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Abstract

We consider fundamental questions of arbitrage pricing arising when
the uncertainty model incorporates volatility uncertainty. With a stan-
dard probabilistic model, essential equivalence between the absence of
arbitrage and the existence of an equivalent martingale measure is a folk
theorem, see Harrison and Kreps (1979).
We establish a microeconomic foundation of sublinear price systems and
present an extension result. In this context we introduce a prior depen-
dent notion of marketed spaces and viable price systems.
We associate this extension with a canonically altered concept of equiva-
lent symmetric martingale measure sets, in a dynamic trading framework
under absence of prior depending arbitrage. We prove the existence of
such sets when volatility uncertainty is modeled by a stochastic differ-
ential equation, driven by Peng’s G-Brownian motion.
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1 Introduction

In this paper we study a fundamental assumption behind theoretical models
in Finance, namely, the assumption of a known single probability measure. In-
stead, we allow for a set of probability measures P , such that we can guarantee
awareness of potential model misspecification.1 We investigate the implications
of a related and reasonable arbitrage concept. In this context we suggest a fair
pricing principle associated with an appropriate martingale concept. The mul-
tiple prior setting influences the price system, in terms of the simultaneous
control of different null sets. This motivates a worst case pricing theory of
possible means.2

The pricing of derivatives via arbitrage arguments plays a fundamental role in
Finance. Before stating an arbitrage concept, a probability space (Ω,F , P ) is
fixed such that marketed claims or tradeable assets with trading strategies can
be defined. The implicit assumption is that the probabilities are exactly known.
The Fundamental Theorem of Asset Pricing (FTAP) then asserts equivalence
between the absence of P -arbitrage in the market model and the existence of
a consistent linear price extension so that the market model can price all con-
tingent claims. The equivalent martingale measure is then just an alternative
description of this extension via the Riesz representation theorem.
We introduce an uncertainty model described as a set of possibly mutually sin-
gular probability measures (or priors). Our leading motivation is a general form
of volatility uncertainty. This perspective deviates from models with a term
structures of volatilities, i.e. stochastic volatility models, see Heston (1993).
We do not formulate the volatility process of a continuous time asset price
via another process whose law of motion is exactly known. Instead, the legit-
imacy of the probability law still depends on an infinite repetition of variable
observation, as highlighted by Kolmogoroff (1933). We include this residual
uncertainty by giving no concrete model for the stochastics of the volatility
process, and instead fix a confidence interval for the volatility variable. We
refer to Avellaneda, Levy, and Paras (1995). Very recent developments in
stochastic analysis have established a complete theory in this field, a major
objective of which has been the sublinear expectation operator introduced by
Peng (2007b).
Unfortunately, a coherent valuation principle changes considerably when the
uncertainty is enlarged by the possibility of different probabilistic scenarios. In
order to illustrate this important point, we consider for a moment the uncer-
tainty given by one probability model, i.e. {P} = P . A (weak) arbitrage refers
to a claim X with zero cost, a P almost surely positive and with a probably

1The distinction between measurable and unmeasurable uncertainty drawn by Knight
(1921) serves in this paper as a starting point for modeling the uncertainty in the economy.
Keynes (1937) later argued that single prior models cannot represent irreducible uncertainty.

2This was originally noted by de Finetti and Obry (1933).

2



strictly positive payoff. Formally, this can be written as

π(X) ≤ 0, X ≥ 0 P -a.s. and P (X > 0) > 0.

The situation changes in the case of an uncertainty model described by a
set of mutually singular priors P . The second and third condition should be
formulated more carefully, because every prior P ∈ P could govern the market.
We rewrite the arbitrage condition as

π(X) ≤ 0, X ≥ 0 P -a.s. for all P ∈ P and P (X > 0) > 0 for some P ∈ P .

Accepting this new P-arbitrage notion one may ask for the structure of the
related objects.3 Suppose we apply the same idea of linear and coherent ex-
tensions to the uncertainty model under consideration. Coherence corresponds
to strictly positive and continuous functionals on the whole space of claims
L which are consistent with the given market data of marketed claims M .
These claims can be traded frictionless and are priced by a linear functional
π : M → R. Hence, the order structure and the underlying topology of L
build the basis of any financial model that asks for coherent pricing. The rep-
resentation of elements in the topological dual space4 indicates inconsistencies
between positive linear price systems and the concept of P-arbitrage. As it is
usual, the easy part of establishing an FTAP is deducing an arbitrage free mar-
ket model from the existence of an equivalent martingale measure Q ∼ P ∈ P .
When seeking a modified FTAP, the following question (and answer) serves to
clarify the issue:

Is the existence of a measure Q equivalent to some P ∈ P such that

prices of all traded assets are Q-martingales, a sufficient condition to

prevent a P-arbitrage opportunity?

A short argument gives us a negative answer: Let X ∈ M0 be a marketed
claim in M with price 0 = π(X). We deduce that EQ[X] = 0 since Q is related
to a consistent price system. Suppose X ∈ M0 ∩ L+ with X ≥ 0 P -a.s for
every P ∈ P and X > 0 P ′-a.s. for some P ′ ∈ P exists. The point is now,

with {P} = P we would observe a contradiction since Q ∼ P implies

EQ[X] > 0. But X ∈M0 may be such that P ′(X > 0) > 0 with P ′ ∈ P
is mutually singular to Q ∼ P ∈ P.

This indicates that our finer arbitrage notion is, in general, not consistent with
a linear theory of valuation. In other words, a single prior as a pricing measure
is not able to contain all the information about the uncertainty.

3See Remark 3.14 in Vorbrink (2010) for a discussion of a weaker arbitrage definition and
its implication in the G-framework.

4We discuss the precise description in the second part of Introduction and in Section 2.2.
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Since our goal is to suggest a modified framework for a coherent pricing princi-
ple, the concept of marketed claim is reformulated by a prior depending notion
of possibly marketed spaces MP , P ∈ P . As discussed in Example 3 below,
such a step is necessary to deal with the prior dependency of the asset span
MP . The likeness of marketed spaces depends on the similarity of the involved
priors. Here, the possibility of different priors creates uncertainty for a trader
who may buy and sell claims which can be achieved frictionless. We associate
a linear price system πP : MP → R for each marketed space. In this context
we posit that coherence is based on sublinear price systems,5 as illustrated this
in the following example:
Let the uncertainty model consists of two priors P = {P, P ′}. If P is the true
law, the market model is given by the set of marketed claims MP priced by a
linear functional πP . If P ′ is the true law, we get MP ′ and πP ′ . For instance,
constructing a claim via self-financing strategies implies an equality of portfolio
holdings that must be satisfied almost surely only for the particular probability
measure. If the trader could choose between the sets MP ′ + MP to create a
portfolio, additivity is a natural requirement with the consistency condition
πP ′ = πP on MP ′ ∩MP .6 However, the trader is neither free to choose a mix-
ture of claims, nor may she choose a scenario. The equality of prices at the
intersection is not intuitive, since the different priors create a different price
structure in each scenario. We therefore argue, that sup(πP ′(X), πP (X)) is a
reasonable price for a claim X ∈ MP ′ ∩MP in our multiple prior framework.
This yields to subadditivity. In contrast to the classical law of one price, lin-
earity of the pricing functional is merely true under a fixed prior.7

Outline and results of the paper
We begin with an economic basis for an asset pricing principle. To do so, we
introduce an appropriate notion of viability and relate this to the extension of
sublinear functionals. Before we give an overview of the results, we describe
the primitives of the economy:
The very basic principle of uncertainty is the assumption of different possible
future states of the world Ω, which is equipped with a σ-algebra F . In order to
tackle the mutually singular priors, we need some structure in the state space.8

In the most abstract setting, the states of the world ω ∈ Ω build a complete
separable metric space, also known as a Polish space. The state space contains
all realizable path of security prices. For the greater part of the paper, we as-
sume Ω = C([0, T ];R), the Banach space of continuous functions between [0, T ]

5This price system can be seen as an envelope of the price correspondence π(X) =
{πP (X) : X ∈MP , P ∈ P}, as in Clark (1993).

6See Heath and Ku (2006) for a discussion.
7Sublinearity induced by market frictions is conceptionally different. For instance, in

Jouini and Kallal (1999) one convex set of marketed claims is equipped with a convex pricing
functional, in which case, the possibility of different scenarios is not included.

8See Bion-Nadal and Kervarec (2010) for a discussion of different state spaces.
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and R, equipped with the supremum norm. In the most general framework,
we assume a weakly compact set of priors P on the Borel σ-algebra F = B(Ω).
This encourages us to consider the sublinear expectation operator

EP(X) = sup
P∈P

EP [X].

In our economy the Banach space of contingent claims L2(P) consists of all
random variables with a finite variance for all P ∈ P . The primitives are rep-
resentative agent economies given by preference relations in A(P ), the set of
convex, continuous, strictly monotone, and rational preferences on L2(P ).
The topological dual space, a first candidate for the space of price systems,
does not consist of elements which can be represented by a Radon-Nykodym
density Z. Rather, in the present framework, it may be represented by the
pairs (P,Z) ∈ P×L2(P ). With this dual space we introduce our price space of
special sublinear price functionals L2(P)~+. Proposition 1 lists the properties
of such price functionals and indicates a possible axiomatic approach to the
price systems inspired by coherent risk measures.
Sublinear prices are constructed by the price systems of partial equilibria, which
consists of prior depending linear price functionals πP restricted to the prior
depending marketed spaces MP ⊂ L2(P ), P ∈ P . These spaces are joined to
a product of marketed spaces. The consolidation operation Γ transforms the
extended product of price systems {πP}P∈P to one coherent element in the
price space L2(P)~+. Scenario based viability can then model a preference-free
equilibrium concept in terms of consolidation of possibilities.
The first main result, Theorem 1, gives an equivalence between our notion of
scenario-based viable price systems, and the extension of sublinear functionals.
Our notion of viability, which corresponds to a no trade equilibrium, is then
based on sublinear prices so that the price functional acts linearly under a local
prior.
In the second part, we consider the dynamic framework on a time interval
[0, T ] with an augmented filtration F = {Ft}t∈[0,T ]. Its special feature is its re-
liance on the initial σ-algebra, which does not contain all null sets. Assuming
Nutz and Soner (2012), we have that the derivative of the quadratic variation
parametrizes the set of priors. The implicit dynamic structure opens the door
for a theory of dynamic sublinear expectation based on sublinear conditional
expectation operators {Et(·)}t∈[0,T ].
With the sublinear conditional expectation, a martingale theory is available
which represents a possibilistic model of a fair game against nature. In this
fashion, the multiple prior framework allows us to generalize the concept of
equivalent martingale measures. Instead of considering one probability mea-
sure, we suggest that the appropriate concept is a set of priors which is related
to the statistical set of priors through a prior depending shift ZP ∈ L2(P ) in
the Radon-Nykodym sense: each prior P ∈ P is shifted by a different (state
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price) density. This creates a new sublinear expectation EQ, generated by a set
of priors Q. Furthermore we require that the asset price S under EQ is mean
unambiguous, i.e. EQ[ST ] = EQ′ [ST ], for all Q,Q′ ∈ Q. Such a property is
essential for creating a process via a conditional expectation which satisfies the
classical martingale representation property, see Appendix B.3. This is true if
and only if the martingale is symmetric, i.e −S is a EQ-martingale as well. This
reasoning motivates the modification of the martingale concept, now based on
the idea of a fair game under volatility uncertainty. The condition that the
price process S is a symmetric martingale motivates qualifying the valuation
principle as uncertainty neutral.9

The principal idea of our modified notion of arbitrage, which we call P-
arbitrage, and briefly discussed at the beginning of the introduction, was in-
troduced by Vorbrink (2010) for the G-expectation framework. In Theorem
2 we show that under no P-arbitrage there is a one-to-one correspondence
between the extensions of Theorem 1 and (special) equivalent symmetric mar-
tingale measure sets, called EsMM sets. We thus establish an asset pricing
theory based on a (discounted) sublinear expectation payoff. Corollary 1 re-
lates EsMM sets to market completeness and to different kinds of arbitrage.
Having presented Theorem 1 and Theorem 2, we continue in the same fashion
as in the classical literature with a single prior. We consider a special class of
asset prices driven by G-Brownian motion, related to a G-expectation EG.10

This process is a canonical generalization of the standard Brownian motion,
whereas the quadratic variation may move almost arbitrarily in a positive in-
terval. The related G-heat equation is now a fully nonlinear PDE, see Peng
(2007b).
We consider a Black-Scholes like market under volatility uncertainty driven by
a G-Brownian motion BG. The stock price S is modeled as a diffusion

dSt = µ(t, St)d〈BG〉t + σ(t, St)dB
G
t , S0 = 1, t ∈ [0, T ].

