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City age and city size ∗

Kristian Giesen† Jens Suedekum‡
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Abstract

There has been vast interest in the distribution of city sizes in an economy, but this research

has largely neglected that cities also differ along another fundamental dimension: age. Using

novel data on the foundation dates of almost 8,000 American cities, we find that older cities

in the US tend to be larger than younger ones. To take this nexus between city age and

city size into account, we introduce endogenous city creation into a dynamic economic model

of an urban system. The city size distribution that emerges in our economy delivers an

excellent and robust fit to different types of US city size data, in fact much better than other

parameterizations derived from different urban growth models. This evidence can resolve

several recent debates, and build a bridge between different views in the literature on city

size distributions.
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1 Introduction

Ever since the seminal works by Auerbach (1913) and Zipf (1949), there has been vast interest

in the distribution of city sizes in an economy. This research has largely neglected, however, that

cities also differ along another fundamental dimension: age. Using novel data on the foundation

dates of almost 8,000 American cities, we show that age heterogeneity is a salient empirical fact.

The average US city in our sample is 139 years old today, but there are strong differences. Boston

was founded around 383 years ago, while places like Laguna Woods (CA) not even had their 13th

birthday yet. Importantly, we find that age and size are positively correlated: Doubling the age of

a city is – on average – associated with an increase of the city’s current population size by 41%.

The country’s city size distribution and the city age distribution, therefore, have a systematic

relationship that we explore in this paper.

We introduce endogenous city creation into a dynamic economic model of an urban system.

Our starting point is the influential approach by Gabaix (1999) and Eeckhout (2004) who consider

urban systems where Gibrat’s law is satisfied, that is, where all cities grow with the same expected

rate irrespective of their current size. In Eeckhout (2004) there is a fixed population that is freely

mobile across a fixed number of equally old cities. City sizes then – in fact, only then – converge to

a lognormal (LN) distribution, as cities face random and permanent productivity shocks and thus

obey to the “pure” Gibrat’s law. The famous Zipf’s law for city sizes emerges instead of the LN

when an “impurity” is added, and cities are prevented from becoming too small (Gabaix 1999).1

In our model we assume that the country’s total population is growing. If the number of cities

were fixed, this would lead to rising congestion and decreasing equilibrium utility over time, as more

people have to be squeezed into the urban system. We hence consider endogenous city creation,

which allows the population to spread across more cities and leads to age differences between

cities. When a new city is founded, it starts from a randomly drawn initial productivity and

accordingly adjusts to its equilibrium starting size through population inflows from the established

cities. The new city exhibits strong growth during this transition. Afterwards, all cities are subject

to random productivity shocks which affect the evolution of their equilibrium sizes. Gibrat’s law

is therefore at work in the long run, but there are also deviations as young cities initially grow

faster than established cities but revert to the economy-wide average growth rate later on. Such

a pattern is consistent with recent empirical evidence on US urban growth over the last two

centuries.2 Moreover, as expected city growth is positive, our model predicts – in line with the

aforementioned facts – that older cities tend to be larger than younger ones.

1Zipf’s law states that city sizes follow a Pareto distribution with tail exponent close to one. The country’s

largest city is then twice as large as the second-largest, three times as large as the third-largest city, and so on.
2See Desmet and Rappaport (2012) and Gonzáles-Val, Sánchez-Vidal and Viladecans-Marsal (2012). These

studies find that, among young US cities, small ones initially grow faster than the rest of the economy. Among old

cities, however, small and large ones grow with the same rate.
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From this urban system model with its empirically relevant new features – city age hetero-

geneity, a positive correlation of age and size, and Gibrat’s law with stronger initial growth of

young cities – we then derive the city size distribution (CSD) that emerges in our economy. This

turns out to be the so-called double Pareto lognormal (DPLN) distribution. The functional form

of the DPLN is characterized by a lognormal body and power laws in the tails, which are fatter

the stronger the age differences between cities are. It thus unifies the LN suggested by Eeckhout

(2004), and the Pareto distribution (Zipf’s law) advocated by Gabaix (1999) and by Rozenfeld,

Rybski, Gabaix and Makse (2011) in a single model for the overall CSD.

Taking this DPLN distribution to US city size data, we find that it delivers an excellent and

robust fit, and it (easily) outperforms the LN, Zipf’s law and also other functional forms that have

been suggested. In other words, our urban system model which takes the nexus of city age and city

size into account, is more successful in matching contemporaneous city size data than alternative

theoretical frameworks that disregard this relationship. This evidence of the superior fit of the

DPLN distribution has, furthermore, important implications because it can potentially settle (at

least) two controversial issues from the recent empirical literature on CSDs.

The first one deals with the question how to define a city. In fact, the influential contributions

by Eeckhout (2004) and by Rozenfeld et al. (2011) use different city size data, and come to

divergent conclusions about the appropriate parameterization of the CSD. Using administratively

defined US Census places, Eeckhout (2004) shows that the LN closely fits the data, thus providing

empirical support for his model. Rozenfeld et al. (2011), in contrast, use a bottom-up approach of

constructing area clusters from high resolution data on population density in the US, independently

of administrative boundaries. They emphasize that the sizes of area clusters with at least 13,000

inhabitants (together accounting for 63 % of the US population) closely obey to Zipf’s law. Yet,

when analyzing the distribution of the entire US population across space, that is, the overall CSD

across all clusters, it turns out that Zipf’s law breaks down. Importantly, the LN also provides a

poor fit to this distribution across all clusters, as we show in Figure 1 below. The LN thus seems

to approximate the overall CSD fairly well for one definition of US cities (Census places), but

not for the other (area clusters). Unfortunately, Rozenfeld et al. (2011) do not suggest a better

alternative for their data.

