in the previous section, ∆U represents the factor by which consumption
of a person born in 1960 must be adapted to be as well off as a person born under the conditions of the year
2000.
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economic growth a person born in 2000 was better off than a person born in 1960 even without

increases in life expectancy. The share of the consumption equivalent welfare gain that is

attributable to the increase in average lifetime is given in the row ∆UT /∆U .22 We find that a

share of 5.63% of the total welfare gains in North America between 1960 and 2000 originated

from the higher expected lifetimes. The last two rows recall our previous finding that almost

all the utility gains originate directly from a longer expected lifetime (∆Up/∆U) rather than

indirectly via an increased growth rate of GDP per capita (∆Ug/∆U). The row labelled ĝ

reports the average annual “full-income” growth rate of GDP per capita that would have been

necessary between 1960 and 2000 to give a person born in 2000 the same utility without the

increase in longevity. The table indicates that the growth rate had to be 2.57% instead of

2.44% to compensate for the utility gain of increased expected lifetime.

To get an idea of the role played by healthcare expenditures, we contrast our results with a

thought experiment in which longevity increases come without costs. The results are reported

in the second column headed “North America (exogenous p)”. Without healthcare expenditures

the total relative welfare gains from higher longevity would amount to 8.50%, an increase of

more than 50% relative to the real world scenario. This is also reflected in the higher full-income

growth rate of 2.65% compared to 2.57% when healthcare costs are considered.

These results might indicate that relative welfare gains due to increased longevity are consider-

ably higher in developing countries where relatively cheap measures (such as better sanitation,

better access to standard vaccines, etc.) involve relatively high increases in pmax compared to

developed countries where further increases in average lifetime are mainly due to improvements

of expensive cutting-edge medical treatment. As an example for a developing region, we report

in the third column of Table 3 the relative welfare gain of higher longevity between 1960 and

2000 in South Asia amounting to 23.26%. We obtain a full-income growth rate of 3.3% while

on average GDP per capita only grew by 2.42% per annum in this region.

For the period between 1960 and 2000, ? report full-income growth rates for North America

of 2.7% and for South Asia of 3.1%. Hence, the re-examination of their data set in light of

our theoretical model supports the conclusion that when additionally considering longevity

improvements the world’s welfare inequality has become smaller than solely GDP-based mea-

sures suggest. In fact, the full-income growth rates given in Table 3 suggest an even stronger

convergence of welfare which is mainly due to the fact that we explicitly consider costs of im-

provements in life expectancy.23 As a consequence, welfare gains for a given increase in longevity

are higher if this increase is accompanied by no or small changes in healthcare expenditures.

22 Details on the numerical calculations can be found in the appendix.
23 While ? did not include healthcare expenditures in their analysis, they conjectured that this would make a

difference in the relative welfare gains from longevity increases enjoyed by developed and developing countries.
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6 Inefficient Market Equilibria

An important policy question is whether the market equilibrium, as analyzed in the previous

sections, is efficient. In fact, the model comprises three externalities that are not accounted for

in the market equilibrium.

First, there is a “learning-by-investing” externality (?). At any time, firms take the technolog-

ical level A(t) of the economy as given, neglecting the positive spillovers the employment of

capital exerts on the economy’s production output Y (t) via an increase in the technological

level. As is well known, this leads to an inefficiently low level of asset holdings that could be

corrected, for example, by subsidizing household savings.

Second, there are two additional externalities associated with healthcare expenditures. To

identify these, we take the total derivative of an individual’s lifetime utility with respect to

healthcare expenditures and use (11a), (13), and w(t) = exp[gt] to obtain

dU(s)

dh
=
c⋆(s, s, h)1− 1

σ

x(p)

[

F (h) +
da

dh

(

1

x(p)
−

1

y(p)

)

+
dg(p)

dh

(

1

y(p)
+ s

)]

. (20)

The term y(p) ≡ r + p− g represents the difference between the return of annuities a and the

economy’s growth rate g. The function F (h) constitutes the individual’s first-order condition

with respect to healthcare expenditures (12). In the decentralized market equilibrium with an

interior solution the first-order condition equals zero. The remaining two summands in brackets

denote the impact of healthcare investments on the equilibrium return for annuities, a, and the

economy’s growth rate, g, which the households do not take into account. The existence of these

two externalities is independent of the positive spillovers from capital accumulation. The reason

is that internalizing the “learning-by-investing” externality increases the effective interest rate.

The additional two externalities, however, do not disappear for any level of the interest rate.

They occur because households do not take into account that increased longevity reduces the

equilibrium return of annuities (for a given interest rate) and increases the economy’s growth

rate via the age structure of the economy. The externality of healthcare spending on the

rate of return for annuities a, reflected by the expression da/dh (1/x(p) − 1/y(p)), is negative

because da/dh = −ψ and y(p) − x(p) = σ(r − ρ) − g > 0.24 Hence, households tend to

over-invest in healthcare (?). However, the last expression in brackets in (20) representing the

externality on the economy’s equilibrium growth rate g is positive implying under-investment

in healthcare. Thus, a decrease in healthcare expenditures has a positive effect on the rate of

return from annuities a, but a negative effect on g and vice versa. Whether the equilibrium level

of healthcare expenditures is inefficient in the sense that there exists a balanced growth path

24 The term y(p) − x(p) represents the difference between the growth rate of individual household consumption
and the growth rate of per capita consumption, which is positive due to equation (17a).
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on which all households are better off by investing either more or less in healthcare depends

on the magnitude of the welfare losses associated with the two opposed externalities.

