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Abstract

We analyze dynamic price competition in a homogeneous goods duopoly, where

consumers exchange information via word-of-mouth communication. A fraction of

consumers, who do not learn any new information, remain locked-in at their pre-

vious supplier in each period. We analyze Markov perfect equilibria in which firms

use mixed pricing strategies. Market share dynamics are driven by the endoge-

nous price dispersion. Depending on the parameters, we obtain different ‘classes’

of dynamics. When firms are impatient, there is a tendency towards equal market

shares. When firms are patient, there are extended intervals of market dominance,

interrupted by sudden changes in the leadership position.

Keywords: dynamic duopoly; homogeneous goods; price competition; consumer

lock-in; mixed pricing; Markov perfect equilibrium

JEL classification: C73, D83, L11

∗The authors would like to thank Daniel Krähmer and Roland Strausz for helpful comments.
†Department of Economics, University of Bonn, Adenauerallee 24–42, 53113 Bonn, Germany;

E-mail: eugen.kovac@uni-bonn.de;
URL: www.uni-bonn.de/~kovac.
‡Department of Economics, Humboldt University, Spandauer Str. 1, 10178 Berlin, Germany;

E-mail: robert.schmidt.1@wiwi.hu-berlin.de;
URL: www.wiwi.hu-berlin.de/professuren-en/vwl/wp/mitarbeiter/robert-en.

1



1 Introduction

Consider a market in which consumers can learn about the available products and their

prices in two ways: via own experiences from previous purchases and by asking fellow

consumers about products or suppliers. Such gathering of information via word-of-mouth

communication is often a costless byproduct of social interaction, but is unlikely to reveal

all decision-relevant information to all consumers in any market. The lack of information

may then lead to stickiness in the demand. In this paper we study the dynamics of prices

and market shares in a homogeneous-goods duopoly with sticky demand stemming from

imperfect word-of-mouth communication. While firms act as perfectly rational forward-

looking profit maximizers, consumers behave in a simple fashion. Whenever they learn

about the prices charged by both suppliers, they purchase the good from the firm that

charges the lower price in that period. If a consumer does not discover the price charged

by the alternative supplier via word-of-mouth, then she remains locked-in and returns to

the supplier visited in the previous period.1 As a result of the sticky demand, the firm’s

strategic decisions become dependent on its customer base.

A central question in the analysis of dynamic oligopoly games is whether market shares

tend to equalize over time, or whether a firm may be able to build up and subsequently

defend a dominant market position persistently. Two basic effects determine whether

persistent dominance is likely to occur. On the one hand, having a large customer base

implies more monopoly power over locked-in consumers, which firms tend to exploit by

charging higher prices (anti-competitive effect). This leads to a tendency towards equal

market shares. On the other hand, charging a low price today increases the future

customer base. If this incentive is sufficiently strong, then a firm that already has a

dominant position in the market, may price very aggressively whenever it is threatened,

in order to defend its dominant position (pro-competitive effect). This, in turn, leads to

a tendency towards extreme market shares.

The main contribution of this paper is that it provides a single framework that can

explain surprisingly rich dynamics, including a tendency towards equal market shares,

as well as persistence of dominance and changes in the role of the dominant firm. The

prevalence of word-of-mouth communication plays a key role in the determination of

firms’ incentives to build up and subsequently to defend a dominant market position. We

thus identify different ‘types’ of dynamics, and relate them to the basic parameters of the

model, in particular the discount rate, and parameters that determine the effectiveness

of word-of-mouth communication. Our model helps to explain why a firm that has

dominated a market for a long period of time, may lose this position again, in which case

the competitor takes over the dominant position.

In our model, dynamics never ‘die out’, even though we do not assume any exogenous

1Such behavior may arise, for instance, due to imperfect recall.
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source of uncertainty. More specifically, due to the assumption of homogeneous goods,

firms adopt mixed pricing strategies in the Markov perfect equilibria we identify. The

endogenous price dispersion determines the probability of each firm to gain or lose markets

shares, depending on the current state represented by the customer base. Similarly as

in Varian (1980), firms adopt randomized pricing strategies in order to be unpredictable

to the competitor. As Varian (1980) argues, randomized pricing can be interpreted as

limited-time sales that do not exhibit any systematic patterns. Such behavior can be

observed for grocery stores or supermarkets, that frequently offer few selected products

at discounted prices. Empirical evidence for price dispersion is provided, for instance,

by Lach (2002), who uses a dataset involving homogeneous products sold by different

sellers. Lach (2002, p. 444) also argues that the identified price dispersion is consistent

with randomized prices (or sales) as studied by Varian (1980).

In this paper, we extend the idea of sales to dynamic pricing games, and demonstrate

how mixed-strategy equilibria can generate plausible dynamics. In particular, we iden-

tify a tendency towards skewed market share splits when future profits are important.

This tendency becomes more pronounced when many consumers rely on word-of-mouth

communication. As a distinctive consequence of word-of mouth communication, a firm

with a smaller customer base can attract less additional consumers when charging a lower

price in the market, because there are less consumers who can share this information.

As a result, market shares are more sticky near the extremes of the market share space

than in the center, where information spreads more efficiently. A firm that has reached a

dominant position in the market can then easily defend this position against the smaller

competitor whenever it is at stake (pro-competitive effect). This is indeed the case when

future profits are sufficiently important and market shares are skewed but not extreme.

The firm with a larger customer base then starts to price aggressively and tends to gain

market shares. On the other hand, when market shares are closer to one of the extremes,

the opposite (anti-competitive) effect dominates: the firm with the larger customer base

now prefers to exploit the locked-in consumers in its customer base by charging higher

prices. The combination of these two effects often induces a zig-zag pattern near one

of the extremes of the market share space, with one firm dominating the market for

many consecutive periods. This persistence of dominance, however, can be interrupted

by sudden changes in the leadership position. In contrast, when few consumers rely on

word-of-mouth and most consumers are fully informed, market shares are very volatile

and the role of the leader changes frequently. In this case, the size of the discount factor

has little impact upon the dynamics.

