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We propose a framework for normal form games where players can use Knigh-

tian uncertainty strategically. In such Ellsberg games, ambiguity-averse play-

ers may render their actions objectively ambiguous by using devices such as

Ellsberg urns, in addition to the standard mixed strategies. While Nash

equilibria remain equilibria in the extended game, there arise new Ellsberg

equilibria with distinct outcomes, as we illustrate by negotiation games with
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Minnesota University, Institut Henri Poincaré Paris, University of Exeter, and University of Texas at
Austin as well as at Games Toulouse 2011, Mathematical Aspects of Game Theory and Applications.

† Financial Support through the German Research Foundation, International Graduate College
“Stochastics and Real World Models”, Research Training Group EBIM, “Economic Behavior and
Interaction Models”, and Grant Ri-1128-4-1 is gratefully acknowledged. Parts of the paper were
written during a sabbatical at Princeton University. I thank Patrick Cheridito and the ORFE
department for their hospitality.

‡ Financial support through the German Research Foundation, International Research Training Group
EBIM “Economic Behavior and Interaction Models”, and through the DFH-UFA, French-German
University, is gratefully acknowledged. I thank University Paris 1 and Jean-Marc Tallon for hospi-
tality during my research visit 2011-2012.

1



three players. We characterize Ellsberg equilibria in two-person conflict and

coordination games. These equilibria turn out to be consistent with experi-

mental deviations from Nash equilibrium play.

Key words and phrases: Knightian Uncertainty in Games, Strategic Ambiguity, Ellsberg Games

JEL subject classification: C72, D81
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1 Introduction

Game theory is the science of strategic interaction between rational players. It rests

on the foundations that John von Neumann and Oskar Morgenstern laid in Berlin and

later in Princeton1 almost a century ago. John von Neumann was the first to recognize

that a meaningful theory required the introduction of randomizing devices: in games

of conflict, like poker or other “Gesellschaftsspiele” (parlor games) that von Neumann

studied in his seminal paper (?), some sort of device is needed as a formal counterpart

of the incentive to conceal one’s own behavior2; a predictable player is easily exploited

in strategic conflicts.

In the real world, there are not only probabilistically precise random devices like a

fair coin or a die3 that von Neumann introduced; beside these tools for which the laws

of probability apply, there are other probabilistically imprecise devices on which a player

can base his action.

A famous case in point are the Ellsberg experiments where one ball is drawn from an

urn whose composition is unknown to the agent. Taking up the common example, we

might draw a ball from an urn with 100 red and blue balls, and we know that at least 30

of them are red, at least 20 are blue. This gives us objective, but imprecise information

about the chances to draw a blue ball. Indeed, they are between twenty and seventy

percent.

We ask here what happens to the basic results of game theory if we allow players to

use such objective, but probabilistically imprecise devices to conceal their own behavior

in strategic conflicts. More specifically, we allow players to choose a combination of sets

of probabilities and an act.

When one extends the basic static game by using such new forms of “mixed” strategies,

one has to decide how players evaluate the payoffs. As the reader knows, von Neumann

adopted simply the expected value in order to apply the laws of probability; later, he and

Oskar Morgenstern justified this assumption by developing the axiomatic foundation for

expected utility. In a similar spirit, we adopt a pessimistic expected approach as it has

been axiomatized in a recent paper by Gajdos, Hayashi, Tallon, and Vergnaud (2008):

players evaluate a profile of strategies encoded by imprecise probabilistic devices by

1where parts of this text were written, too.
2or, as von Neumann puts it: “Die Verschiedenheit der zwei Größen Max Min und Min Max bedeutet

eben, daß von den zwei Spielern S1 und S2 nicht jeder gleichzeitig der klügere sein kann.” (p.304,
op.cit.).

3that exist only in approximation anyway: like a perfect circle, there is also no perfectly fair coin in
reality. It is a useful mathematical idealization, of course.
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computing the minimal expected utility derived from all possible priors and acts.

This approach is parsimonious and restrictive at the same time: parsimonious, as it

coincides with expected utility as long as all players choose to use a classic strategy with

precise probabilistic information, restrictive, as it assumes uncertainty–averse players

who do not love to use such devices with imprecise probabilistic information.

Our game model is, indeed, an extension of the classic game, in contrast to some

belief–based extension that we discuss in more detail below. Classic mixed strategies

are evaluated as before, as we said; players being ambiguity–averse, it is easy to show

that standard Nash equilibria remain equilibria in our game. There is no incentive to

introduce imprecise probabilistic devices unilaterally. This would not be the case if we

allowed for ambiguity–loving, or optimistic, players. We thereby avoid the existence

problem that plagues other formulations of games under Knightian uncertainty, see

Ritzberger usw.

Our equilibrium concept that we christen Ellsberg equilibrium in honor of the experi-

ments mentioned above follows the usual idea of Nash: in equilibrium, no player has an

incentive to deviate unilaterally by using another imprecise probabilistic device.

As for Nash equilibrium, we have a certain indifference principle: if players really

use a set of priors, not a singleton in equilibrum, then they are indifferent between all

potential probability distributions that may govern the act’s outcome. This is due to

the fact that the player himself does not know the outcome of the imprecise probabilistic

device he has chosen. As in von Neumann’s original motivation for a mixed strategy, it

is important not to know the outcome as this prevents the possibility to be outguessed

by the other players. The indifference principle facilitates finding Ellsberg equilibria in

concrete examples as we amply demonstrate later on.

In a peace negotiation game taken from Greenberg (2000), we illustrate the new

equilibrium concept. In that game, two small countries negotiate over war and peace

with a third player, the superpower, that can punish either country once war breaks out.

As the superpower has no possibility to guess who is responsible for war if one country

randomizes and the other goes to war, it punishes both with equal probability in Nash

equilibrium, which in turn makes it optimal ex ante for the small countries to go to

war. Greenberg argues that this outcome is not plausible in his game as the superpower

should “remain silent”. Indeed, such an informal description of being imprecise can be

found in many political and diplomatic texts. “Many different strategies are used to

orient toward conflicting interactional goals; some examples include avoiding interaction

altogether, remaining silent, or changing the topic.” says Eric Eisenberg, e.g., in an
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article entitled “Ambiguity as strategy in organizational communication” (Eisenberg

(1984)), and he points out that applying one’s resources of ambiguity is key in successful

communication when conflicts of interest are present. We show that there exists indeed

Ellsberg equilibria in which the superpower uses imprecise probabilistic devices and

peace results in all scenarios4.

Our approach to games has its most natural and fruitful applications to conflicts where

players are at least to some degree in opposition to each other. We consequently perform

a detailed study of two-person 2×2 games with conflicting interests, as Matching Pennies,

or similar competitive situations. We discuss first two new phenomena, immunization

against ambiguity (or hedging as it is called in decision theory) and nonlinearity of

payoffs that arise in Ellsberg games.

With imprecise probabilistic devices, the opponents create (Knightian) uncertainty

for a player; safety thus becomes an issue, and, as one might anticipate, the minimax

strategy starts playing a role5 Indeed, the minimax strategy is frequently the unique best

reply to imprecise probabilistic devices; this is important as it destroys many potential

equilibria that might seem intuitive at first sight, and thus sharpens the equilibrium

predictions.

We derive all Ellsberg equilibria of 2× 2 conflict games. In zero-sum games, Ellsberg

equilibria are value-preserving. Indeed, in zero–sum games, no new equilibria emerge.

But if we move away, we obtain a richer class of equilibria in which players use sets of

probabilities. The boundaries of these sets are determined by the Nash equilibrium, the

minimax equilibrium, and the boundaries of the simplex. As in zero–sum games, the

Nash and minimax equilibrium coincide, this explains also why no new equilibria emerge

in such games.

For completeness, we also show that imprecise probabilistic devices can appear in

coordination games.

We are also able to solve for nontrivial Ellsberg equilibria in the more complex case

of 3× 3 games with a competitive structure (such as Rock Scissors Paper and its modi-

fications).

While our predictions are broader than the classical unique Nash equilibrium, they

remain restrictive, and, at least in principle, testable. Our results do allow to explain

4The game has been discussed from various points of view in the literature. In particular, Mukerji
and Tallon (2004) describe what we understand as an equilibrium in ambiguous beliefs that would
also support the peace outcome. The point of the example is not meant to be new, but to illustrate
our equilibrium concept, which is new.

5The rationale for using minimax rather than Nash equilibrium strategies in some two player games
has been noted by Aumann and Maschler (1972); it comes up in a more complex setting here again.
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the experimental findings of Goeree and Holt (2001) who show that humans tend to

deviate from Matching Pennies in asymmetric modified Matching Pennies games, but

tend to play Nash equilibrium in symmetric Matching Pennies. This corresponds and is

consistent with our Ellsberg equilibria.

Relation to the Literature Several authors introduce Knightian uncertainty into

complete-information normal form games. Most of the literature has focused on the

extension of the beliefs interpretation of mixed strategies as it is expressed in Aumann

and Brandenburger (1995), w.g. We discuss their concepts and compare them to our

approach.

Dow and Werlang (1994), Lo (1996), Marinacci (2000), Eichberger and Kelsey (2000)

and Eichberger, Kelsey, and Schipper (2009) all extend the interpretation of Nash equi-

librium as an equilibrium in beliefs. For example, Dow and Werlang (1994) interpret

their non-additive (Choquet) probabilities as uncertain beliefs about the other player’s

action. A pair (P1, P2) of non-additive probabilities is then a Nash equilibrium under

Knightian uncertainty if each action in a support of player 1’s belief P1 is optimal given

that he uses P2 to evaluate his expected payoff, and similarly for player 2. We thus have

here a first version of an equilibrium in beliefs. This approach is refined by Marinacci

(2000) and extended to n-person games by Eichberger and Kelsey (2000).

Lo (1996) introduces the concept of equilibrium in beliefs under uncertainty where

the beliefs are represented by multiple priors over other players’ mixed strategies. Each

player i has a set of beliefs Bi over what the other players do, so over ∆S−i. The profile

(Bi) then forms a beliefs equilibrium if player j puts positive weight only on strategies of

player i that maximize i’s minimal expected payoff given the belief set Bi. This concept

allows for disagreement of players’ beliefs, and for correlation. Lo therefore introduces

the refinement of a beliefs equilibrium with agreement in which player j and k agree

about player i’s actions and the beliefs of i over j and k are independent. Lo proves the

nice result that every beliefs equilibrium contains a Bayesian beliefs equilibrium (where

the belief sets are singletons). As a corollary, he obtains a precursor of Bade (2011)’s

main theorem (which we discuss in a later paragraph): in two player games, every beliefs

equilibrium contains a Nash equilibrium.

Note that all the equilibrium concepts discussed above do not specify which action

will actually be played in equilibrium. In Lo (1996) players can play any pure or mixed

strategy that is a best response to their belief set, in the other equilibrium notions

mentioned, players only have access to pure strategies in the support of the capacities.
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This stands in contrast to Ellsberg equilibrium, where the equilibrium strategy is fixed

by the Ellsberg urn chosen. The strategy is a best response to the belief, and the belief

coincides with the strategy played.

Klibanoff (1996), Lehrer (2008) and Lo (2009) propose an approach similar to beliefs

equilibrium. Uncertainty is present in players’ beliefs that are represented by sets of

distributions. Equilibrium is defined as a profile of beliefs and an objectively mixed (or

pure) strategy for each player, which is the strategy that he plays in equilibrium. These

strategies need to be contained in the belief sets. Accordingly, players have to anticipate

their opponents’ strategy correctly in the sense that the truth is part of their belief. This

consistency requirement is weaker than in Nash equilibrium (and weaker than in Ellsberg

equilibrium!) and typically the strategies in equilibrium are not best responses to the

actual strategies played. Klibanoff (1996) proposes a refinement where only correlated

rationalizable beliefs are allowed.6 Lehrer (2008) develops a model of decision making

under uncertainty with partially-specified probabilities, these are used to represent the

players’ uncertain beliefs about their opponents. Lo (2009) establishes formal epistemic

foundations for an equilibrium concept with ambiguity-averse preferences. He finds that

epistemically stochastic independence is not necessary for a generalized Nash equilibrium

concept. A correlated Nash equilibrium is a pair 〈σ,Φ〉 consisting of a profile of beliefs

Φi and a profile of mixed strategies σi where, for consistency, each strategy ai in the

support of σi is a best response to the belief Φi.

Bade (2011) goes a first step in another direction, away from the beliefs interpretation

of Nash equilibrium. She allows players to use acts in the sense of Anscombe-Aumann

and players are uncertainty-averse over such acts. In an ambiguous act equilibrium,

players play best responses as in Nash equilibrium, but under the generalized frame-

work. A large class of ambiguity-averse preferences are covered. The possible priors for

an ambiguous act are part of the players’ preferences in her setup. Bade then adds some

appropriate consistency properties (agreement on null events) to exclude unreasonably

divergent beliefs, and she imposes the rather strong assumption that preferences are

strictly monotone, following Klibanoff (1996) here. This excludes beliefs on the bound-

ary of strategy sets; such degenerated beliefs are sometimes important, though. For

example, it excludes Ellsberg urns with full ambiguity where it is only known that the

probability for a red ball is between 0 and 1. Bade’s main theorem establishes that under

her assumptions, in two-person games the support of ambiguous act equilibria and the

6Lo (1996) requires every probability distribution in the belief sets to be a best response, therefore
every beliefs equilibrium with agreement is a refinement of equilibrium with uncertainty aversion
and rationalizable beliefs (this is shown in Lo (1996), Proposition 9).
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support of Nash equilibria coincide.

Note that Aumann (1974), Epstein (1997) and Azrieli and Teper (2011) (amongst

others) have also defined games that have Anscombe-Aumann acts as strategies, but to

different ends. Aumann (1974) defines such a general game, then imposes Savage ex-

pected utility and analyses properties of correlated and subjective equilibrium. Epstein

(1997) analyzes games very similar to Bade’s, but is mainly interested in rationalizabil-

ity and iterated deletion of strictly dominated strategies in the generalized framework.

Azrieli and Teper (2011) define an extension of an incomplete-information game.