All terms in brackets in equation (20) are independent of time except for the last term that

reflects the increase of the wage-level of a generation born at time s due to a marginal change in

the growth rate. This term increases with s,25 implying that the welfare loss due to a decrease

in the steady-state growth rate is larger the later a household is born. Even small changes in the

economy’s growth rate g have huge welfare effects for generations living in the far distant future.

As the term is linear in s, there exists some s̄ for any decrease in healthcare expenditures such

that all generations born at s > s̄ are worse off, although early generations may benefit. Thus,

it cannot occur that healthcare expenditures in the market equilibrium are inefficiently high

in the sense that there exists a lower level of healthcare expenditures for which all households

born at s ≥ 0 would be better off. Whether healthcare expenditures are inefficiently low in the

market equilibrium depends on the relative strengths of the two externalities for the generation

born at s = 0. Proposition 4 gives a condition for which under-investment in healthcare occurs.

Proposition 4 (Inefficient levels of healthcare expenditures)

For interior levels of healthcare expenditures, households invest inefficiently low amounts in

healthcare in the market equilibrium if dg(p)/dp < 1 − y(p)/x(p).

The proof is given in the appendix.

7 Spillover Effects

In our model we have specified the “learning-by-investing” spillovers as a function of the capital-

stock per worker. Although this is a reasonable assumption, one may ask how our results would

change with a different specification. To answer this question, we consider the most general

spillover definition correcting for scale effects:

A(t) ≡
K(t)

LF (t) + (1 − η)LH(t)
, η ∈ [0, 1] , (21)

which captures all spillover magnitudes between the two polar cases η = 1 representing our

previous model and η = 0 reflecting spillovers depending on capital per capita A(t) = k(t).

While condition (13) for the individual household’s optimal choice of healthcare expenditures

remains unchanged, as households take prices as given, the new specification of A(t) affects

25 Note that by setting w(t) = exp[gt], we normalize the wage rate at t = 0 to unity. This implies that we
compare the lifetime utility of all generations born at s ≥ 0.
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the interest and the wage rate

r(t) = α

[

LF (t)

LF (t) + (1 − η)LH(t)

]1−α

− δ , (22a)

w(t) = (1 − α)
K(t)

LF (t)

[

LF (t)

LF (t) + (1 − η)LH(t)

]1−α

. (22b)

Given the equilibrium levels of h(s), LH(t) can still be expressed by (7). For η < 1 the interest

rate declines with the level of healthcare expenditures, as LH(t) increases and LF (t) = N(t) −

LH(t) declines. On the one hand, a decline in labor employed in consumption-good production

reduces the marginal productivity of capital. On the other hand, for η > 0 the technological

level A(t) increases, as the capital intensity in consumption-good production increases which

amplifies the learning externality.26 The first effect dominates the second implying a negative

influence of health-care expenditures on the interest rate. Note that in the basic version of

our model, which corresponds to η = 1, the two effects cancel out leading to the constant

interest rate r(t) = α− δ. This interest rate also results in the general set-up if no healthcare

expenditures are optimal in the market equilibrium for all generations, i.e. h(s) = 0 for all s,

implying LF (t) = N(t) and LH(t) = 0 at all times t.

In the following, we restrict attention to the steady state market equilibrium in which the

interest rate r(t) = r is constant. For this to hold, optimal healthcare expenditures h have to

be constant implying that also the hazard rate p and the population growth rate Ṅ(t)/N(t) = ν

are constant. We obtain for the interest rate and the wage rate in steady state27

r̄(h) = α

[

1 − h

1 − ηh

]1−α

− δ , (23a)

w̄(h, t) =
1 − α

1 − h
k(t)

[

1 − h

1 − ηh

]1−α

. (23b)

Inserting ā(h, p) = r̄(h) + p into (13) determines the healthcare expenditures in the steady

state market equilibrium.

Proposition 5 (Existence of steady state healthcare level)

Given equation (21) for the technological level of the economy, there exists a steady state equi-

librium level of healthcare expenditures, h̄⋆.

The proof is given in the appendix. In contrast to the basic model, the aggregate dynamics

in the steady state depends not only on the hazard rate p but also on the level of healthcare

26 An alternative interpretation of the effect of healthcare expenditures on A(t) would be that better health
increases the workers’ productivity.

27 We indicate steady state values in the general spillover setting by a bar and, where applicable, use h as an
additional argument to highlight the difference to the basic version of the model.

20



expenditures h.