This related stochastic calculus comprises a stochastic integral notion, a G-Itô
formula and a martingale representation theorem.11 In this mutually singular
prior setting, the (more evolved) martingale representation property, related
to a sublinear conditional expectation, is not equivalent to the completeness of
the model, because the volatility uncertainty is encoded in the integrator of the

9In the finite state case, Dana and Le Van (2010) introduce the notion of a risk adjusted
set of priors.

10 In the mathematical literature, the starting point for consideration is a sublinear ex-
pectation space, consisting of the triple (Ω;H; E), where H is a special space of test random
variables. If the sublinear expectation space can be represented via the supremum of a set
of priors, see Denis, Hu, and Peng (2011), one can take (Ω,B(Ω),P) as the associated uncer-
tainty space or Dynkin space, see Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio
(2011). The precise definition of the concept is stated in the Appendix B.

11We apply recent results from Xu, Shang, and Zhang (2011), Song (2011), ? and Li and
Peng (2011).
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price process. For the density process we introduce an exponential martingale
{Et}t∈[0,T ]

12 for G-Brownian motion and apply a Girsanov type theorem under
the G-expectation. We observe the following formula

Ψ(X) = EG[ETX], X ∈ L2(P),

where the valuation still depends on Γ and the interest rate is zero. Example 6
illustrates its usefulness by relating the abstract super-replication, as discussed
in Denis and Martini (2006), to an EsMM set.

Related Literature
We embed the present paper into the existing literature. In Harrison and Kreps
(1979) the arbitrage pricing principle provides an economic foundation by re-
lating the notion of equivalent martingale measures with a linear equilibrium
price system. Risk neutral pricing, as a precursor, was discovered by Cox and
Ross (1976). The idea of arbitrage pricing was introduced by Ross (1976).
The efficient market hypothesis of Fama (1970) introduces information effi-
ciency, a concept closely related to Samuelson (1965), where the notion of a
martingale reached neo-classic economics for the first time.13

Harrison and Pliska (1981) as well as Kreps (1981) and Yan (1980) contin-
ued laying the foundation of arbitrage free pricing. Later, Dalang, Morton,
and Willinger (1990), presented a fundamental theorem of asset pricing for
finite discrete time. In a general semimartingale framework, the notion of no
free lunch with vanishing risk Delbaen and Schachermayer (1994) ensured the
existence of an equivalent martingale measure in the given (continuous time)
financial market. All these considerations have in common that the uncertainty
of the model is given by a single probability measure.
Moving to models with multiple probability measures, pasting martingale mea-
sures introduces the intrinsic structure of dynamic convexity, see Riedel (2004)
and Delbaen (2006). This type of time consistency is related to recursive equa-
tions, see Chen and Epstein (2002), which can result in nonlinear expectation
and generates a rational updating principle. Moreover, the backward stochastic
differential equations can model drift-uncertainty, a dynamic sublinear expec-
tation, see Peng (1997). However in these models of uncertainty, all priors are
related to a reference probability measure, i.e. all priors are equivalent or ab-
solutely continuous. Moreover, drift uncertainty does not create a significant
change for a valuation principle of contingent claims.
The possible insufficiency of equivalent prior models for an imprecise knowl-
edge of the environment motivates the consideration of mutually singular pri-
ors as illustrated at the beginning of this introduction. The mathematical
discussion of such frameworks can be found in Peng (2007a); Nutz and Soner

12The precise PDE description of the G-expectation allows to define a universal density.
Note that in the more general case we have a prior depending family of densities.

13 Bachelier (1900) influenced the course of Samuelson’s work.
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(2012); Bion-Nadal and Kervarec (2012). Epstein and Ji (2013) provide a dis-
cussion in economic terms. Here, the volatility uncertainty is encoded in a
non-deterministic quadratic variation of the underlying noise process.
Recalling Gilboa and Schmeidler (1989), this axiomatization of uncertainty
aversion represents a non-linear expectation via a worst case analysis. Sim-
ilarly to risk measures, see Artzner, Delbaen, Eber, and Heath (1999)14, the
related set of representing priors may be not equivalent to each other. This
important change allows an application of financial markets under volatility
uncertainty . We refer to Denis and Martini (2006) for a pricing principle of
claims via a quasi sure stochastic calculus and Avellaneda, Levy, and Paras
(1995) for the first intuitive considerations.
Jouini and Kallal (1995) consider a non-linear pricing caused by bid-ask spreads
and transaction costs, where the price system is extended to a linear functional.
Another classical motivator for nonlinearities is related to superhedging, see
Favero, Castagnoli, and Maccheroni (2007). In Araujo, Chateauneuf, and Faro
(2012), pricing rules with finitely many state are considered.15 A price space of
sublinear functionals is discussed in Aliprantis and Tourky (2002). We quote
the following interpretation of the classical equilibrium concept with linear
prices and its meaning (see Aliprantis, Tourky, and Yannelis (2001)):

A linear price system summarizes the information concerning relative

scarcities and at equilibrium approximates the possibly non-linear prim-

itive data of the economy.

The paper is organized as follows. Section 2 introduces the primitives of the
economic model and establishes the connection between our notion of viability
and extensions of price systems. Section 3 introduces the security market
model associated with the marketed space. We also discuss the corresponding
G-Samuelson model. Section 4 concludes and discusses the results of the paper
and list possible extensions. The first part of the appendix presents the details
of the model and provides the theorem proofs. In the second part, we discuss
mathematical foundations such as the space of price systems and a collection
of results of stochastic analysis and G-expectations.

2 Viability and sublinear extensions of prices

We begin by recapping the case where uncertainty is given by a an arbitrary
probability space (Ω,F , P ) as it emphasizes sensible difference with regard to
the uncertainty model posit in this paper. Following, we introduce the un-
certainty model as well as the related space of contingent claims. Then we

14 Markowitz (1952) postulated the importance of diversification, a fundamental principle
in Finance, which corresponds to sublinearity of risk measures.

15They establish a characterization of super-replication pricing rules via an identification
of the space of frictionless claims.
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discuss the space of sublinear price functionals. The last subsection is devoted
to introducing the economy, where we give an extension result, (see Theorem
1, Section 2.3).

Background: Classical viability
Let there be two dates t = 0, T , claims at T are elements of the classical Hilbert lat-
tice L2(P ) = L2(Ω,F , P ). Price systems are given by linear and L2(P )-continuous16

functionals. By Riesz representation theorem, elements of the related topological
dual can be identified in terms of elements in L2(P ). A strictly positive functional
Π : L2(P ) → R evaluates a positive random variable X with P (X > 0) > 0, such
that Π(X) > 0.
A price system consists of a (closed) subspace M ⊂ L2(P ) and a linear price func-
tional π : M → R. The marketed space consists of contingent claims achievable in
a frictionless manner. A(P ) is the set of rational, convex, strictly monotone and
L2(P )-continuous preference relations on R× L2(P ). The consistency condition for
economic equilibrium is given by the concept of viability. A price system is viable if
there exists a preference relation %∈ A(P ) and a bundle (x̂, X̂) ∈ R×M with

(x̂, X̂) ∈ B(0, 0, π,M) and (x̂, X̂) % (x,X) for all (x,X) ∈ B(0, 0, π,M),

where B(x,X, π,M) = {(y, Y ) ∈ R×M : y+ π(Y ) ≤ x+ π(X)} denotes the budget

set. Harrison and Kreps (1979) prove the following fundamental result:

(M,π) is viable if and only if there is a strictly positive extension Π of π to L2(P ).

Note that strict positivity implies L2(P )-continuity. The proof is achieved by a

Hahn-Banach argument and the usage of the properties of % such that Π creates a

linear utility functional and hence a preference relation in A(P ).

2.1 The uncertainty model and the space of claims

We begin with the underlying uncertainty model. We consider possible sce-
narios which share neither the same probability measure nor the same zero
sets. Therefore it is not possible to assume the existence of a given reference
probability measure when the zero sets are not the same. For this reason we
need some topological structure in our uncertainty model.
Let Ω, the states of the world, be a complete separable metric space equipped
with a metric d : Ω × Ω → R+, B(Ω) the Borel σ-algebra of Ω and let Cb(Ω)
denote the set of all bounded, d-continuous and B(Ω)-measurable real valued
functions. M1(Ω) defines the set of all probability measures on (Ω,B(Ω)).
The uncertainty of the model is given by a weakly compact set of probability
measure P ⊂ M1(Ω).17 In the following example we illustrate a construction
for P , which we apply in the dynamic setting of Section 3.

16The topology is induced by the L2(P )-norm.
17As shown in Denis, Hu, and Peng (2011), the related capacity c(·) = supP∈P P (·) is

regular if and only if the set of priors is relatively compact. Here, regularity refers to a
reasonable continuity property. In Appendix B.2, we recall some related notions. Moreover,
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Example 1 We consider a time interval [0, T ] and the Wiener measure P0 on
the state space of continuous paths starting in zero Ω = {ω : ω ∈ C([0, T ];R) :
ω0 = 0} and the canonical process Bt(ω) = ωt. Let Fo = {Fot }t∈[0,T ], Fot =
σ(Bs, s ∈ [0, t]) be the raw filtration of the canonical process B.
The strong formulation of volatility uncertainty is based upon martingale laws
with stochastic integrals:

Pα := P0 ◦ (Xα)−1, Xα
t =

∫ t

0

α1/2
s dBs,

where the integral is defined P0 almost surely. The process α is Fo-adapted and
has a finite first moment. A set D of α’s build P via the associated prior Pα,
such that {Pα : α ∈ D} = P is weakly compact.18

We describe the set of contingent claims. Following Huber and Strassen (1973),
for each B(Ω)-measurable real function X such that EP [X] exists for every
P ∈ P , we define the upper expectation operator EP(X) = supP∈P E

P [X].19

We suggest the following norm for the space of contingent claims, given by the
capacity norm c2,P , defined on Cb(Ω) by

c2,P(X) = EP(X2)
1
2 . (1)

Define the completion of Cb(Ω) under c2,P norm by L2(P) = L2(Ω,B(Ω),P).
Let L2(P) = L2(P)/N be the quotient space of L2(P) by the c2,P null elements
N . We do not distinguish between classes and their representatives. Two ran-
dom variables X, Y ∈ L2(P) can be distinguished if there is a prior in P ∈ P
such that P (X 6= Y ) > 0.
It is possible to define an order relation ≤ on L2(P). Classical arguments prove
that (L2(P), c2,P ,≤) is a Banach lattice, (see Appendix A.1 for details).
We consider the space of contingent claims L2(P) so that under every prob-
ability model P ∈ P , we can evaluate the variance of a contingent claim.
Properties of random variables are required to be true P-quasi surely, i.e. P -
a.s. for every P ∈ P . This indicates that a related stochastic calculus on a
probability space is unsuitable.

2.2 Scenario-based viable price systems

This subsection is divided into three parts. First, we introduce a new dual space
where linear and c2,P-continuous functionals are the elements. As discussed in

we give a criterion for the weak compactness of P when it is constructed via the quadratic
variation and a canonical process.

18In order to define universal objects, we need the pathwise construction of stochastic
integrals, (see Föllmer (1981), Karandikar (1995)).