In difference to Bade (2011)’s setup we let ambiguity be an objective instrument that

is not derived from subjective preferences. Players can credibly commit to play an

Ellsberg urn with a given and known degree of ambiguity. In Ellsberg games players

use devices that create ambiguity, thus we extend the objective random devices inter-

pretation of Nash equilibrium. The articles cited above impose non-expected utility

representations derived from subjective preferences, like maxmin expected utility by

Gilboa and Schmeidler (1989), Choquet expected utility by Schmeidler (1989), or they

fix only certain axioms to allow for a large class of ambiguity-averse preferences. To

model the preferences in Ellsberg games we use the representation results by Gajdos,

Hayashi, Tallon, and Vergnaud (2008) on attitude towards imprecise information which

capture the objective ambiguity we have in mind.

The following papers consider strategic or objective ambiguity from another perspec-

tive. Stauber (2011) considers incomplete information games with ambiguous beliefs

and analyzes the robustness of equilibria of these games. Finally, Perchet (2012) works

in the context of repeated games with the possibility of monitoring. The information

about the opponents’ play is “ambiguously” disturbed and hence the notion of Nash

equilibrium generalized. He also generalizes the Lemke-Howson algorithm to compute

equilibria of two-player games. In an unpublished working paper, ? develop the con-

cept of ’objectively ambiguous strategies’ which leads to equilibrium concepts similar

to Ellsberg equilibrium. However, the authors focus on the implications in mechanism

design.

The paper is organized as follows. In Section 2 we explain how Ellsberg urns are

understood as concealment device, in the line of von Neumann and Morgenstern’s in-

terpretation of mixed strategies. In Section ?? we develop the theoretical framework

of Ellsberg games. The concept is applied to the three-player negotiation example in

Section 3. Section 4 analyses the use of strategic ambiguity in two-person conflict and

coordination games. A discussion of observational implications of Ellsberg games is pro-
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vided in Section 5. We compare Ellsberg games to existing equilibrium concepts with

ambiguity aversion in Section ??, and we conclude in Section 6.

2 Ellsberg Games

A game consists of a finite set N of players, a finite set of (pure) strategies Si, i ∈ N for

each player, as well as a collection of payoff functions ui : S → R defined over strategy

profiles S = ×i∈NSi. The normal form game is denoted G = 〈N, (Si), (ui)〉.
? introduced mixed strategies as probability vectors Pi over pure strategies Si. The

question then emerges how players evaluate profiles of such mixed strategies P =

(P1, . . . , Pn); as the reader knows, von Neumann and Morgenstern and the complete

subsequent literature adopt expected utility.

In this paper, we are going back to these foundations. Let us formalize the intuitive

idea that players can create ambiguity and/or conceal his actions with the help of impre-

cise probabilistic devices, or Ellsberg urns. An Ellsberg urn is, for us, a triple (Ω,F ,P)

of a nonempty set Ω of states of the world, a σ-field F on Ω (where one can take the

power set in case of a finite Ω), and a set of probability measures P on the measurable

space (Ω,F). This set of probability measures represents the Knightian uncertainty of

the strategy.

Note that we allow the player to choose the degree of ambiguity of his urn. He tells

the experimentalists of his laboratory to set up such and such an Ellsberg experiment

that generates exactly the set of distributions Pi. In this sense, the ambiguity in our

formulation of the game is “objective”; it is not a matter of agents’ beliefs about the

actions of other players, but rather a property of the device used to determine his action.

Technically, we model the Ellsberg urn of player i as a triple (Ωi,Fi,Pi) as explained

above. Player i acts in the game by choosing a measurable function (or Anscombe-

Aumann act) fi : (Ωi,Fi) → ∆Si which specifies the classical mixed strategy played

once the outcome of the Ellsberg urn is revealed. An Ellsberg strategy for player i is

then a pair ((Ωi,Fi,Pi), fi) of an Ellsberg urn and an act.

To finish the description of our Ellsberg game, we have to determine players’ payoffs.

As we explained in the introduction, we follow the axiomatization of attitude towards

objective but imprecise information in Gajdos, Hayashi, Tallon, and Vergnaud (2008)7

7The payoff from a profile of Ellsberg strategies is evaluated as a maxmin expected utility similar to
the axiomatization of Gilboa and Schmeidler (1989), but with the difference of the decision maker
facing objective instead of subjective ambiguity. Starting with Jaffray (1989), Giraud (2006) and
Giraud and Tallon (2011) as well as Stinchcombe (2007) and Olszewski (2007) also make a case for
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The payoff of player i ∈ N at an Ellsberg strategy profile ((Ω,F ,P), f) is thus the

minimal expected utility with respect to all different probability distributions in the

closed and convex set P ,

Ui(((Ω,F ,P), f)) := min
P1∈P1,...,Pn∈Pn

∫
Ω1

· · ·
∫

Ωn

ui(f(ω)) dPn . . . dP1 .

We call the described larger game an Ellsberg game. An Ellsberg equilibrium is, in the

same spirit as Nash equilibrium, a profile of Ellsberg strategies (((Ω∗i ,F∗i ,P∗i ), f ∗i ))i∈N
where no player has an incentive to deviate, i.e. for all players i ∈ N , all Ellsberg urns

(Ωi,Fi,Pi), and all acts fi for player i we have

Ui (((Ω
∗,F∗,P∗), f ∗)) ≥ Ui

(
((Ωi,Fi,Pi), fi), ((Ω∗−i,F∗−i,P∗−i), f ∗−i)

)
.8

2.1 Reduced Form Strategies

This definition of an Ellsberg game depends on the particular Ellsberg urn used by each

player i. As there are arbitrarily many possible state spaces (in fact, the class of all

state spaces is too large to be a well-defined set according to set theory), the definition

of Ellsberg equilibrium might not seem very tractable. Fortunately, there is a more

concise way to define Ellsberg equilibrium. The procedure is similar to the reduced form

of a correlated equilibrium, see Aumann (1974) or Fudenberg and Tirole (1991). Instead

of working with arbitrary Ellsberg urns, we note that the players’ payoff depends, in the

end, on the set of distributions that the Ellsberg urns and the associated acts induce on

the set of strategies. One can then work with that set of distributions directly.

Definition 1. Let G = 〈N, (Si), (ui)〉 be a normal form game. A reduced form Ellsberg

equilibrium of the game G is a profile of sets of probability measures Q∗i ⊆ ∆Si, such

that for all players i ∈ N and all sets of probability measures Qi ⊆ ∆Si we have

min
Pi∈Q∗i ,P−i∈Q∗−i

∫
Si

∫
S−i

ui(si, s−i) dP−idPi

≥ min
Pi∈Qi,P−i∈Q∗−i

∫
Si

∫
S−i

ui(si, s−i) dP−idPi .

The two definitions of Ellsberg equilibrium are equivalent in the following sense.

objective ambiguity.
8Throughout the paper we follow the notational convention that (fi, f

∗
−i) :=

(f∗1 , ..., f
∗
i−1, fi, f

∗
i+1, ..., f

∗
n). The same convention is used for profiles of pure strategies (si, s−i) and

probability distributions (Pi, P−i).
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Theorem 1. Ellsberg equilibrium and reduced form Ellsberg equilibrium are equivalent

in the sense that every Ellsberg equilibrium ((Ω∗,F∗,P∗), f ∗) induces a payoff-equivalent

reduced form Ellsberg equilibrium on Ω∗ = S; and every reduced form Ellsberg equilibrium

Q∗ is an Ellsberg equilibrium ((S,F ,Q∗), f ∗) with f ∗ the constant act.

We henceforth call a set Qi ⊆ ∆Si an Ellsberg strategy whenever it is clear that we

are in the reduced form context. In the definition of an Ellsberg game we assume that

the Ellsberg urns (Ωi,Fi,Pi) of all players i ∈ N are stochastically independent. This

is done by using product spaces as first suggested by Gilboa and Schmeidler (1989), p.

150. Different notions of stochastic independence in the context of ambiguity aversion

have been discussed in the literature, see for example Klibanoff (2001), Bade (2011) and

?. In the present context of objective ambiguity in the form of Ellsberg urns the above

notion by Gilboa and Schmeidler (1989) seems the most natural.

2.2 Ellsberg Equilibria Generalize Nash Equilibria

Note that the classical game is contained in our formulation: players just choose a

singleton Pi = {δπi} that puts all weight on a particular (classical) mixed strategy πi.

Player 1

Player 2
L R

T 3, 3 0, 0
B 0, 0 1, 1

Figure 1: Strategic Ambiguity does not unilaterally make a player better off.

Now let (π1, . . . , πn) be a Nash equilibrium of the game G. Can any player unilaterally

gain by creating ambiguity in such a situation? The answer is no. Take the game in

Figure 1 and look at the pure strategy Nash equilibrium (B,R) with equilibrium payoff

1 for both players. If player 1 introduces ambiguity, he will play T in some states of the

world (without knowing the exact probability of those states). But this does not help

here because player 2 sticks to his strategy R, so playing T just leads to a payoff of zero.

Unilateral introduction of ambiguity does not increase one’s own payoff. We think that

this is an important property of our formulation.

Theorem 2. Let G = 〈N, (Si), (ui)〉 be a normal form game. Then a mixed strategy

profile (π1, . . . , πn) of G is a Nash equilibrium of G if and only if the corresponding profile

of singletons (P1, . . . ,Pn) with Pi = {δπi} is an Ellsberg equilibrium. In particular,

Ellsberg equilibria exist when the strategy sets Si are finite.

11



By including and generalizing Nash equilibria, our formulation avoids the existence pit-

falls that one encounters when players are assumed to play pure strategies and beliefs

are uncertain about those pure actions.

2.3 Principle of Indifference in Distributions

We want to emphasize an important property of Ellsberg games (or ambiguity aversion

in general): the best reply functions are no longer linear in the probabilities. As a

consequence, the principle of indifference of classical game theory – when two pure

strategies yield the same payoff, then the player is indifferent about mixing in any

arbitrary way between the two strategies – does not carry over to Ellsberg games. When

a player is indifferent between two Anscombe-Aumann acts, this does not imply that he

is indifferent between all mixtures over these two acts. Thus, in an Ellsberg equilibrium

players are in general not indifferent between playing the Ellsberg strategy or playing the

pure strategies in its support. However, in Ellsberg equilibria the players are indifferent

between all distributions contained in their Ellsberg equilibrium strategy. We call this

the Principle of Indifference in Distributions, it is shown in the following.

Recall that a profile (P∗1 , . . . ,P∗n) is a reduced form Ellsberg equilibrium if for all i ∈ N
and all Pi ⊆ ∆Si,

Ui(P∗i ,P∗−i) ≥ Ui(Pi,P∗−i) . (1)

This formulation states that in equilibrium it is not profitable for any player to unilat-

erally deviate. Alternatively and in analogy with Nash equilibrium, an Ellsberg equilib-

rium can be defined as a profile of strategies, where each player only chooses strategies

which maximize his (in Ellsberg games) minimal expected utility. That is, (P∗1 , . . . ,P∗n)

is a reduced form Ellsberg equilibrium if for all i ∈ N and all Pi ∈ P∗i

Pi ∈ arg max
Pi⊆∆Si

Ui(Pi,P∗−i) . (2)

Conditions (1) and (2) are obviously equivalent. Thus we have

Proposition 1. Let G = 〈N, (Si), (ui)〉 be a normal form game. A profile of Ellsberg

strategies (P∗1 , . . . ,P∗n) satisfies (1) if an only if it satisfies (2).

We derive from the preceding proposition, that in an Ellsberg equilibrium (P∗1 , . . . ,P∗n),

for all i ∈ N ,

Pi ∈ arg max
P ′i∈∆Si

Ui(P
′
i ,P∗−i) for all Pi ∈ P∗i ,
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or, put differently,

Ui(P∗i ,P∗−i) = max
Pi∈∆Si

min
P−i∈P∗−i

ui(Pi, P−i) .

Thence, although Ui is defined as the minimal expected utility over all P1, . . . ,Pn, de

facto player i uses only maximizers in his own Ellsberg equilibrium strategy P∗i , any

other distribution would reduce his utility. In other words, all distributions Pi which

player i uses in his Ellsberg equilibrium strategy yield the same utility, that is, player i

is indifferent between any Pi ∈ P∗i . Thus we have

Theorem 3 (The Principle of Indifference in Distributions). Let (P∗1 , . . . ,P∗n) be an

Ellsberg equilibrium of a normal form game G = 〈N, (Si), (ui)〉. Then for all Pi ∈ P∗i ,

min
P−i∈P∗−i

ui(Pi, P−i) = c∗ for some c∗ ∈ R .

An important property of the payoff functions is that they are linear in probabilities.

In particular, with the equality established in Proposition 1, Ui(P∗i ,P∗−i) is linear on ∆Si

for each Pi and linear on P∗j for each Pj ∈ P∗j , j 6= i. This observation suffices to fulfill

the assumptions (multilinear functions are convex in each variable) to Fan’s Minimax

Theorem in ?. Thus, we have the following minimax theorem for Ellsberg games.

Theorem 4 (Minimax Theorem 1). In an Ellsberg equilibrium (P∗i ,P∗−i), for all i ∈ N ,

max
Pi∈∆Si

min
P−i∈P∗−i

ui(Pi, P−i) = min
P−i∈P∗−i

max
Pi∈∆Si

ui(Pi, P−i) .

3 Non-Nash Outcomes in Ellsberg Equilibrium

Strategic ambiguity can lead to new phenomena that lie outside the scope of classical

game theory. As our first example, we consider the following peace negotiation game

taken from Greenberg (2000). There are two small countries who can either opt for

peace, or war. If both countries opt for peace, all three players obtain a payoff of 4.

If one of the countries does not opt for peace, war breaks out, but the superpower

cannot decide whose action started the war. The superpower can punish one country

and support the other. The game tree is in Figure 2 below.9

9We take the payoffs as in Greenberg’s paper. In case the reader is puzzled by the slight asymmetry
between country A and B in payoffs: it does not play a role for our argument. One could replace
the payoffs 3 and 6 for country A by 0 and 9.
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peacewar

A

punishB

9, 0, 0

punishA

0, 9, 1 punishB

6, 0, 1

punishA

3, 9, 0

peace

4, 4, 4

war

B

C

1

Figure 2: Peace Negotiation

As we deal here only with static equilibrium concepts, we also present the normal

form, where country A chooses rows, country B columns, and the superpower chooses

the matrix.

war peace
war 0, 9, 1 0, 9, 1
peace 3, 9, 0 4, 4, 4

punishA

war peace
war 9, 0, 0 9, 0, 0
peace 6, 0, 1 4, 4, 4

punishB

Figure 3: Peace Negotiation in normal form

This game possesses a unique Nash equilibrium where country A mixes with equal

probabilities, and country B opts for war; the superpower has no clue who started the

war given these strategies. It is thus indifferent about whom to punish and mixes with

equal probabilities as well. War occurs with probability 1. The resulting equilibrium

payoff vector is (4.5, 4.5, 0.5).