Proposition 6 (Steady state aggregate dynamics)

Given equation (21) for the technological level of the economy, the steady state dynamics of the

aggregate economy

(i) is characterized by:

ċ(t) = σ [r̄(h) − ρ] c(t) − x̄(h, p)(p + ν)k(t) ,

k̇(t) =

[

r̄(h)

α
+

1 − α

α
δ − ν

]

k(t) − c(t) ,

(ii) is governed by a balanced growth path given by

ḡ(h, p) =
1

2

{

r̄(h)

α
+

1 − α

α
δ − ν + σ [r̄(h) − ρ]

}

−
1

2

√

{

r̄(h)

α
+

1 − α

α
δ − ν − σ [r̄(h) − ρ]

}2

+ 4x̄(h, p)(p + ν) ,

(25)

where x̄(h, p) ≡ r̄(h) + p− σ(r̄(h) − ρ).

The proof is given in the appendix. Equation (25) shows that not only the hazard rate p

matters for the steady state growth rate, as it is the case in the basic model, but also the level

of healthcare expenditures by which it is achieved. If there are no healthcare investments in

steady state, h̄⋆ = 0, we are back to the basic model implying ḡ(0, p) = ḡ(0, pmax) = g(pmax).

By virtue of Proposition 3, for h̄⋆ = 0 a decreasing p = pmax leads to an increasing equilibrium

growth rate ∂ḡ(0, p)/∂p < 0. This does not necessarily hold if the reduction in p is accompanied

by an increase in h. We obtain for the total derivative of ḡ(h, p) with respect to h

dḡ(h, p)

dh
=
∂ḡ(h, p)

∂p

dp

dh
+
∂ḡ(h, p)

∂r̄(h)

dr̄(h)

dh
. (26)

The first term is positive, as ∂ḡ(h, p)/∂p < 0 (see Proof of Proposition 3) and dp/dh < 0.

The sign of the second term is ambiguous, as the sign of ∂ḡ(h, p)/∂r̄(h) is ambiguous and

dr̄(h)/dh < 0. In contrast to our basic model, it is now possible that the steady state growth

rate declines in response to an increase in longevity. This happens, if ∂ḡ(h, p)/∂r > 0 and

sufficiently large so that the second term outweighs the first. Thus, the difference between

improvements in longevity originating from increases in pmax accompanied by zero healthcare

expenditures and those from an increase of ψ is even further pronounced compared to the

basic model. In the basic model, both types of longevity increases had (small) positive growth

effects but substantial welfare differences. With the alternative spillover mechanism and η < 1

we may even experience negative growth effects in response to longevity increases.
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Region North America

T T (1960) = 69.9 T (2000) = 77.3

h 0 h(1960) = 3.9% h(2000) = 9.8%

η ∈ [0, 1] 1 0.95 0.9

r(1960) 3.69% 3.69% 3.73% 3.76%

r(2000) 3.69% 3.69% 3.65% 3.62%

g⋆(1960) 2.44% 2.44% 2.49% 2.55%

g⋆(2000) 2.45% 2.45% 2.39% 2.34%

ĝ 2.65% 2.57% 2.54% 2.51%

∆UT /∆U 8.50% 5.63% 2.07% −1.70%

∆Ug/∆U 0.28% 0.31% −3.29% −7.17%

∆Up/∆U 8.22% 5.31% 5.35% 5.47%

Table 4: Utility gains for North America from 1960 to 2000 for different values of η.

This also affects the inefficiency result given in Proposition 4. It is now possible that the steady

state investments in healthcare are inefficiently high in the sense that all households born at

s ≥ 0 were better off in a steady state where all households invest less in healthcare.

Proposition 7 (Inefficient levels of healthcare expenditures)

Given equation (21) for the technological level of the economy, in an interior steady state,

healthcare expenditures h̄⋆ are inefficiently high if dḡ(h, p)/dh|h=h̄⋆ < 0.

The proof of Proposition 7, provided in the appendix, shows that under the given condition

both externalities connected with healthcare investments – on the return of annuities and on

the steady state growth rate – have a negative impact on expected lifetime utility.

Finally, we illustrate how the results of our numerical example given in Section 5.2 change

under the alternative spillover specification. More precisely, we show results for η ranging from

1 (which corresponds to our previous setup) to 0.9. In addition, we also show the results

for a hypothetical North America in which no healthcare expenditures are undertaken and

all improvements in longevity solely stem from an increase in pmax. In this case the new

specification of the spillover effect collapses to the basic model for any value of η. Thus, the

results are identical to the second row in Table 3.

For both values of η < 1 given in Table 4, we observe that the steady state growth rate

declines in response to the observed increase of the healthcare expenditures. The effect is more

pronounced the smaller is η. As in Section 5.2, we adjust the depreciation rate such that the

average annual growth rate of GDP per capita matches the observed value of 2.44%. This

implies that the growth rate drops from 2.49% in 1960 to 2.39% in 2000 for η = 0.95 and

from 2.55% in 1960 to 2.34% in 2000 for η = 0.9. In contrast to the results in Section 5.2,
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the welfare effects of these changes in the growth rate may be substantial, as can be seen in

the row labeled ∆Ug/∆U . In fact, while for η = 0.95 the total welfare gain attributable to

increases in longevity is still positive, for η = 0.9 the utility loss from the decreasing growth

rate outweighs the direct utility increase due to increased average lifetime so that the welfare

gain between 1960 and 2000 had been higher by 1.70% without the increase in life expectancy.