We show that the DPLN distribution closely fits the empirical CSD across all settlements for

both definitions of US cities (see Figure 1). It also performs well for other countries. Our findings

thus suggest that the CSD can be robustly approximated by the same functional form regardless

of which city size data is used. This evidence is also fully in line with, but goes beyond the findings

of Rozenfeld et al. (2011): The DPLN is a parameterization for the overall CSD across all clusters

that is consistent with their claim that Zipf’s law holds among the large clusters.

Second, our paper may reconcile another recent debate. Some authors (most notably Levy 2009,

Ioannides and Skouras 2013, and Malevergne, Pisarenko and Sornette 2011) have argued that the

3



large Census places also follow a Zipfian power law pattern that is only imperfectly captured by

the LN parameterization, even though the LN fits well outside the upper tail. The features of the

DPLN are precisely in line with that evidence. The debate between Levy (2009) and Eeckhout

(2009) may thus be settled by our finding that the sizes of Census places are better approximated

by a DPLN, rather than by a LN distribution. More generally, the DPLN builds a bridge between

the “old” and the “new” literature on CSDs. Dozens of older studies have found support for Pareto

distributed sizes among large cities across different countries and time periods.3 Eeckhout’s findings

have challenged this conclusion, since the LN does not actually feature a Zipfian power law in the

upper tail. The DPLN, on the other hand, is fully consistent with Zipf’s law and incorporates it

into a model for the overall size distribution across all cities.

The rest of this paper is organized as follows. In Section 2 we present our evidence on the

distribution of city sizes and show that the DPLN fits the empirical data better than other param-

eterizations. Section 3 turns to our theoretical model of an urban system with endogenous city

creation. There we show that age heterogeneity across cities, together with Gibrat’s law, is key

to understanding why the DPLN distribution of city sizes emerges. Section 4 presents our novel

empirical evidence on the nexus of city age and city size in the US. Finally, Section 5 concludes.

2 City size distributions: The evidence

2.1 Data

For our empirical analysis of the city size distribution (CSD) we utilize two different definitions

of US “cities”: Census places and area clusters. The former dataset refers to the year 2000 and

includes administratively defined settlements according to legal boundaries. It contains 25,359

cities with sizes ranging from one to about 8 million inhabitants (New York City). Comparable

data sets on the sizes of administratively defined settlements (not subject to a threshold size) are

by now available for many countries. This is a clear advantage. However, a disadvantage is that

the boundaries between those units are sometimes quite arbitrary, as two Census places may be

considered as separate cities even though they are essentially part of the same city.4

The second dataset has been constructed by (and is explained in detail in) Rozenfeld et al.

(2008, 2011). Here, cities are defined by using a clustering algorithm on high resolution data on

population densities in the US. We use their benchmark clusters with `=3 km, which leads to

23,499 cities covering about 96% of the US population in 2001 and range from one to about 16

3Because of data limitations, those older studies were forced to use truncated data sets which only include cities

above a certain threshold size. Nitsch (2004) summarizes this first wave of research on the CSD.
4More details about the widely used Census places data can be found in the Geographic Areas Reference Manual

available online under http://www.census.gov/geo/www/garm.html. A further problem with this data is that it

only represents 74 % of the total US population who reside in incorporated or Census designated places.
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million inhabitants (the New York cluster). The advantage of this data is that cities are defined as

genuine agglomerations ignoring administrative boundaries.5 A current disadvantage is that such

data is not (yet) available for many countries.

Figure 1 shows kernel density estimates (in logarithmic scale) of the empirical CSDs for both

definitions of cities, see the black solid lines. As can be seen, the mean size of area clusters is higher

than for the Census places, while the the variance is lower. These distributional features result

from the fact that the clustering algorithm tends to connect adjacent places into one agglomeration

(the same area cluster), as is explained in detail by Rozenfeld et al. (2008).

2.2 Parameterization and comparison of data fit

We first fit the LN distribution to the data by using maximum likelihood estimation (see Table

1 for the results). Figure 1 depicts the fitted LN distributions as the grey solid lines. For the

Census places, the figure corroborates Eeckhout’s (2004) finding: the LN indeed provides a good

fit. However, when using the area clusters, the LN plainly fails to match the data. Turning to

Zipf’s law, it can be easily verified that it closely fits the data when focusing only on large cities (in

either definition).6 However, as is clear from Figure 1, outside the upper tail Zipf’s law eventually

breaks down and, hence, it is not a useful parameterization for the overall CSD.

Our suggested functional form for the overall CSD is the DPLN distribution, which has been

first introduced by Reed (2002) and is further discussed by Reed and Jorgensen (2005). It has the

following density function for city sizes S:

f(S) =
αβ

α + β

[
Sβ−1e

(
βµ+β2σ2

2

)
Φc

(
ln(S)− µ+ βσ2

σ

)
+ S−α−1e

(
αµ+α2σ2

2

)
Φ

(
ln(S)− µ− ασ2

σ

)]
.

(1)

In (1), the Φ is the cumulative and Φc the complementary-cumulative standard normal distri-

bution. The genesis of the DPLN is discussed in detail in the next section. For the moment, it

suffices to note some basic properties. It is a four-parameter distribution (α, β, µ and σ) featuring

a lognormal shape in the body and power laws in the tails. More specifically, if S → ∞ then

f(S) ∼ S−α−1, and if S → 0 then f(S) ∼ Sβ−1. The slope parameters of the Pareto tails are

thus α and β, while the parameters µ and σ pertain to the location and scale of the LN body. In

logarithmic scale, the DPLN can be skewed and its kurtosis can have positive or negative excess,

that is, it can be more peaked (leptokurtic) or more flat (platykurtic) than the LN.