From the technical point of view, we offer a new treatment of Markov perfect equilibria

in mixed strategies. Via a discretization of the state space, we are able to approximate

the evolution of market shares, allowing us to derive analytical results. For a certain
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range of parameter values where word-of-mouth communication plays a major role in

consumers’ information acquisition, we show that a particularly simple market share grid

represents market share dynamics sufficiently well.

Related Literature

The model introduced in this paper builds on a strand of literature that was initiated

by Salop and Stiglitz (1977) and Varian’s (1980) ‘Model of Sales’. Similarly as in Varian

(1980), we also assume that some consumers learn only one supplier’s price, while others

are fully informed and purchase from the supplier that currently offers the lower price.

Whereas Varian’s model is static, in our model an intertemporal link (inertia) in demand

arises because consumers always learn their previous supplier’s current price (e.g., because

they remember this supplier’s location), but do not always discover the other firm’s offer.

Varian (1980), in contrast, considers only markets that are ex-ante symmetric. From the

technical point of view, our paper is related to later contributions, for example, Baye,

Kovenock, and de Vries (1992 and 1996), Baye and Morgan (2004), and others that offer

a more rigorous treatment of mixed-strategy equilibria and give additional explanations

for their occurrence. Our main contribution to that literature is to extend the concept of

mixed strategies to a dynamic game where players randomize over prices in each period

and for any given state (reflecting the size of firms’ customer bases).

Furthermore, our paper contributes to a sizable strand of literature that seeks to

reveal conditions under which market shares in duopolies tend to become more or less

skewed over time.2 For instance, Budd, Harris, and Vickers (1993) and Cabral (2011)

introduce an external source of uncertainty and show that a rise in the discount factor

for future profits can induce a tendency towards more skewed market splits (relative

to the myopic case where future profits are fully discounted away). While Budd et al.

(1993) show that asymmetric market splits can emerge also due to self-reinforcing cost

effects under strategic interaction, in Cabral (2011) and Mitchell and Skrzypacz (2006),

a tendency towards skewed market splits results from network effects. Related results

are also presented by Cabral and Riordan (1994) in a model with learning by doing.

Athey and Schmutzler (2001) offer a more general dynamic oligopoly framework that

can encompass patent races, learning by doing as well as network externalities as special

cases. The dynamics are guided by investments and the authors derive predictions about

the market evolution by comparing investment incentives of leading and lagging firms.

In contrast to most papers from this literature, in our model market share dynamics

are generated solely due to the firms’ usage of randomized pricing strategies.3 The en-

2See also Sutton (2007) for an empirical investigation on the persistence of leadership.
3Budd et al. (1993) point out that in their model, an equilibrium typically fails to exist when the

variance of the random drift is zero. The reason for this is that the authors focus on Markov perfect
equilibria in pure strategies, and neglect the possibility of mixed strategies. In this sense, our analysis is
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dogenous price dispersion in our model can help to explain rather complicated dynamics.

For instance, both the volatility and the skewedness of market shares are endogenous. De-

pending on the parameter values, persistence of leadership as well as frequent changes in

the leadership position can be obtained. The wealth of dynamics our model can generate

is remarkable, given our parsimonious basic setup (e.g., homogeneous goods).

A dynamic duopoly model with randomized pricing strategies is presented also by

Chen and Rosenthal (1996). Similarly as in our model, a firm that currently offers the

higher price loses market shares. However, the authors assume that a loss in market

shares is always associated with the same number of consumers switching the supplier.

The resulting uniform “step size” in the market share space is an assumption that seems

poorly justified. Although our approach is far more general, it can accommodate also

this special case.4

There are several features of our model shared also with other strands of literature.

For instance, price dispersion is often obtained also in models with search (e.g., Stahl,

1989; Janssen and Moraga-Gonzalez, 2004).5 Alternatively, price dispersion can also be

obtained by introducing bounded rationality. Baye and Morgan (2004), for instance,

demonstrate that firms adopt mixed pricing strategies already under a small degree of

bounded rationality among sellers in a pricing game with homogeneous goods.6 The

feature that firms are perfectly rational, but consumers use only simple decision rules

is rather common in the industrial organization literature. Consumers’ behavior is then

often interpreted as a result of bounded rationality. Ellison (2006) argues that consumers

who are active in many markets may pay little attention to the characteristics of a specific

market and may, thus, behave in a boundedly rational way, whereas firms are more likely

to exhibit rational decision making. In Spiegler (2006), this behavior is not derived from

an explicit intertemporal optimization problem. Spiegler assumes that the agents sample

all suppliers in the market once. We consider a similar process where consumers collect

information via word-of-mouth, but the sampling stops irrespective of whether useful

information was obtained or not.

Relatedly, the effects of word-of-mouth communication or learning from popularity

have been analyzed in different strands of literature. For instance, Juang (2001), Baner-

jee and Fudenberg (2004), Ellison and Fudenberg (1995) analyze the effects of word-of-

mouth learning in non-market environments where agents choose between alternatives

with stochastic payoffs. Different sampling rules are applied, that do not result from an

complementary to their analysis.
4Chen and Rosenthal’s (1996) model predicts that market shares are close to the center most of the

time when firms have identical discount factors. This finding is related to the simplifying assumption of
a uniform step size in the market share space.

5See also Fishman and Rob (1995) for a model with search where consumers purchase the good
repeatedly.

6The authors also show that similar patterns can be observed in laboratory experiments and in the
internet.
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optimization problem and may, therefore, reflect bounded rationality. Rob and Fishman

(2005), and Vettas (1997), for example, analyze the role of word-of-mouth communica-

tion among consumers in the context of firms’ optimization problems. For more classical

approaches to incorporate demand inertia and popularity effects into oligopoly models,

see also Selten (1965) and Bass (1969).7

Finally, a link also exists between our model and the literature on switching costs

(for an overview, see Klemperer, 1995). While in our model, some consumers are locked-

in at their previous supplier due to the lack of decision-relevant information about the

alternative supplier (e.g., its location or this firm’s current offer), models with switching

costs assume that consumers can always change their supplier but, e.g., due to learning

costs of how to use the other product, incur costs when they switch. Our model is

closely related to Beggs and Klemperer (1992), who assume that due to prohibitively

high switching costs, consumers who have made a purchase before, are effectively locked-

in at their previous supplier. New consumers who enter the market are not yet attached

to any of the firms. Therefore, firms may compete vigorously for those consumers, in

order to build up a larger customer base that is valuable in future periods.