If the superpower can create ambiguity (and if the countries A and B are ambiguity-

averse), the picture changes. Suppose for simplicity, that the superpower creates max-

imal ambiguity by using a device that allows for any probability between 0 and 1 for

its strategy punishA. The pessimistic players A and B are ambiguity-averse and thus

maximize against the worst case. For both of them, the worst case is to be punished

by the superpower, with a payoff of 0. Hence, both prefer to opt for peace given that

the superpower creates ambiguity. As this leads to a very desirable outcome for the

superpower, it has no incentive to deviate from this strategy. We have thus found an

equilibrium where the strategic use of ambiguity leads to an equilibrium outcome outside

the support of the Nash equilibrium outcome.

Let us formalize the above considerations. We claim that there is the following type
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of Ellsberg equilibria. The superpower creates ambiguity about its decision; if this

ambiguity is sufficiently large, both players fear to be punished by the superpower in

case of war. As a consequence, they opt for peace.

In our game with just two actions for the superpower, we can identify an Ellsberg

strategy with an interval [P0, P1] where P ∈ [P0, P1] is the probability that the su-

perpower punishes country A. Suppose the superpower plays so with P0 < 4/9 and

P1 > 5/9. Assume also that country B opts for peace. If A goes for war, it uses

that prior in [P0, P1] which minimizes its expected payoff, which is P1. This yields

UA(war, war, [P0, P1]) = P1 · 0 + (1 − P1) · 9 < 4. Hence, opting for peace is country

A’s best reply. The reasoning for country B is similar, but with the opposite probability

P0. If both countries A and B go for peace, the superpower gets 4 regardless of what

it does; in particular, the ambiguous strategy described above is optimal. We conclude

that (peace, peace, [P0, P1]) is a (reduced form) Ellsberg equilibrium.

Proposition 2. In Greenberg’s game, the strategies (peace, peace, [P0, P1]) with P0 <

4/9 and P1 > 5/9 form an Ellsberg equilibrium.

Note that this Ellsberg equilibrium is very different from the game’s unique Nash

equilibrium. In Nash equilibrium, war occurs in every play of the game; in our Ellsberg

equilibrium, peace is the unique outcome. By using the strategy [P0, P1] which is a

set of probability distributions, the superpower creates ambiguity. This supports an

Ellsberg equilibrium where players’ strategies do not lie in the support of the unique

Nash equilibrium. We also point out that the countries A and B use different worst-

case priors in equilibrium; this is a typical phenomenon in Ellsberg equilibria that are

supported by strategies which are not in the support of any Nash equilibrium of the

game.

Greenberg refers to historic peace negotiations between Israel and Egypt (countries A

and B in the negotiation example) mediated by the USA (superpower C) after the 1973

war. As explained by Kissinger (1982), p. 802, the fact that both Egypt and Israel were

too afraid to be punished if negotiations broke down partly contributed to the success

of the peace negotiations. This story is supported by our Ellsberg equilibrium, a first

evidence that Ellsberg equilibria might capture some real world phenomena better than

Nash equilibria.

Other equilibrium concepts for extensive form games (without Knightian uncertainty)

such as conjectural equilibrium, Battigalli and Guaitoli (1988), self-confirming equi-

librium, Fudenberg and Levine (1993), and subjective equilibrium, Kalai and Lehrer

(1995), can also assure the peace equilibrium outcome in the example by Greenberg. A
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discussion of Greenberg’s game close to ours is provided in Mukerji and Tallon (2004)

and Lo (2009), however, the authors describe an equilibrium situation supported by

subjective ambiguous beliefs, as opposed to our notion. Other equilibrium concepts for

extensive form games with Knightian uncertainty are, e.g., Battigalli, Cerreia-Vioglio,

Maccheroni, and Marinacci (2011) and Lo (1999). The relation of these equilibrium

concepts to Ellsberg equilibrium are discussed in ?; we only want to stress here that

in difference to the existing concepts the driving factor in Ellsberg equilibrium is that

ambiguity is employed strategically and objectively.

4 Strategic Ambiguity in Two-Person Conflicts

Our approach to games has its most natural and fruitful applications to conflicts where

players are at least to some degree in opposition to each other. We start this section

by discussing a modified version of Matching Pennies to illustrate the phenomena of

immunization against ambiguity and nonlinearity of payoffs that arise in Ellsberg games.

We then provide a general analysis of 2 × 2-conflict games. While our predictions

are broader than the classical Nash equilibrium, they remain restrictive, and, at least in

principle, testable (see Section 5). We show that in zero-sum games, Ellsberg equilibria

are value-preserving. Subsequently, we provide a characterization of 2× 2 coordination

games and explain how in such games the strategic use of ambiguity conceals maximin

and Nash behavior. The section closes with the calculation of Ellsberg equilibria of

circulant 3× 3 games such as Rock Scissors Paper and modified versions of this game.

4.1 A Matching Pennies Example

To get an intuition for Ellsberg equilibria in games of conflict, we take a modified version

of Matching Pennies as our example. The payoff matrix for this game is in Figure 4.

Player 1

Player 2
HEAD TAIL

HEAD 3,−1 −1, 1
TAIL −1, 1 1,−1

Figure 4: Modified Matching Pennies I

The Ellsberg equilibria for our first version of modified Matching Pennies are as follows.

Player 1 plays HEAD with probability P ∈ [1/2, P1] for some 1/2 ≤ P1 ≤ 1 and player

2 plays HEAD with probability Q ∈ [1/3, Q1] for some 1/3 ≤ Q1 ≤ 1/2. This Ellsberg
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equilibrium yields the same payoffs 1/3 and 0 as in Nash equilibrium. We prove a more

general theorem covering this case in Section 4.2.

Proposition 3. In Modified Matching Pennies I, the Ellsberg equilibria are of the form

([1/2, P1], [1/3, Q1]) for 1/2 ≤ P1 ≤ 1 and 1/3 ≤ Q1 ≤ 1/2.

The typical Ellsberg equilibrium strategy thus takes the following form. Player 1 says

:“I will play HEAD with a probability of at least 50%, but not less.” And Player 2

replies: “I will play HEAD with at least 33%, but not more than 50%.”

We point out two interesting effects that arise due to strategic ambiguity in this class of

games. On the one hand, the Ellsberg equilibria are different from what one might expect

first; in a game like the one above, one might intuitively guess that “full ambiguity”

would be an Ellsberg equilibrium, as the natural generalization of “full randomness”

(completely mixed Nash equilibrium). This is not the case.

On the other hand, due to the hedging or diversification effect provided by a (classical)

mixed strategy when players are ambiguity–averse, players can immunize against the

ambiguity used by their opponent. We call this effect immunization against strategic

ambiguity.

Immunization against Strategic Ambiguity

In our modified version of Matching Pennies, the unique Nash equilibrium is that player

1 mixes uniformly over his strategies, and player 2 mixes with (1/3, 2/3). This yields the

equilibrium payoffs 1/3 and 0. One might guess that one can get an Ellsberg equilib-

rium where both players use a set of probability measures around the Nash equilibrium

distribution as their strategy. This is not true.

The crucial point to understand here is the following. Players can immunize themselves

against ambiguity; in the modified Matching Pennies example, player 1 can use the mixed

strategy (1/3, 2/3) to make himself independent of any ambiguity used by the opponent.

Indeed, with this strategy, his expected payoff is 1/3 against any mixed strategy of

the opponent, and a fortiori against Ellsberg strategies as well. This strategy is also

the unique best reply of player 1 to Ellsberg strategies with ambiguity around the Nash

equilibrium; in particular, such strategic ambiguity is not part of an Ellsberg equilibrium.

Let us explain this somewhat more formally. An Ellsberg strategy for player 2 can be

identified with an interval [Q0, Q1] ⊆ [0, 1] where Q ∈ [Q0, Q1] is the probability to play

HEAD. Suppose player 2 uses many probabilities around 1/3, so Q0 < 1/3 < Q1. The
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(minimal) expected payoff for player 1 when he uses the mixed strategy with probability

P for HEAD is then

min
Q0≤Q≤Q1

3PQ− P (1−Q)− (1− P )Q+ (1− P )(1−Q)

= min {Q0(6P − 2), Q1(6P − 2)}+ 1− 2P

=


Q1(6P − 2) + 1− 2P if P < 1/3

1/3 if P = 1/3

Q0(6P − 2) + 1− 2P else .

We plot the payoff function in Figure 5. By choosing the mixed strategy P = 1/3, player

0,60,40,20

payoff

0,6

0,5

0,4

0,3

0,2

0,1

p

0
10,8

Figure 5: Player 1’s (minimal expected) payoff as a function of the probability P of
playing HEAD when player 2 uses the Ellsberg strategy [1/4, 1/2].

1 becomes immune against any ambiguity and ensures the (Nash) equilibrium payoff of

1/3. If there was an Ellsberg equilibrium with P0 < 1/2 < P1 and Q0 < 1/3 < Q1, then

the minimal expected payoff would be below 1/3. Hence, such Ellsberg equilibria do not

exist. We call the strategy that renders the player immune against any ambiguity used
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by the opponents immunization strategy.

Definition 2. Let G = 〈N, (Si), (ui)〉 be a normal form game. A mixed strategy P̄i ∈
∆Si for player i is called an immunization strategy, if there exists a vi ∈ R such that

Ui(P̄i,P−i) = vi for all sets P−i ⊆ ∆S−i.

Such immunization plays frequently a role in two-person games, and it need not al-

ways be the Nash equilibrium strategy that is used to render oneself immune. In fact,

Nash equilibrium and immunization are in some sense opposite concepts: with a Nash

equilibrium strategy the player wants to make his opponent indifferent between all his

strategies, and with an immunization strategy the player wants to make himself indif-

ferent. Consider, e.g., the slightly changed payoff matrix

Player 1

Player 2
HEAD TAIL

HEAD 1,−1 −1, 1
TAIL −2, 1 1,−1

Figure 6: Modified Matching Pennies II

In the unique Nash equilibrium, player 1 still plays both strategies with probability

1/2 (to render player 2 indifferent); however, in order to be immune against Ellsberg

strategies, he has to playHEAD with probability 3/5. Then his payoff is−1/5 regardless

of what player 2 does. This strategy does not play any role in Nash equilibrium, but

note that the payoff to the strategy is the same as in the unique Nash equilibrium in

which player 1 plays HEAD with probability 1/2 and player 2 with probability 2/5. In

fact, every strategy of player 1 in the interval [1/2, 3/5] yields the same maxmin payoff,

which makes this strategy a candidate for an Ellsberg equilibrium strategy.

Immunization as Maximin Strategy

The modified Matching Pennies I game (Figure 4) has also been discussed in Aumann and

Maschler (1972). The authors notice that in some (and not only in zero-sum!) games the

maximin payoff is the same as the Nash equilibrium payoff, what makes in those games

the maximin strategy more attractive than the Nash equilibrium strategy. In a very

instructive paper, ? analyses this observation further and finds, that this is the case if

and only if there exists a completely mixed Nash equilibrium and the maximin strategy

is an equalizer. What the author calls an equalizer is the same as an immunization

strategy, only for pure and mixed strategies and not for Ellsberg strategies, that is a
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strategy P̄i for which the expected payoff is constant for all strategies P−i ∈ ∆S−i. It is

immediate that every equalizer strategy is an immunization strategy10.

We have the following theorem on the relation of immunization and maximin strategies

in two-person normal form games.

Theorem 5. Let G be a square two-person normal form game with a completely mixed

Nash equilibrium (P ∗, Q∗). If player 1 (2) has an immunization strategy P̄ (Q̄) in G,

then P̄ (Q̄) is a maximin strategy of player 1 (2).

4.2 Ellsberg Equilibria in General 2× 2 Conflict Games

We calculate the Ellsberg equilibria of general 2× 2 conflict games. Consider the game

with payoff matrix in Figure 7. We assume that a, d > b, c and e, h < f, g.

Player 1

Player 2
L R

U a, e b, f
D c, g d, h

Figure 7: General conflict game.

As before, P ∗ and Q∗ are the probabilities with which U respectively L are played. Let

P ∗ =
h− g

e− f − g + h
, respectively Q∗ =

d− b
a− b− c+ d

denote the Nash equilibrium strategies for player 1 and 2, respectively. The immuniza-

tion strategies of each player are denoted by M1, respectively M2.

Proposition 4. Let P ∗, Q∗ denote the mixed strategy Nash equilibria and M1,M2 the

immunization strategies of player 1 and 2, respectively. Then the Ellsberg equilibria of

the general conflict game are of the following form.

M1 ≤ P ∗ M1 ≥ P ∗

M2 ≤ Q∗
([P0, P

∗] , [Q∗, Q1]) ([P0, P
∗] , [Q0, Q

∗])

M1 ≤ P0 M2 ≤ Q0

M2 ≥ Q∗
([P ∗, P1] , [Q∗, Q1]) ([P ∗, P1] , [Q0, Q

∗])

Q1 ≤M2 P1 ≤M1

10 If the expected payoff ui(P̄i, P−i) is constant for all P−i ∈ ∆S−i, then minP−i∈P−i
ui(P̄i, P−i) is also

constant for all P−i ⊂ ∆S−i. The converse is also true, since if minP−i∈P−i
ui(P̄i, P−i) is constant

for some fixed P̄i and all P−i ⊂ ∆S−i, then it is also constant for all P−i ∈ ∆S−i.
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If M1 = P ∗ or M2 = Q∗, then an additional type of Ellsberg equilibria arises,

(P ∗, [Q0, Q1]), where Q0 ≤ Q∗ ≤ Q1 when M1 = P ∗;

([P0, P1] , Q∗), where P0 ≤ P ∗ ≤ P1 when M2 = Q∗.