5In the top range these area clusters are often coincident with metropolitan statistical areas (MSAs). However,

unlike the MSAs, the area clusters data is not subject to a minimum threshold size but gives a comprehensive

portray how the US population spreads across space.
6We have verified the result by Rozenfeld et al. (2011). Using only area clusters that are larger than 13,000

inhabitants, a standard rank-size regression yields a highly significant tail exponent of 0.994 with a R2 level of 0.99.
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Figure 1: Kernel density estimates and fitted LN + DPLN distributions

Table 1: Data and estimated parameters

Area clusters Places

N 23,499 25,359

coverage 0.96 0.74

Min 1 1

Max 15,594,627 8,008,278

DPLN LN DPLN LN

α 1.659 - 1.221 -

β 1.830 - 2.821 -

µ 8.370 8.427 6.813 7.277

σ 0.155 0.911 1.514 1.753

AIC 450,996 458,347 469,430 469,550

BIC 451,028 458,363 469,463 469,566

ln(Lij) -225,493.9 -229,171.3 -234,711.2 -234,773.1

Legend: N is the number of data points (cities), coverage is the percentage of the total US population represented

by the data set. Min and Max are the population size of the smallest and the largest settlement. Parameters are

estimated with maximum likelihood. ln(Li
j) is the log-likelihood of distribution j = LN ;DPLN for the respective

dataset. The Akaike information criterion for dataset i and distribution j is computed as AICi
j = 2kj − 2ln(Li

j),

and the Bayesian information criterion as BICi
j = kj · ln(N i)−2ln(Li

j), with kj denoting the number of parameters

of distribution j. Both criteria favor the distribution j that yields the lower value.
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It is straightforward to estimate the parameters of the DPLN as given in (1) by maximum

likelihood (see Table 1 for the estimation results).7 We depict the fitted DPLN distributions

in Figure 1 as the dashed black lines. As can be seen, the DPLN provides a very close fit to the

empirical CSD for both definitions of cities. Certainly the DPLN does a better job than the LN. For

the area clusters this is self-evident by visual inspection. For the Census places, the performance

difference is less pronounced. Still, the DPLN clearly fits better than the LN, even when taking

into account that there are two more parameters that need to be estimated. This improvement

in the adjusted performance can be seen from the Akaike (AIC) and the Bayesian information

criterion (BIC), which are also reported in Table 1. Standard statistical specification tests convey

the same message: for both data sets, the LN is rejected much earlier than the DPLN.8

2.3 Discussion

The better performance of the DPLN also holds for other countries. Giesen, Suedekum and

Zimmermann (2010) analyze the CSDs of seven other economies, using data on administratively

defined cities comparable to the Census places. Using various model selection tests, they show

that the DPLN outperforms the LN in terms of adjusted fit for almost all countries (the only

exception is Switzerland) but they do not explain the theory underlying the DPLN. An additional

empirical contribution of this paper is to show that the superior fit of the DPLN also holds for the

recently developed US area clusters data. Rozenfeld et al. (2011) also provide similarly defined

area clusters data for Great Britain. We have used that data as well, and obtained the consistent

result that the DPLN provides a very good fit while the LN fits poorly.

Finally, the DPLN also outperforms other parameterizations that have been suggested. In

particular, Ioannides and Skouras (2013) suggest a mixture of LN and Pareto as the appropriate

functional form for the overall CSD, and estimate several versions of it using the US Census places

and area clusters data. However, while their ad hoc parameterizations fit better than the LN,

they deliver a worse fit for both data sets than the DPLN.9 In addition, Gonzáles-Val, Sanz and

Ramos (2012) compare the DPLN and three other parameterizations for the overall CSD, using

data from Italy, Spain and the US. They find that the DPLN consistently delivers a better fit than

the competing distributions in all three countries.

7We utilize the log-likelihood function and the corresponding starting values as proposed by Reed (2002).
8We have performed Kolmogorov-Smirnov tests by drawing 1000 random samples of size 1000 from both datasets,

and for the two hypothesized parameterizations. Using the area cluster (Census places) data we obtain an average

p-value of 0.34 (0.41) for the null that the data follows the DPLN. For the null that the data follows the LN we get

a p-value much below 0.001 for both datasets. We hence cannot reject the DPLN, while the LN is strongly rejected.
9This can be immediately seen by comparing their Table 1 with our Table 1 above. For the LN distribution we

obtain exactly the same results as they do, since we have used the same data. Comparing the log-likelihood, the

AIC and the BIC for their parameterizations with our values presented above, it follows that the DPLN is more

successful in matching the empirical CSDs than their ad hoc mixture model.
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3 The model

The last section has shown that the DPLN distribution is a very useful parameterization for the

empirical CSD that delivers a robust data fit across different data sets. We now turn to the theory

and explain why the DPLN distribution of city sizes may emerge. Before we describe our dynamic

economic model in Section 3.2., it is useful to first discuss some background about the stochastic

foundations of CSDs in an urban system where Gibrat’s law holds.

3.1 Background

Gibrat’s law states that the growth rate of a city is independent of its current size. In this

subsection, we first describe what this implies for the stochastic evolution of the size of a single

city, and then turn to the overall city size distribution in the economy.

Let S(i, t) be the size of city i at time t, and let dS(i, t)/S(i, t) = ε(i, t) denote the population

growth rate between t and t + dt. The “pure” Gibrat’s law is satisfied in continuous time when

ε(i, t) follows a geometric Brownian motion of the following form:

ε(i, t) = γ · dt+ ς · dB(i, t), (2)

where B(i, t) is a Wiener process, γ ≥ 0 is the positive drift, and ς > 0 is the variability of this

stochastic urban growth process.

Assume that the initial size of city i in logarithmic scale at the time of birth, ln S(i, 0), is drawn

from some distribution with finite mean s0 > 0 and variance σ2
0 ≥ 0. Now move ahead in time and

consider the probability distribution for the size of that city at time T . It follows from the central

limit theorem and standard Itô calculus that the (log) size of that city in T can be described by

the following size probability distribution:

ln S(i, T ) ∼ N
(
s0 + µt(T ), σ2

0 + σ2
t (T )

)
, (3)

with: µt(T ) =
(
(γ − ς2/2) · T

)
and σ2

t (T ) = ς2 · T. (4)

The expected size of a city, conditional on its age T , is thus E[S(i, T )] = exp(s0 +σ2
0/2 +γ ·T ).