19It is easily verified that Cb(Ω) ⊂ {X B(Ω)-measurable : EP(X) < ∞} holds and EP(·)
satisfies the property of a sublinear expectation. For details, see Appendix A.1.1, Peng
(2007a) and Appendix B.3.
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the introduction, we allow sublinear prices as well. This forces us to extend
the linear price space, where we discuss two operations on the new price space
and take a leaf out of Aliprantis and Tourky (2002).20 We integrate over the
set of priors for the addition operation of functionals. In Proposition 1, we
list standard properties of coherent price functionals. The last part in this
subsection focuses on the consolidation of prior dependent price systems.

Linear and c2,P-continuous prices systems on L2(P)
Now, we present the basis for the modified concept of viable price systems.
The mutually singular uncertainty generates a different space of contingent
claims. This gives us a new topological dual space L2(P)∗. The discussion of
the dual space is only the first step to get a reasonable notion of viability which
accounts for the present type of uncertainty.
We introduce, the topological dual of (L2(P), c2,P). In Appendix B.1, we give a
result, which asserts that the dual space, consisting of linear and c2,P continuous
functionals on L2(P), can be represented by special measures:

L2(P)∗ =

{
µ =

∫
ρdP : P ∈ P and ρ ∈ L2(P )

}
.

This representation delivers an appropriate form of the dual space. The random
variable ρ in the representation matches with the classical Radon-Nykodym
density of the Riesz representation when only one prior P = {P}. The space’s
description allows for an interpretation of a state price density based on some
prior P ∈ P . The stronger capacity norm c2,P(·) in comparison to the classical
single prior L2(P )-norm implies a richer dual space, controlled by the set of
priors P . Moreover, one element in the dual space chooses implicitly a prior
P ∈ P and ignores all other priors. This foreshadows the insufficiency of a
linear pricing principle under the present uncertainty model, as indicated in
the introduction.

The price space of sublinear expectations
In this subsection we introduce a set of sublinear functionals defined on L2(P).
The singular prior uncertainty of our model induces the appearance of non-
linear price systems.21 Let k(P) be the convex closure of P . We refer to this
space as the coherent price space of L2(P) generated by linear c2,P-continuous

20In principle there is a third operation which ignores a subset of priors. This ignorance is
in some sense redundant, since we can a priori shrink the set of priors, see Appendix B.1.1
for this operation.

21A subcone of the super order dual is considered in Aliprantis and Tourky (2002). They
introduces the lattice theoretic framework and consider the notion of a semi lattice. In
Aliprantis, Florenzano, and Tourky (2005), Aliprantis, Tourky, and Yannelis (2001) general
equilibrium models with superlinear price are considered in order to discuss a non-linear
theory of value.
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functionals:

L2(P)~+ =

{
Ψ :L2(P)→ R :Ψ(·)= sup

P∈A
EP [ZP ·] with A ⊂ k(P), ZP ∈ L2(P )+

}
Elements in L2(P)~+ are constructed by a set of c2,P-continuous linear func-
tionals {ΠP : L2(P)→ R}P∈P , which are consolidated by a combination of the
point-wise maximum and convex combination.
We introduce the notion of strictly positive functionals in L2(P)~+, namely
L2(P)~++. Such a functional Ψ : L2(P) → R is called strictly positive if we
have Ψ(X) > 0 for every X ∈ L2(P)+ with P (X > 0) > 0 for some P ∈ P .
We illustrate in the following example, how a sublinear functional in L2(P)~+
can be constructed.

Example 2 Let {An}n∈N be a partition of P. And let µn : B(M1(Ω)) → R
be a positive measure with support An and µn(An) = 1. The resulting prior
Pn(·) =

∫
An
P (·)µn(dP ) is given by a weighting operation Γµn. When we apply

Γµn to the density we get

Ẑn =

∫
An

ρPµnZPdµn(dP ), with dPn = ρPµndP.

Then, these new prior density pairs (Ẑn, Pn) can be consolidated by the supre-
mum operation of the expectations, i.e. Γ({ΠP}P∈P)(·) = supn∈NE

Pn [Zn·].

For further details of Example 2, see Appendix A.1.1 and Appendix B.1.1. The
following proposition discusses properties and the extreme case of functionals
in the price space L2(P)~+. A full lattice theoretical discussion of our price
space L2(P)~+ lies beyond the scope of this paper.

Proposition 1 Every functional in L2(P)~+ satisfies the following properties:

1. Sub-additivity: Ψ(X + Y ) ≤ Ψ(X) + Ψ(Y ) for all X, Y ∈ L2(P)

2. Positive homogeneity: Ψ(λX) = λΨ(X) for all λ ≥ 0, X ∈ L2(P)

3. Constant preserving: Ψ(c) = c for all c ∈ R

4. Monotonicity: If X ≥ Y then Ψ(X) ≥ Ψ(Y ) for all X, Y ∈ L2(P)

5. c2,P-continuity: Let (Xn)n∈N converge in c2,P to some X, then we have
limn Ψ(Xn) = Ψ(X).

Moreover, for every P ∈ P and positive measure µ with µ(P) ≤ 1, we have the
following inequalities for every X ∈ L2(P)

EP [ZPX] ≤ sup
P ′∈P

EP ′ [ZP ′X] ≥ EPµ [ZµX], where Pµ(·) =

∫
P
P (·)µ(dP ).
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Below, we introduce the consolidation operation Γ for the prior depending price
systems. Γ(P) refers to the set of priors in P which are relevant. In Example
2, we observe Γµn(P) = An.

Marketed spaces and scenario-based price systems
In the spirit of Aliprantis, Florenzano, and Tourky (2005) our commodity-price
duality is given by the following pairing 〈(L2(P), c2,P), L2(P)~+〉.
For the single prior framework, viability and the extension of the price system
are associated with each other. This structure allows only linear prices and
corresponds in our framework to a consolidation via the Dirac measure δ{P}
for some P ∈ P . In this case we have Γ(P) = {P}.
We begin by introducing the marketed subspaces MP ⊂ L2(P ), P ∈ P . The
underlying idea is that any claim in MP can be achieved, whenever P ∈ P is
the true probability measure. This input data resembles a partial equilibrium,
depending on the prior under consideration.22 Claims in the marketed space
MP can be bought and sold, whenever the related prior governs the economy.
We illustrate this in the following example.

Example 3 Suppose the set of priors is constructed by the procedure in Ex-
ample 1. Let the marketed space be generated by the quadratic variation of an
uncertain asset with terminal payoff 〈B〉T and a riskless asset with payoff 1.

We have by construction 〈B〉T =
∫ T

0
αsds P

α-a.s., the marketed space under
Pα is given by

MPα =

{
X ∈ L2(Pα) : X = a+ b ·

∫ T

0

αsds P
α-a.s., a, b ∈ R

}
.

But 〈B〉 coincides with the P -quadratic variation under every martingale law
P ∈ P P -a.s. Therefore a different α̂ builds a different marketed space MPα.
Suppose α = α̂ P0-a.s. on [0, s] for some s ∈ (0, T ] then we have MPα ∩MP α̂

consists also of non trivial claims. Note, that Pα and P α̂ are neither equivalent
nor mutually singular.23

We fix linear price systems πP on MP . As illustrated in Example 3, it is
possible that the two components πP1 , πP2 ∈ {πP}P∈P have a common domain,
i.e MP1 ∩MP2 6= ∅. In this case one may observe different evaluations among
different priors, i.e πP1(X) 6= πP2(X) with X ∈ MP1 ∩ MP2 . Moreover, the

22One may think that a countable set of scenarios could be sufficient. As we mention in
Appendix B 2, the norm can be represented via different countable dense subsets of priors.
However, for the marketed space we have a direct prior dependency of all elements in P.
This implies that different choices of countable and dense scenarios can deliver different price
systems, see Definition 1 below.

23The event {ω : 〈B〉r(ω) =
∫ r
0
αt(ω)dt, r ∈ [0, s]} has under both priors positive mass,

but the priors restricted to the complement are mutually singular. We refer to Example 3.7
in Epstein and Ji (2013) for a similar example.
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set {πP}P∈P of linear scenario-based price functionals inherit the uncertainty
of the model. In the single prior setting incompleteness means MP 6= L2(P ).
Note that Ω is separable by assumption, hence L2(P ) = L2(Ω,B(Ω), P ) is a
separable Hilbert space24 for each P ∈ P and admits a countable orthonormal
basis. MP ⊗MP ′ refers to the Cartesian product of the involved basis elements
in MP and MP ′ .

Definition 1 Fix subspaces {MP}P∈P with MP ⊂ L2(P ) and a set {πP}P∈P
of linear price functionals πP : MP → R. A price system for ({MP , πP}P∈P ,Γ)
is a functional on the Cartesian product of Γ-relevant scenarios

π(⊗P) :
⊗

P∈Γ(P)

MP → R

such that the projection to MP is given by the restriction π(⊗P)�MP
= πP �MP

.

Each P related marketed space MP consist of contingent claims which can be
achieved frictionless, when P is the true law. We have a set of different price
systems {πP :MP → R}P∈P . If we want to establish a meaningful consolidation
of the scenarios we need an additional ingredient, namely Γ. This consolidation
determines the operator which maps an extension of π(⊗P) into the price space
L2(P)~++ and therefore influences the whole marketed space.

2.3 Preferences and the economy

Having discussed the commodity price dual and the role of the consolidation
of linear price systems, we introduce agents which are characterized by their
preference of trades on R × L2(P). There is a single consumption good, a
numeraire, which agents will consume at t = 0, T . Thus, bundles (x,X) are
elements in R × L2(P), which are the units at time zero and time T with
uncertain outcome. We call the set of rational preference relations %P on
R × L2(P ), A(P ), which satisfy convexity, strict monotonicity, and L2(P )-
continuity. Let

B(x,X, πP ,MP ) = {(y, Y ) ∈ R×MP : y + πP (Y ) ≤ x+ πP (X)}.

denote the budget set for a price functional π : MP → R. We are ready to
define the appropriate notion of viability.

24In terms of Example 2, P0 is the Wiener measure. In this situation, L2(P0) can be
decomposed via the Wiener chaos expansion. A similar procedure could be done for the
canonical process Xα related to some Pα. So we can generate an orthonormal basis for each
L2(Pα), with α ∈ D. However, we take an infinite product, if |Γ(P)| 6<∞, since an infinite
orthonormal sum is not in general a Hilbert space.
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Definition 2 A price system is scenario based viable if for each P ∈ Γ(P)
there exists a preference relation %P∈ A(P ) and a consumption bundle
(x̂P , X̂P ) ∈ R×MP which satisfies

(x̂P , X̂P ) ∈ B(0, 0, πP ,MP ),

and (x̂P , X̂P ) is %P -maximal on B(0, 0, πP ,MP ).

The conditions are necessary and sufficient as a classical model for an economic
equilibrium under each scenario P ∈ P , when we find a preference relation.
Now, we relate the viability of ({MP , πP}P∈P ,Γ) with price functionals in
L2(P)~+ defined on L2(P). Let MP

P = MP ∩ L2(P), with P ∈ P .

Theorem 1 A price system ({MP , πP}P∈P ,Γ) is scenario based viable if and
only if there is an Ψ ∈ L2(P)~++ such that πP �MPP ≤ Ψ�MPP for each P ∈ Γ(P).

This characterization of scenario-based viability takes scenario-based marketed
spaces {MP}P∈P as given. Moreover, the consolidation operator Γ is a given
characteristic of the market. With this in mind one should think that in a
general equilibrium system the locally given prices {πP}P∈P should be part
of it. The extension we perceived can be seen as a regulated and coherent
price system for every claim in L2(P). The proof of the theorem is based on
a separation of the convex better-off set, and the budget set. In principle, Γ
builds a convex functional such that one of the convex sets lies in the epigraph
of Ψ and the other does not.
In comparison to the single prior case, the degree of incompleteness depends on
the set of relevant priors Γ(P).25 As described in Example 2, this is a natural
situation. As such, prior depending prices πP are also plausible. The expected
payoff as a pricing principle depends on the prior under consideration, as well.
This concept of scenario-based prices accounts for every Γ-relevant price system
simultaneously.
There is a closed subspace of claims where the valuation is unique. In Section
3, we use the related symmetry property for the introduction of a reasonable
martingale notion. Let R ⊂ P and define the R-marketed space by

M(R) = {X ∈ L2(P) : EP [X] is constant for all P ∈ R}.