In any case, we have the Ellsberg equilibrium which is identical to the Nash equilibrium

in mixed strategies, (P ∗, Q∗).

We also see that our theory leads to a broader set of equilibria as the classical theory,

but it is not arbitrary. The probabilities used in Ellsberg equilibrium do have to satisfy

certain nontrivial bounds. In particular, one can test these bounds in the lab. We will

come back to testability in Section 5.

4.3 Ellsberg Equilibria are Value-Preserving in Zero-Sum

Games

We show that in two-person zero-sum games the Ellsberg equilibria all yield the same

payoff, and this payoff is the value v of the game for player 1, and −v for player 2.

Theorem 6 (Minimax Theorem 2). Let G be a two-person zero-sum game. Then for

all i ∈ {1, 2} and every Ellsberg equilibrium (P∗,Q∗) we have

max
Pi⊆∆Si

min
P−i⊆∆S−i

Ui(P ,Q) = min
P−i⊆∆S−i

max
Pi⊆∆Si

Ui(P ,Q) = Ui(P∗,Q∗) .

4.4 Ellsberg Equilibria in General 2× 2 Coordination Games

Next we calculate the Ellsberg equilibria of general 2× 2 coordination games. Consider

the game with payoff matrix in Figure 8. We assume that a, d ≥ b, c and e, h ≥ f, g with

a− b− c+ d 6= 0 and e− f − g + h 6= 0.

Player 1

Player 2
L R

U a, e b, f
D c, g d, h

Figure 8: General coordination game.

The conditions on the payoffs allow for different types of symmetric and non-symmetric

coordination games. Let P ∗ and Q∗ denote the Nash equilibrium strategies for player 1
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and 2, respectively. The Nash equilibrium strategies can be computed using standard

methods, they are

P ∗ =
h− g

e− f − g + h
and Q∗ =

d− b
a− b− c+ d

.

The immunization strategies of each player are denoted by M1 and M2. Furthermore,

player 1’s Ellsberg strategy is denoted [P0, P1], player 2’s [Q0, Q1]. Then we have the

following proposition.

Proposition 5. Let P ∗, Q∗ denote the mixed Nash equilibrium strategies, and M1,M2

the immunization strategies of player 1 and 2, respectively. Then the Ellsberg equilibria

of the general coordination game are of the following form.

M1 ≤ P ∗ M1 ≥ P ∗

M2 ≤ Q∗
([P ∗, P1] , [Q∗, Q1]) ([P ∗, P1] , [Q0, Q

∗])

P1 ≤M1 and M2 ≤ Q0

M2 ≥ Q∗
([P0, P

∗] , [Q∗, Q1]) ([P0, P
∗] , [Q0, Q

∗])

M1 ≤ P0 and Q1 ≤M2

If M1 = P ∗ or M2 = Q∗, then an additional type of Ellsberg equilibria arises,

(P ∗, [Q0, Q1]), where Q0 ≤ Q∗ ≤ Q1 when M1 = P ∗ ;

([P0, P1] , Q∗), where P0 ≤ P ∗ ≤ P1 when M2 = Q∗ .

In any case, the pure and mixed Nash equilibria, that is (U,L), (D,R) and (P ∗, Q∗), are

also Ellsberg equilibria.

Interestingly, the equilibria in the lower left and the upper right cell of the above

table contain the equilibria ([M1, P
∗], [Q∗,M2]) and ([P ∗,M1], [M2, Q

∗]), respectively.

The associated coordination games are those of the type Battle of the Sexes. In these

games, where despite the wish to coordinate the players are in some conflict of interest,

we see that the strategic use of ambiguity conceals Nash behavior and maximin behavior.

22



4.5 Ellsberg Equilibria in Circulant 3× 3 Games

We can apply the insights on the Ellsberg equilibria of 2 × 2 games in the preceding

sections to investigate the Ellsberg equilibria of larger games. We discuss the Ellsberg

equilibria of a special class of modified 3× 3 zero-sum games, that is, modified circulant

games. Circulant games have square payoff matrices in which the payoffs are circularly

permuted in every row (column). For example, the classic game Rock Scissors Paper

(RSP) is a circulant game, this is the game we analyze in this section. Our RSP has the

payoff matrix given in Figure 9, the strategies are denoted R for Rock, S for Scissors, P

for Paper.

Player 1

Player 2
R S P

R 0, 0 1,−1 −1, 1
S −1, 1 0, 0 1,−1
P 1,−1 −1, 1 0, 0

Figure 9: Rock Scissors Paper.

We fix some new notation for Ellsberg strategies when we deal with games with more

than two pure strategies. An Ellsberg strategy for player 1 is, as before, denoted by

P , for player 2 by Q. They are convex sets of probability distributions (P1, P2, P3) and

(Q1, Q2, Q3) in ∆S1 and ∆S2, respectively, that is P ⊆ ∆S1, Q ⊆ ∆S2. An Ellsberg

strategy P is described as follows. Fix two vectors x, y ∈ [0, 1]3 in the unit cube with

components (x1, x2, x3) and (y1, y2, y3). Then

P =

{
(P1, P2, P3) ∈ R3

∣∣∣ 3∑
i=1

Pi = 1, Pi ≥ 0, xi ≤ Pi ≤ yi, i = 1, 2, 3

}
. (3)

Note that P is completely described by giving the possible range of probabilities P1 and

P2. The range of P3 (given by x3 and y3) then follows directly from the assumption that

every triple (P1, P2, P3) ∈ P is a probability distribution and some careful calculations.

We use the following abbreviation for (3):

P = ({xi ≤ Pi ≤ yi})i=1,2,3 = ({x1 ≤ P1 ≤ y1}, {x2 ≤ P2 ≤ y2}, {x3 ≤ P3 ≤ y3}) .

We write {xi ≤ Pi} when yi = 1, and {Pi ≤ yi} when xi = 0. We drop the subscript

i = 1, 2, 3 when no confusion can arise. To describe an Ellsberg strategy Q for player 2,
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we use the vectors w, z ∈ [0, 1]3. An Ellsberg strategy for player 1 is then for example

({1/3 ≤ P1 ≤ 1/2}, {P2 ≤ 2/3}, {P3 ≤ 2/3}) .

When we calculate Ellsberg equilibria, we typically find a large number of equilibria

which are very similar but differ in that one or more boundaries of the set of probability

distributions are variable. Then we use the following notation. Fix x̂, ŷ ∈ [0, 1]3, then

({x̂i ≤ xi ≤ Pi ≤ yi ≤ ŷi})

:= {({xi ≤ Pi ≤ yi}) | for all x, y ∈ [0, 1]3 such that x̂i ≤ xi ≤ yi ≤ ŷi} .

As before, we suppress x̂i and ŷi when they are 0 or 1, respectively. Such a set of Ellsberg

strategies is then for example

({1/3 ≤ P1 ≤ y1 ≤ 1/2}, {x2 ≤ P2 ≤ 2/3}, {P3 ≤ y3 ≤ 2/3}) .

Note that this describes the set of Ellsberg strategies which necessarily include the

probability distribution (1/3, 2/3, 0) at the boundary of each Ellsberg strategy contained

in the set. This is the type of set of Ellsberg strategies which we encounter frequently

in Ellsberg equilibrium analysis.

Now we present the Ellsberg equilibria of RSP. The only Ellsberg equilibria these

games have11 are of the type (P ∗,Q∗) ((P∗, Q∗)), where P ∗ (Q∗) is the Nash equilibrium

strategy of player 1 (2), and Q∗ ⊆ ∆S2 (P∗ ⊆ ∆S1) can be any convex set of probability

distributions in which Q∗ (P ∗) is contained. This is the type of Ellsberg equilibrium

that occurs in circulant games such as RSP.

We use the following notation. We denote by P1(Q1) the probability with which

player 1(2) plays R, P2(Q2) the probability with which player 1(2) plays S, P3(Q3) the

probability with which player 1(2) plays P . The only Nash equilibrium of the game is

(P ∗, Q∗) = ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)). Therefore, using the above considerations,

we obtain the following proposition.

11This can be deduced from Proposition 4, contact the authors for details.
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Proposition 6. The Ellsberg equilibria of Rock Scissors Paper are

(({Pi = 1/3}), ({wi ≤ Qi ≤ zi})) ,

where 0 ≤ wi ≤ 1/3 ≤ zi ≤ 1 for all i = 1, 2, 3 ,

and (({xi ≤ Pi ≤ yi}), ({Qi = 1/3})) ,

where 0 ≤ xi ≤ 1/3 ≤ yi ≤ 1 for all i = 1, 2, 3 .

As in the matching pennies game, the situation changes when we slightly modify

the original zero-sum game. We consider the following modification (Figure 10), where

player 1 gets a payoff of 2, instead of 1, when (R, S) is played. Now the Nash equilibrium

Player 1

Player 2
R S P

R 0, 0 2,−1 −1, 1
S −1, 1 0, 0 1,−1
P 1,−1 −1, 1 0, 0

Figure 10: Modified Rock Scissors Paper.

is

(P ∗, Q∗) = ((1/3, 1/3, 1/3), (1/3, 1/4, 5/12)) .

As in 2 × 2 games, the immunization strategies play an important role in the Ellsberg

equilibria of the modified RSP. In our modified game, they are

(M1,M2) = ((1/4, 1/3, 5/12), (1/3, 1/3, 1/3)) .

We have the following proposition.

Proposition 7. The Ellsberg equilibria of the modified Rock Scissors Paper are

(({1/3 ≤ P1 ≤ y1 ≤ 2/3}, {P2 = 1/3}, {x3 ≤ P3 ≤ 1/3}),

({w1 ≤ Q1 ≤ z1}, {1/4 ≤ Q2 ≤ z2 ≤ 1/3}, {5/12 ≤ Q3 ≤ z3 ≤ 3/4})) ,

where 0 ≤ w1 ≤ 1/3 = z1 .

This can be read as player 1 using the strategy: “I will play Rock at least with probability

1/3 but not with probability higher than 2/3. I will play Paper with probability less than
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1/3 and Scissors with probability 1/3.” Before we prove this, we discuss the intuition of

the result. We know from the analysis of 2× 2 games that ambiguity can only be a best

response if the opponent uses his Nash equilibrium probability at the boundary of his

Ellsberg strategy, and additionally this is the worst case measure which the player uses

in his utility evaluation. In this case, the utility function has flat parts and the player

best responds with ambiguity. When the opponent plays exactly his Nash equilibrium

distribution (without using ambiguity himself), the whole utility function of the player

is flat and he can play any Ellsberg strategy he likes, it will always be a best response.

However, recall that this can only be an Ellsberg equilibrium if the opponent’s Nash

equilibrium strategy is exactly his maximin strategy.

Consider the Ellsberg equilibrium in Proposition 7. We can draw the Ellsberg strate-

gies as a projection into the 2-simplex (see, e.g., ? p. 36 for explanation) to understand

how the characteristics reviewed above are apparent in 3× 3 games. To this end we use

the ’largest’ Ellsberg equilibrium in the set, that is

(({1/3 ≤ P1 ≤ 2/3}, {P2 = 1/3}, {P3 ≤ 1/3}),

({Q1 ≤ 1/3}, {1/4 ≤ Q2 ≤ 1/3}, {5/12 ≤ Q3 ≤ 3/4})) .

In the equilateral triangle in Figures 11 and 12, for every point on the edge opposite

the vertex R, the probability that R is played is zero. On the other hand, at the

vertex R, R is played with probability one and S and P with probability zero. Sets of

probability distributions, as we encounter in Ellsberg equilibria, are drawn as gray areas.

The gray areas are the possible probabilities for each component of (P1, P2, P3) ∈ P (in

Figure 11) and (Q1, Q2, Q3) ∈ Q (in Figure 12), the intersection is then the set of

probability distributions which satisfy all three conditions of the Ellsberg strategy. The

intersection is framed by a thick black line. As one can see in Figure 11, the Ellsberg

equilibrium strategy of player 1 is a line, because {P2 = 1/3} contains only a single

element. His Nash equilibrium strategy P ∗ = (1/3, 1/3, 1/3) lies at the boundary of the

Ellsberg equilibrium strategy. Player 2 plays a set of probability distributions depicted in

Figure 12. Again, Q∗ = (1/3, 1/4, 5/12) lies at the boundary of the Ellsberg equilibrium

strategy. As we have seen in 2× 2 games, the ’largest’ Ellsberg equilibrium is bounded

by the immunization strategy M2.
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P ∗
M1

R S

P

Figure 11: Ellsberg equilibrium strategy of player 1 in the modified RSP.

5 Observational Implications of Ellsberg Games,

and Human Behavior

Human beings are not rational agents. This observation, trivial as it is for an educated

person, has been amply documented in experiments. They are neither rational, nor are

they all expected utility maximizers. Nevertheless, we can ask whether the aggregate

behavior of human beings in the lab is or is not related to equilibrium concepts put

forward by game theorists.

5.1 Observational Implications of Ellsberg Equilibria

Game Theory studies equilibrium outcomes of social conflicts when rational agents in-

teract. Human beings are quite different from rational agents in general, so one can only

expect to see a consistency with Nash equilibrium predictions and human behavior when

the situation is controlled in such a way as to bring out the rational part of humans.

Nevertheless, it does make sense to ask what the observational implications of our

theory are. For three player games, this is quite clear, as our theory predicts new

equilibria outside the support of Nash equilibria; this is a testable implication, and we

shall proceed one day to carry out such a test.

For two player games, the situation is more subtle. Both the Nash equilibrium and

the Ellsberg equilibria have full support, so the only thing that we can learn from our
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Q∗
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P

Figure 12: Ellsberg equilibrium strategy of player 2 in the modified RSP.

theory seems to be that either action is fine in a one shot game. This is indeed the

stance of Bade (2011), in line with a number of predecessors.

There is, however, a way to distinguish the predictions of Ellsberg equilibria and

Nash equilibria even in two player games. To understand this, we need first explain

how the law of large numbers looks like under ambiguity. The classical law states that

the frequency of HEAD in an infinite sequence of independent coin tosses will converge

to the probability of HEAD. Now let us look at a typical Ellsberg urn that contains

100 balls, red and black, and we only know that the number of red balls is between

30 and 60. What can we say about the average frequency drawn from independent

repetitions of the Ellsberg experiment? The natural guess would be that the average

lies in the interval between 30% and 60% in the long run. This is indeed correct, and

mathematical versions of that theorem have recently been proven, see Maccheroni and

Marinacci (2005) and Epstein and Schneider (2003), e.g. Peng (2007) has obtained the

result that the average frequency will indeed fluctuate between both bounds, and every

point in the interval [0.3, 0.6] is an accumulation point of the sequence.