Provided γ > 0, this shows that older cities are larger on average since they had longer time to

grow under the process specified in (2). The conditional variance of city sizes is also larger for

older cities, since they were exposed to random shocks for a longer time.

Turning to the country’s overall CSD in a given point in time, this is the mixture of the size

probability distributions of all cities that exist at that time. Suppose for the moment that all cities

have the same age T = T . In that case, it is easy to see from (3) and (4) that all city-specific

size probability distributions are LN with the same parameters s0 + µt(T ) and σ2
0 + σ2

t (T ). The

overall CSD that results from a mixture of these identical distributions is then itself also LN with
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parameters s0 + µt(T ) and σ2
0 + σ2

t (T ). For the more general case with age heterogeneity across

cities and strictly positive drift in the stochastic growth process, however, the overall CSD is not

a LN but a mixture of different LNs with parameters dependent on the city’s age.10

In fact, the overall CSD in a given point in time, f(S), can be written as the Riemann-Stieltjes

integral of the LN with respect to the distribution of the mixing parameter T . Let this distribution,

which in our context is the city age distribution, be denoted by g(T ). We then have

f(S) =

∫
LN

(
S; s0 + µt(T ), σ2

0 + σ2
t (T )

)
dg(T ). (5)

For particular cases of the distribution g(T ) this integral in (5) can be solved analytically. In

particular, assume that the mixing parameter T is exponentially distributed with shape parameter

λ, that is, g(T ) = exp(T ;λ). As is shown by Reed (2002, 2003), the DPLN as given in (1) is

then the solution for this density function f(S) (see the appendix for details). For other age

distributions g(T ) the function f(S) may still exist, but often it cannot be solved in closed form.

Summing up, there are two important insights: i) an urban system where the pure Gibrat’s law

(with positive drift) holds only converges to an overall CSD with LN distributed city sizes if all

cities have the same age, ii) if cities differ by age, such that the age distribution across cities is

exponential, then Gibrat’s law implies an overall CSD where city sizes follow a DPLN distribution.

An exponential age distribution across cities arises dynamically if the mass (the “number”) of

cities is increasing at a constant rate λ over time, where λ is the parameter of the exponential

distribution (see Giesen 2012). It can be shown (see the appendix) that the slope parameters of

the DPLN (α and β) are increasing in λ, so that the CSD has fatter tails the lower λ is. Intuitively,

if λ is very low, the upper tail of the CSD is dominated by a small number of very old cities which

tend to be very large. Vice versa, the higher λ is, the thinner is the upper tail of the DPLN since

the age heterogeneity across cities is lower.11

Notice further that an exponential city age distribution does not require sustained growth

in the mass of cities. Consider, for example, a scenario where the number of cities first grows

exponentially in an early phase of history (say, for t < t̂), but city creation then stops at t = t̂ and

the number of cities stays fixed afterwards. The city age distribution g(T ) is then still a shifted

exponential distribution,12 and the mixing of the city-specific size probability distributions works

10Stated differently, the conditional CSD across all cities with the same age T is a LN when urban growth follows

Gibrat’s law as in (2). However, the unconditional CSD across all cities is in general not a LN.
11In the limit with λ → ∞, all cities have the same age and the DPLN turns to a LN. The scenario studied

by Eeckhout (2004) corresponds to this case with a degenerate age distribution g(T ) = T . In addition, γ = 0 is

assumed in his framework. In that case, even if there were age heterogeneity, there would be no positive correlation

between city age and expected city size although older cities would have a higher variance in their size probability

distributions. In Section 4 we provide empirical evidence that age and size are positively correlated across US cities.
12There are no cities younger than T̂ = (t− t̂) at t, while age is exponentially distributed for cities older than T̂ .
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analogously in that case. City sizes thus still converge to a DPLN distribution, although absolute

size differences between cities fan out by the variance of the growth process in (2).

3.2 An urban system with endogenous city creation

We now develop an economic model of an urban system where the pure Gibrat’s law holds and

where city sizes converge to a DPLN distribution. Our starting point is a continuous time version of

the urban growth framework by Eeckhout (2004). We extend that model to incorporate exogenous

population growth and technological progress, as well as endogenous city creation.

Basic setup Consider an economy with a total population S(t) that is growing at the exogenous

rate gS > 0. The economy consists of a continuum of N(t) locations/cities at time t. Firms

produce a perfectly tradeable commodity using labor only, and operate under perfect competition.

The wage w(i, t) is equal to the marginal product of labor in location i and time t and depends

positively on the city’s overall productivity A(i, t) and on the current city size S(i, t). The positive

effect of S(i, t) on w(i, t) represents a localized agglomeration externality: The wage is higher in

larger cities, which is consistent with an abundant empirical literature on the urban wage premium

(see, among others, Glaeser and Marè 2001; Gould 2007). On the other hand, within each city,

agents consume land and have to commute to work, thereby losing effective working time. This

represents a negative size externality from congestion: land prices are higher, and more time is

lost for commuting in larger cities. Ultimately, as in Eeckhout (2004), we assume that the utility

of a city resident in city i at time t, V (i, t), is monotonically decreasing in the local population size

S(i, t). More specifically, considering for simplicity the particular functional forms for the localized

externalities as used in that paper, indirect utility in city i at time t can be written as

V (i, t) = Φ
(
A(i, t) · S(i, t)−Θ

)α
, (6)

where α, Θ, and Φ are positive parameters that are the same across cities and time. Notice that

V (i, t) is decreasing in S(i, t). That is, the negative size externality dominates at the city level.13