Only the continent claims in M(R) reduce the valuation to a linear pricing, if
Γ(P) = R.26 Claims in M(R) are unambiguous. This can also be formulated
as a property of events U(R) = {A ∈ F : P (A) is constant for all P ∈ R}.27

From Theorem 1 we have the following corollary.

25This can be seen as an uncertainty in the given partial equilibrium.
26Or unless Γ is given a priori by a linear pricing, e.g. Γ = δ{P} for some P ∈ P.
27Note, that for the single prior case every closed subspace of L2(P ) can be identified with

a sub σ-algebra in terms of a projection via the conditional expectation operator. Although
U is not a σ-algebra, but a Dynkin System, it identifies in a similar way a certain sub
space. See also Epstein and Zhang (2001) for a definition of unambiguous events and an
axiomatization of preferences on this domain.
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Corollary 1 Every Ψ in Theorem 1 is linear and c2,P-continuous on M(Γ(P)).

We have two operations which constitute the distillation of uncertainty. This
consolidation can be seen as a characterization of the Walrasian auctioneer,
in which case diversification should be encouraged. But this refers to the
sublinearity of Ψ.

Remark 1 One may ask which Γ is appropriate. Such a question is related
to the concept of mechanism design. The market planner can choose a consol-
idation, which influences the indirect utility of a reported preference relation.
However, the full discussion of these issues lies beyond the scope of this paper.

3 Security markets and symmetric martingales

We extend the primitives with trading dates and trading strategies. A time
interval is considered where the market consists of a riskless security and a
security under volatility uncertainty leading to the set of mutually singular
priors. We then introduce a financial market consistent with the volatility, and
discuss the modified notion of arbitrage and the equivalent martingale measure.
In Section 3.2, Theorem 2 associates scenario-based viability with EsMM sets.
In the last section we consider our model in the G-framework. Here, the
uncertain security process is driven by a G-Itô process, which shows that the
concept of martingale measure sets is not an empty one.

Background: risk-neutral asset pricing with one prior
In order to introduce dynamics and trading dates, we fix a time interval [0, T ] and

a filtration F = {Ft}t∈[0,T ] on (Ω,F , P ). Fix an F-adapted asset price {St}t∈[0,T ] =

S ∈ L2(P ⊗ dt) and a riskless bond S0 ≡ 1. We next review some terminology.

The portfolio process of a strategy η is called X(η). Simple self-financing strategies

are piecewise constant F-adapted processes η such that dX(η) = ηdS, which we

call A(P ). A P -arbitrage in A(P ) is a strategy (with zero initial capital) such that

X(η)T ≥ 0 and P (X(η)T > 0) > 0.

A claim is marketed, i.e. X ∈M , if there is a η ∈ A(P ) such that X = ηTST P -a.s.,

then we have the (law of one) price π(X) = η0S0. An equivalent martingale measure

(EMM) Q must satisfy that S is a Q-martingale and dQ = ρdP , where ρ ∈ L2(P )++

is a Radon Nykodym-Density with respect to P . Theorem 2 of Harrison and Kreps

(1979) states the following This result can be seen as a preliminary version of the

first fundamental theorem of asset pricing.

Under no P -arbitrage, there is a one to one correspondence between the continuous

linear and strictly positive extension of π : M → R to L2(P ) and the EMM. The

relation is given by Q(B) = Π(1B) and Π(X) = EQ[X], B ∈ FT and X ∈ L2(P ).

This result can be seen as a preliminary version of the first fundamental theorem of

asset pricing.
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3.1 The Financial Market under Volatility Uncertainty

We specify the mathematical framework and the modified notions, such as
arbitrage. Our probability model is related to the existence of a canonical
process with a modified absolutely continuous quadratic variation. We begin
by modeling the market and considering the concrete construction for the set
of priors. Following, we review the martingale notion for conditional sublinear
expectation.

3.1.1 The dynamics and martingales under sublinear expectation

The principle idea is to transfer the result of Section 2 into a dynamic setup.
The specification in Example 1 of Section 2.1 serves as our uncertainty model.
One can directly observe in which sense the quadratic variation creates volatil-
ity uncertainty. We introduce the sublinear expectation E : L2(P) → R given
by the supremum of expectations of P = {Pα : α ∈ D}. Moreover, we assume
that the set of priors is stable under pasting, see Appendix A.2.1 for details.
As we aim to equip the financial market with a dynamics of conditional sub-
linear expectation, we introduce the information structure of the financial mar-
ket as given by an augmented filtration F = {Ft}t∈[0,T ]. The setting is based
on the dynamic sublinear expectation terminology as instantiated by Nutz and
Soner (2012).
We give a generalization of Peng’s G-expectation as an example, satisfying the
weak compactness of P when the sublinear expectation is represented in terms
of a supremum of linear expectations. In Section 3.3 and in Appendix B.3, we
consider the G-expectation as an important special case. That said, a possible
association of results in Section 2 depends heavily on the weak compactness of
the generated set of priors P .

Example 4 Suppose a trader is confronted with a pool of models describing
volatility, such as the stochastic volatility model in Heston (1993). After a
statistical analysis of the data two models remain plausible Pα and P α̂. Never-
theless, the implications for the trading decision deviate considerably. Even the
asset span on its own depends on each scenario, (see Example 3). A mixture of
both models does not change this uncertain situation at all. In order to deal with
the possibilistic issue let us define the universal extreme cases σt = inf(αt, α̂t)
and σt = sup(αt, α̂t). When thinking about reasonable uncertainty manage-
ment, no scenario should be ignored. The uncertainty model which accounts
for all cases between σ and σ is given by

P = {Pα : αt ∈ [σt, σt] for every t ∈ [0, T ]P0 ⊗ dt a.e.}.

A related construction of a sublinear conditional expectation is achieved in Nutz
(2012). Here the deterministic bounds of the G-expectation are replaced by path
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dependent bounds.28

We introduce an appropriate concept for the dynamics of the continuous time
multiple prior uncertainty model. The associated objectives are trading dates,
the information structure and the price process (as the carrier of the uncer-
tainty). In order to introduce the price process S = {St}t∈[0,T ] of an uncertain
and long lived security, we must impose further primitives. Define the time
depending set of priors

P(t, P )o = {P ′ ∈ P : P = P ′ on Fot }.

This set of priors consists of all extensions P : Fot → [0, 1] from Fot to F = B(Ω)
in P . This is the set of all probability measures in P defined on F that agree
with P in the events up to time t. Fix a contingent claim X ∈ L2(P). In Nutz
and Soner (2012), the unique existence of a sublinear expectation {Et(X)}t∈[0,T ]

is proved by the following construction29:

Et(X)o = Pess sup
Q′∈P(t,P )o

EQ′ [X|Ft] P -a.s. for all P ∈ P , lim
r↓t
Er(X)o = Et(X).

With the sublinearity of the dynamic sublinear conditional expectation we can
define a martingale similarly to the single prior setting.30 The nonlinearity
implies that if a process X = {X}t∈[0,T ] is a martingale under {E(·)t}t∈[0,T ]

then −X is not necessarily a martingale.

Definition 3 A F-adapted process X = {X}t∈[0,T ] is a P-martingale if

Es(Xt) = Xs P-q.s., for all s ≤ t.

We call X a symmetric P-martingale if X and −X are both P-martingales.

In the next subsection we discuss their relationship to asset prices under a
modified sublinear expectation. As we will see, the space M(P) is closely
related to symmetric martingales. Conceptually, the symmetry refers to a
generalized Put-Call parity and formalizes the uncertainty-neutral valuation
in terms of martingales.

28 This framework is in principle included in Epstein and Ji (2013). In this setting drift
and volatility uncertainty are considered simultaneously. Drift uncertainty or κ-ambiguity
are well known terms in financial economics. A coherent theory, known as g-expectation, is
available under Brownian information.

29Representations of such martingales can be formulated via a 2BSDE. This concept is
introduced for example in ?.

30For the multiple prior case with equivalent priors we refer to Riedel (2009).
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3.1.2 The primitives of the financial market and arbitrage

For the sake of simplicity, we assume that the riskless asset is S0
t = 1, for every

t ∈ [0, T ], i.e. the interest rate is zero. We call the related abstract financial
marketM(1, S) on the filtered space uncertainty space (Ω,F ,P ;F), whenever
the price process of the uncertain asset S = {St}t∈[0,T ] satisfies

St ∈ L2(P) for every t ∈ [0, T ] and F-adaptedness.

A simple trading strategy31 is a Fo-adapted stochastic process {ηt}t∈[0,T ] in
L2(P) when there is a finite sequence of dates 0 < t0 ≤ · · · ≤ tN = T such that
η = (η0, η1) can be written with ηi ∈ L2(Ω,Fti ,P) as ηt =

∑N−1
i=0 1[ti+1,ti[(t)η

i.
The fraction invested in the riskless asset is denoted by η0

t , t ∈ [0, T ]. A trad-
ing strategy is self-financing if η0

tn−1
S0
tn + η1

tn−1
Stn = η0

tnS
0
tn + η1

tnStn for every
n ≤ N . The value of the portfolio satisfies X(η) ∈ L2(P) for every t ∈ [0, T ].
The set of simple self-financing trading strategies is denoted by A. This finan-
cial market M(1, S) with trading strategies in A is called M(1, S,A).
It is well known that a necessary condition for equilibrium is the absence of ar-
bitrage. Therefore, with regard to the equilibrium result of the last section, we
introduce arbitrage in the financial market of securities. The modeled uncer-
tainty of the financial market forces us to consider a weaker notion of arbitrage.

Definition 4 Let R ⊂ P. We say there is an R-arbitrage opportunity in
M(1, S,A) if there exist an admissible pair η ∈ A such that η0S0 ≤ 0,

ηTST ≥ 0 R-quasi surely, and

P (ηTST > 0) > 0 for at least one P ∈ R.

The choice of the definition is based on the following observation. This arbi-
trage strategy is riskless for each P ∈ R and if the prior P constitutes the
market one would gain a profit from with positive probability. With this in
mind, the P-arbitrage notion can be seen as a weak arbitrage withe the corre-
sponding cone L2(P)+ \ {0}.
We say that a claim Xm ∈ L2(P ) is marketed inM(1, S,A) at time zero under
P ∈ P if there is a η ∈ A such that Xm = ηTST P -almost surely. In this case
we say η hedges Xm and lies in MP . η0S0 = πP (Xm) is the price of Xm in
M(1, S,A) under P ∈ P .
With Example 3 in mind, fix the marketed spaces MP ⊂ L2(P ), P ∈ P . The
price of a marketed claim under the prior P should to be well defined. Let
η, η′ ∈ A(P ) generating the same claim Xm ∈ MP , i.e. ηTST = η′TST P -a.s.
We have η0S0 = η′0S0 = πP (Xm) under absence of P -arbitrage. Note, that

31As mentioned in Harrison and Pliska (1981) simple strategies rule out the introduction
of doubling strategies and hence the notion of admissibility.
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this may not be true under no P̂ -arbitrage, with P 6= P̂ ∈ P . This is related
to the law of one price under a fixed prior. Now, similarly to the single prior
case, we define viability in a financial market. We say that a financial market
M(1, S,A) is viable if it is Γ(P)-arbitrage free and the associated price system
({MP , πP}P∈P ,Γ) is scenario-based viable.

3.2 Extensions of price systems and EsMM sets

In Section 2 we introduced the price space of sublinear price functionals gener-
ated by a set of linear c2,P-continuous functionals. The extension of the price
functional is strongly related to the involved linear functionals which consti-
tutes the price systems locally. In this fashion, we introduce a modified notion
of fair pricing. In essence, we associate a risk neutral prior to each local and
linear extension of a price system. Here, the term local refers to a fixed prior,
therefore no uncertainty is present.
In our uncertainty model, the price of a claim equals the (discounted) value
under a specific sublinear expectation. Exploration of available information,
when multiple priors are present, changes the view of a rational expectation.
In economic terms, the notion of symmetric martingales eliminates ambiguity
in the valuation. It seems appropriate to introduce a rational pricing principle
in terms of sublinear expectations with a symmetry condition. This motivates
the following definition.