These results emphasize that the growth effects of increases in longevity may drastically depend

on the associated healthcare costs. In any case, welfare and growth effects are the highest if the

increases in longevity stem from a decrease of the maximal hazard rate pmax together with zero

healthcare expenditures. If increases in longevity are accompanied by increases in healthcare

expenditures, as is always the case for increases in the efficiency of healthcare ψ, the growth

effects of increased longevity are either small (in case of our basic model) or may even be

negative (in case of our alternative spillover specification). In fact, the negative growth effects

may even outweigh the direct utility gains from increased longevity. At least for the richest

regions like North America or Western Europe, this might challenge the conclusions of ? and

? who argue that recent increases in longevity induced non-negligible positive welfare gains.

It is important to recognize that the negative welfare effects in the case of η = 0.9 result from the

negative externality of healthcare expenditures on the economy’s growth rate. In general, these

externalities call for governmental action. In most countries, the healthcare system is heavily

regulated. Usually health insurance systems result in inefficiently high demand for healthcare

implying higher healthcare spending relative to the pure market equilibrium considered in

our model (see, for example, ?, ?, ?, ?). As a consequence, when government subsidies for

healthcare are taken into account welfare losses may be even higher than those shown for the

case η = 0.9 in Table 4.

Which model specification applies is an important empirical question. To answer this question,

one could test whether the return on capital is affected by healthcare expenditures. One of

the challenges of such an exercise would be to isolate healthcare expenditures that prolong

life from those that do not. For the existing empirical literature, our model is consistent with

recent results suggesting that the long-run effects of longevity on GDP per capita are either

moderately positive (?), insignificant or even negative (?). By contrast, many (earlier) contri-

butions to this literature usually found substantial positive effects of longevity on economic

growth.28 In an attempt to reconcile these different findings, ? argue that both the level of life

expectancy and the increase in life expectancy have to be considered and find that both have

significantly positive effects on per-capita GDP growth. However, they also indicate that when

restricting attention to OECD-countries in the post-1960 period, the effects weaken. Our model

allows for two different interpretations of this result. First, in our basic model the growth rate

28 See, for example, ?, ?, ?, ?, ?. Only very few studies find small negative or no effects of longevity of growth
such as ?. An overview can be found in ?.
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is increasing and concave with respect to longevity. Hence, the model predicts that the effect

of an increase in life expectancy on the growth rate becomes smaller the higher is the level

of longevity. Second, in the alternative spillover specification the growth rate of the economy

may decline in response to higher healthcare costs. The longevity increases in the developed

countries in the recent past have mainly originated from “big medicine” involving expensive

and intensive personal interventions rather than the eradication of infectious diseases with rel-

atively cheap hygienic measures (see, for example, ?, ?). As a consequence, our theory would

predict smaller growth and welfare gains derived from increased life expectancy.29

8 Conclusion

We developed an overlapping generations endogenous growth model in continuous time to

investigate the link between life expectancy, which is the result of endogenous investments in

healthcare, economic growth and welfare. We have shown how the direct and indirect welfare

effects (via the growth rate) of longer expected lifetimes induced by improvements in the

healthcare technology depend on (i) the type of the healthcare technology improvement and (ii)

the spillover specification in the economy’s consumption good sector. While the direct positive

welfare effect dominates a very small growth effect in our benchmark model specification, the

indirect welfare effect can outweigh the direct welfare effect in the generalized setting and even

lead to overall welfare losses induced by longevity increases.

Our results have the following implications. First, while our benchmark specification lends

some support to studies on welfare aspects of increased lifetimes neglecting growth effects, this

disregard may lead to substantially wrong conclusions if reality is better reflected by the gen-

eralized version of our model. Which specification better suits reality constitutes an interesting

question for further empirical work on the relationship between longevity and growth.

Second, many countries have recently made or are currently making efforts to develop welfare

measures that include several components in addition to GDP (see, for example, ?). With re-

spect to longevity, which is one of these complementing indicators, we have seen that neglecting

the relationship between longevity and GDP is not innocuous. Similar complex relationships

with respect to growth are to be expected for other components, for example, inequality. Thus,

our paper points to a conceptional issue associated with such generalized indices of economic

welfare. While they better reflect the average welfare levels of individual households, identify-

ing the contribution of a single component to aggregate welfare is a complex task, as neglecting

the repercussions on economic growth may substantially bias the results. This is of particular

importance, when such analyses serve as the basis for policy advice.