With respect to productivity, we assume that locations are hit by idiosyncratic and permanent

i.i.d. shocks. More specifically, we assume a Brownian motion dA(i, t)/A(i, t) = εA(i, t) where

εA(i, t) = gA · dt+ ςA · dB(i, t). The positive drift gA > 0 thus captures the expected productivity

growth in the economy, while ςA > 0 is the variability of this stochastic growth process. The term

A(i, t) in (6) then reflects the history of productivity shocks in city i up to time t, and V (i, t) is

increasing in A(i, t). That is, utility is higher in cities with higher accumulated productivity.14

13As Eeckhout (2004), our model therefore does not feature a U-shaped net agglomeration curve á la Henderson

(1974) which would greatly complicate the analysis.
14As Gabaix (1999), Eeckhout (2004), Rossi-Hansberg and Wright (2007), and others, we do not explicitly model

the nature of the random shocks. Our specification may provide a short-cut for a variety of micro-foundations,
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Spatial equilibrium Workers are freely mobile so that indirect utility is equalized across all

cities at each point in time. Using the property that V (i, t) = V (j, t) for all i and j, it can be

shown (see Giesen 2012) that the economy-wide indirect utility level in the spatial equilibrium is:

V ∗(t) = Φ
(
A(t) · S(t)−Θ

)α
, where A(t) =

(∫ N(t)

i=0

A(i, t)1/Θ

)Θ

di (7)

The equilibrium size of a single city then reflects its relative productivity level, S(i, t)∗/S(t) =

(A(i, t)/A(t))1/Θ, and it immediately follows from this relationship that Gibrat’s law holds since

A(i, t) evolves randomly around the common trend gA. Furthermore, it follows from (7) that

V (t)∗ is decreasing in S(t). If more workers have to be fitted into a fixed set of cities, city sizes

would rise proportionally and all individuals end up worse off because of the pervasive negative

size externality. Since the total population grows at the rate gS > 0, welfare would thus decrease

over time, ceteris paribus. Vice versa, V (t)∗ is increasing in A(t). Expected productivity growth

gA > 0 thus raises welfare over time, ceteris paribus, since it increases wages everywhere.

Endogenous city creation and growth in new cities The formation of new cities in an urban

system has been analyzed ever since the classical contributions by Henderson (1974) and Fujita

(1978). This literature has shown that decentralized market allocations are typically characterized

by an inefficient number of cities with inefficient sizes, and analyzed different arrangements how

the involved externalities can be internalized.15 Those aspects are not the focus of this paper, but

our main interest is the city age distribution that arises endogenously from the dynamics of city

formation. We therefore take the simplest possible approach, and consider a forward-looking social

planner who creates the efficient number of cities over time.

In particular, assume there is a large amount of featureless land where the planner can form

cities. The creation of every new city imposes sunk resource costs F for developing infrastructure,

the housing stock, and so on, that are borne by the currently alive population.16 Whenever the

planner creates a new city, its initial productivity Ai,0 is drawn from some distribution with finite

mean A0 > 0 and variance σ2
A0 > 0. Afterwards, productivity in those new cities evolves just as in

any other city, namely, according to the Brownian motion with positive drift described above.

At the time of creation, a new city is initially empty and, hence, offers very high utility. There is

inflow of population from the other cities until a new spatial equilibrium is reached. This induced

however, such as changes in localized production amenities, technological innovations causing relocation of firms,

city-specific productivity realizations for particular matches of firms and workers, etc. Furthermore, as in those and

most other models from the urban growth literature, we also do not explicitly analyze where in space the cities are

located. See Hsu (2012) for a recent model that addresses the spatial dimension of the CSD.
15See Henderson and Venables (2009) for a recent analysis of those issues in the context of a dynamic urban

system model with a growing population.
16If city formation were costless, the planner would create an infinite number of infinitely small cities.
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inflow is stronger, the higher is the realization of Ai,0. That is, the city’s equilibrium starting

size Si,0 reflects its initial productivity draw, and the new city exhibits strong growth during the

transition towards this starting size. In the model, this transition works instantaneously because

of free mobility. If the transition would require some time, which is likely to be the case in reality,

young cities would then initially exhibit very high growth rates in their early times. Eventually

though, they revert to the growth rate of the established cities. Such a pattern, where Gibrat’s law

holds in the long run but where young cities (which tend to be relatively small) initially grow faster,

is consistent with recent empirical evidence on US urban growth over the last two centuries.17

Social planner’s problem Let x(t) denote the mass of cities that the planner creates between t

and t+dt, which adds to the stock of existing cities N(t). The formation of every new city raises the

country’s normed productivity A(t) and equilibrium utility V (t), since the population can spread

across more cities. Specifically, using (7) equilibrium utility can be rewritten as V (t)∗ = Φ ·Ω(t)αΘ

where

Ω(t) =

∫ N(t)

i=0
A(i, t)1/Θdi

S(t)
. (8)

This state variable evolves according to

Ω̇(t) =

(
(1 + gA)1/Θ

1 + gS
− 1

)
Ω(t) +

x(t) · A1/Θ
0

S(t)
. (9)

The first term in (9) entails the exogenous growth rate of the (transformed) equilibrium utility for

a fixed set of cities, which is increasing in gA and decreasing in gS. The (positive) second term is

the expected benefit from developing new cities.