Definition 5 A set of probability measures Q on (Ω,B(Ω)) is called an equiv-
alent symmetric martingale measure set (EsMM set) if the following two con-
ditions hold:

1. For every Q ∈ Q there is a P ∈ k(P) such that P and Q are equivalent
to each other, such that dP

dQ
∈ L2(P ).

2. The uncertain asset S is a symmetric {EQt }t∈[0,T ]-martingale, where EQ
is a the conditional sublinear expectation over Q.

The first condition formulates a direct relation between an element Q in the
EsMM set Q and the primitive priors P ∈ P . The square integrability is a
technical condition that guarantees the association to the equilibrium theory
of Section 2. The second is the translated martingale condition.32 The rational
expectation hypothesis and the idea of a fair gamble should reflect the ideal
of maximal neutrality. Under the new sublinear expectation the asset price
and hence the portfolio process are symmetric martingales. This implies, as
discussed in the introduction, that the value of the claim does not depend on

32It seems possible to proof that if the price process is not a symmetric martingale but a
martingale then arbitrage is possible. However, such considerations lies not in scope of this
thesis.
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the prior, i.e. the valuation is mean unambiguous, i.e. ambiguity preferences
for uncertainty are neutral.
The case of only one prior is related to the well-known risk-neutral evaluation
principle. Here, this principle needs a new requirement due to the more com-
plex uncertainty model. In this sense the symmetry condition is responsible
for the uncertainty neutrality.

Remark 2 Note that in the case of a single prior framework, i.e. P = {P},
the notion of EsMM sets is reduced to accommodate equivalent martingale mea-
sures. In this regard we can think of canonical generalization. On the other
hand, classical equivalent martingale measures (EMM) and a linear price the-
ory are still present. Every single valued EsMM set {Q} can be seen as an
EMM under P ∈ P. Here, the consolidation is given by Γ = δP and we have
Γ(P) = {P}.

The following result justifies the discussion involving uncertainty neutrality and
the symmetry condition for martingales. The one to one mapping of Theorem
2 and the choice of the price space fall into place. In this manner we show that
R-arbitrage in A with Γ(P) = R is inconsistent with an economic equilibrium
for agents in A(P ), with P ∈ R. We fix an associated price system, using the
procedure described at the end of Subsection 3.1.

Theorem 2 Suppose the financial market model M(1, S,A) does not allow
any P-arbitrage opportunity.
Then there is a bijection between EsMM-sets and coherent price systems Ψ :
L2(P) → R in L2(P)~++ such that Ψ�MPP ≥ πP , P ∈ Γ(P) = R ⊂ k(P). The
relationship is given by

Ψ(X) = sup
Q∈R∗

EP [X] = ER∗(X),

where R∗ = {Q : dQ = ZPdP, P ∈ R, ZP ∈ L2(P )++} is an EsMM-set.

Let R ⊂ P and M(R) be the set of all EsMM-sets Q such that the related
consolidation Γ satisfies Γ(P) = R . Theorem 2 can be seen as the formulation
of a one-to-one mapping between a subset of

L2(P)~++ and
⋃

R⊂k(P)

M(R).

There is a hierarchy of sublinear expectation martingales, related to the chosen
consolidation operator Γ and the EsMM-sets, which are ordered by the inclu-
sion relation. We illustrate the relationship between Γ and an EsMM-set in
the following example.
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Example 5 We illustrate the relationship between EsMM-sets and the con-
solidation operation Γ when a price system is given. For the sake of sim-
plicity, let us assume that {P1, P2, P3, P4} = P. Starting with the sublinear
price system, we have three price functionals π1, π2, π3, π4 and the consolida-
tion operator Γ. Let us assume that Γ = (+,∧) and λ ∈ (0, 1). This gives us
λπ1 +(1−λ)π2 = πλ and Γ(π1, π2, π3, π4) = πλ∧π3. The resulting EsMM-set is
given by R∗ = {

∫
ZλdP λ,

∫
Z3dP3} ∈M(P\{P4}), where P λ = λP1+(1−λ)P2,

Zλ = λZ1 + (1− λ)Z2 and EPλ [Zλ] = 1 = EP3 [Z3].

We close this consideration with some results analogous to those of the single
prior setting where we combine Theorem 2 and Theorem 1.

Corollary 2 Let R ⊂ P, such that R = Γ(P) be given.

1. M(1, S,A) is viable if and only if there is an EsMM-set.

2. Market completeness, i.e MP = L2(P ) for each P ∈ R, is equivalent to
the existence of exactly one EsMM-set in M(R).

3. If M(R) is nonempty, then there is exists no R-arbitrage.

4. If there is a strategy η ∈ A with η0S0, ηTST ≥ 0R-q.s. and ER(ηTST ) > 0
then there is an R-arbitrage opportunity.

The result does not depend on the preference of the agent. The expected return
under the sublinear expectation EQ equals the riskless asset. Hence, the value
of a claim can be considered as the future value in the uncertainty-free world.33

3.3 A special case: G-expectation

Now, we select a stronger calculus to model the asset prices as a stochastic
differential equation driven by a G-Brownian motion.34 In this situation the
volatility of the process concentrates the uncertainty in terms of the derivative
of the quadratic variation. The quadratic variation of a G-Brownian motion
creates volatility uncertainty. Again, we review the related result of the single
prior framework.

Background: Itô processes in the single prior framework
Now, we specify the asset price in terms of an Itô process

dSt = µtStdt+ σtStdBt, S0 = 1,

driven by a Brownian motion B = {Bt}t∈[0,T ] on the given filtered probability space,

µ, σ are processes such that S is a well defined processes in R+. The filtration is

33However, the sublinear expectation depends on Γ.
34An illustration of the concept in a discrete time framework is achievable, via an appli-

cation of the results in Cohen, Ji, and Peng (2011).
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generated by B. The interest rate is r = 0. Let Eθ be the exponential martingale,

given by dEθt = Eθt θtdBt, E
θ
0 = 1, with a Novikov consistent kernel θ we can apply

Girsanov theorem. The following result is from Harrison and Kreps (1979):

The set of equivalent martingale measures is not empty if and only if ρ = EθT ∈
L2(P ), θ ∈ L2(P ⊗ dt) and S∗ =

∫
σdB is a P -martingale.

ρ can be interpreted as a state price density. The associated market price of risk

θt = µt−r
σt

is the Girsanov or pricing kernel of the state price density.

3.3.1 Security prices as G-Itô processes and sublinear valuation

Our sublinear expectation is given by the G-expectation EG : L2(P) → R.35

The construction of EG on L2(P) can be achieved when the sublinear expecta-
tion space (C([0, T ];R), L2(P), EG) as given, (see Appendix B.3 and references
therein for more precise treatment).
The Girsanov theorem is precisely what is needed to verify the symmetric
G-martingales property of the price processes S under some sublinear expec-
tation given by an EsMM-set. This uncertainty model enables us to apply the
necessary stochastic calculus. As such, we model the financial market in the
G-expectation setting, introduced in Peng (2007b) and Peng (2010). Central
results, such as a martingale representation, a Girsanov type result, and a well
behaved underlying topology are desired for the foundational grounding of as-
set pricing.
We select the next rational base, namely an interval [σ1, σ2] ⊂ R++, instead of
a constant volatility σ, (see Example 4). We introduce an asset price process
driven by a G-Brownian motion {BG

t }t∈[0,T ]. In Appendix B.3 we present a
small primer of the applied results. The asset price is driven by the following
G-stochastic differential equation

dSt = µ(t, St)d〈BG〉t + V (t, St)dB
G
t , t ∈ [0, T ], S0 = 1.

Let µ : [0, T ]×Ω×R→ R and V : [0, T ]×Ω×R→ R+ be processes such that
a unique solution exists.36 Moreover, let V (·, x) be a strictly positive process
for each x ∈ R+. The riskless asset has interest rate zero.
The second condition of Definition 5 highlights how a Girsanov transforma-
tion should relate to a symmetric G-martingale and thus guarantee the non
emptiness of the concept. For this purpose we define the related sublinear
expectation generated by an EsMM-set, Q = {Q : dQ = ZdP, P ∈ P}:

sup
Q∈Q

EQ[X] = EQ(X) = EG[ZX], X ∈ L2(P).

35It is shown in Theorem 52 of Denis, Hu, and Peng (2011), that this sublinear expectation
can be represented by a weakly compact set, when the domain is in L1

G(Ω).
36We refer to Chapter 5 in Peng (2010) for existence results of G-SDE’s.
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Note that we now only consider Z ∈ L2(P) which is defined P-q.s. This means
that the density is now a uniform object under our uncertainty model, see
also Remark 3 below. Theorem 3 justifies the choice of this shifted sublinear
expectation when the asset price is restrained to a symmetric martingale for
an uncertainty-neutral expectation.
Let us consider a symmetric martingale of exponential type E under the G-
expectation, with a pricing kernel θ ∈M2

G(0, T ):

dEθt = Eθtθ(t, St)dB
G
t , Eθ0 = 1

By application of the results in Appendix B.3, we can write Eθ in explicit form

Eθt = exp

(
− 1

2

∫ t

0

θ(r, Sr)
2d〈BG〉r −

∫ t

0

θ(r, Sr)dB
G
r

)
, t ∈ [0, T ].

Let the pricing kernel solve V (t, St)θ(t, St) = µ(t, St) P-quasi surely, for ev-
ery t ∈ [0, T ]. Before we formulate the last result we define S∗t = S∗0 +∫ t

0
V (r, S∗r )dB

G
r , t ∈ [0, T ] and assume that a unique solution on (Ω, L2(P), EG)

exists for some state dependent process V , see Peng (2010).

Theorem 3 The set M(P) of EsMM-sets contains a Q ∈ M(P) if and only
if S∗ is an EG-martingale and

EG

[
exp

(
δ ·
∫ T

0

θ2
sd〈BG〉s

) ]
<∞, for some δ >

1

2
.

With Theorem 2 in mind we can include scenario based viability. Let
X ∈ L2(P) be a contingent claim, such that it is priced by P-arbitrage with
value Ψ(X) = EG[EθTX], whenever Γ consists only of a consolidation via the
maximum operation.
Moreover, one can define a new Ĝ-expectation related to a volatility uncer-
tainty of a closed subinterval [σ̂1, σ̂2] ⊂ [σ1, σ2]. We can identify a consolida-
tion operator by ΓĜ(P) = {Pα : α ∈ [σ̂1, σ̂2]}. in this case Theorem 3 can be
reformulate in terms of the existence of a EsMM set QĜ ∈M(ΓĜ(P)).

Remark 3 The more precise calculus of the G-expectation is based on an an-
alytic description of nonlinear partial differential equations. This allows us to
create a uniform state price density process in terms of an exponential mar-
tingale, based on a G-martingale representation theorem, (see Appendix B 3).
With this in mind, a more elaborated notion of EsMM-sets can be formulated
by requiring that the densities ZP , P ∈ P creates a uniform process as a sym-
metric martingale under sublinear expectation P.

Remark 4 Without applying a Girsanov type theorem, Epstein and Ji (2013)
use the density Eθ in the case of a similar price process. In their model the
drift of the asset price is governed by the classical deterministic drift dt. The
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relationship to the present asset price process, with positive pricing kernel µ
V

=
θ ∈M2

G(0, T ), is given by∫ t

0

µsd〈BG〉s =

∫ t

0

µsvsds, where vs =
d

ds
〈BG〉s.

Since v /∈ M2
G(0, T ), our setting is analogue if θv−1 ∈ M2

G(0, T ), i.e. θv−1

is a feasible integrand with respect to BG. As argued in their footnotes 25
and 33, this can be guaranteed under some conditions on the preferences and
endowments of their representative agent. If σ < σ, it follows then by Corollary
3.5 in Song (2012)

‖µ‖M1
G

= EG

[∫ T

0

µsds

]
= EG

[∫ T

0

|µsvs|ds
]

= 0.

This can only be true if µ ≡ 0 and indicates a way to distinguish the present
setting with Section 3 of Epstein and Ji (2013).