29
? hypothesize that gains in life expectancy at young age mattered more than gains in life expectancy at old
age supposedly for reasons of labor market participation and education. We do not refute these reasons but
emphasize the importance of healthcare expenditures associated with the increase in expected lifetime.
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Third, we have shown that the magnitude of the welfare gains strongly depends on the chan-

nel by which the healthcare technology improves. A reduction of the baseline mortality yields

higher welfare gains than an increase in the productivity of healthcare expenditures. This find-

ing tends to be reinforced when considering more general specifications of the spillover effects

in the production sector. Several authors have argued that the recent increases in longevity

in the developed countries are mainly the result of “big medicine” rendering healthcare ex-

penditures more productive in treating life-threatening diseases rather than a decrease in the

baseline mortality level via cheap measures, such as improved sanitation. Extrapolating this

development, our model suggests that the prospects for future welfare gains from increased

longevity are rather modest.

This paper analyzes the complex interplay between endogenous longevity, endogenous eco-

nomic growth and welfare in a model that abstracts from various issues which deserve further

scrutiny. In order to be able to analytically investigate the aggregate economy, we employ a

rather simplistic household model. Interesting extension in this direction include age-dependent

mortality, retirement decisions or endogenous fertility. On the level of the aggregate economy,

we have shown that the decentralized market solution exhibits several externalities that call for

government action. Augmenting the model with realistic features of national health systems

would allow to examine their effects on growth and welfare and to evaluate potential policy in-

terventions. Finally, we only considered exogenous improvements in the healthcare technology.

Endogenizing these improvements is a further challenge for future research.
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Appendix

A.1 Proof of Proposition 1

First, the corner solution h(s) = 1 cannot be an optimal solution, as consumption and lifetime

utility would drop to zero, while both are positive for any value h(s) ∈ [0, 1).

Second, there exists at most one h⋆(s) with F
(

h⋆(s)
)

= 0. To see this, set F
(

h(s)
)

= 0 and

re-arrange terms to yield30

1 − h(s) =
σ(σ − 1)(ρ+ pmax) − (σ − 1)2a(s)

σψ
− (σ − 1)h(s) . (A.1)

Both, the left-hand and the right-hand side are linear equations in h(s), which intersect at most

once and are identical in the special case that σ = 2 and σ(σ−1)(ρ+pmax)−(σ−1)2a(s) = σψ

hold simultaneously. This special case is precluded, however, as the latter condition contradicts

the necessary condition (1 − σ)a(s) + σ(ρ + p(s)) > 0 for all p(s) ∈ [pmax, pmax − ψ] for the

household’s problem to be well defined.

Third, the local extremum given by F
(

h(s)
)

= 0 is a local maximum only if σ < 2. Differenti-

ating F
(

h(s)
)

with respect to h(s) and evaluating at the local extremum yields:

∂F
(

h(s)
)

∂h(s)

∣

∣

∣

∣

∣

F (h(s))=0

=
σ2ψ2

(σ − 1)2x̃2
(

h(s)
)(σ − 2) T 0 ⇔ σ T 2 , (A.2)

where x̃
(

h(s)
)

=
[

(1 − σ)a(s) + σ
(

ρ+ pmax − ψh(s)
)]

. As a consequence, an interior optimal

solution can only exist for σ ∈ (1, 2) and thus h⋆(s) = 0 if σ ≥ 2. Even for σ ∈ (1, 2), the optimal

solution may be the corner solution h(s) = 0. This holds if F
(

h(s)
)

< 0 for all h(s) ∈ [0, 1). �

A.2 Proof of Proposition 2

(i) Aggregate dynamics: To derive the aggregate system dynamics, we evaluate equation (11b)

in the market equilibrium, aggregate according to equation (14) and differentiate with respect

to t:

ċ(t) = x(p)
[

k̇(t) + (1 − h)Ẇ (t)
]

, (A.3)

where W (t) ≡
∫ ∞

t w(t′) exp[−(r + p)(t′ − t)] dt′ denotes the net present value of the house-

hold’s lifetime labor income. Evaluating the budget constraint in the market equilibrium and

30 Obviously, this re-arrangement is only identical to F
(

h(s)
)

= 0 if h(s) 6= 1. However, we have already seen
that h(s) = 1 cannot be an optimal solution.

26



aggregating according to equation (14), we obtain

ḃ(t) = (r − ν)b(t) + (1 − h)w(t) − c(t) . (A.4)

Inserting Ẇ (t) and equation (A.4) into equation (A.3) yields equation (17a). We derive (17b)

by observing that in the market equilibrium w(t) = k(t)(1 − α)/(1 − h) and inserting it into

equation (A.4).

(ii) Balanced growth path: By contradiction, we prove that the dynamics of the economy is

governed by a unique balanced growth path (BGP) given a fixed hazard rate p.

We start by asserting two facts: First, there is a unique economically feasible ratio c(t)/k(t)

such that ċ(t)/c(t) ≡ gc(t) = gk(t) ≡ k̇(t)/k(t). This follows from solving the equations of

motion for c(t)/k(t) given that gc(t) = gk(t). As x(p)(p+ ν) > 0 for all p > 0, there is only one

economically feasible solution (with c(t)/k(t) > 0)

c(t)

k(t)
= ζ ≡

1

2

[

(1 − δ − ν) − σ(r − ρ) +
√

[(1 − δ − ν) − σ(r − ρ)]2 + 4x(p)(p + ν))

]

. (A.5)

Second, we observe in equations (17a) and (17b) that gc(t) is increasing with c(t)/k(t) while

gk(t) is decreasing with c(t)/k(t).