The forward-looking planner chooses the time-path of city creation x(t) in order to maximize

overall welfare, taking into account the real resource costs of city creation. The present-value

Hamiltonian of this dynamic problem can be written as follows,

H(t) = e−(ρ−gS)·t
(
V (t)∗ − x(t) · χF

S(t)

)
+ λ(t) · Ω̇(t), (10)

where ρ > gS > 0 is the time discount rate, χ is the marginal utility of income that is assumed fixed,

and λ(t) is the costate variable. The planner maximizes (10) subject to the transition equation (9)

and x(t) ≥ 0. This is a standard optimal control problem, and it can be shown that the planner

creates cities so as to smooth utility over time. It becomes V ∗ = Φ · Ω∗ α Θ, where

Ω∗ =

(
αΘΦ · A1/Θ

0

χF
· 1 + gS

(1 + ρ− gS)(1 + gS)− (1 + gA)1/Θ

) 1
1−αΘ

(11)

17See Desmet and Rappaport (2012) and Gonzáles-Val et al. (2012). This pattern may also be described as one

of “sequential city growth” (Cuberes 2009, 2012).
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The time path of city creation is then given by

x∗(t) = egS ·t ·

[(
1− (1 + gA)1/Θ

1 + gS

)
· S0

A
1/Θ
0

]
· Ω∗ (12)

The condition x∗(t) ≥ 0 requires that (1 + gA)1/Θ < (1 + gS), i.e., population growth must be

sufficiently strong relative to exogenous productivity growth. We assume that this is the case. It

then follows from (11) and (12) that the mass of created cities is higher at every point in time the

higher is gA and the lower is F . Most importantly, it follows from (12) that ẋ(t)/x(t) = gS.

In other words, the planner creates cities at a constant rate, namely the country’s population

growth rate. Productivity growth gA positively affects the level of city creation, but not its growth

rate. Finally, when the mass of new born cities increases at a constant rate, so does the total

number of cities. Specifically, we have Ṅ(t)/N(t) = x(t)/N(t) which becomes e(t·gS)

e(t·gS)−1
·gS and thus

(quickly) converges to gS. This is chosen by the planner in view of the constant growth of the

economy’s total population, as the creation of new cities avoids crowding in the established cities

and thereby smoothes equilibrium utility over time.

City age and city size distribution Summing up, in our framework: i) the mass of cities grows

at a constant rate, which in turn leads (endogenously) to an exponential city age distribution, and

ii) growth among established cities obeys to the pure Gibrat’s law, as they are hit by idiosyncratic

productivity shocks. City sizes will thus converge to a DPLN distribution: The city-specific size

probability distributions follow a LN because of Gibrat’s law, with mean and variance increasing

by the city’s age T . These city-specific distributions are then mixed according to the exponential

age distribution, which in turn leads to the DPLN distribution for city sizes (see Section 3.1.).

Recall that the DPLN would also emerge if the city age distribution were a shifted exponential.

That age distribution would result in our model if the population grows at the rate gS > 0 for t < t̂,

but when growth unexpectedly stops at t̂ and the overall population remains constant afterwards.

Then, at t̂, the planner stops creating cities so that their total mass remains fixed from there on.

4 City age and city size in the US urban system

The key feature of our urban system model is that cities differ by their age since they are created

at different points in time. In this final section we provide empirical evidence on age heterogeneity

across American cities, exploiting a novel data set that has not been analyzed in the economics

literature so far. Afterwards, we discuss this evidence in the light of our theoretical approach.

Although little is known so far about the number or the age structure of cities in an economy,

we are not the first to address those issues. Among the few existing papers are Dobkins and

Ioannides (2001), Henderson and (2007), Gonzáles-Val et al. (2012) and Desmet and Rappaport
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(2012). These studies clearly show that the number of cities has grown over time, which implies

that cities differ by age. However, Dobkins and Ioannides (2001) and Henderson and Wang (2007)

only include cities in their analysis that are larger than a certain threshold size. Their information

thus refers to the date when the city’s size has crossed the threshold, but not to the city’s actual

creation. Desmet and Rappaport (2012) and Gonzáles-Val et al. (2012) comprehensively count the

number of all US counties or, respectively, Census places that exist in a given time, thereby giving

a more comprehensive picture of city ages in the US.18 However, they focus on age-dependent

patterns of urban growth as discussed before, but do not address the correlation of city age and

the current city size which is one of our main aims.

4.1 Data

Our data traces the actual foundation dates of American cities, which correspond in their definition

to the US Census places, so that the city age data is compatible with the previously used city size

data for the year 2000.19 Among historians, there is no agreement on the precise meaning of the

term “foundation date” for a city. Some claim it to be the date when the first settlers arrived

at the site, when the deed for the land was granted, or when the first building was completed.

However, such dates are typically unknown. As the birth date of the respective US Census place,

we therefore consider the foundation date of the administrative municipality, that is, the earliest

date of self-government or incorporation.

We use data from the commercially sold Cities DatabankTM that has extensively collected

this information, drawing on official sources including legal citation of a law, court order, county

commission order, or city charter, as well as by examining standard library citations for an original

published source, or a legally designated source or repository, and the laws of each legislative session

of each territory, colony and State. The data base, in total, includes 7,999 US Census places,

together accounting for 140 million citizens, roughly half of the total US population in 2000.20 For

the vast majority of cases (> 99%), the foundation date refers to the earliest incorporation or self-

governing date of the respective place.21 In a few instances, a merger or a consolidation of several

18Desmet and Rappaport (2012) use data for US counties and find that their number has increased from about

300 in 1800 to more than 3,000 in the year 2000. Gonzáles-Val et al. (2012) report that the number of incorporated

Census places has increased from 10,496 to 19,211 in the period 1900–2000.
19Explicit information about the history of the area clusters is, unfortunately, not available.
20This sample is largely representative for the universe of all US Census places considered above. The sample’s

smallest city has 9 inhabitants in 2000, so even the very small places are included. Furthermore, the sample includes

cities from all 51 US States, and the CSD among the cities looks similar as the overall CSD across all Census places.
21Incorporations under colonial law were often limited by the terms of the royal charter of the colony. Some cities

were also initially chartered by the British or Dutch crowns, by the royal governor of the colony, or by the colonial

legislature. In such cases, the earlier charter date is used as the foundation date if self-government was provided to

the city. An example is Boston, which has been self-governing since 1630 but was incorporated only in 1822.
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Census places to a single one occurred. In those cases, we use wherever possible the incorporation

date of the oldest involved place. For example, the foundation of New York (2/12/1654) refers

to the first date of self-government of a legislative body in the city. The consolidation of the

boroughs Manhattan, Brooklyn, Richmond (Staten Island), Queens and Bronx to the Greater

New York Area, the currently defined Census place, only occured in 1898 which would not be an

appropriate description of the city’s foundation.22 We exclude 18 cities where the foundation date

is given by a later than the first incorporation, or where an unclear merger happened. Thereby we

end up with 7,981 Census places for which we have reliable information on their foundations.