Extensions to continuous trading strategies seem straight forward. Neverthe-
less, an admissibility condition should be requested, in order to exclude dou-
bling strategies. Considering markets with more than one uncertain security
requires a multidimensional Girsanov theorem.37 We close this section with an
example on the connection between super-replication of claims and EsMM-sets.

Example 6 Under one prior P , Delbaen (1992) obtained the super-replication
price in terms of martingale measures in M({P}):

ΛP (X) = inf{y ≥ 0|∃ θ ∈ A : y + θTST ≥ X P -a.s.} = sup
Q∈M({P})

EQ[X]

When the uncertainty is given by a set of mutually singular priors, a super-
replication price can be derived, see Denis and Martini (2006):

ΛP(X) = inf{y ≥ 0|∃ θ ∈ A(P) : y + θTST ≥ X P − q.s.}

in terms of a set of martingale lawsM such that Λ(X,P) = supQ∈MEQ[X]. In
the G-framework with simple trading strategies this set is an EsMM-set.When
applying our theory to this problem, we get

Λ(X,P) = sup
P∈P

sup
Q∈M({P})

EQ[X] = EG[ETX],

upon applying our Theorem 3 and Theorem 3.6 of Vorbrink (2010). This is
associated to the maximal EsMM-set in M(P). However, an easy consequence
is that every EsMM-set delivers a price below the super-hedging price.

37See Osuka (2011).
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4 Discussion and Conclusion

We present a framework and a theory of derivative security pricing where the
uncertainty model is given by a set of singular probability measures which
incorporates volatility uncertainty. The notion of equivalent martingale mea-
sures changes, and the related linear expectation principle becomes a sublinear
theory of valuation. The associated arbitrage principle should consider all re-
maining uncertainty in the consolidation.
The results of this paper may serve as a starting point to obtain a fundamental
theorem of asset pricing (FTAP) under mutually singular uncertainty. In Del-
baen and Schachermayer (1994) and Delbaen and Schachermayer (1998), this is
achieved for the single prior uncertainty model in great generality. The notion
of arbitrage is in principle a separation property of convex sets in a topologi-
cal space. In this regard, the choice of the underlying topological structure is
essential for observing a FTAP. For instance, Levental and Skorohod (1995),
establish a FTAP with an approximate arbitrage based on a different notion of
convergence.
As mentioned in the introduction, Jouini and Kallal (1995) considered security
markets with bid-ask spreads and introduced a modified notion of equivalent
martingale measures. In this context a FTAP under transaction cost was
proved in discrete time by Schachermayer (2004), and in continuous time by
Guasoni, Rásonyi, and Schachermayer (2010).
In our setting, two aspects must be kept in mind for deriving a FTAP with
mutually singular uncertainty. Firstly, the spaces of claims and portfolio pro-
cesses are based on a capacity norm, and thus forces one to argue for the quasi
sure analysis, a fact implied in our definition of arbitrage, (see Definition 4).
A corresponding notion of free lunch with vanishing uncertainty will have to
incorporate this more sensitive notion of random variables.
Secondly, the sublinear structure of the price system allows for a nonlinear
separation of convex sets. With one prior, the equivalent martingale measure
separates achievable claims with arbitrage strategies. In our small meshed
structure of random variables this separation is guided by the consolidation
operator Γ. The preference-free pricing principle gives us a valuation via ex-
pected payoffs of different adjusted priors. In comparison to the preference and
distribution free results in a perfectly competitive market, see Ross (1976), the
implicit assumption is the common knowledge of uncertainty, described by a
single probability measure. The uncertainty preface dramatically dictates the
consequences for pricing without a utility gradient approach of consumption-
based pricing.
The valuation of claims, determined by P-arbitrage, contains a new object Γ,
which may inspire skepticism. However, note that the consolidation operator Γ
should be seen as a tool to regulate financial markets. The valuation of claims
in the balance sheet of a bank should depend on Γ. For instance, this may
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affect fluctuations of opinion in the market as a consequence of uncertainty.
In Remark 1 of Section 2 we describe how a good consolidation may be found
via consideration of mechanism design. Such considerations may provide a
base for the choice of the valuation principle under multiple priors.38 As a
first heuristic, it is possible that utilitarian (convex combination) and Rawl-
sian (supremum operation) welfare functions may constitute a principle of fair
pricing.
Before we close this paper with a discussion on asset pricing under uncertainty
and an alternative interpretation of sublinear pricing, we state a technical com-
ment. The suborder dual L2(P)~+ of Subsection 2.3 can be elaborated using
results on embedding duals in the sub order dual, and could be useful for an-
swer continuity questions about the Riesz-Kantorovich functional.

Preferences and Asset pricing
The uncertainty model in our paper is closely related to Epstein and Wang
(1994) and Epstein and Ji (2013) as they consider equilibria with linear prices
in their economy. This leads to an indeterminacy in terms of a continuum of
linear equilibrium price systems. The relationship between uncertainty and
indeterminacy is caused by the constraint to pick one effective prior. The
Lucas critique39 applies insofar as it describes the unsuitable usage of a pes-
simistic investor to fix an effective prior in reduced form. Our approach takes
a preference free approach. We value contingent claims in terms of mean un-
ambiguous asset price processes. In other words, the priors of the uncertainty
neutral model yield expectations of the security price that do not depend on
the chosen ”risk neutral” prior. Nevertheless, the idea of a risk neutral valua-
tion principle is not appropriate, as different mutually singular priors delivers
different expectations, that cannot be related via a density.
From this point of view, we disarrange the indeterminacy of sublinear prices,
and allow for the appearance of a planner to configure the sublinearity. In this
sense, the regulator as a policy maker is now able to confront unmeasurable
sudden fluctuations in the volatility. A single prior, as a part of the equilib-
rium output, can create an invisible threat of convention, which may be used
to create the illusion of security when faced with an uncertain future. In a
model with mutually singular priors, the focus on a single prior creates a haz-
ard. Events with a positive probability under an ignored prior may be a null
set under an effective prior in a consumption-based view.

Sublinear prices and regulation via consolidation
In this context, sublinearity is associated with the principle of diversification.
In these terms, equilibrium with a sublinear price system covers the concept of
Walrasian prices which decentralize with the coincidental awareness of differ-

38A starting point could be Lopomo, Rigotti, and Shannon (2009), where a mechanism
design problem under Knightian uncertainty is considered.

39See Section 3.2 in Epstein and Schneider (2010).
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ent scenarios. A priori, the instructed Walrasian auctioneer has no knowledge
of which prior P in P occurs. The auctioneer assigns to each prior P ∈ P a
locally linear price πP . The degree of discrimination is related to the intensity
of nonlinearity. Note that this is a normative category and opens the door
to the economic basis of regulation. Each prior is a probabilistic scenario.The
auctioneer consolidates the price for each possible scenario into one certain
valuation. This is also true for an agent in the model, hence the auctioneer
should be able to discriminate under-diversification in terms of ignorance of
priors in this uncertainty model. Further, a von Neumann-Morgenstern utility
assumption result in an overconfidence of certainty in the associated agent.
Since we want to generalize fundamental theorems of asset pricing, we are con-
cerned with the relationship between equivalent martingale measures, viable
price systems, and arbitrage. In this setting these concepts must be recast
in terms of the multiple prior uncertainty of the model. In contrast, with
one prior an equivalent martingale measure is associated with a linear price
system. The underlying neoclassical equilibrium concept is a fully positive
theory. In the multiple prior setting such a price extension can be regarded
as a diversification-neutral valuation principle. Here, diversification refers to
a given set of priors P . Should the unlucky situation arise that an unconsid-
ered prior governs the market, it is the task of the regulator to robustify these
option via an appropriate price system. For instance, uniting two valuations
of contingent claims cannot be worse than adding the two uncertain outcomes
separately. This is the diversification principle under P .

Recalling the quotation of Aliprantis, Tourky, and Yannelis (2001) in the
introduction, the degree of sublinearity in our approximation is regulated by
the type of consolidation of scenario-dependent linear price systems. These
price systems act locally on each scenario P ∈ P in a linear fashion.

A Appendix: Details and Proofs

A.1 Section 2

Let L2(P) = L2(P)/N be the quotient of L2(P) by the c2,P null elements. Such
null elements are characterized by random variables which are P-polar. P-polar
sets evaluated under every prior are zero or one. But the value may differ between
different priors. A property holds quasi-surely (q.s.) if it holds outside a polar set.
Furthermore, the space L2(P) is characterized by

Lp(P) = {X ∈ L0(Ω) : X has a q.c. version, lim
n→∞

EP(|X|1{|X|>n})2 = 0},

where L0(Ω) denotes the space of all measurable real-valued functions on Ω. A
mapping X : Ω → R is said to be quasi-continuous if ∀ε > 0 there exists an open
set O with supP∈P P (O) < ε such that X|Oc is continuous. We say that X : Ω→ R
has a quasi-continuous version (q.c.) if there exists a quasi–continuous function
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Y : Ω → R with X = Y q.s. The mathematical framework provided enables the
analysis of stochastic processes for several mutually singular probability measures
simultaneously. All equations are understood in the quasi-sure sense. This means
that a property holds almost-surely for all scenarios P ∈ P.
Since, for all X,Y ∈ L2(P) with |X| ≤ |Y | imply c2,P(X) ≤ c2,P(Y ), we have that
L2(P) is a Banach lattice.40

In the following we discuss the different operations for consolidation. Let ΠP =∫
ZPdP ∈ L2(P)∗, with P ∈ P. Let µ be a measure on the Borel measurable space

(P,B(P)) with µ(P) = 1 and full support on P. In this context we can consider the
additive case in L2(P)~+, where a new prior is generated:41

Γµ :
⊗
P∈P

L2(P )∗ → L2(P)~+, Γµ({ΠP }P∈P) =

∫
P
ZP · dµ(P ) = EPµ [ZPµ ·],

where ZPµ is constructed as in Example 2. We can consider the Dirac measure
δP as an example for µ. The related consideration of only one special prior in P
is in essence the uncertainty model in Harrison and Kreps (1979). The operation
in question is given by (ΠP )P∈P 7→ EP [Z·]. The second operation in L2(P)~+ is a
point-wise maximum:

Γsup :
⊗
P∈P

L2(P )∗ → L2(P)~+, Γsup({ΠP }P∈P) = sup
P∈P

EP [ZP ·].

This is an extreme form of consolidation and can be considered as the highest aware-
ness of all priors. Note that combinations between the maximum and addition op-
eration are possible as indicated in Example 2 and Proposition 1.

Proof of Proposition 1 Since L2(P) is a Banach lattice, the 5th claim follows
from Theorem 1 in Biagini and Frittelli (2010), whereas the other claims follow
directly from the construction of the functionals in L2(P)~++. �

For the proof of Theorem 1, we define the shifted preference relationship %0
P such

that every feasible net trade is worse off than (0, 0) ∈ B(0, 0, πP ,MP ). Obviously,
an agent given by %0

P does not trade. Hence, an initial endowment constitutes a no
trade equilibrium.

Proof of Theorem 1 Let the price system ({MP , πP }P∈P ,Γ) be given and we have
a Ψ ∈ L2(P)~+ on L2(P) such that πP �MPP

≤ Ψ�MPP
for each P ∈ Γ(P), where MPP =

MP ∩ L2(P). For each P ∈ Γ(P), let ΠP (·) be the given by Ψ(1{P}·) = EP [ZP ·].
The relation on R× L2(P ), given by

(x,X) <0
P (x′, X ′) if x+−ΠP (−X) ≥ x′ +−ΠP (−X ′),

is an element of A(P ). For each P ∈ Γ(P) the bundle (x̂P , X̂P ) = (0, 0) satisfies the
viability condition of Definition 2, hence ({MP , πP }P∈Γ(P) is scenario-based viable.

40This is of interest for existence result of general equilibria.
41The related operation of convex functionals would corresponds to the convolution oper-

ation. Without convexity of P, the prior Pµ may only lie in the convex hull of k(P).