Now suppose that gc(t) > gk(t). According to the two facts above, this can only be the case if

c(t)/k(t) > ζ. The condition gc(t) > gk(t) then implies that c(t)/k(t) further increases which in

turn will increase the future gap between gc and gk, leading to limt→∞ gk(t) = −∞. By the same

line of argument, the economy’s dynamics imply for gk(t) > gc(t) that limt→∞ gc(t) = −∞. As

both cases yield economically infeasible solutions the only remaining possibility is gc(t) = gk(t)

implying c(t)/k(t) = ζ. Since the latter ratio does not depend on time t and is unique, the

economy must be on a unique BGP gc(t) = gk(t) = g at all times. The BGP-growth rate g can

be calculated by inserting (A.5) into g = (1 − δ − ν) − c(t)/k(t)

g =
1

2

[

(1 − δ − ν) + σ(r − ρ) −
√

[(1 − δ − ν) − σ(r − ρ)]2 + 4x(p)(p + ν)

]

. (A.6)

After some minor manipulations, we observe that the growth rate on the BGP is positive if and

only if x(p)(p+ν) < σ(r−ρ)(1−δ−ν). Consequently, g < 0 if x(p)(p+ν) > σ(r−ρ)(1−δ−ν)

and g = 0 if x(p)(p+ ν) = σ(r − ρ)(1 − δ − ν). �
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A.3 Proof of Proposition 3

(i) Differentiating the equilibrium level of healthcare expenditures, as given in (15), with respect

to ψ and pmax yields:

dh⋆

dψ
=

(σ − 1) [(1 − σ)r + σρ+ pmax]

ψ2
> 0 ,

dh⋆

dpmax

= −
σ − 1

ψ
< 0 . (A.7)

From the healthcare technology (8), we obtain

dp⋆

dψ
=
∂p⋆

∂ψ
+
∂p⋆

∂h⋆

dh⋆

dψ
= −

(

h⋆ + ψ
dh⋆

dψ

)

< 0 , (A.8a)

dp⋆

dpmax

=
∂p⋆

∂pmax

+
∂p⋆

∂h⋆

dh⋆

dpmax

= 1 − ψ
dh⋆

dpmax

> 0 . (A.8b)

For the growth rate g⋆ we obtain

dg⋆

dψ
=
∂g(p)

∂p

∣

∣

∣

∣

p=p⋆

dp⋆

dψ
> 0 ,

dg⋆

dpmax

=
∂g(p)

∂p

∣

∣

∣

∣

p=p⋆

dp⋆

dpmax

< 0 . (A.9)

The inequalities follow from ∂g(p)/∂p < 0, which we obtain by differentiating equation (18)

with respect to the hazard rate p

∂g(p)

∂p
= −

x(p) + p+ ν
√

[1 − δ − ν − σ(r − ρ)]2 + 4(p + ν)x(p)
< 0 . (A.10)

(ii) Inserting the derivatives in (A.7) and the interior solution for h⋆ from (15) into equations

(A.8) gives dp⋆/dψ = −σ and dp⋆/dpmax = σ. Using (A.7), the condition −dh⋆/dpmax <

dh⋆/dψ translates to

σ − 1

ψ
<

(σ − 1) [(1 − σ)r + σρ+ pmax]

ψ2
⇔ (1 − σ)r + σρ+ pmax − ψ > 0 . (A.11)

The latter condition is satisfied by assumption, as otherwise the households’ maximization

problem is not well defined. �

A.4 Proof of Proposition 4

Healthcare investment in the market equilibrium is inefficiently low if dU(s)/dh|h=h⋆ > 0 for all

s ≥ 0, as this would imply that a marginal increase in healthcare expenditures would increase

the lifetime utility of all generations born at s ≥ 0. For an interior solution F (h⋆) = 0. As a
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consequence, the condition is satisfied for all s ≥ 0 if

da

dh

(

1

x(p)
−

1

y(p)

)

+
dg(p)

dh

1

y(p)
> 0 . (A.12)

As da/dh = dp/dh = −ψ and dg(p)/dh = dg(p)/dp ·dp/dh, (A.12) holds if the inequality given

in the proposition is satisfied. �

A.5 Proof of Proposition 5

The individual household’s choice of optimal healthcare expenditures, as given in Proposition

1, remains unchanged by the new definition of the technological level of the economy. As a

consequence, the optimal level of healthcare in the steady state market equilibrium equals

h̄⋆ = 0 for σ ≥ 2. For σ < 2, we insert ā(h, p) = r̄(h) + p into the first-order condition (13) and

obtain

F̄ (h) ≡
σψ

(σ − 1) [(1 − σ)r̄(h) + σρ+ p]
−

1

1 − h
. (A.13)