What is then the empirical content of such laws of large numbers? If we adhere to the

point of view that our observed humans play independently one shot games, and that

they should play equilibrium strategies, then the average frequency will converge to the

Nash equilibrium strategy according to the classical theory, and will fluctuate between

two bounds according to the new Ellsberg theory.

We thus do get observational differences between the two theories; and we interpret
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the Goeree-Holt results that we discuss below as a first evidence that our theory can

accommodate deviations from Nash equilibrium observed in laboratories.

5.2 Human Behavior in Matching Pennies Games and Ellsberg

Equilibria

Whereas the support of the Ellsberg and Nash equilibria is obviously the same in the

two player games we studied, we do think that the Ellsberg equilibria reveal a new class

of behavior not encountered in game theory before.

It might be very difficult for humans to play exactly a randomizing strategy with equal

probabilities; indeed, the ability to do so has been a debate since the early days of game

theory, and some claim that humans cannot randomize, see Dang (2009) for a recent

account and references therein. Our result shows that it is not necessary to randomize

exactly to support a similar equilibrium outcome (with the same expected payoff). It is

just enough that your opponent knows that you are randomizing with some probability,

and that it could be that this probability is one half, but not less. It is thus sufficient

that the player is able to control the lower bound of his device. This might be easier to

implement than the perfectly random behavior required in classical game theory.

In fact, there are experimental findings which suggest that the Ellsberg equilibrium

strategy in the modified Matching Pennies game is closer to real behavior than the

Nash equilibrium prediction. To illustrate this, let us consider the interesting results

by Goeree and Holt (2001) who ran experiments on three different versions of Matching

Pennies; the three payoff matrices can be seen in Table 1.

In the first game, we have a typical symmetric conflict game with a unique mixed

Nash equilibrium in which both players randomize uniformly over both pure strategies.

The aggregate play of humans in the experiment is closely consistent with the Nash

equilibrium prediction, 48% of players choosing “Top” or “Left”, respectively.

Remember that the probabilities in a mixed strategy equilibrium are chosen in such

a way as to render the opponent indifferent between her two pure strategies. As a

consequence, if we change the payoffs of player 1 only (while keeping the ordering of

payoffs), his Nash equilibrium strategy does not change because he has to make player

2 indifferent between her two pure actions, and her payoffs have not been modified.

In the second game, called the asymmetric Matching Pennies game, player 1 gets

320 instead of 80 in the upper left outcome. All other payoffs remain the same. Many

humans now deviate from Nash, as is reported in brackets, 96% of the players taking the
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Left (48) Right (52)
Symmetric Top (48) 80,40 40,80

Bottom (52) 40,80 80,40
Left (16) Right(84)

Asymmetric Top (96) 320, 40 40,80
Bottom (4) 40,80 80,40

Left (80) Right (20)
Reversed Top (8) 44,40 40,80

Bottom (92) 40,80 80, 40

Table 1: The Goeree-Holt Results on three different versions of Matching Pennies.

action “Top”. Interestingly, also the humans playing the role of player 2 change their

behavior, and most of them play “Right”, the best reply to “Top”.

In the third case, player 1’s payoff in the upper left outcome is decreased to a lowly

44. Then only 8% of players choose “Top”; 80% of humans in the role of player 2 choose

“Left”.

While aggregate behavior by humans is certainly inconsistent with the predictions of

Nash equilibrium, it is consistent with Ellsberg equilibria. We summarize the results in

Table 2.

In the symmetric game, our Proposition 4 essentially predicts only Nash equilibrium

behavior, and this is what we observe in the experiment as well.

In the asymmetric Matching Pennies game, the Nash equilibrium strategies are P ∗ =

1/2 for player 1 and Q∗ = 1/8 for player 2. According to our proposition, the Ellsberg

equilibria allow for probabilities in the interval [1/2, 1] for player 1 choosing “Top”, and

for the interval [1/8, 1/2] for player 2 choosing “Left”. The observed percentages of 96%

and 16% do lie in these intervals.

And in the “reversed” version of the game, the Nash equilibrium strategies are P ∗ =

1/2 and Q∗ = 10/11. So we have the reversed relation Q∗ > P ∗. The Ellsberg equilibria

allow for probabilities for “Top” in the interval [0, 1/2] for player 1, and for probabilities

in [1/2, 10/11] for player 2. The aggregate observed quantities of 8% and 80% do lie in

these intervals.

6 Conclusion

This article demonstrates that the strategic use of ambiguity is a relevant concept in

game theory. Employing objective ambiguity as a strategic instrument leads to a new
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Game Nash Equilibrium Ellsberg Equilibrium Observations

Player 1 Player 2 Player 1 Player 2 Player 1 Player 2
symmetric 0.5 0.5 0.5 0.5 0.48 0.48
asymmetric 0.5 0.125 [0.5,1] [0.125,0.5] 0.96 0.16
reversed 0.5 0.90 [0,0.5] [0.5,0.90 ] 0.08 0.8

Table 2: Comparison of Nash and Ellsberg Predicitions with the Experimantal Observa-
tions. We record the probabilities (or intervals of probabilities) for each player
to play the first pure strategy (“Top” resp. “Left”) and the observed aggregate
frequency of these actions in the Goeree-Holt experiments.

class of equilibria not encountered in classic game theory. We point out that in many

games players choose to be deliberately ambiguous to gain a strategic advantage.

In some games this results in equilibrium outcomes which cannot be obtained as Nash

equilibria. The peace negotiation game provides an example of such Ellsberg equilibria.

Games with more than two players offer a strategic possibility that is not available in

two-person games, because a third player is able to induce the use of different probability

distributions. Although countries A and B observe the same Ellsberg strategy played by

the superpower C, due to their ambiguity aversion the countries use different probability

distributions to assess their utility. We plan to say more on this power of the third player,

as well as on immunization against strategic ambiguity in games with more than two

players, in a companion paper.

However, also two-person 2× 2 games with conflicting interests have Ellsberg equilib-

ria which are different from classic mixed strategy Nash equilibria. There are equilibria

in which both players create ambiguity. They use an Ellsberg strategy where they only

need to control the lower (or upper) bound of their set of probability distributions. We

argue that this device is easier to use for a player than playing one precise probability

distribution like in mixed strategy Nash equilibrium. What makes this argument at-

tractive is that the payoffs in these Ellsberg equilibria are the same as in the unique

mixed Nash equilibrium and thus the use of ambiguous strategies in competitive games

is indeed an option. Our argument is strengthened by experimental results. Without

any further assumptions besides ambiguity aversion, Ellsberg equilibria can explain hu-

man non-Nash behavior in modified Matching Pennies games. In symmetric Matching

Pennies, humans tend to play the Nash equilibrium which is also in line with our result

that essentially no new equilibria emerge in such symmetric games.
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Appendix

We provide here the proofs of Theorems 1, 2 and 5, of Propositions 4 and 5, Theorem 6

and Proposition 7 in this order (in which they appear in the text).

First we recap the definition of an Ellsberg equilibrium, which was stated in the text

of Section 3.

Definition 3. Let G = 〈N, (Si), (ui)〉 be a normal form game. A profile

(((Ω∗1,F∗1 ,P∗1 ), f ∗1 ), ..., ((Ω∗n,F∗n,P∗n), f ∗n))

of Ellsberg strategies is an Ellsberg equilibrium of G if no player has an incentive to

deviate from ((Ω∗,F∗,P∗), f ∗), i.e. for all players i ∈ N , all Ellsberg urns (Ωi,Fi,Pi)
and all acts fi for player i we have

Ui(((Ω
∗,F∗,P∗), f ∗)) ≥ Ui(((Ωi,Fi,Pi), fi), ((Ω∗−i,F∗−i,P∗−i), f ∗−i)), that is

min
Pi∈P∗i ,P−i∈P∗−i

∫
Ω∗i

∫
Ω∗−i

ui(f
∗
i (ωi), f

∗
−i(ω−i)) dP−idPi

≥ min
Pi∈Pi,P−i∈P∗−i

∫
Ωi

∫
Ω∗−i

ui(fi(ωi), f
∗
−i(ω−i)) dP−idPi.

Reduced form Ellsberg equilibrium is defined in Definition 1.

Proof of Theorem 1. “⇐ ” Let Q∗ be an Ellsberg equilibrium according to Definition 1.

We choose the states of the world Ω = S to be the set of pure strategy profiles, thereby we

see that player i uses the Ellsberg urn (Si,Fi,Q∗i ). We define the act f ∗i : (Si,Fi)→ ∆Si

to be the constant act that maps f ∗i (si) = {δsi}. {δsi} ∈ ∆Si is the degenerate mixed

strategy which puts all weight on the pure strategy si. Each measure Qi ∈ Q∗i has an

image measure under f ∗i ,

Qi ◦ f ∗
−1

i : {δsi} 7→ Qi(f
∗−1

i ({δsi}).

Qi ◦ f ∗
−1

i can be identified with Qi ∈ Q∗i . Thus the reduced form Ellsberg equilibrium

strategy Q∗i can be written as the Ellsberg strategy ((S,F ,Q∗), f ∗). This strategy is an

Ellsberg equilibrium according to Definition 3.

“ ⇒ ” Let now ((Ω∗,F∗,P∗), f ∗) be an Ellsberg equilibrium according to Definition

3. Every Pi ∈ P∗i induces an image measure Pi ◦ f ∗
−1

i on ∆Si that assigns a probability
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to a distribution f ∗i (ωi) ∈ ∆Si to occur.

To describe the probability that a pure strategy si is played, given a distribution

Pi and an Ellsberg strategy ((Ω∗i ,F∗i ,P∗i ), f ∗i ), we integrate f ∗i (ωi)(si) over all states

ωi ∈ Ωi. Thus we can define Qi to be:

Qi(si) :=

∫
Ω∗i

f ∗i (ωi)(si) dPi. (4)

Recall that Pi is a closed and convex set of probability distributions. We get a measure

Qi on Si for each Pi ∈ Pi ⊆ ∆Ωi. We call the resulting set of probability measures Q∗i .

Q∗i (si) :=

{
Qi(si) =

∫
Ω∗i

f ∗i (ωi)(si) dPi | Pi ∈ P∗i

}
.

Q∗i is closed and convex, since P∗i is.

Now suppose Q∗ was not a reduced form Ellsberg equilibrium. Then for some player

i ∈ N there existed a set Qi of probability measures on Si that yields a higher minimal

expected utility. This means we would have

min
Qi∈Qi,Q−i∈Q∗−i

∫
Si

∫
S−i

ui(si, s−i) dQ−idQi

> min
Qi∈Q∗i ,Q−i∈Q∗−i

∫
Si

∫
S−i

ui(si, s−i) dQ−idQi (5)

for some Qi 6= Q∗i . Let Q′i be the minimizer of the first expression, then it must be that

Q′i /∈ Q∗i . We know that Q′i is derived from some some P ′i under the equilibrium act,

Q′i(si) =

∫
Ω∗i

f ∗i (ωi)(si) dP
′
i . (6)

It follows that P ′i is not element of the equilibrium Ellsberg urn (Ω∗i ,F∗i ,P∗i ), that

is P ′i /∈ P∗i . Now it remains to show that in the original game P ′i yields a higher

minimal expected utility than using P∗i . In that case ((Ω∗,F∗,P∗), f ∗) is not an Ellsberg

equilibrium and the proof is complete.

Let player i use P ′i in his maxmin expected utility evaluation in the original game.
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This yields

min
P−i∈P∗−i

∫
Ω∗i

∫
Ω∗−i

ui(f
∗
i (ωi), f

∗
−i(ω−i)) dP−idP

′
i (7)

= min
P−i∈P∗−i

∫
Ω∗i

∫
Ω∗−i

∫
Si

∫
S−i

ui(si, s−i) df
∗
−i(ω−i)df

∗
i (ωi) dP−idP

′
i .

Recall that we use ui to be the utility function on Si as well as on ∆Si. We use equations

(4) and (6) to rewrite the expression and get

min
Q−i∈Q∗−i

∫
Si

∫
S−i

ui(si, s−i) dQ−idQ
′
i. (8)

We know by equation (5) that this is larger than the minimal expected utility over Q∗i
and this gives

(8) > min
Qi∈Q∗i ,Q−i∈Q∗−i

∫
Si

∫
S−i

ui(si, s−i) dQ−idQi

= min
Pi∈P∗i ,P−i∈P∗−i

∫
Ω∗i

∫
Ω∗−i

ui(f
∗
i (ωi), f

∗
−i(ω−i)) dP−idPi.

Going back to equation (7) we see that this contradicts the assumption that the profile

((Ω∗,F∗,P∗), f ∗) was an Ellsberg equilibrium. Thus Q∗ is a reduced form Ellsberg

equilibrium.

The main part of the proof of Theorem 2 is that every player can find for every profile

of Ellsberg strategies a mixed strategy that gives him at least the same utility as his

Ellsberg strategy. We first prove the latter result in the following lemma. We let π∗i

abbreviate the constant act that maps every state of the world to the mixed strategy

π∗i ∈ ∆Si.

Lemma 1. Let G = 〈N, (Si), (ui)〉 be a normal form game. Then for any profile of

Ellsberg strategies (P1, . . . ,Pn) and every i ∈ N there exists a mixed strategy π∗i ∈ ∆Si

such that Ui({δπ∗i },P−i) ≥ Ui(Pi,P−i).

Proof. If Pi is a singleton {δπi}, we take π∗i := πi and we are done. Let Pi not be a

singleton. Recall that Ui(Pi,P−i) is defined to be the minimal expected payoff according

to all distributions P ∈ P . Thus, there must exist a π∗i ∈ ∆Si for which {δπ∗i } ∈ Pi with

Ui({δπ∗i },P−i) ≥ Ui(Pi,P−i) .
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Proof of Theorem 2. Let P with Pi = {δπi} be an Ellsberg equilibrium of G. So

Ui({δπi}, {δπ−i
}) ≥ Ui(P ′i, {δπ−i

}) holds for all i ∈ N for all Ellsberg strategies P ′i ⊆ ∆Si.