The remainder of this paper is organized as follows. In Section 2, the model is intro-

duced and equilibrium conditions are derived. In Section 3, we provide a micro-foundation

for consumers’ behavior based on word-of-mouth communication. Section 4 derives gen-

eral results under a discretization of the state space. In Section 5 we provide a detailed

analysis using a market share grid with five positions. Section 6 uses numerical simula-

tions that serve as a robustness check. Section 7 concludes. All proofs are relegated to

the Appendix.

2 The model

Consider a market for a homogeneous good with two firms (i ∈ 1, 2). Time is discrete,

the time horizon is infinite. The good is non-durable and lasts only for one period. The

firms choose simultaneously prices pi,t in every period t = 1, 2, .... Both firms’ marginal

costs are constant and normalized to zero. On the demand side, there is a continuum

of consumers with mass 1 who make repeated purchases of the good. Each consumer

purchases either zero or one unit of the good in each period, and all consumers have the

same reservation price, normalized to 1. Prices above 1 are eliminated from the strategy

space without loss of generality. Hence, the market demand in each period equals 1.

We consider the situation where market shares in period t depend on prices in period

t, and on market shares in period t − 1. Such “sticky demand” or “inertia” may arise

7Hehenkamp (2002) presents an evolutionary approach where sellers decide via experimentation and
imitation, and consumers search.
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for various reasons. Within our motivation it reflects consumers’ imperfect information

acquisition; see Section 3 for more details.8 Firm 1’s demand (equal to its market share)

in period t − 1 represents its customer base in period t; we denote it nt ≡ D1,t−1. The

size of firm 2’s customer base in period t is then D2,t−1 = 1− nt.
Let n1 ∈ (0, 1) be the initial state such that both firms have positive customer bases.

We assume that in each period firm 1’s market share increases to the value h(nt) if it

charges a lower price in period t, and drops to the value l(nt) if it charges a higher price.

If both firms charge identical prices, their market shares remain constant. Hence, market

share dynamics are guided by the following transition function:

nt+1 = D(p1,t, p2,t, nt), where D(p1, p2, n) =


h(n) if p1 < p2,

n if p1 = p2,

l(n) if p1 > p2.

(1)

We assume that the functions h, l : [0, 1] → [0, 1] are continuous and strictly increasing,

and that

0 < l(n) < n < h(n) < 1 for all n ∈ (0, 1), (2)

h(0) > 0 and l(1) < 1. (3)

Hence, a firm that charges a lower price in the current period gains market shares, but

it does not serve the entire market.9

Moreover, we assume that the above process is symmetric for both firms. Thus, the

functions h(·) and l(·) are required to satisfy the following consistency condition:

l(n) + h(1− n) = 1, for all n ∈ [0, 1]. (4)

It follows from this condition that the aggregate demand equals 1 in each period, for

any given market split (captured by the state variable nt). In Section 3 we present an

information transmission technology that gives rise to the functions h(·) and l(·). Observe

that it is sufficient to specify the function l(·): Function h(·) then follows from condition

(4).

Note that in the above specification, the change in the demand (or market share)

depends, besides the customer base, only on whether the firm charges a higher or a lower

price than its competitor; the size of the price difference is irrelevant. In this respect,

our model represents only a minor departure from the Bertrand model, which would be

8Other possible reasons include consumer search, switching costs, and/or network effects.
9Given the assumption n1 ∈ (0, 1), condition (2) assures that market shares never reach the boundaries

of the market share space (n = 0 or n = 1).
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obtained by setting h(n) = 1 and l(n) = 0. We will see later that our simple setup

generates surprisingly rich dynamics.

2.1 Profit maximization and equilibrium

In the following, we characterize the firms’ profit maximization problems for a general

specification of the functions h(·) and l(·). We derive equilibrium conditions that can be

used to solve the model.

Given the prices p1,t and p2,t, firm 1’s profit in period t is p1,tD(p1,t, p2,t, nt). Let us

also denote πE1,t(nt, p1,t) = p1,tEp2,t [D(p1,t, p2,t, nt)] firm 1’s expected profit, if firm 2 uses

a (potentially) mixed strategy, where the expectation is taken over firm 2’s price. As we

show later, in equilibrium the firms indeed use only mixed strategies. Firm 2’s profit is

obtained in an analogous way (we replace n by 1− n, and swap the indices of the firms).

Let δ ∈ [0, 1) be the discount factor for future profits. In period t, firm i maximizes the

present discounted value of future expected profits over an infinite horizon:

Vi(Ht) ≡ max
{pi,t}

∞∑
τ=t

δτ−tπEi,τ (nτ , pi,τ | Hτ ), (5)

where Ht denotes the history up to period t. The history Ht contains all prices chosen

up to period t− 1, as well as the initial state n1.
10 The expectation in (5) is taken over

firm j’s prices (j 6= i), conditional on the history. Note that there is no external source

of uncertainty in the model. As we show below, in equilibrium, uncertainty arises only

due to the firms’ usage of mixed pricing strategies.

If firms can condition their choice in period t on the entire history Ht, the set of

equilibria may potentially be overwhelming. To narrow the set of equilibria, the Markov

perfection equilibrium (MPE) refinement is used. The payoff-relevant state variable in

period t is the customer base nt. Hence, we are looking for equilibria, where the firms

condition their price only on the current state nt. This is a natural requirement, as the

profit in each period depends only on the prices in this period, and market shares in the

previous period.

We start by considering all Markov perfect equilibria and derive some of their prop-

erties (Propositions 1 and 2). Later, we will restrict our attention only to the symmetric

equilibria.