Note that limh→1 F̄ (h) = −∞, as the first term remains finite31 and the second term diverges

to −∞ for h → 1. Thus, there exists an h̄⋆ with F̄ (h̄⋆) = 0 and dF̄ (h)/dh|h=h̄⋆ < 0 if F̄ (h) > 0

for some h ∈ [0, 1). Otherwise the optimal level of healthcare equals h̄⋆ = 0. �

A.6 Proof of Proposition 6

(i) Aggregate dynamics: Using equations (23) instead of (6), we derive the aggregate steady

state dynamics analogously to part (i) of the proof of Proposition 2. To derive the equation of

motion for the capital stock k(t) insert b(t) = k(t) and w̄(h, t) = (1 − α)/[α(1 − h)] · r̄(h)k(t).

(ii) Balanced growth path: The existence and uniqueness of a balanced growth path can be

shown as in part (ii) of the proof of Proposition 2. Replacing (1 − δ − ν) in equation (A.6) by

r̄(h)/α + δ(1 − α)/α − ν yields ḡ(h, p) as given in the proposition. �

A.7 Proof of Proposition 7

Analogously to the proof of Proposition 4 the steady state level of healthcare expenditures h̄⋆

is inefficiently high if ∂U(s)/∂h|h=h̄⋆ < 0 for all s ≥ 0. The equation corresponding to equation

31 Note that (1 − σ)r̄(h) + σρ+ p > 0 for all p ∈ [pmax, pmax −ψ] is necessary for the household’s maximization
problem to be well defined.
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(20) in the case of the general spillover specification reads

dU(s)

dh
=
c⋆(s, s, h)1− 1

σ

x̄(h, p)

[

F̄ (h) +
dā(h, p)

dh

(

1

x̄(h, p)
−

1

ȳ(h, p)

)

+
dḡ(h, p)

dh

(

1

ȳ(h, p)
+ s

)]

,

(A.14)

where ȳ(h, p) = r̄(h) + p − ḡ(h, p). For an interior level of healthcare expenditures F̄ (h) = 0.

Moreover, dā(h, p)/dh = dr̄(h)/dh+dp/dh < 0 and ȳ(h, p)− x̄(h, p) = σ[r̄(h)−ρ]− ḡ(h, p) > 0.

Thus, ∂U(s)/∂h|h=h̄⋆ < 0 if dḡ(h, p)/dh|h=h̄⋆ < 0. �

A.8 Details on the numerical exercises

We use the original data set of ?32 and amend it by data on health expenditures from 1960

and 2000. For the year 2000 the WHO33 provides data of healthcare expenditures per GDP for

all countries. Data for healthcare expenditures in 1960 is limited. The OECD34 provides data

on healthcare expenditures per capita in 1960 for some of their members. In fact, complete

data on healthcare expenditures is only available for North America. Assuming the missing

values to be zero, the data listed in Table 5 for healthcare expenditures in 1960 is a lower

bound for real healthcare expenditures. According to ? income per capita is GDP per capita

in 1996 international prices adjusted for terms of trade (Penn World Tables 6.1). Data on

life expectancy at birth is taken from the World Bank Development Indicators. The average

growth rate g∅ has been calculated from income levels in 1960 and 2000. Accordingly, the

average population growth rate ν has been calculated from population data in 1960 and 2000.

All regional aggregates are population weighted sums of country data.

To derive our consumption-based welfare measure, we insert (11a), (11c), a⋆ = r + p⋆ and

w(t) = w0(s) exp[g⋆(t− s)] into the household’s expected utility function (3)

U
(

w0(s), p⋆, g⋆, h⋆
)

=
σ

σ − 1

[

w0(s)(1 − h⋆)

r + p⋆ − g⋆

]1− 1

σ

[r + p⋆ − σ(r − ρ)]−
1

σ . (A.15)

Comparing expected utilities of two households, we seek for the relative change in consump-

tion θ at all times alive for which household 1’s expected utility coincides with household 2’s

32 Available at http://www.aeaweb.org/aer/data/mar05_data_becker.zip.
33 Available at http://www.who.int/gho/en/.
34 Available at http://puck.sourceoecd.org.
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expected utility35

σ

σ − 1

[

(1 + θ)
w1

0(s1)(1 − h⋆
1)

r + p⋆
1 − g⋆

1

]1− 1

σ

[r + p⋆
1 − σ(r − ρ)]−

1

σ =

σ

σ − 1

[

w2
0(s2)(1 − h⋆)

r + p⋆
2 − g⋆

2

]1− 1

σ

[r + p⋆
2 − σ(r − ρ)]−

1

σ

(A.16)

Solving for θ yields

θ =
w2

0(s2)(1 − h⋆
2)(r + p⋆

1 − g⋆
1)

w1
0(s1)(1 − h⋆

1)(r + p⋆
2 − g⋆

2)

[

r + p⋆
1 − σ(r − ρ)

r + p⋆
2 − σ(r − ρ)

]

1

σ−1

− 1 (A.17)