29



In the other direction, let π(⊗P) : ⊗MP → R be a price system. The preference
relation <0

P∈ A(P ) satisfies for each (x̂P , X̂P ), P ∈ Γ(P), the viability condition.

We may assume for each P , (x̂P , X̂P ) = (0, 0), since it is only a geometric deferment.
Consider the following sets

�0
P =

⊗
P∈Γ(P)

{(x,X) ∈ R× L2(P ) : (x,X) �P (0, 0)},

B(⊗P) =
⊗

P∈Γ(P)

B(0, 0, πP ,MP ).

We have that B(⊗P) and �0
P are convex sets. The product space ⊗P∈Γ(P)L

2(P )
is the Cartesian product with the product topology, which we denote by ⊗L2(P ),
is again a topological vector space. By the L2(P )-continuity of each %0

P , �0
P is

⊗L2(P )-open. According to the separation theorem for a topological vector space
there is a non zero linear functional φ on ⊗P∈Γ(P)(R × L2(P )) with φ(x,X) ≥ 0
for all (x,X) ∈�0

P and φ(x,X) ≤ 0 for all (x,X) ∈ B(⊗P) are constructed, where
(x,X) = {(xP , XP )}P∈Γ(P).
There is a (y, Y ) with φ(y, Y ) < 0, since φ is non trivial. Strict monotonicity implies
(1, 0) �0

P (0, 0). The continuity of each <P gives us (1 + εy, εY ) �P (0, 0), for some
ε > 0, hence

−φ(1 + εx′, εX ′) = −φ(1, 0) + εφ(y, Y ) ≤ 0

and φ(1, 0) ≥ −εφ(y, Y ) > 0

We have φ(1, 0) > 0 and after a renormalization let φ(1, 0) = 1. Moreover write
φ(x,X) = x + ⊗ΠP (X) > 0, where ⊗ΠP = ⊗P∈Γ(P)ΠP and ΠP : L2(P ) → R is a
functional in the algebraic dual L2(P )′.
Strict positivity of ⊗ΠP follows from (0, x) �0

P (0, 0), hence (−ε, x) �0
P (0, 0), and

therefore ⊗ΠP (x) − ε ≥ 0. This implies strictly positivity of the projections ΠP :=
prP (⊗ΠP ). Since the L2(P) is a Banach lattice ΠP ∈ L2(P)∗ follows.
Let Xm ∈ MPP , since (−πP (Xm), Xm), (πP (Xm),−Xm) ∈ B(0, 0, πP ,M

P
P ) we have

0 = φ(πP (Xm), Xm) = πP (Xm)−ΠP (Xm) and ΠP �MPP
= πP follows.

Ψ is by construction in L2(P)~+. Strict positivity follows from the strict positivity of
each ΠP . Ψ�MPP

≥ πP follows from an inequality of Proposition 1 and ΠP �MP
= πP .

�

We illustrate the construction in the following diagram:

{πP : MP → R}P∈P � // π(⊗P) :
⊗

P∈Γ(P)MP → R
_

Hahn Banach
��

⊗P∈Γ(P)ΠP :
⊗

P∈Γ(P)L
2(P )→ R � Γ // Ψ :L2(P)→ R

Proof of Corollary 1 By construction every functional Ψ can be represented as the
supremum of priors, which are given by convex combinations. Since X ∈ M(Γ(P)),
the supremum operation has no effect on X and the assertion follows. �
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A.2 Section 3

Next, we discuss the augmentation of our information structure. The unaugmented
filtration is given by Fo. As mentioned in Subsection 3.1, the set of priors must be
stable under pasting, in order to apply the framework of Nutz and Soner (2012). For
the sake of completeness we recall this notion.

Definition 6 The set of priors is stable under pasting if for every P ∈ P, every
Fo-stopping time τ , B ∈ Foτ and P1, P2 ∈ P(Foτ , P ), We have Pτ ∈ P, where

Pτ (A) = EP
[
P1(A|Foτ )1B + P2(A|Foτ )1Bc

]
, A ∈ Foτ

In the multiple prior setting, with a given reference measure this property is equiva-
lent to the well known notion of time consistency. However, this is not true if there
is no dominant prior.42

The usual condition of a ”rich” σ-algebra at time 0 is widely used in mathemati-
cal finance. But the economic meaning is questionable. Our uncertainty model of
mutually singular priors can be augmented, similarly to the classical case, using the
right continuous filtration given by F+ = {F+

t }t∈[0,T ] where

F+
t =

⋂
s>t

Fot , for t ∈ [0, T [

The second step is to augment the minimal right continuous filtration F+ by all polar
sets of (P,FoT ), i.e. Ft = F+

t ∨N (P,FoT ). This augmentation is strictly smaller than

the universal augmentation
⋂
P∈P Fo

P
. This choice is economically reasonable as the

initial σ-field contains not all 0-1 limit events. An agent considers this exogenously
specified information structure. It describes what information the agent can know at
each date. This is the analogue to a filtration in the single prior framework satisfying
the usual conditions. For the proof below, we need results from Appendix B.1.

Proof of Theorem 2 We fix an EsMM-set Q. The related consolidation Γ gives
us the set of relevant priors Γ(P) ⊂ P. Let ZP = dQ

dP , for each Q ∈ Q and the related
P ∈ P. We have ZP ∈ L2(P ). Let a strictly positive Ψ ∈ L2(P)~++ be given.
Take a marketed claim Xm ∈ M(Γ(P)) and let η ∈ A be a self-financing trading
strategy that hedges Xm. This gives us the following equalities, since η ∈ A, by
the rule for conditional E-expectation and since S is a symmetric EQ-martingale,
0 ≤ t ≤ u ≤ T ,

EA∗u (ηtSt) = η+
t EA

∗
u (St) + η−t EA

∗
u (−St) = η+

t Su − η
−
t Su = ηuSu,

where η = η+ − η− with η+, η− ≥ 0 P-quasi surely. Therefore we achieve

Ψ(Xm) = EA∗0 (ηTST ) = η0S0 = ψ(Xm).

For the other direction let Ψ ∈ L2(P)~++ with Ψ�MP
≥ πP , related to a set of linear

functionals {πP : MP → R}P∈P and {ΠP : L2(P)→ R}P∈P , such that Π�MP
= πP .

42 Additionally, the set of priors must be chosen maximally. For further consideration, we
refer the reader to Section 3 in Nutz and Soner (2012).
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This can be inferred from Ψ and the construction in the proof of the second part of
Theorem 1. Now, we define Q in terms of Γ.
We discuss the possible cases which can appear. For simplicity we assume P =
{P1, P2, P3}. Let P k,j = 1

2P
k + 1

2P
j and Zk,j = 1

2Z
k + 1

2Z
j, recall that we can

represent each functional ΠP by
∫
ZPdP .

1. 1
2Π1 + 1

2 (Π2 ∧Π3) becomes
{
Z1P1, Z

2,3P 2,3
}

= Q

2.
(

1
2Π1 + 1

2Π2

)
∧Π3 becomes

{
Z1,2P 1,2, Z3P3

}
= Q

Since Q = {Q : dQ = ZPdP, P ∈ Γ(P), ZP ∈ L2(P )}, the first condition of Defi-
nition 5 follows, note that the square integrability of each ZP follows from the c2,P-
continuity of linear functionals which generate Ψ.
We prove the symmetric martingale property of the asset price process. Let B ∈ Ft,
η ∈ A be a self-financing trading strategy and

ηs =

{
1 s ∈ [t, u[ and ω ∈ B
0 else ,

η0
s =


St, s ∈ [t, u[ and ω ∈ B
Su − St, s ∈ [u, T [ and ω ∈ B
0 else.

This strategy yields a portfolio value

ηTST = (Su − St) · 1B,

the claim ηTST is marketed at price zero. In terms of the modified sublinear expec-
tation {EQt (·)}t∈[0,T ], we have with t ≤ u

EQt ((St − Su)1B) = 0.

By Theorem 4.7 Xu and Zhang (2010), it follows that Su = EQt (Su).43 But this
means that {St}t∈[0,T ] is EQ-martingale. The same argumentation holds for −S,

hence the asset price S is a symmetric EQ-martingale. �

Proof of Corollary 2 1. Suppose there is a Q ∈M(P) and let η ∈ A such that
ηTST ≥ 0 and P ′(ηTST > 0) > 0 for some P ′ ∈ P. Since for all Q ∈ Q there
is a P ∈ k(P) such that Q ∼ P , there is a Q′ ∈ Q with Q′(ηTST > 0) > 0.
Hence, EQ(ηTST ) > 0 and by Theorem 2 we observe EQ(ηTST ) = η0S0. This
implies that no P-arbitrage exists.

2. In terms of Theorem 1, each P ∈ R admits exactly one extension. With
Theorem 2 the result follows.

3. By Theorem 2 this is equivalent to the non emptiness of L2(P)~+. Fix a Ψ ∈
L2(P)~++, with Γ(P) = R and a η ∈ A such that η0S0 = 0 hence Ψ(ηTST ) = 0.
The viability of Ψ implies ηTST = 0 R-q.s. Hence, no R-arbitrage exist.

43The result is proven for the G-framework. However the assertion is in our setting true
as well, by an application of Proposition 4.10 of Nutz and Soner (2012) instead of Theorem
4.1.42 of Peng (2010).
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4. This then follows by the same argument as in Harrison and Pliska (1981) (see
the Lemma on p.228). �

For the proof of Theorem 3, we apply results from stochastic analysis in the G
framework. The results are collected in Appendix B.3.

Proof of Theorem 3 Let Q be an EsMM-set, given by Q = {Q : dQ = ρdP, P ∈
P}, where the density ρ satisfies ρ ∈ L2(P) and EG[ρ] = −EG[−ρ]. Next define the
stochastic process (ρt)t∈[0,T ] by ρt = EG[ρ|Ft] resulting in a symmetric G-martingale
to which we apply the martingale representation theorem for G-expectation, stated
in Appendix B.3. Hence, there is a γ ∈M2

G(0, T ) such that we can write

ρt = 1 +

∫ t

0
γsdB

G
s , t ∈ [0, T ], P-q.s.

By the G-Itô formula, stated in the Appendix B.3, we have

ln(ρt) =

∫ t

0
φsdB

G
s +

1

2

∫ t

0
φ2
sd〈BG〉s, P-q.s

for every t ∈ [0, T ] in L2
G(Ωt) and hence

ρ = E
φ
T = exp

(
− 1

2

∫ T

0
θ2
sd〈BG〉s −

∫ T

0
θsdB

G
s

)
, P-q.s.

With this representation of the density process we can apply the Girsanov theorem,
stated in Appendix B.3. Set φt = ρt

γt
and consider the process

Bφ
t = BG

t −
∫ t

0
φsds, t ∈ [0, T ].

We deduce that Bφ is a G-Brownian motion under Eφ(·) = EG[φ·] and S satisfies

St = S0 +

∫ t

0
VsdB

φ
s +

∫ t

0
(µs + Vsφs)d〈Bφ〉s t ∈ [0, T ]

on (Ω, L2(P), Eφ). Since V is a bounded process, the stochastic integral is a symmet-
ric martingale under Eφ. S is a symmetric Eφ-martingale if and only if µt+Vtφt = 0
P-q.s. We have shown that ρ is simultaneous Radon-Nikodym type density of the
EsMM-set Q = {Q : dQ = ρdP, P ∈ P}. Hence, there is an EsMM-set consisting of
more than one element, since φ = θ. �

B Appendix: Required results

In this Appendix we introduce the mathematical framework more carefully. We also
collect all the results applied in Sections 2 and 3.
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B.1 The sub order dual

In this subsection we discuss the mathematical preliminaries for the price space of
sublinear functionals for Section 3.
The topological dual space:

1. Let c2,P be a capacity norm, defined in Section 2.2. Every continuous linear
form l on L2(P) admits a representation:

l(X) =

∫
Xdµ ∀X ∈ L2(P),

where µ is a bounded signed measure defined on a σ-algebra containing the
Borel σ-algebra of Ω. If l is a non-negative linear form, the measure µ is
non-negative finite.