In particular this holds for all singletons {δπ′i}, so

Ui({δπi}, {δπ−i
}) ≥ Ui({δπ′i}, {δπ−i

})

and thus

ui(πi, π−i) ≥ ui(π
′
i, π−i) for all π′i ∈ ∆Si .

Therefore the profile (π1, . . . , πn) is a Nash equilibrium of G.

Next, assume that (π1, . . . , πn) is a Nash equilibrium of G. Suppose it was not an

Ellsberg equilibrium of G, that is there exists an Ellsberg strategy Pi for some player i

such that Ui(Pi, {δπ−i
}) > Ui({δπi}, {δπ−i

}). By Lemma 1 we have that there exists a π∗i

such that

Ui({δπ∗i }, {δπ−i
}) ≥ Ui(Pi, {δπ−i

}) > Ui({δπi}, {δπ−i
}) .

This is a contradiction with the assumption that (π1, . . . , πn) was a Nash equilibrium of

the game G.

To prove Theorem 5 we use the following notation. A two-person normal form game G

is described by the payoff matrices A and B of player 1 and player 2, we writeG = (A,B).

We call G square when A and B are square matrices; in this section we only consider

square games. The row vectors of A (B) are denoted by subscripts, ai (bi) ∈ Rn, and

the column vectors by superscripts, aj (bj) ∈ Rn. In the following it will be convenient

to write the expected utility of a mixed strategy P of player 1 with payoff matrix A as

PAQ when player 2 plays mixed strategy Q. Transpose signs are suppressed.

A necessary condition for G to have a completely mixed Nash equilibrium is that no

player has weakly or strictly dominated strategies. That is, no row (column) of A (B) is

dominated by another row (column) or a convex combination of rows (columns). This

condition can be expressed as follows. Let Ã be the (n+ 1)× n-matrix consisting of the

matrix A with an additional last column (1, . . . , 1), and B̃ the n× (n+ 1)-matrix with

an additional last row (1, . . . , 1). Furthermore let k̃ = (k, . . . , k, 1) and l̃ = (l, . . . , l, 1)

with k, l ∈ R. Then G has a completely mixed Nash equilibrium (P,Q) = (P ∗, Q∗) when

it is a nonnegative solution to the two systems of linear equations

PB̃ = k̃ ,

ÃQ = l̃ .
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The existence of immunization strategies can be expressed analogously: no column (row)

of matrix A (B) is dominated by another column (row) or a convex combination of

columns (rows). Let ũ = (u, . . . , u, 1) and ṽ = (v, . . . , v, 1) with u, v ∈ R. Player 1 has

an immunization strategy P = P̄ in G when the vector is a nonnegative solution to the

system

PÃ = ũ ,

and player 2 has an immunization strategy Q = Q̄ in G when the vector is a nonnegative

solution to the system

B̃Q = ṽ .

Note that for the existence of a completely mixed Nash equilibrium both solutions P ∗

and Q∗ have to exist, whereas the immunization strategy is defined for a single player.

To a square game G we define associated zero-sum games G1 and G2. G1 is the game

with payoff matrices (A,−A), G2 the game with payoff matrices (−B,B). We first prove

the following lemma.

Lemma 2. Let G be a square two-person normal form game, G1 and G2 its associated

zero-sum games. If G has a completely mixed Nash equilibrium (P ∗, Q∗) and player 1

(2) has an immunization strategy P̄ (Q̄), then G1 (G2) has a Nash equilibrium (P ∗1 , Q
∗
1)

((P ∗2 , Q
∗
2)) where P ∗1 = P̄ and Q∗1 = Q∗ (P ∗2 = P ∗ and Q∗2 = Q̄).

Proof. We show this only for player 1, the case for player 2 follows analogously. If

(P ∗, Q∗) is a completely mixed Nash equilibrium of G, then Q∗ solves the system ÃQ = l̃

for some l ∈ R. Furthermore, if P̄ is an immunization strategy of player 1, then P̄ solves

the system PÃ = ũ for some u ∈ R. Then P̄ also solves P (−̃A) = −̃u and is therefore

a Nash equilibrium strategy for player 1 of the game G1.

Now, we can prove Theorem 5.

Proof of Theorem 5. We prove the result only for player 1. P̄ is an immunization strat-

egy of player 1 in the game G if and only if it is a nonnegative solution to the system

PÃ = ũ. Now by assumption there exists a completely mixed Nash equilbrium (P ∗, Q∗)

of G, thus with Lemma 2 there exists a completely mixed Nash equilibrium (P ∗1 , Q
∗
1) in

G1. P ∗1 is therefore a nonnegative solution to the system P (−̃A) = k̃ for some k ∈ R.

Then P ∗1 also solves the system PÃ = (−̃k) and we see that P ∗1 must be the immunization

strategy P̄ of player 1.
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Now, since G1 is a zero-sum game, P̄ is by the classic Minimax Theorem for zero-sum

games also the maximin strategy in G1, that means

P̄ ∈ arg max
P

min
Q
PAQ .

This condition only depends on the payoff matrix A of player 1, thus P̄ (= P ∗1 ) is the

maximin strategy in any game where player 1 has the payoff matrix A, in particular in

the game G.

To show the analog statement for player 2 we use the associated zero-sum gameG2.

Remark 1. Lemma 1 in ? proves a result very close to our Theorem 5, but with

different means by making use of geometric properties of the various types of strategies.

The interpretation of the result gets an interesting twist when we use the associated

zero-sum games as in our proof. A player who is immunizing himself against strategic

ambiguity blindfolds himself and drops the strategic element of the game. Instead of

playing the original game, he plays the associated zero-sum game which results from his

own payoff matrix. Thus, he plays his optimal strategy P̄ , the immunization strategy,

against an imaginary self that receives the negative of his own payoff.

Proof of Proposition 4. The Nash equilibrium strategies follow from the usual analysis.

To calculate the Ellsberg equilibria of the general conflict game (Figure 7), we first

derive the utility functions of player 1 and player 2. Due to the assumption that a, d >

b, c and e, h < f, g, the denominator a − b − c + d is positive, and the denominator

e − f − g + h is negative. This reflects the competitiveness of the game in the payoff

functions; player 1 uses Q0 as a minimizer when P > d−c
a−b−c+d , and on the contrary,

player 2 uses P0 as a minimizer when Q < h−f
e−f−g+h .

U1(P, [Q0, Q1]) = min
Q0≤Q≤Q1

aPQ+ bP (1−Q) + c(1− P )Q+ d(1− P )(1−Q)

= min
Q0≤Q≤Q1

Q((a− b− c+ d)P + c− d) + (b− d)P + d

=


Q0((a− b− c+ d)P + c− d) + (b− d)P + d if P > d−c

a−b−c+d ,

(b−d)(c−d)
a−b−c+d + d if P = d−c

a−b−c+d ,

Q1((a− b− c+ d)P + c− d) + (b− d)P + d if P < d−c
a−b−c+d ,
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U2([P0, P1] , Q) = min
P0≤P≤P1

ePQ+ g(1− P )Q+ fP (1−Q) + h(1− P )(1−Q)

= min
P0≤P≤P1

P ((e− f − g + h)Q+ f − h) + (g − h)Q+ h

=


P0((e− f − g + h)Q+ f − h) + (g − h)Q+ h if Q < h−f

e−f−g+h ,

(g−h)(h−f)
e−f−g+h + h if Q = h−f

e−f−g+h ,

P1((e− f − g + h)Q+ f − h) + (g − h)Q+ h if Q > h−f
e−f−g+h .

We see that

M1 =
d− c

a− b− c+ d
, respectively M2 =

h− f
e− f − g + h

are indeed the immunization strategies of player 1 and 2 respectively. At the boundaries

the utility functions become

U1(0 , [Q0, Q1]) = (c− d)Q1 + d , U2([P0, P1] , 0) = (f − h)P0 + h ,

U1(1 , [Q0, Q1]) = (a− b)Q0 + b , U2([P0, P1] , 1) = (e− g)P1 + g .

The payoff function of player 1 is constant when Q0 = Q1 = Q∗, and the payoff function

of player 2 is constant when P0 = P1 = P ∗. The best response correspondences for

both players are listed below. We see immediately that, of course, there cannot be an

Ellsberg equilibrium in pure strategies: when player 2 plays L, player 1 best responds

U , and when player 1 plays U , player 2 best responds R. The intersections of the best

response correspondences are discussed in detail below.

Q0 > Q∗ : B1([Q0, Q1]) = 1 (1)

Q0 = Q∗ < Q1 : B1([Q0, Q1]) = {[P0, P1] ⊆ [M1, 1]} (2)

Q0 < Q∗ < Q1 : B1([Q0, Q1]) = M1 (3)

Q0 < Q∗ = Q1 : B1([Q0, Q1]) = {[P0, P1] ⊆ [0,M1]} (4)

Q1 < Q∗ : B1([Q0, Q1]) = 0 (5)

Q0 = Q∗ = Q1 : B1([Q0, Q1]) = {[P0, P1] ⊆ [0, 1]} (6)
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P0 > P ∗ : B2([P0, P1]) = 0

P0 = P ∗ < P1 : B2([P0, P1]) = {[Q0, Q1] ⊆ [0,M2]}

P0 < P ∗ < P1 : B2([P0, P1]) = M2

P0 < P ∗ = P1 : B2([P0, P1]) = {[Q0, Q1] ⊆ [M2, 1]}

P1 < P ∗ : B2([P0, P1]) = 1

P0 = P ∗ = P1 : B2([P0, P1]) = {[Q0, Q1] ⊆ [0, 1]}

To find the Ellsberg equilibria, we look at the different cases in turn.

(1) Q0 > Q∗ : player 1 responds P0 = P1 = 1 and player 2 chooses Q0 = Q1 = 0, thus

this is not an Ellsberg equilibrium.

(2)
[

d−b
a−b−c+d , Q1

]
⇒ [P0, P1] ⊆

[
d−c

a−b−c+d , 1
]
, then, depending on the size of M1 in rela-

tion to P ∗, player 1 has the following choices:

• d−c
a−b−c+d ≤

h−g
e−f−g+h : player 1 can play either

–
[

h−g
e−f−g+h , P1

]
, then the best response of player 2 is [Q0, Q1] ⊆

[
0, h−f

e−f−g+h

]
.

Now, depending on the size of M2 in relation to Q∗, player 2 has the

following choices:

∗ h−f
e−f−g+h ≥

d−b
a−b−c+d :

[
d−b

a−b−c+d , Q1

]
with Q1 ≤ h−f

e−f−g+h , we thus have

here the Ellsberg equilibrium([
h− g

e− f − g + h
, P1

]
,

[
d− b

a− b− c+ d
,Q1

])
,

where Q1 ≤
h− f

e− f − g + h
,

that is ([P ∗, P1] , [Q∗, Q1]), where Q1 ≤M2 .

∗ h−f
e−f−g+h ≤

d−b
a−b−c+d : for all [Q0, Q1] the best response is P0 = P1 = 0,

thus no Ellsberg equilibrium arises.

– or
[
P0,

h−g
e−f−g+h

]
with d−c

a−b−c+d ≤ P0 ≤ h−g
e−f−g+h , then the best response of

player 2 is [Q0, Q1] ⊆
[

h−f
e−f−g+h , 1

]
. Now, depending on the size of M2 in

relation to Q∗, player 2 has the following choices:

∗ h−f
e−f−g+h ≤

d−b
a−b−c+d :

[
d−b

a−b−c+d , Q1

]
, then the best response of player 1
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is [P0, P1] ⊆
[

d−c
a−b−c+d , 1

]
. We thus have here the Ellsberg equilibrium([

P0,
h− g

e− f − g + h

]
,

[
d− b

a− b− c+ d
,Q1

])
,

where
d− c

a− b− c+ d
≤ P0 ,

that is ([P0, P
∗] , [Q∗, Q1]), where M1 ≤ P0 .

∗ h−f
e−f−g+h ≥

d−b
a−b−c+d : for all [Q0, Q1] the best response is P0 = P1 = 1,

thus no Ellsberg equilibrium arises.

• d−c
a−b−c+d ≥

h−g
e−f−g+h : to any [P0, P1] the best response is Q0 = Q1 = 0, thus no

Ellsberg equilibrium arises.

(3) Q0 < Q∗ < Q1 : player 1 responds with P0 = P1 = M1. Only when M1 = P ∗, player

1 sticks to his strategy and we get the equilibrium (P ∗, [Q0, Q1]), where Q0 < Q∗ <

Q1.

(4)
[
Q0,

d−b
a−b−c+d

]
⇒ [P0, P1] ⊆

[
0, d−c

a−b−c+d

]
, then, depending on the size of M1 in rela-

tion to P ∗, player 1 has the following choices:

• d−c
a−b−c+d ≥

h−g
e−f−g+h : player 1 can play either

–
[
P0,

h−g
e−f−g+h

]
, then the best response of player 2 is [Q0, Q1] ⊆

[
h−f

e−f−g+h , 1
]
.

Now, depending on the size of M2 in relation to Q∗, player 2 has the

following choices:

∗ h−f
e−f−g+h ≤

d−b
a−b−c+d :

[
Q0,

d−b
a−b−c+d

]
with h−f

e−f−g+h ≤ Q0, we thus have

here the Ellsberg equilibrium([
P0,

h− g
e− f − g + h

]
,

[
Q0,

d− b
a− b− c+ d

])
,

where
h− f

e− f − g + h
≤ Q0 ,

that is ([P0, P
∗] , [Q0, Q

∗]), where M2 ≤ Q0 .

∗ h−f
e−f−g+h ≥

d−b
a−b−c+d : for all [Q0, Q1] the best response is P0 = P1 = 1,

thus no Ellsberg equilibrium arises.
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– or
[

h−g
e−f−g+h , P1

]
with h−g

e−f−g+h ≤ P1 ≤ d−c
a−b−c+d , then the best response of

player 2 is [Q0, Q1] ⊆
[
0, h−f

e−f−g+h

]
. Now, depending on the size of M2 in

relation to Q∗, player 2 has the following choices:

∗ d−b
a−b−c+d ≤

h−f
e−f−g+h :

[
Q0,

d−b
a−b−c+d

]
, then the best response of player 1

is [P0, P1] ⊆
[
0, d−c

a−b−c+d

]
. We thus have here the Ellsberg equilibrium([

h− g
e− f − g + h

, P1

]
,

[
Q0,

d− b
a− b− c+ d

])
,

where P1 ≤
d− c

a− b− c+ d
,

that is ([P ∗, P1] , [Q0, Q
∗]), where P1 ≤M1 .