The solution of firm i’s optimization problem satisfies the following Bellman-equation:

Vi(n) = max
p
{πEi (n, p) + δE[Vi(n

′) | n, p]}, (6)

10Note also that given a specification of the functions h(·) and l(·), the history of the market shares
up to period t is fully described by the initial size of firm 1’s customer base (n1), and a trinary sequence
that indicates whether firm 1 gains, loses, or retains the market share in each period.
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where n and n′ stand for customer base nt and current demand nt+1, respectively.11

As a first simple observation, note that Vi(n) is non-negative. This follows from the

fact that the firm can always set price pi,t = 0 in every period, guaranteeing itself zero

profit. Second, observe that the joint profit V1(n) + V2(1− n) is bounded from above by

1 + δ+ δ2 + · · · = 1/(1− δ), the discounted monopoly profit with full market, as the joint

profit in each period is at most 1. Further properties of Markov perfect equilibria are

summarized in the following propositions.12

Proposition 1. If δ is sufficiently small, there is no Markov perfect equilibrium (MPE),

where both firms use pure strategies in some state n ∈ [0, 1].

Proposition 2. Consider a MPE. If δ is sufficiently small, then for any n ∈ (0, 1) the

following statements hold:

(i) Both firms use mixed strategies and the price distribution functions F1(p | n) and

F2(p | 1− n) have the same support of prices.13

(ii) The support of the price distribution is an interval of the form [p(n), 1].

(iii) At most one firm attaches a positive probability mass to some price. If so, the mass

point is located at p = 1 (the monopoly price).

We require δ to be sufficiently small for most of the above results (see the proof of

Proposition 2 for details). In this case, the future profits are relatively unimportant and

undercutting becomes beneficial due to an increase in the current profit. The difficulty

that arises for δ large, is that an increase in the size of a firm’s customer base may lead

to reduced profits in the future when the intensity of future price competition increases.

Hence, the value function V (n) may not be generally monotone. If δ is large, a firm

may be reluctant to undercut the competitor’s price if this price can be predicted with

certainty. However, the logic of the mixed pricing strategies requires that, within the

support of Fi(·), a firm would always undercut the competitor’s price if it were known.

From now on, let us consider only symmetric Markov perfect equilibria. We thus

omit the index i identifying the firm. In the rest of this section we also assume that δ is

sufficiently small (as required in Propositions 1 and 2).

11We replace the full history Ht in the argument of V by the payoff relevant state n = nt.
12The propositions provide necessary conditions for Markov perfect equilibria. The existence of the

equilibrium can be potentially proved using similar methods as in Dasgupta and Maskin (1986a, 1986b).
We prove the existence of an equilibrium for a special case, a discrete approximation with 5 positions,
in Section 5.

13Let the cumulative distribution function be defined as F (p | n) ≡ Pr(P < p | n). Under this
convention, 1− Fi(p̄(n) | n) is the probability mass at the maximal price p̄(n).
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The expected profit of a firm with market share n (let it be firm 1) in the current

period can be written as

πE(n, p) = p [l(n)F (p | 1− n) + h(n)(1− F (p | 1− n))] (7)

where l(n) and h(n) is firm 1’s demand if it ends up having a higher and a lower price,

and F (p | 1− n) and 1− F (p | 1− n) are the probabilities of these events, respectively.

Firm 1’s expected value in the next period is

E[V (n′) | n, p] = V (l(n))F (p | 1− n) + V (h(n))(1− F (p | 1− n)) (8)

where V (l(n)) and V (h(n)) is the firm’s value after losing and gaining market shares,

respectively.

In a mixed strategy equilibrium, the maximum in (6) is attained over a range of prices,

and the support of F (p | n) contains only prices within this set. Among all prices p outside

the support of F (p | n), there is no profitable deviation, i.e., πE(n, p)+ δE[V (n′) | n, p] ≤
V (n). Using (7) and (8) in (6), we obtain the following expression for the value function:

V (n) = [pl(n) + δV (l(n))]F (p | 1− n) + [ph(n) + δV (h(n))] (1− F (p | 1− n)). (9)

for all prices p within firm 1’s support. The max-operator has been omitted because, for

prices within the support of F (·), the right-hand side must be independent of p. Equation

(9) can be solved for F (p | 1− n):

F (p | 1− n) =
δV (h(n))− V (n) + ph(n)

δ[V (h(n))− V (l(n))] + p[h(n)− l(n)]
, (10)

for all n ∈ (0, 1). Note that the cumulative distribution function F (·) is a ratio of two

linear functions of the price p. If the function V (·) is known, (10) can be used to evaluate

F (·) for all n.

In the following we derive equilibrium conditions that can be used to determine V (·).
It follows from Proposition 2 that F (p(n) | n) = F (p(n) | 1 − n) = 0 for all n ∈ (0, 1).

Using (10), after eliminating p(n), we obtain the first equilibrium condition:

h(n)[V (1− n)− δV (h(1− n))] = h(1− n)[V (n)− δV (h(n))]. (11)

We obtain further conditions by considering the maximal price p = 1, as at most one

of the firms chooses the monopoly price with positive probability (see Proposition 2).
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Hence, it must hold that

either (A) F (1 | n) = 1 and F (1 | 1− n) ≤ 1,

or (B) F (1 | n) < 1 and F (1 | 1− n) = 1.

We refer to the former as case (A) and to the latter as case (B).

Suppose that for a given value of the state n, case (A) applies.14 Condition F (1 | n) =

1 can then be used to derive an equilibrium condition for the given value of n. Using

(10), we obtain:

V (1− n)− δV (l(1− n)) = l(1− n). (12)

If case (B) applies (for a given n), then it similarly follows from (10) that:

V (n)− δV (l(n)) = l(n). (13)

Together with an (until now) unknown rule that states whether case (A) or case (B)

applies for every given state n, conditions (11), (12), and (13) implicitly define the value

function V (·). Note, that this is a continuum of equations because these conditions must

be fulfilled for all n ∈ (0, 1). Unfortunately when δ > 0, it is not possible to solve

this system in general. In Section 4 we analyze a discrete version of the model which

can indeed be solved. Furthermore, we provide an explicit solution for a discrete model

with 5 positions (states) in Section 5. As it turns out, this simple model serves as a

good approximation of the dynamics for certain transition functions, when the state is

continuous.