2. We have L2(P)∗ =
{
µ =

∫
ZdP : P ∈ P and Z ∈ L2(P)

}
.

Note that the capacity norm defined in (1) is a Prohorov capacity. We apply Propo-
sition 3 from Bion-Nadal and Kervarec (2012). The second assertion can be proven
via a modification of Theorem I.30 in Kervarec (2008), where the case of L1(P) is
treated.

B.1.1 Semi lattices and their intrinsic structure

The space of coherent price systems L2(P)~++ plays a central in Theorem 1 and 2.
Every consolidation operator has a domain in

⊗
P∈P L

2(P)∗ and maps to L2(P)~.
We begin with the most simple operation of consolidation, ignoring a subset of priors
and giving a weight to the others.
Let µ ∈ M≤1(P) be the positive measure µ such that µ(P) ≤ 1. In our case the
underlying space is

⊗
P∈P L

2(P)∗ such that the density component is invariant,
when considering the representation l(X) =

∫
ZXdP . So let N ⊂ B(P) be a Borel

measurable set and µ ∈M≤1(P). The consolidation via convex combination is given
by

Γ(µ,N) :
⊗
P∈P

L2(P)~ → L2(P)∗, {ΠP }P∈P 7→
∫
N
ZPdµ(dP ).

The size of N determines the degree of ignorance, related to the exclusion of the
prior in the countable reduction. A measure with a mass strictly less than implies
an ignorance. Here, a Dirac measure on P is a projection to one certain probability
model.
Next, we consider the supremum operation of functionals. Note that this gives us
the connection to sublinear expectations.
The operation of point-wise maximum preserves the convexity. We review a result
which gives an iterated application of the Hahn-Banach Theorem.

Representation of sublinear functionals Frittelli (2000): Let ψ be a sublinear func-
tional on a topological vector space V , then

ψ(X) = max
x∗∈Pψ

x∗(X),
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where Pψ = {x∗ ∈ X∗ : x∗(X) ≤ ψ(X) for all X ∈ V } 6= ∅

The maximum operation can also be associated to a lattice structure. In economic
terms this is related to a normative choice of the super hedging intensity. The
diversification valuation operator consolidation is set to one nonlinear valuation
functional. Note that the operation preserves monotonicity.

B.2 The set of probability models

The model of multiple priors motivates the introduction of the following mapping

c : B(Ω)→ [0, 1], c(A) = sup
P∈P

P (A).

It is easy to prove that c(·) is a Choquet capacity.44 The capacity notion may be
used for an alternative formulation of Theorem 2.
Fix (Ω,B(Ω)) = (C0([0, T ],B(C0([0, T ])). We refer to Bion-Nadal and Kervarec
(2010) where the state space consists of a cadlaq path. We give a criterion for the
weak compactness of P. Let σ1, σ2 : [0, T ] → R be two measures with a Holder
continuous distribution function t 7→ σi([0, t]) = σi(t).
As introduced in Section 2.1, a measure P on (Ω,B(Ω)) is a martingale probability
measure if the coordinate process is a martingale with regard to the canonical (raw)
filtration.

Criterion for weak compactness of priors, Denis, Kervarec, et al. (2007): Let
P(σ1, σ2) be the set of martingale probability measures with

dσ1(t) ≤ d〈B〉Pt ≤ dσ2(t),

where 〈B〉P is the quadratic variation of B under P . Then the set P(σ1, σ2) is
weakly compact.
Now, we discuss the concept of countable reduction. We apply the following result
in Section 2.

Countable reduction, Bion-Nadal and Kervarec (2012): Let c2,P be given by a weakly
compact set of probability measures P. Then there is a countable set (Pn)n∈N ⊂ P
such that for all X ∈ L2(P)

c2,P(X) = sup
n∈N

EPn [|X|2]
1
2 .

The associated Banach spaces are the same. This assertion holds, since the closure
of P has a countable dense subset (for the weak∗-topology or in probabilistic terms
the vague topology).

Following, we introduce an equivalence class associated with the c2,P -norm on P.
We start with some single prior considerations, taken from Bion-Nadal and Kervarec
(2012). Note that L2({P}) = L2(P ), let Q ∈ L1(P )∗ and remember

Q ∼ P if and only if

(
∀X ∈ L2(P )+, X = 0 in L2(P )⇔

∫
XdQ

)
.

44For a general treatment, see again Denis, Hu, and Peng (2011) and the references therein.
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Whenever P is weakly relatively compact, we can associate a probability measure P
to L2(P), characterizing the (quasi sure) null elements in the positive cone L2(P)+.
Let M+(c2,P) be the set of non-negative finite measures on (Ω,B(Ω)) defining an
element of L2(P)∗. Define on M+(c2,P) the relation Rc2,P by:

µRc2,Pν if and only if

(
∀X ∈ L2(P)+,

∫
Xdµ = 0⇔

∫
Xdν = 0

)
It follows that Rc2,P is an equivalence relation on P.

Reference measure for the positive cone, Bion-Nadal and Kervarec (2010): There is
a unique Rc2,P equivalence class in M+(c2,P) such that µ ∈ M+(c2,P) belongs to
this class if and only if

∀X ∈ L2(P)+, {µ(X) = 0} if and only if {X = 0 in L2(P)}.

This class is referred as the canonical c2,P -class. For every countable and dense set
(Pn)n∈N of P, for αn > 0, n ∈ N, such that

∑
n∈N αn = 1 the probability measure∑

n∈N αnP
n belongs to the canonical c2,P -class.

B.3 Stochastic analysis with G-Brownian motion

We introduce the notion of sublinear expectation for the G-Brownian motion. This
includes the concept of G-expectation, the Itô calculus with G-Brownian motion and
related results concerning the representation of G-expectation and (symmetric) G-
martingales. For a more precise detour we refer to the Appendix of Vorbrink (2010)
and to references therein. At the end of this section we present a Girsanov theorem
for G-Brownian motion, which we apply in Theorem 3 of Subsection 3.3. Let Ω 6= ∅
be a given set. Let H be a linear space of real valued functions defined on Ω with
c ∈ H for all constants c and |X| ∈ H if X ∈ H. Note that in our model we choose
Cb(Ω) = H and Ω = ΩT = C0([0, T ]).
A sublinear expectation Ê on H is a functional Ê : H → R satisfying monotonicity,
constant preserving, sub-additivity and positive homogeneity. The triple (Ω,H, Ê)
is called a sublinear expectation space. For the construction of the G-expectation,
the notion of independence and G-normal distributions we refer to Peng (2010).
A process (Bt)t≥0 on a sublinear expectation space (Ω,H, Ê) is called a G–Brownian
motion if the following properties are satisfied:

(i) B0 = 0.

(ii) For each t, s ≥ 0: Bt+s −Bt ∼ Bt and Ê[|Bt|3]→ 0 as t→ 0.

(iii) The increment Bt+s−Bt is independent from (Bt1 , Bt2 , · · · , Btn) for each n ∈ N
and 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

(iv) Ê[Bt] = −Ê[−Bt] = 0 ∀t ≥ 0.

The following observation is important for the characterization of G–martingales.
The space Cl,Lip(Rn), where n ≥ 1 is the space of all real-valued continuous functions
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ϕ defined on Rn such that |ϕ(x) − ϕ(y)| ≤ C(1 + |x|k + |y|k)|x − y| ∀x, y ∈ Rn.
We define Lip(ΩT ) := {ϕ(Bt1 , · · · , Btn)|n ∈ N, t1, · · · , tn ∈ [0, T ], ϕ ∈ Cl,Lip(Rn)}.
The Itô integral can also be defined for the following processes: Let H0

G(0, T ) be the
collection of processes η having the following form: For a partition {t0, t1, · · · , tN}
of [0, T ], N ∈ N, and ξi ∈ Lip(Ωti) ∀i = 0, 1, · · · , N − 1, let η be given by

ηt(ω) :=
∑

0≤j≤N−1

ξj(ω)1[tj ,tj+1)(t) for all t ∈ [0, T ].

For η ∈ H0
G(0, T ) let ‖η‖M2

G
:=
(
EG

[∫ T
0 |ηs|

2ds
]) 1

2
and denote byM2

G(0, T ) the com-

pletion of H0
G(0, T ) under this norm. We can construct Itô’s integral I on H0

G(0, T )
and extend it to M2

G(0, T ) continuously, hence I : M2
G(0, T )→ L2(P).

The next result is an Itô formula. The presentation of basic notions on stochastic
calculus with respect to G-Brownian motion lies beyond the scope of this appendix.

Itô-formula, Li and Peng (2011): Let Φ ∈ C2(R) and dXt = µtd〈BG〉t + VtdB
G
T ,

t ∈ [0, T ], µ, V ∈M2
G(0, T ) are bounded processes. Then we have for every t ≥ 0:

Φ(Xt)− Φ(Xs) =

∫ t

s
∂Φ(Xu)VudB

G
u +

1

2

∫ t

s
∂Φ(Xu)µu + ∂2Φ(Xu)V 2

u d〈BG〉u.

Next, we introduce in the G-framework martingales. A process M = {Mt}t∈[0,T ] with
values in L2(P) is called G-martingale if EG[Mt|Fs] = Ms for all s, t with s ≤ t ≤ T .
If M and −M are both G–martingales M is called a symmetric G–martingale. This
terminology also applies to general sublinear expectations as those in Section 3.2.
By means of the characterization of the conditional G-expectation we have that M
is a G-martingale if and only if for all 0 ≤ s ≤ t ≤ T, P ∈ P,

Ms = ess sup
Q′∈P(s,P )

EQ
′
[Mt|Fs] P − a.s.

In Song (2011), this identity declares that aG-martingaleM can be seen as a multiple
prior martingale which is a supermartingale for any P ∈ P and a martingale for an
optimal measure.

Characterization for G-martingales, Soner, Touzi, and Zhang (2011): Let x ∈ R, z ∈
M2
G(0, T ) and η ∈M1

G(0, T ). Then the process

Mt := x+

∫ t

0
zsdBs +

∫ t

0
ηsd〈B〉s −

∫ t

0
2G(ηs)ds, t ≤ T,

is a G–martingale.
In particular, the nonsymmetric part −Kt :=

∫ t
0 ηsd〈B〉s −

∫ t
0 2G(ηs)ds, t ∈ [0, T ],

is a G-martingale which is different compared to classical probability theory since
{−Kt}t∈[0,T ] is continuous, and non-increasing with a quadratic variation equal to
zero. M is a symmetric G–martingale if and only if K ≡ 0.

Martingale representation, Song (2011): Let ξ ∈ L2
G(ΩT ). Then the G–martingale

X with Xt := EG[ξ|Ft], t ∈ [0, T ], has the following unique representation

Xt = X0 +

∫ t

0
zsdBs −Kt
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where K is a continuous, increasing process with K0 = 0,KT ∈ LαG(ΩT ), z ∈
Hα
G(0, T ), ∀α ∈ [1, 2), and −K a G–martingale. Here, Hα

G(0, T ) is the completion

of H0
G(0, T ) under the norm ‖η‖Hα

G
:=

(
EG

[∫ T
0 |ηs|

2ds
]α

2

) 1
α

. If is ξ bounded from

above we have z ∈M2
G(0, T ) and KT ∈ L2

G(ΩT ), see Song (2011).
Finally we state a Girsanov type theorem with G-Brownian motion. In Subsection
3.3 we discussed some heuristics in terms of a G-Doleans Dade exponential. Define
the density process by Eθ as the unique solution of dEθt = Eθt θtdB

G
t , Eθ0 = 1. The proof

of the Girsanov theorem is based on a Levy martingale characterization theorem for
G-Brownian motion.

Girsanov for G-expectation, Xu, Shang, and Zhang (2011): Assume the following
Novikov type condition: There is an ε > 1

2 such that

EG

[
exp

(
ε ·
∫ T

0
θ2
sd〈BG〉s

)]
<∞

Then Bθ
t = BG

t −
∫ t

0 θs〈B
G〉s is a G-Brownian motion under the sublinear expectation

Eθ(·) given by, Eθ(X) = EG[EθT ·X], Pθ = EθT · P with X ∈ L2(Pθ).
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