∗ d−b
a−b−c+d ≥

h−f
e−f−g+h : for all [Q0, Q1] the best response is P0 = P1 = 0,

thus no Ellsberg equilibrium arises.

• d−c
a−b−c+d ≤

h−g
e−f−g+h : to any [P0, P1] the best response is Q0 = Q1 = 0, thus no

Ellsberg equilibrium arises.

(5) Q1 < Q∗ : player 1 responds P0 = P1 = 0 and player 2 chooses Q0 = Q1 = 1

thereafter, thus this is not an Ellsberg equilibrium.

(6) Q0 = Q∗ = Q1 : player 1 responds with [P0, P1] ⊆ [0, 1]. Only when M2 = Q∗, player

2 sticks to his strategy and we get the equilibrium ([P0, P1] , Q∗), where P0 < P ∗ <

P1.

Theorem 6 follows from the following three lemmas. The first lemma concerns the

maximization and minimization of a linear function u on some convex set ∆S (for the

moment, S does not denote a set of strategy profiles, but simply a set with m elements).

Lemma 3. P is a probability distribution on the set S = {s1, . . . , sm}. Let u(P ) be a

linear function that maps the m-dimensional vector P into the real numbers. We denote

by ∆S the set of probability distributions P , and by P ⊂ ∆S a closed and convex subset

of ∆S. Then

max
P⊆∆S

min
P∈P

u(P ) = max
P∈∆S

u(P ) , (9)

and min
P⊆∆S

min
P∈P

u(P ) = min
P∈∆S

u(P ) . (10)
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Proof. We start by showing equation (9). It is evident that

max
P∈∆S

u(P ) ≥ max
P⊆∆S

min
P∈P

u(P ) ,

so it remains to show that the left hand side is always greater than or equal to the right

hand side of (9). Since the function u(P ) is linear, there exists a P ′ ∈ ∆S with

max
P∈∆S

u(P ) = u(P ′) .

Now we have

max
P⊆∆S

min
P∈P

u(P ) ≥ max
P⊆∆S,P ′∈P

min
P∈P

u(P ) ,

since maximizing over a smaller number of subsets of ∆S is necessarily less than or equal

to the original maximization. Making the set over which we maximize even smaller, we

obtain

max
P⊆∆S,P ′∈P

min
P∈P

u(P ) ≥ max
P ′

min
P=P ′

u(P ) = u(P ′)

and the equality (9) is shown. The argument for equation (10) is analog:

min
P⊆∆S

min
P∈P

u(P ) ≥ min
P∈∆S

u(P )

is evident. Furthermore, there exists P ′ ∈ ∆S such that minP∈∆S u(P ) = u(P ′), and

min
P⊆∆S

min
P∈P

u(P ) ≤ min
P⊆∆S,P ′∈P

min
P∈P

u(P )

≤ min
P ′

min
P=P ′

u(P ) = u(P ′)

and the equality holds.

Lemma 4. Let G be a zero-sum game with two players. Then the following holds.

min
Q⊆∆S2

max
P⊆∆S1

U1(P ,Q)
(1)
= max
P⊆∆S1

min
Q⊆∆S2

U1(P ,Q)
(2)
= u1(P ∗, Q∗) = v , (11)

and min
P⊆∆S1

max
Q⊆∆S2

U2(P ,Q)
(1)
= max
Q⊆∆S2

min
P⊆∆S1

U2(P ,Q)
(2)
= −u1(P ∗, Q∗) = −v . (12)

Proof. We start by showing equality (2) of equation (11), followed by equality (1). (12)

is shown below. For all equalities we use the fact that for all linear functions f(x, y),
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minx miny f(x, y) = miny minx f(x, y), and Lemma 3.

max
P⊆∆S1

min
Q⊆∆S2

U1(P ,Q) = max
P⊆∆S1

min
Q⊆∆S2

min
P∈P

min
Q∈Q

u1(P,Q)

= max
P⊆∆S1

min
Q⊆∆S2

min
Q∈Q

min
P∈P

u1(P,Q)
Lemma 3

= max
P⊆∆S1

min
Q∈∆S2

min
P∈P

u1(P,Q)

= max
P⊆∆S1

min
P∈P

min
Q∈∆S2

u1(P,Q)
Lemma 3

= max
P∈∆S1

min
Q∈∆S2

u1(P,Q) = u1(P ∗, Q∗) = v .

To proof equality (1) of equation (11) we need the Minimax Theorem 1 which we pre-

sented in Theorem 4. Then we have

min
Q⊆∆S2

max
P⊆∆S1

U1(P ,Q) = min
Q⊆∆S2

max
P⊆∆S1

min
P∈P

min
Q∈Q

u1(P,Q)

= min
Q⊆∆S2

max
P∈∆S1

min
Q∈Q

u1(P,Q)
Thm. 4

= min
Q⊆∆S2

min
Q∈Q

max
P∈∆S1

u1(P,Q)

= min
Q∈∆S2

max
P∈∆S1

u1(P,Q) = u1(P ∗, Q∗) = max
P⊆∆S1

min
Q⊆∆S2

U1(P ,Q) .

We now come to equality (2) of equation (12).

max
Q⊆∆S2

min
P⊆∆S1

U2(P ,Q) = max
Q⊆∆S2

min
P⊆∆S1

min
Q∈Q

min
P∈P

u2(P,Q)

= max
Q⊆∆S2

min
P⊆∆S1

min
P∈P

min
Q∈Q

u2(P,Q)
Lemma 3

= max
Q⊆∆S2

min
P∈∆S1

min
Q∈Q

u2(P,Q)

= max
Q⊆∆S2

min
Q∈Q

min
P∈∆S1

u2(P,Q)
Lemma 3

= max
P∈∆S1

min
Q∈∆S2

u2(P,Q)

= max
P∈∆S1

min
Q∈∆S2

−u1(P,Q) = −u1(P ∗, Q∗) = v .

Lastly, we show equality (1) of equation (12).

min
P⊆∆S1

max
Q⊆∆S2

U2(P ,Q) = min
P⊆∆S1

max
Q⊆∆S2

min
Q∈Q

min
P∈P

u2(P,Q)

= min
P⊆∆S1

max
Q∈∆S2

min
P∈P

u2(P,Q)
Thm. 4

= min
P⊆∆S1

min
P∈P

max
Q∈∆S2

−u1(P,Q)

= min
P∈∆S1

max
Q∈∆S2

−u1(P,Q) = −u1(P ∗, Q∗) = max
Q⊆∆S2

min
P⊆∆S1

U2(P ,Q) .

Lemma 5. Let (P∗,Q∗) be an Ellsberg equilibrium of the two-person zero-sum game G.
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Then

U1(P∗,Q∗) = u1(P ∗, Q∗) = v , (13)

and U2(P∗,Q∗) = −u1(P ∗, Q∗) = −v . (14)

Proof. We start by showing equation (13). Equation (14) follows analogously.

U2(P∗,Q∗) ≥ U2(P∗,Q) for all Q ⊆ ∆S2

⇒ U2(P∗,Q∗) = max
Q⊆∆S2

U2(P∗,Q)

⇒ min
P∈P∗

min
Q∈Q∗

u2(P,Q) = max
Q⊆∆S2

min
P∈P∗

min
Q∈Q∗

u2(P,Q)

⇒ min
P∈P∗

min
Q∈Q∗

u2(P,Q) = max
Q∈∆S2

min
P∈P∗

u2(P,Q)

⇒max
P∈P∗

max
Q∈Q∗

u1(P,Q) = min
Q∈∆S2

max
P∈P∗

u1(P,Q)

⇒max
P∈P∗

max
Q∈Q∗

u1(P,Q) ≤ min
Q∈∆S2

max
P∈∆S1

u1(P,Q) .

Furthermore,

U1(P∗,Q∗) ≥ U1(P ,Q∗) for all P ⊆ ∆S1

⇒ U1(P∗,Q∗) = max
P⊆∆S1

U1(P ,Q∗)

⇒ min
P∈P∗

min
Q∈Q∗

u1(P,Q) = max
P⊆∆S1

min
P∈P

min
Q∈Q∗

u1(P,Q)

⇒ min
P∈P∗

min
Q∈Q∗

u1(P,Q) = max
P∈∆S1

min
Q∈Q∗

u1(P,Q)

⇒ min
P∈P∗

min
Q∈Q∗

u1(P,Q) ≥ max
P∈∆S1

min
Q∈∆S2

u1(P,Q) .

From the above relations and the classical Minimax Theorem follows that

max
P∈P∗

max
Q∈Q∗

u1(P,Q) ≤ min
Q∈∆S2

max
P∈∆S1

u1(P,Q) = max
P∈∆S1

min
Q∈∆S2

u1(P,Q) ≤ min
P∈P∗

min
Q∈Q∗

u1(P,Q)

and we finally have U1(P∗,Q∗) = u1(P ∗, Q∗) = v .

From Lemma 3, 4 and 5 follows Theorem 6.

Proof of Proposition 5. The Nash equilibrium strategies follow from the usual analysis.

To calculate the Ellsberg equilibria of the general coordination game (Figure 8), we
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first derive the utility functions of player 1 and player 2. Due to the assumption that

a, d ≥ b, c and e, h ≥ f, g, with a− b− c+d 6= 0 and e−f − g+h 6= 0, the denominators

a− b− c+ d and e− f − g+h are positive. This reflects in the payoff functions that the

game is a coordination game; player 1 uses Q0 as a minimizer when P > d−c
a−b−c+d , and,

the same way, player 2 uses P0 as a minimizer when Q > h−f
e−f−g+h .

U1(P, [Q0, Q1]) = min
Q0≤Q≤Q1

aPQ+ bP (1−Q) + c(1− P )Q+ d(1− P )(1−Q)

= min
Q0≤Q≤Q1

Q((a− b− c+ d)P + c− d) + (b− d)P + d

=


Q0((a− b− c+ d)P + c− d) + (b− d)P + d if P > d−c

a−b−c+d ,

(b−d)(c−d)
a−b−c+d + d if P = d−c

a−b−c+d ,

Q1((a− b− c+ d)P + c− d) + (b− d)P + d if P < d−c
a−b−c+d ,

U2([P0, P1] , Q) = min
P0≤P≤P1

ePQ+ g(1− P )Q+ fP (1−Q) + h(1− P )(1−Q)

= min
P0≤P≤P1

P ((e− f − g + h)Q+ f − h) + (g − h)Q+ h

=


P0((e− f − g + h)Q+ f − h) + (g − h)Q+ h if Q > h−f

e−f−g+h ,

(g−h)(h−f)
e−f−g+h + h if Q = h−f

e−f−g+h ,

P1((e− f − g + h)Q+ f − h) + (g − h)Q+ h if Q < h−f
e−f−g+h .

We see that

M1 =
d− c

a− b− c+ d
, respectively M2 =

h− f
e− f − g + h

are the immunization strategies of player 1 and 2, respectively. At the boundaries the

utility functions become

U1(0 , [Q0, Q1]) = (c− d)Q1 + d , U2([P0, P1] , 0) = (f − h)P1 + h ,

U1(1 , [Q0, Q1]) = (a− b)Q0 + b , U2([P0, P1] , 1) = (e− g)P0 + g .

The payoff function of player 1 is constant for all P , when Q1 = Q0 = Q∗, and the payoff

function of player 2 is constant for all Q, when P1 = P0 = P ∗. We calculate the best
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response correspondences:

Q0 > Q∗ : B1([Q0, Q1]) = 1 (1)

Q0 = Q∗ < Q1 : B1([Q0, Q1]) = {[P0, P1] ⊆ [M1, 1]} (2)

Q0 < Q∗ < Q1 : B1([Q0, Q1]) = M1 (3)

Q0 < Q∗ = Q1 : B1([Q0, Q1]) = {[P0, P1] ⊆ [0,M1]} (4)

Q1 < Q∗ : B1([Q0, Q1]) = 0 (5)

Q0 = Q∗ = Q1 : B1([Q0, Q1]) = {[P0, P1] ⊆ [0, 1]} (6)

P0 > P ∗ : B2([P0, P1]) = 1

P0 = P ∗ < P1 : B2([P0, P1]) = {[Q0, Q1] ⊆ [M2, 1]}

P0 < P ∗ < P1 : B2([P0, P1]) = M2

P0 < P ∗ = P1 : B2([P0, P1]) = {[Q0, Q1] ⊆ [0,M2]}

P1 < P ∗ : B2([P0, P1]) = 0

P0 = P ∗ = P1 : B2([P0, P1]) = {[Q0, Q1] ⊆ [0, 1]}

To find the Ellsberg equilibria, we look at the different cases in turn.

(1) Q0 > Q∗ : player 1 responds P0 = P1 = 1. If also player 2 chooses Q0 = Q1 = 1, this

is the Ellsberg equilibrium that is identical to the pure Nash equilibrium (U,L).

(2)
[

d−b
a−b−c+d , Q1

]
⇒ [P0, P1] ⊆

[
d−c

a−b−c+d , 1
]
, then, depending on the size of M1 in rela-

tion to P ∗, player 1 has the following choices:

• d−c
a−b−c+d ≤

h−g
e−f−g+h : player 1 can play either

–
[

h−g
e−f−g+h , P1

]
, then the best response of player 2 is [Q0, Q1] ⊆

[
h−f

e−f−g+h , 1
]
.

Now, depending on the size of M2 in relation to Q∗, player 2 has the

following choices:

∗ h−f
e−f−g+h ≤

d−b
a−b−c+d :

[
d−b

a−b−c+d , Q1

]
, we thus have here the Ellsberg

equilibrium ([
h− g

e− f − g + h
, P1

]
,

[
d− b

a− b− c+ d
,Q1

])
,

that is ([P ∗, P1] , [Q∗, Q1]) .
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∗ h−f
e−f−g+h ≥

d−b
a−b−c+d : for all [Q0, Q1] the best response is P0 = P1 = 1,

thus no Ellsberg equilibrium arises.