2.2 Benchmark: Myopic case

As a benchmark, we first analyze the myopic case (δ = 0). This corresponds to a repetition

of a static game, as the future profits are fully discounted. As in the full dynamic game,

the dynamics are governed by each firm’s probability of gaining or losing market shares,

depending on the current state n. Results for the myopic case can be obtained analytically.

First of all, note that Propositions 1 and 2 also hold when δ = 0. In order to derive

the price distribution, let us first consider the price p = p(n). Then F (p(n) | 1− n) = 0

14Until now, it is not clear under what conditions case (A) or case (B) applies. Intuitively, we would
expect that case (A) applies (firm 2 chooses the monopoly price with positive probability) whenever
firm 1’s customer base n is not greater than 1

2 , because it should, then, have a stronger incentive to
compete for new customers, while firm 2 plays less aggressively and charges the monopoly price with
positive probability. As shown below, this intuition is generally correct for sufficiently small values of
the discount factor δ.
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and it follows from (9) that V (n) = p(n)h(n). Substituting this into (10), we obtain that

F (p | 1− n) =
h(n)

h(n)− l(n)

(
1−

p(n)

p

)
(14)

for p ∈ [p(n), 1]. Now recall that given n, both firms’ price distributions have the same

support (Proposition 2), i.e., p(1 − n) = p(n). Comparing the cumulative distribution

functions of firms with market shares n and 1− n, we obtain the following proposition.

Proposition 3. In the myopic case (δ = 0), firm 2’s price distribution function F (p |
1− n) first-order stochastically dominates firm 1’s price distribution function F (p | n) if

and only if n < 1
2
.

The proposition reveals that in the myopic case, it is always the firm with the smaller

customer base that prices more aggressively than its larger rival.15 This, in turn, implies

that there is a tendency towards even splits of the market. In Section 6, we illustrate this

result using numerical simulations.

As the last step we specify the lower bound of the price distribution p(n). It follows

from Proposition 3 that for the monopoly price p = 1 and for n < 1
2
, we obtain F (1 |

1 − n) < F (1 | n) = 1, which means that case (A) applies. Clearly, for n > 1
2
, case (B)

applies. Substituting this into (14), we obtain

p(n) =

{
l(1− n)/h(1− n), if n ≤ 1

2
,

l(n)/h(n), if n > 1
2
.

This, together with (14), gives a complete description of the firms’ equilibrium strategies.

3 Information transmission

In this section we provide a micro-foundation for consumers’ behavior that gives rise to

the functions h(·) and l(·). In particular, we introduce two specifications of the under-

lying technology of information transmission, based on two ways how consumers may

exchange information via word-of-mouth. The first specification of the information tech-

nology yields a linear-quadratic functional form, while the other one yields an exponential

form. Under both specifications, consumers remember the relevant information about the

supplier they visited in the previous period. In addition, at the beginning of the period,

they may learn the other supplier’s price via communication with other consumers.

Under the first specification, consider a consumer from firm 1 with customer base n.

We assume that the consumer learns the other firm’s price with an exogenous probability

15Proposition 3 can be seen as an extension of Varian’s (1980) model, for an asymmetric distribution
of uninformed consumers.
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1− φ, where φ ∈ (0, 1). In this case, the consumer becomes informed and buys from the

firm with a lower price (under equal prices, she visits the same firm as in the previous

period).16 With a complementary probability φ, the consumer does not learn the price

automatically and tries to learn it from a fellow consumer. In particular, with a prob-

ability µ she can meet a fellow and ask her about her price. Should the fellow be from

the other firm’s customer base, which occurs with probability 1−n, the consumer learns

the other firm’s price and again chooses the firm with a lower price. For simplicity, the

communication occurs only in one direction, i.e., the fellow does not learn anything from

the agent who met him. Should the consumer meet a fellow from the same firm, which

occurs with probability n, she does not learn anything and visits the same supplier as in

the previous period.17 In this specification we assume that each agent meets at most one

fellow.18 This then yields the following functional form for the function l(·):

l(n) = φn(1− µ+ µn). (15)

Recall that l(n) is firm 1’s demand in the current period when it loses market shares

(as compared to its previous market share n). It is given by the mass of consumers

who visited firm 1 in the previous period and remain ignorant about firm 2’s offer in

the current period, because they do not learn the price of firm 2 directly (which occurs

with probability φ), and either do not meet a fellow (with probability 1− µ), or meet a

fellow who also purchased from firm 1 (with probability µn).19 For example, if 20% of

consumers become informed automatically in each period, while 80% of consumers rely

on word-of-mouth communication and all of them meet one fellow, then φ = 0.8, µ = 1,

so l(n) = 0.8n2 and h(n) = 1− 0.8(1− n)2.

The second specification differs from the first one only in the number of fellows a

consumer can meet and ask. Each consumer can meet several fellows and ask each of

them about the supplier they visited in the previous period. If the consumer meets at

least one fellow who visited the alternative supplier, the consumer learns the other firm’s

price. Otherwise, she remains locked-in at her own previous supplier. Here we assume

that the number of fellows a consumer meets is drawn from a Poisson distribution with

16An alternative interpretation is that a fraction 1 − φ of consumers (randomly chosen from the
population) exits, and an equal mass of new consumers enters the market. Upon entry, the new consumers
become informed about the offers of both suppliers (e.g., via active search).

17Due to imperfect recall, information from older periods is not available. Alternatively, one may
assume that consumers are replaced in each period, and new consumers arriving in the market can ask
old consumers about the location or other characteristics of their supplier.

18This is a simplified version of a communication process introduced by Ellison and Fudenberg (1995).
In a non-market environment, these authors assume that each agent can ask a sample of N other
agents about the payoff received from choosing one (out of two) alternatives. Here we focus on the case
where the sample size is restricted to 1. This is sufficient to capture the popularity weighting property
characterizing word-of-mouth communication. In the second specification, we assume that the sample
size follows a Poisson process.

19Note, that the corresponding specification of the function h(·) follows immediately from (4).
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an arrival rate of λ. In that case, firm 1’s demand in the current period, given that it

loses customers, is given by:

l(n) = φne−λ(1−n). (16)

As before, firm 1’s demand h(n) when it gains customers, follows from (4).