In the welfare comparison between 1960 and 2000, ∆U reflects the value of θ when inserting

1960 levels for w1
0(s1), p⋆

1, g⋆
1 and h⋆

1, and 2000 levels for w2
0(s2), p⋆

2, g⋆
2 and h⋆

2. The total

consumption-equivalent welfare difference ∆UT represents the value of θ when we compare a

household born in 2000, given there had not been an increase in longevity, with a household

born in 2000 under real world conditions. Thus, p⋆
1, g⋆

1 and h⋆
1 are given by the observed

1960 levels, and p⋆
2, g⋆

2 and h⋆
2 by the corresponding 2000 levels, but w1

0(s1)/w2
0(s2) = exp[g⋆

1 ·

40]/ exp[g∅ · 40] accounting for the difference in wages if wages would not have grown at the

observed average growth rate g∅ but at the growth rate g⋆
1 consistent with 1960 levels of

healthcare and longevity. Hence, the share of the overall welfare gain originating from the

longevity increase ∆UT /∆U is given by the ratio of the corresponding θs. The decomposition

into direct utility from a longer expected lifetime and the growth effect is accomplished along

the same lines.

Table 5 shows the calculation results for seven world regions (E&CA: Europe and Central Asia,

EA&P: East Asia and Pacific, LA&C: Latin America and the Caribbean, ME&NA: Middle East

and North Africa, NAM: North America, SASIA: South Asia and SSA: Sub-Saharan Africa).

NAM (exo) denotes a hypothetical North America in which no healthcare expenditures are

undertaken and increases in longevity solely stem from a decrease in pmax.

To estimate the sensitivity of our results with respect to the missing data on healthcare ex-

penditures in 1960, Table 6 shows the same calculations for the seven world regions but with

rather high estimates on the healthcare expenditures in 1960. We observe that our results are

robust to reasonable changes in the healthcare expenditures.

35 See also ?, who use a similar approach.
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Region E & CA EA & P LA & C ME & NA NAM NAM (exo) SASIA SSA

inc.(1960) 6810.37 1316.87 3459.36 1935.13 12379.8 12379.8 892.08 1470.48

inc.(2000) 18280.6 5866.24 7161.46 5524.89 32880.2 32880.2 2345.84 1573.02

T (1960) 67.99 42.05 56.26 47.89 69.89 69.89 44.04 40.55

T (2000) 76.22 70.71 70.46 68.94 77.25 77.25 62.73 46.02

h(1960) 1.64% 1.03% 0% 0% 3.91% 0% 0% 0%

h(2000) 6.02% 4.05% 4.97% 4.03% 9.77% 0% 3.12% 4.84%

r 3.70% 4.58% 3.33% 3.87% 3.69% 3.69% 3.74% 2.32%

ν 0.71% 1.64% 2.24% 2.54% 1.14% 1.14% 2.22% 2.73%

g∅ 2.47% 3.73% 1.82% 2.62% 2.44% 2.44% 2.42% 0.17%

g⋆(1960) 2.46% 3.69% 1.80% 2.59% 2.44% 2.44% 2.38% 0.15%

g⋆(2000) 2.47% 3.78% 1.84% 2.66% 2.45% 2.45% 2.45% 0.19%

ĝ 2.65% 5.10% 2.25% 3.47% 2.57% 2.65% 3.30% 0.4%

∆UT /∆U 7.50% 16.66% 20.95% 21.01% 5.63% 8.50% 23.26% 72.33%

∆Ug/∆U 0.31% 0.47% 1.08% 0.90% 0.31% 0.28% 1.02% 65.64%

∆Up/∆U 7.20% 16.19% 19.87% 20.12% 5.31% 8.22% 22.24% 6.69%

Table 5: Numerical results for all seven world regions.

Region E & CA EA & P LA & C ME & NA NAM SASIA SSA

h(1960) 3.0% 1.5% 2.0% 1.5% 3.91% 1.0% 2.0%

h(2000) 6.02% 4.05% 4.97% 4.03% 9.77% 3.12% 4.84%

r 3.70% 4.58% 3.33% 3.87% 3.69% 3.74% 2.32%

ν 0.71% 1.64% 2.24% 2.54% 1.14% 2.22% 2.73%

g∅ 2.47% 3.73% 1.82% 2.62% 2.44% 2.42% 0.17%

g⋆(1960) 2.46% 3.69% 1.80% 2.59% 2.44% 2.38% 0.15%

g⋆(2000) 2.47% 3.78% 1.84% 2.66% 2.45% 2.45% 0.19%

ĝ 2.67% 5.10% 2.28% 3.49% 2.57% 3.31% 0.44%

∆UT /∆U 8.11% 16.69% 21.79% 20.27% 5.63% 23.44% 73.35%

∆Ug/∆U 0.30% 0.47% 1.05% 0.89% 0.31% 1.01% 6.38%

∆Up/∆U 7.81% 16.22% 20.74% 20.39% 5.31% 22.44% 66.97%

Table 6: Sensitivity analysis with respect to healthcare expenditures in 1960.
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