4.2 Empirical analysis

Table 2 gives a first overview and reports the birth dates of some selected US cities. The oldest

ones – including Boston – were 370 years old in the year 2000. The youngest cities have just been

founded at that time. Among the largest US cities, New York is the oldest with age 346, while

Chicago, Houston and Los Angeles are in the middle of the spectrum with ages between 150 and

166 years in the year 2000. Las Vegas has been founded more than 250 years later than New York.

In Table 3 we summarize some features of the US city age distribution. The data clearly shows

the development of the country from the East to the West. The average age of US cities in 2000

was 126 years. Cities in the “frontier” States in the South-West and West are on average much

younger than that, however, while cities in the more traditional States in the Mid-West and along

the East Coast (particularly in New England) are older. This is shown in the second and third

row, where we divide the US into two parts. Table 3 also shows differences in the shape of the

city age distribution across those two groups of US Federal States. The distribution is positively

skewed among the cities in the traditional States, while it has negative skewness in the frontier

States. This is also shown in Figure 2, where we graphically illustrate the city age distributions.

In the traditional US States, only few cities are younger than 100 years old in the year 2000. The

distribution exhibits a peak in the range between 110-120 years, and then has some very old cities

to the far right in the upper tail. In the frontier States, on the other hand, the bulk of cities is

younger than 100 years, and only few are older than 150 years. The shape of the age distribution

for the US as a whole resembles the one in the traditional States, with the young cities from the

frontier States showing up in the lower tail.

22There are two further data issues concerning border modifications over time. First, in the case of small annex-

ations that did not significantly change the appearance of the annexing place (e.g., a large Census place A swallows

a small one B), we use the initial foundation of the surviving place A. Second, in the very rare event where one

place A is divided into several ones, we use the date of division as the birth date of the resulting places B and C.
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Table 2: Age and size of some selected US cities

City (Census Place) Foundation date Population size in 2000

1 Watertown, MA 9/17/1630 32,986

2 Boston, MA 10/29/1630 589,141

3 Stratford, CT 4/19/1640 49,976

... ... ... ...

13 New York City, NY 2/12/1654 8,008,278

... ... ... ...

56 Philadelphia, PA 11/8/1701 1,517,550

... ... ... ...

1,222 Chicago, IL 8/12/1833 2,896,016

... ... ... ...

1,531 Houston, TX 6/5/1837 1,953,631

... ... ... ...

2,222 Los Angeles, CA 4/4/1850 3,694,820

... ... ... ...

6,587 Las Vegas, NV 3/16/1911 478,434

... ... ... ...

7,979 Laguna Woods, CA 3/24/1999 16,507

7,980 Sammamish, WA 8/31/1999 34,104

7,981 Palm Coast, FL 12/31/1999 32,732

Legend: Table reports the foundation date and the population size in 2000 of selected US Census Places. Foundation

dates are taken from the Cities DatabankTM and refer to the earliest date of incorporation or self-government of

the municipality. Data collection ends as of 12/31/1999.

Table 3: City age distribution and correlation between age and size

number of cities mean age std. deviation skewness age-size correl.

ALL 7,981 126.0 48.44 .520 0.414∗∗∗

traditional States 6,456 133.1 47.83 .604 0.430∗∗∗

(East Coast & Mid-West)

frontier States 1,525 96.1 38.49 -.314 0.386∗∗∗

(West & South-West)

Legend: Table reports the number cities, mean age, standard deviation and skewness of the age distribution of

US Census places. Foundation dates are taken from the Cities DatabankTM and refer to the earliest date of

incorporation or self-government of the municipality. The last column reports the correlation between log age (in

years as of 2000) and log population size in 2000, controlling for Federal State fixed effects to account for State-

specific differences in incorporation laws. The second row refers to cities from the following States: AL, CT, DE,

FL, GA, IA, IL, IN, KY, MA, MD, ME, MI, MN, MO, MS, NC, NH, NJ, NY, OH, PA, RI, SC, TN, VA, VT, WI,

WV. The third row refers to cities from the following States: AK, AR, AZ, CA, CO, HI, ID, KS, LA, MT, ND,

NE, NM, NV, OK, OR, SD, TX, UT, WA, WY.
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Figure 2: US city age distribution (kernel density)

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400
city age (in years as of 2000)

 

All US States

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400
city age (in years as of 2000)

 

Traditional States

0
.0

05
.0

1
.0

15
D

en
si

ty

0 50 100 150 200
city age (in years as of 2000)

 

Frontier States

Finally, recall from the previous section that a positive correlation between city age and city

size plays an important role in the genesis of the DPLN city size distribution. As can be seen

in Table 3, this positive correlation is strongly empirically supported both for the traditional and

the frontier States.23 The elasticity of current city size with respect to city age is estimated to be

0.414 for the US urban system as a whole, and is highly statistically significant. That is, doubling

the age of a city is – on average – associated with an increase of the city’s current population size

by about 41%. In the traditional States, the elasticity is a bit higher (0.430) and in the frontier

States it is a bit lower (0.386), but in both cases there is a notably positive and highly significant

relationship between city age and city size in the data.