– or
[
P0,

h−g
e−f−g+h

]
with d−c

a−b−c+d ≤ P0 ≤ h−g
e−f−g+h , then the best response of

player 2 is [Q0, Q1] ⊆
[
0, h−f

e−f−g+h

]
. Now, depending on the size of M2 in

relation to Q∗, player 2 has the following choices:

∗ h−f
e−f−g+h ≥

d−b
a−b−c+d :

[
d−b

a−b−c+d , Q1

]
with Q1 ≤ h−f

e−f−g+h , then the best

response of player 1 is [P0, P1] ⊆
[

d−c
a−b−c+d , 1

]
. We thus have here the

Ellsberg equilibrium([
P0,

h− g
e− f − g + h

]
,

[
d− b

a− b− c+ d
,Q1

])
,

where
d− c

a− b− c+ d
≤ P0 and Q1 ≤

h− f
e− f − g + h

,

that is ([P0, P
∗] , [Q∗, Q1]), where M1 ≤ P0 and Q1 ≤M2 .

∗ h−f
e−f−g+h ≤

d−b
a−b−c+d : for all [Q0, Q1] the best response is P0 = P1 = 0,

thus no Ellsberg equilibrium arises.

• d−c
a−b−c+d ≤

h−g
e−f−g+h : to any [P0, P1] the best response is Q0 = Q1 = 1, thus no

Ellsberg equilibrium arises.

(3) Q0 < Q∗ < Q1 : player 1 responds with P0 = P1 = M1. Only when M1 = P ∗, player

1 sticks to his strategy and we get the equilibrium (P ∗, [Q0, Q1]), where Q0 < Q∗ <

Q1.

(4)
[
Q0,

d−b
a−b−c+d

]
⇒ [P0, P1] ⊆

[
0, d−c

a−b−c+d

]
, then, depending on the size of M1 in rela-

tion to P ∗, player 1 has the following choices:

• d−c
a−b−c+d ≥

h−g
e−f−g+h : player 1 can play either

–
[
P0,

h−g
e−f−g+h

]
, then the best response of player 2 is [Q0, Q1] ⊆

[
0, h−f

e−f−g+h

]
.

Now, depending on the size of M2 in relation to Q∗, player 2 has the

following choices:

∗ h−f
e−f−g+h ≥

d−b
a−b−c+d :

[
Q0,

d−b
a−b−c+d

]
, we thus have here the Ellsberg
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equilibrium ([
P0,

h− g
e− f − g + h

]
,

[
Q0,

d− b
a− b− c+ d

])
,

that is ([P0, P
∗] , [Q0, Q

∗]) .

∗ h−f
e−f−g+h ≤

d−b
a−b−c+d : for all [Q0, Q1] the best response is P0 = P1 = 0,

thus no Ellsberg equilibrium arises.

– or
[

h−g
e−f−g+h , P1

]
with h−g

e−f−g+h ≤ P1 ≤ d−c
a−b−c+d , then the best response of

player 2 is [Q0, Q1] ⊆
[

h−f
e−f−g+h , 1

]
. Now, depending on the size of M2 in

relation to Q∗, player 2 has the following choices:

∗ d−b
a−b−c+d ≥

h−f
e−f−g+h :

[
Q0,

d−b
a−b−c+d

]
with h−f

e−f−g+h ≤ Q0, then the best

response of player 1 is [P0, P1] ⊆
[
0, d−c

a−b−c+d

]
. We thus have here the

Ellsberg equilibrium([
h− g

e− f − g + h
, P1

]
,

[
Q0,

d− b
a− b− c+ d

])
,

where P1 ≤
d− c

a− b− c+ d
and

h− f
e− f − g + h

≤ Q0 ,

that is ([P ∗, P1] , [Q0, Q
∗]), where P1 ≤M1 and M2 ≤ Q0 .

∗ d−b
a−b−c+d ≤

h−f
e−f−g+h : for all [Q0, Q1] the best response is P0 = P1 = 1,

thus no Ellsberg equilibrium arises.

• d−c
a−b−c+d ≤

h−g
e−f−g+h : to any [P0, P1] the best response is Q0 = Q1 = 1, thus no

Ellsberg equilibrium arises.

(5) Q1 < Q∗ : player 1 responds P0 = P1 = 0, if player 2 chooses Q0 = Q1 = 0 this is

the Ellsberg equilibrium that is identical to the pure Nash equilibrium (D,R).

(6) Q0 = Q∗ = Q1 : player 1 responds with [P0, P1] ⊆ [0, 1]. Only when Q∗ = M2, player

2 sticks to his strategy and we get the equilibrium ([P0, P1] , Q∗), where P0 < P ∗ <

P1.

Proof of Proposition 7. We start by calculating the minimal expected utility functions

of player 1 and 2. Player 1 minimizes over Q1 and Q2. Q3 is expressed as 1−Q1 −Q2.
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The lower and upper bounds of Q1 and Q2 are w1, z1 and w2, z2, respectively.

U1(P1, P2, Q1, Q2)

= min
Q1,Q2

2P1Q2 − P1(1−Q1 −Q2)− P2Q1

+ P2(1−Q1 −Q2) + (1− P1 − P2)Q1 − (1− P1 − P2)Q2

= min
Q2


w1(1− 3P2) + 4P1Q2 − P1 + P2 −Q2 if P2 < 1/3 ,

4P1Q2 − P1 −Q2 + 1/3 if P2 = 1/3 ,

z1(1− 3P2) + 4P1Q2 − P1 + P2 −Q2 if P2 > 1/3

=



w2(4P1 − 1)− 3P2w1 + w1 − P1 + P2 if P1 > 1/4 ,

w1 − 3P2w1 − 1/4 + P2 if P1 = 1/4 ,

z2(4P1 − 1)− 3P2w1 + w1 − P1 + P2 if P1 < 1/4 ,

P2 < 1/3 ,

w2(4P1 − 1) + 1/3− P1 if P1 > 1/4 ,

1/12 if P1 = 1/4 ,

z2(4P1 − 1) + 1/3− P1 if P1 < 1/4 ,

P2 = 1/3 ,

w2(4P1 − 1)− 3P2z1 + z1 − P1 + P2 if P1 > 1/4 ,

z1 − 3P2z1 − 1/4 + P2 if P1 = 1/4 ,

z2(4P1 − 1)− 3P2z1 + z1 − P1 + P2 if P1 < 1/4 ,

P2 > 1/3 .

Player 2 minimizes over P1 and P2, P3 is expressed as 1−P1−P2. The lower and upper
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bounds of P1 and P2 are x1, y1 and x2, y2, respectively.

U2(P1, P2, Q1, Q2)

= min
P1,P2

−P1Q2 + P1(1−Q1 −Q2) + P2Q1

− P2(1−Q1 −Q2)− (1− P1 − P2)Q1 + (1− P1 − P2)Q2

= min
P2


x1(1− 3Q2) + 3P2Q1 − P2 −Q1 +Q2 if Q2 < 1/3 ,

3P2Q1 − P2 −Q1 + 1/3 if Q2 = 1/3 ,

y1(1− 3Q2) + 3P2Q1 − P2 −Q1 +Q2 if Q2 > 1/3

=



x2(3Q1 − 1)− 3Q2x1 + x1 −Q1 +Q2 if Q1 > 1/3 ,

x1 − 3Q2x1 − 1/3 +Q2 if Q1 = 1/3 ,

y2(3Q1 − 1)− 3Q2x1 + x1 −Q1 +Q2 if Q1 < 1/3 ,

Q2 < 1/3 ,

x2(3Q1 − 1) + 1/3−Q1 if Q1 > 1/3 ,

0 if Q1 = 1/3 ,

y2(3Q1 − 1) + 1/3−Q1 if Q1 < 1/3 ,

Q2 = 1/3 ,

x2(3Q1 − 1)− 3Q2y1 + y1 −Q1 +Q2 if Q1 > 1/3 ,

y1 − 3Q2y1 − 1/3 +Q2 if Q1 = 1/3 ,

y2(3Q1 − 1)− 3Q2y1 + y1 −Q1 +Q2 if Q1 < 1/3 ,

Q2 > 1/3 .

Now we proceed as follows to derive the Ellsberg equilibria. Recall the Nash equilibria

and immunization strategies of the game:

(P ∗, Q∗) = ((1/3, 1/3, 1/3), (1/3, 1/4, 5/12)) ,

and (M1,M2) = ((1/4, 1/3, 5/12), (1/3, 1/3, 1/3)) .

Player 1 has to use his Nash equilibrium strategies at the boundary of his Ellsberg equi-

librium strategy, except for the component P2, where the Nash equilibrium probability is

the same as the immunization strategy. Furthermore, the set of probability distributions

in the Ellsberg equilibrium may not extend across the immunization strategy.

Hence, for the first component for player 1, we consider either {1/4 ≤ x1 ≤ P1 ≤ 1/3},
or {1/3 ≤ P1}. In Ellsberg equilibrium, player 2 uses 1/3 as his worst case measure,

thus in the first case we only consider those elements of U2 which use y1 as worst case

measure, in the second case only those which use x1. y1 is only used when Q2 ≥ 1/3.
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Since the range of Q2 must contain 1/4 at the boundary, which is impossible when

Q2 ≥ 1/3, {1/4 ≤ x1 ≤ P1 ≤ 1/3} cannot be an Ellsberg equilibrium strategy. We

proceed with the second case: x1 is only used for Q2 ≤ 1/3, this is compatible with

the Nash equilibrium strategy and yields {1/4 ≤ Q2 ≤ z2 ≤ 1/3}. Finally we check if

{1/3 ≤ P1} is a best response to {1/4 ≤ Q2 ≤ z2 ≤ 1/3}. Player 1 must use w2 in

his utility evaluation U1, this is true whenever P1 ≥ 1/4 which is compatible with the

strategy {1/3 ≤ P1}. Thence we have found a best response pair.

In the second component, player 1 can play {P2 = 1/3}, which is his Nash equilibrium

probability and therefore makes player 2 indifferent between all {w1 ≤ Q1 ≤ z1}, and

at the same time his best response to player 2 playing any probability {w1 ≤ Q1 ≤ z1}
with 0 ≤ w1 ≤ 1/3 ≤ z1 ≤ 1. Or, conversely, player 2 can play {Q1 = 1/3} and player

1 {x2 ≤ P2 ≤ y2} with 0 ≤ x2 ≤ 1/3 ≤ y2 ≤ 1. The latter case collapses to Nash

equilibrium. The restrictions on w1, z1, which are 0 ≤ w1 ≤ 1/3 = z1, follow from the

third component and the fact that each element of the Ellsberg equilibrium strategy

must be a probability distribution.

We cannot determine the range for P3 and Q3 from the two utility functions, since P3

and Q3 are only implicitly given. Thus, we derive the utility functions again, now using

(P1, 1− P1 − P3, P3) and (1−Q2 −Q3, Q2, Q3) as probabilities. Since we already know

that only the boundaries x1 and w2 are relevant for the equilibrium, we get

U1(P1, P3, Q2, Q3)

= min
Q2,Q3

2P1Q2 − P1Q3 − (1− P1 − P3)(1−Q2 −Q3)

+ (1− P1 − P3)Q3 + P3(1−Q2 −Q3)− P3Q2

=


w3(2− 3P1 − 3P3) + w2(P1 − 3P3 + 1) + 2P3 + P1 − 1 if P3 < 2/3− P1 ,

w2(5/3− 4P3) + P3 − 1/3 if P3 = 2/3− P1 ,

z3(2− 3P1 − 3P3) + w2(P1 − 3P3 + 1) + 2P3 + P1 − 1 if P3 > 2/3− P1 ,

when P1 > 3P3 − 1.
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On the other hand,

U2(P1, P3, Q2, Q3)

= min
P1,P3

−P1Q2 + P1Q3 + (1− P1 − P3)(1−Q2 −Q3)

− (1− P1 − P3)Q3 − P3(1−Q2 −Q3) + P3Q2

=


x3(3Q2 + 3Q3 − 2) + x1(3Q3 − 1)−Q2 − 2Q3 + 1 if Q2 > 2/3−Q3 ,

x1(3Q3 − 1)−Q3 + 1/3 if Q2 = 2/3−Q3 ,

y3(3Q2 + 3Q3 − 2) + x1(3Q3 − 1)−Q2 − 2Q3 + 1 if Q2 < 2/3−Q3 ,

when Q3 > 1/3.

Now we use the following reasoning: we see from U2 that Q3 must be greater than (or

in fact equal to, this is suppressed in the shortened statement of U2) 1/3. Since 5/12

is the Nash equilibrium probability of Q3, we get the two following possible probability

sets for Q3:

either {1/3 ≤ w3 ≤ Q3 ≤ 5/12} , or {5/12 ≤ Q3 ≤ z3} .

In the first case, player 1 must use z3 in his utility evaluation, according to U1 this is

the case only when P3 ≥ 2/3 − P1. We know that P1 ≥ 1/3, therefore P3 ≥ 1/3. This

leads to the set of probabilities {1/3 ≤ P3 ≤ y3 ≤ 5/12} for P3, since 1/3 as the Nash

equilibrium probability must be part of the set. Here x3 is used by player 2, hence from

U2 we see this is only the case if Q2 ≥ 2/3 − Q3. Q3 ≥ 1/3 and therefore Q2 must be

greater than 1/3. This is not possible, since we have already found Q2 to be played with

the set of probabilities {1/4 ≤ Q2 ≤ z2 ≤ 1/3}.
Consider the second possible set for Q2. Here w3 is used by player 1, and hence

P2 ≤ 1/3. This leads to {x3 ≤ P3 ≤ 1/3} for P3. Player 2 uses y3 and we conclude that

Q2 must be less than or equal to 1/3. This is exactly what we found to be true for Q2

before. Therefore we have found the Ellsberg equilibrium of RSP to be

(({1/3 ≤ P1 ≤ y1 ≤ 2/3}, {P2 = 1/3}, {x3 ≤ P3 ≤ 1/3}),

({w1 ≤ Q1 ≤ z1}, {1/4 ≤ Q2 ≤ z2 ≤ 1/3}, {5/12 ≤ Q3 ≤ z3 ≤ 3/4})) ,

where 0 ≤ w1 ≤ 1/3 = z1 .
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