Results are qualitatively similar under the two technologies of information transmis-

sion. Therefore, we focus on the simpler linear-quadratic specification (15). Moreover,

we will be mostly interested in settings where market share dynamics are mainly driven

by word-of-mouth communication. This means that φ as well as µ are relatively large.20

This is the case when the share of informed consumers is rather small and meeting a

fellow is likely.

4 Discretizing the state space

Departing from the myopic case, the computation of equilibrium becomes much more

complex. The derivation of a closed-form solution for a dynamic pricing game with

non-trivial market share dynamics is often not feasible. Various authors have developed

different approaches in order to characterize the outcome of a dynamic game in light

of this caveat. Maskin and Tirole (1988) discretize the action space (by introducing a

price grid) in order to derive tractable results. Budd et al. (1993) conduct an asymptotic

expansion (similar to a Taylor expansion) around a discount factor of zero in order to

obtain analytical results.

As shown in Section 2.1, the conditions that can be used to determine Markov perfect

equilibria for the game introduced in this paper, are linear in the value function V (·).
Therefore, a useful starting point for the derivation of analytical results for this model is to

discretize the state space. In that case, the value function can be found by solving a finite

system of linear equations. For the discretization, we consider finite market share grids

with N positions: GN ≡ {a1, a1, . . . , aN}, where a1 = 0 < a2 < · · · < aN−1 < aN = 1. A

raise (a loss) in market shares is represented by a move to the right (left) along the grid.

Symmetry in demand then requires that the grid is symmetric, i.e., that ak +aN+1−k = 1

holds for all k = 1, ..., N . In order to solve the equilibrium conditions (11), (12), and

(13) for a market share grid, we consider modified functions l(·) and h(·) that are defined

only on the set GN and take values from GN .21 Hence, also the state variable n takes on

values only on the grid: n ∈ GN .

20In the second specification we would assume that φ as well as λ are large enough.
21To spare notation, we use the same symbols l and h for the original functions defined in (15) and

(4) that reflect our assumptions about the information transmission process, and modified functions
that approximate this process when using a market share grid. Note that these functions satisfy weaker
assumptions than in the continuous case. In particular, we require them only to be non-decreasing and
also abandon the assumption that l(n) > 0 and h(n) < 1 for all n ∈ (0, 1).
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For a given set of parameter values specifying the word-of-mouth process (φ and µ),

it is in general possible to design a specific market share grid with a small number of

positions, and corresponding state transition functions, that describe the evolution of

market shares quite accurately for any sequence of events.22 In order to illustrate this,

consider the following two examples: (i) φ = 0.1 and µ = 1, which reflects a situation

where most consumers are fully informed, and the remaining consumers communicate via

word-of-mouth (each of them meets one other consumer), and (ii) φ = 0.8 and µ = 1,

which corresponds to a situation where few consumers automatically learn the other firm’s

price, and all others communicate via word-of-mouth.

Market share dynamics under example (i) can be described quite accurately by a grid

with four positions: {0, 0.1, 0.9, 1}. To see this, note that for these parameter values, we

obtain (using (15)): l(1) = 0.1, and l(l(1)) = 0.001. Starting from any position on this

grid, a move ‘upwards’ or ‘downwards’ in the market share space yields a market split close

to one of the positions on the grid (e.g., l(h(0.9)) = 0.0998 ≈ 0.1). The state transition

functions for this grid are: l(1) = l(0.9) = 0.1, l(0.1) = l(0) = 0, and h(.) defined

according to (4). While the use of a finer grid can further increase the accuracy of the

approximation, the behavior of market shares remains virtually identical (see Section 6).

It can be shown more generally that for sufficiently small values of φ, grids with four

positions can be used to describe market share dynamics sufficiently well.23 We discuss

some results for this grid in Section 5.1.

Under example (ii), a different market share grid with different transition functions

can be used to approximate the transition between states, but once more, a grid with

a small number of positions is sufficient to describe the dynamics quite accurately. For

the parameter values φ = 0.8 and µ = 1, we obtain (using (15)): l(1) = 0.8, l(l(1)) =

0.512, l(l(l(1))) = 0.20971, and l(l(l(l(1)))) = 0.0351. This suggests that a grid with

five positions: {0, 0.2, 0.5, 0.8, 1} can be used to describe any sequence of events quite

accurately, using the transition function: l(1) = 0.8, l(0.8) = 0.5, l(0.5) = 0.2, l(0.2) =

l(0) = 0, and h(.) defined according to (4). For instance, if firm 1 starts with a customer

base of size 0.8 in period 1, loses market shares once, and in the following period gains

market shares, its resulting customer base size in period 3 is h(l(0.8)) = 0.8094 ≈ 0.8.

For other parameter values (that are sufficiently close to φ = 0.8 and µ = 1), positions

a2 and a4 of this grid can be modified to minimize the errors of approximation.

Grids with five positions, as the one in example (ii), turn out to be suitable to ap-

proximate the dynamics of state transitions in situations where word-of-mouth plays a

22Grids with small numbers of positions have the advantage to produce analytically simple results (see
Section 5).

23If φ and µ are varied, positions a2 and a3 of the grid should be modified to maintain a good
approximation of state transitions. For sufficiently small values of φ, a good approximation is obtained
using a2 = φ and a3 = 1− φ. Related numerical simulations, that give rise to such a grid endogenously
are illustrated in Section 6.
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major role in consumers’ information acquisition. In Section 5, we generalize the above

grid with five positions, by introducing a new parameter that allows to vary the location

of the second and the fourth position. This allows us to capture higher or lower amounts

of word-of-mouth communication among consumers in a simple way. This is also the sim-

plest grid where both the pro- and the anti-competitive effect can occur simultaneously.

We will be particularly interested in the interplay of these two effects in the second (and

fourth) position, where the firm with the larger customer base faces a trade-off between

defending its dominant market position and abusing it.

In the remainder of this section, we focus on an important class of transition functions

which preserve the property from example (ii) that a gain or loss of market shares by

a firm is always represented by a move to the direct neighboring position on the grid.