4.3 Discussion

Summing up, using the novel US city age data, we find empirical support for several features and

predictions of our theoretical model. There is vast age heterogeneity across American cities, and

older cities tend to be larger than younger ones. The country’s overall distribution of city sizes

is, therefore, also affected by the city age profile in the economy. Evidence is more mixed when

it comes to the precise functional form of the city age distribution. Our model shows that the

DPLN distribution for city sizes emerges when city ages follow a (possibly shifted) exponential

distribution. As can be seen in the left panel of Figure 2, such an exponential shape may not

perfectly fit the city age data, mainly because of the mass of young cities in the lower tail. However,

it can be argued that a shifted exponential still yields a reasonable approximation. The empirical

age distribution roughly starts at a minimum city age of around 100 years, and is then clearly

right-tailed as indicated in Table 3. Those features are in line with the parameterization of a

shifted exponential, which delivers a decent approximation of the city age data particularly for the

cities in the mature part of the US urban system (see middle panel of Figure 2).

23In the log size-log age regression we have controlled for Federal State fixed effects, in order to take into account

State-specific differences in historical incorporation legislations which affect the measured city foundation dates.
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One possible strategy could be to simulate a distribution g̃(T ) that closely matches the city age

data, and then to mix age-specific LN size probability distributions as in (5), under the assumption

that the mixing parameter T is distributed according to this function g̃(T ). The disadvantage of

such an approach, however, is that an analytical expression for the resulting size distribution f̃(S)

is then, in general, no longer available and f̃(S) can only be obtained via simulation.

The DPLN, by contrast, can be solved in closed form, and it can be readily taken to the

data by using standard methods. As shown in Section 2, it achieves a considerable edge over

the LN and other parameterizations in terms of data fit to the empirical CSD, yet without being

computationally much more difficult to handle. This advantage would disappear when both the

age distribution g̃(T ) and the resulting asymptotic city size distribution f̃(S) have to be simulated.

Furthermore, the exponential city age distribution has economic foundations: it arises, in a natural

way, in an economy where the overall population and the (optimal) number of cities grow at the

same rate, as it is the case in our economic model. We therefore believe that our theory-based

approach to derive the DPLN distribution for city sizes is more attractive than a pure simulation

approach, even if the exponential city age distribution does not fit the empirical age data perfectly.

5 Conclusions

Recently, there has been a lively discussion about city size distributions. Our research can poten-

tially resolve several controversial issues from this literature. First, our results show that the same

functional form – the DPLN distribution – closely approximates the empirical city size data, re-

gardless of whether cities are economically or administratively defined. Second, the DPLN unifies

the lognormal distribution suggested by Eeckhout (2004) and the Pareto distribution (Zipf’s law)

advocated by Gabaix (1999), Rozenfeld et al. (2011), and many others, in a single framework of

an urban system, thereby building a bridge between those two views.

The main aim of this paper was to provide economic foundations where this DPLN distribution

of city sizes comes from. One crucial building block is age heterogeneity across cities, which emerges

in our model as a growing population allocates over an endogenously determined set of locations.

A second important feature is the positive correlation of city age and city size. Finally, the model

predicts that cities grow with the same expected rate in the long run (Gibrat’s law), but that young

cities may grow faster in the beginning. As we show in this paper, these building blocks of the

DPLN size distribution are empirically relevant. In particular, using novel data on the foundation

dates of American cities, we indeed find strong age differences, and that older cities in the US tend

to be larger than younger ones.
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Appendix A: Genesis of the DPLN

Instead of directly deriving the density function of the DPLN by solving the Riemann-Stieltjes

integral given in (5), one can make use of the respective moment generating function (mgf). Reed

(2002) shows the mgf of a city with distribution according to equation (3) and age T is given by

Mlog(ST )(θ) = exp

(
s0θ + σ2

0θ
2 +

((
γ − ς2

2

)
θ +

θ2ς2

2

)
· T
)

(13)

and the corresponding mgf of the overall distribution, under which T is also a random variable, is

Mlog(S)(θ) = exp

(
s0θ +

σ2
0θ

2

)
·MT

((
γ − ς2

2

)
θ +

θ2ς2

2

)
. (14)

Under the assumption that T follows an exponential distribution, the mgf of time becomes MT (θ) =
λ
λ−θ and therefore

Mlog(S)(θ) =
exp

(
s0θ +

σ2
0θ

2

2

)
λ−1

(
λ−

(
γ − ς2

2

)
θ − ς2

2
θ2
) , (15)

which can be simplified by using a partial decomposition (see Appendix B) to

Mlog(S)(θ) = exp

(
s0θ +

σ2
0θ

2

2

)
· αβ

(α− θ)(β + θ)
. (16)

This shows that the distribution of log(S) is the convolution of a normal distribution with an

asymmetric Laplace distribution, since exp
(
s0θ + ς2θ2

2

)
is the mgf of a normal distribution and

αβ
(α−θ)(β+θ)

is the mgf of an asymmetric Laplace distribution. The respective distribution of S, as

represented in equation (1), is then obtained by transforming log city sizes to levels.

Appendix B: Specifics of α and β

The parameters α and β are time constant collections of the parameters γ, ς and λ, which govern

the growth process. They are determined in the above partial decomposition of the mgf of the

DPLN, which reduces equation (15) to (16). Therein, the parameters α and −β are the roots of

the characteristic equation (
γ − σ2

2

)
θ +

σ2

2
θ2 − λ = 0

given by

α =
−2γ + ς2 +

√
(−2γ + ς2)2 + 8ς2λ

2ς2
and β =

2γ − ς2 +
√

(−2γ + ς2)2 + 8ς2λ

2ς2
.

As can be seen, α and β are increasing in λ. Therefore, in the limit where λ→∞ this translates

into α→∞ and β →∞ and the DPLN turns to a LN, as the mgf of the DPLN in equation (16)

converges to the mgf of a normal distribution.
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