Formally, this means that l(ak) = ak−1 for k ≥ 2 and h(ak) = ak+1 for k ≤ N − 1 (as well

as l(0) = 0 and h(1) = 1). Expressed in terms of the state transition functions h(·) and

l(·), this property implies that

l(h(n)) = n (17)

holds for any position n < 1 on the grid.24 For such grids (with an arbitrary finite number

of positions), we are able to extend our earlier results of Propositions 1 and 2 to discount

factors arbitrarily close to 1.

Proposition 4. Consider a finite market share grid that fulfills (17) for all values of

n < 1 on the grid. Then the results of Proposition 1 also hold for all values of the

discount factor δ ∈ (0, 1) and in every position n. The results of Proposition 2 hold for

all values of the discount factor δ ∈ (0, 1) and in every position n where l(n) > 0 and

h(n) < 1.

Due to Proposition 4, the use of such a grid will not only enable us to derive a simple

closed-form solution (see below). It also allows us to drop the restriction to “sufficiently

small δ” in Propositions 1 and 2. This restriction was used in the proof of Proposition

1 to rule out the possibility that a firm may be reluctant to undercut the competitor’s

price (if it were known), as this may lead to a loss of market shares in the next period,

due to tougher price competition. The problem is that for an arbitrary specification of

the functions h(·) and l(·), we cannot compare the values V (n) and V (l(h(n))), which

is the value after gaining and subsequently loosing market share, without knowing the

shape of the value function V (·). However, given a market share grid that fulfills (17),

such knowledge is not necessary since l(h(n)) = n, and thus V (l(h(n))) = V (n) for all

n < 1.

24Note that due to symmetry of the grid, the consistency condition (4) is then automatically satisfied.
It is also important to note that the assumption (2) does not hold here at points n = a2 and n = aN−1,
as l(a2) = 0 and h(aN−1) = 1. In this case it may well happen that some firm reaches position aN = 1
and serves the entire market.

16



Note that the last claim of Proposition 4 does not refer to all positions of the grid.

It requires that l(n) > 0 and h(n) < 1, which excludes positions a1, a2, aN−1, and aN .

In these positions, some deviations to higher prices may not deliver higher profits even if

the competitor’s price were known, because the deviating firm faces zero demand. Due

to this complication, not all arguments used in the proof of Proposition 2 can be used. In

fact, as we show in the Appendix, a broader class of equilibrium strategies than allowed

by Proposition 2 can occur in the second position of the grid, n = a2. We characterize

these strategies in Lemma 3 (in the Appendix). In particular, we show that if case (A)

fails to apply (in equilibrium) in position n = a2, then instead of case (B) the larger firm

conducts limit pricing and undercuts the rival with probability 1. The supports of the

firms’ price distribution functions then differ. We refer to this as case (C); see Lemma 3

in the Appendix, as well as the comments preceding the lemma for more details.

As noted earlier, the introduction of a market share grid transforms the continuum

of equilibrium conditions (11), (12), resp. (13) into a finite set of linear equations. The

difficulty that remains is that a rule to determine when case (A) and case (B) (or case

(C)) apply, that is, whether (12) or (13) must be used for a given position n on the market

share grid, is a priori not known. Having chosen some combination of these cases, the

corresponding system of linear equations can be solved. Then it remains to verify whether

the value function fulfills F (1 | n) ≤ 1 (using (10)) for all values of n on the market share

grid. However, as the number of combinations grows exponentially in the size of the grid,

verifying all combinations can be viable only for small grids.25

Note, however, that case (A) always applies in position n = 0. Otherwise, (13) would

imply that V (0) = 0.26 Furthermore, the equilibrium conditions for case (A) and case

(B) (conditions (12) and (13)) coincide in position n = 1/2. Therefore, the only difficulty

that remains is to determine which case applies in positions 0 < n < 1/2. In case of a grid

with 5 positions as the one introduced above, this means that the only case distinction

that remains relates to position a2 (see the following section).

25The most obvious guess is that case (A) applies if n ≤ 1
2 , and case (B) otherwise. If this does not

yield an equilibrium, we proceed with specifications where there is a single location on the grid within
the interval [0, 12 ) where the case switches from (A) to (B).

26This cannot hold in equilibrium because V (0) = 0 is only possible when firm 1 does not gain market
share by setting any positive price. Thus, the probability that firm 2 chooses a positive price is equal to
zero. However, this cannot occur in equilibrium in position n = 0, as firm 2, that already has the full
demand, would clearly benefit from charging a positive price.
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5 Market share grid with 5 positions

Let us generalize the simple market share grid with five positions that was introduced

above, by considering the following grid:

G5 ≡
{

0, s, 1/2, 1− s, 1
}
, (18)

where s ∈ (0, 1
2
) is a parameter. For this grid, we specify the function l(·) as follows:

l(0) = l(s) = 0, l(1/2) = s, l(1− s) = 1/2, l(1) = 1− s, (19)

while the function h(·) is defined according to the consistency condition (4). Clearly,

these transition functions satisfy condition (17) used in Proposition 4.

By varying the new parameter s, we can adjust the grid to reflect different choices

of the original parameters µ and φ. Not all combinations can be adequately reflected.

However, for large values of φ (around 0.8) and large values of µ, this grid can be used

to approximate the true market share dynamics sufficiently well. This is also the range

of parameter values that we are especially interested in, because high values of φ and µ

imply a large amount of word-of-mouth communication among consumers.

Figure 1 illustrates the accuracy of our approximation for φ = 0.8 and µ = 1, using

the grid G5 with s = 0.2. The curve shows the true function l(n). The dots represent

the discrete approximation of l(·) as given by (19); the vertical coordinate of each dot is

given by the horizontal location of the next step on the grid to the left (because a loss of

market shares is reflected by a motion to the left along the grid). The figure shows that

for the given parameter values, the function l(n) is indeed reflected quite accurately by

setting s = 0.2.27

Small values of s can be used to describe markets where most consumers communicate

via word-of-mouth, corresponding to large values of φ and µ. Intuitively, in such a case,

a firm with a small customer base gains only a moderate amount of market shares when

it charges the lower price in the market, because few consumers discover this firm’s offer

via word-of-mouth. Hence, market shares tend to be more volatile near the center of the

market share space than near the extremes. On the other hand, larger values of s (closer

to 1
2
) can be interpreted as market shares that are more volatile near the extremes than

near the center of the market share space. This corresponds more closely to a situation

where few (or no) consumers communicate via word-of-mouth.28

27Alternatively, we can choose s to minimize the sum of squared errors implied by imposing the grid.
For example, for φ = 0.8 and µ = 1, the sum of squared errors LS =

∑N
k=2[ak−1 − l(ak)]2 is minimized

by s = 0.2013, for which LS < 0.0012. Note, that it is impossible to match the true function l(·) precisely
with any finite grid, as l(n) > 0 holds for any n > 0, while l(a2) = a1 = 0 holds for the grid.

28In this range of parameters, however, the grid G5 yields a less accurate representation of our micro-
foundation. Therefore, the interpretation of the results derived using this grid for larger values of s must
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We can now derive a closed-form solution for the value function given the market

share grid G5 introduced above. For this we only need to determine which case applies

in position a2. Let us first assume that case (A) applies in position a2. We will see below

that this is the case when the discount factor remains below a critical value. Applying

condition (12) to positions n = 0, n = s, and n = 1
2
, and condition (11) for n = 1 − s

and n = 1, then, yields

V (1)− δV (1− s) = 1− s, V (1− s)− δV (1/2) = 1/2, V (1/2)− δV (s) = s, (20)

V (s)− δV (1/2) = V (1− s)/2− δV (1)/2, V (0)− δV (s) = s(1− δ)V (1). (21)

Equations (20)–(21) form a system of five linear equations with five unknowns that can

be easily solved. The complete solution can be found in the proof of Proposition 5 in the

Appendix.

Proposition 5. Consider the grid G5. For every s ∈ (0, 1
2
) there exists a critical value

δcrit > 0 such that: A symmetric MPE in which case (A) applies in position a2 of the

grid exists, if and only if δ < δcrit. In that case the equilibrium is unique. The critical

value δcrit is increasing in s and fulfills δcrit →
√

2− 1 for s→ 0 and δcrit = 1 for s = 1
3
.

The proposition implies that an equilibrium where the firm with the larger customer

base charges the monopoly price with a positive probability always exists for sufficiently

small values of δ (conforming to our results for the myopic case from Section 2.2). When

δ increases, the critical value δcrit (which is a function of s) marks the turning point

towards an MPE where the firm with the larger customer base conducts limit pricing

in positions s and 1 − s, as captured by case (C), and hence, gains market shares with

probability 1. We provide a detailed discussion of case (C) in the Appendix.

Proposition 6. Consider the grid G5 with s ∈ (0, 1
2
). An equilibrium that involves case

(C) in position n = s exists if and only if s ≤ 1
3

and δ ≥ δcrit.

Compared to the case δ < δcrit, where the equilibrium is unique (Proposition 5), there

are potentially multiple equilibria when δ > δcrit. In all of them, case (C) applies in

position s. However, it turns out that there is an equilibrium that yields the highest

values in all states (see the proof of Proposition 6). This equilibrium is characterized by

the same condition that one obtains also when applying case (B) to position s. Under

the assumption that firms coordinate on the strategies that deliver the highest profits to

both of them, the derivation of an equilibrium condition is, thus, not more complicated

than for the other positions on the grid.

In the following, we analyze the resulting dynamics of market shares. Market share

dynamics in an MPE that uses mixed strategies are governed by the probability that

be seen in light of this caveat.
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firm 1 charges the higher (the lower) price in the current period. If a firm with a small

customer base prices aggressively (chooses a lower price in the current period with a high

probability), then the resulting dynamics exhibit a tendency towards the center of the

market share space. Conversely, if the firm with a larger customer base prices aggressively

when market shares are skewed but not extreme (positions s and 1− s on the grid), then

a tendency towards the extremes of the market share space emerges. Note also that

in a symmetric equilibrium, in position n = 1
2

(center of the market share space), the

probability of gaining or losing market shares is always equal to 1
2

for both firms.

Proposition 7. Given the grid G5, for δ sufficiently small, F (p | 1 − n) first-order

stochastically dominates F (p | n) in positions n = 0 and n = s of the grid.

The proposition implies that for small values of δ, the firm with the smaller customer

base (firm 1 for n < 1
2
) is more likely to gain market shares, and a tendency towards

the center of the market share space results. Intuitively, for small δ, the firm with a

larger customer base has a stronger incentive to exploit the locked-in consumers in its

customer base than a firm with a smaller customer base, while the smaller firm competes

more vigorously for new customers. The stochastic dominance result of Proposition 7

also confirms earlier findings obtained in the myopic case (Proposition 3).

Figure 2 illustrates these findings. The figure contains the state n on the horizontal

and prices on the vertical axis. The vertical lines show the support of firm 1’s price

distribution, and the dots indicate the expected price. The lower dashed line is the

lower boundary of the price distribution functions, p(n), and the upper dashed line is

the monopoly price, which is the upper boundary of the support. The horizontal arrows

indicate the probability of moving upwards/downwards in the market share space for the

corresponding state. For instance, when the state is n = s, firm 1 gains market shares

with a probability of 0.75, and when n = 0, this probability is 0.9. The figure shows that

market shares have a strong tendency to move towards the center of the market share

space whenever the market split is an uneven one.29

For larger values of δ, an additional effect strongly influences the dynamics. Since

future profits are valuable, the firm with the larger customer base may start to defend its

dominant position in the market by pricing very aggressively whenever it is threatened.

Hence, for larger values of δ, we might expect tougher price competition around the

center of the market share space than at the extremes. If this holds, then a tendency

towards skewed market splits emerges. If price competition is very intense in the center

of the market share space, the firm with a smaller customer base may “shy away” from

this region, which allows the larger firm to maintain its dominant position in the market.

29The value function for G5, given s = 0.2 and δ = 0, is: V (0) = 0.16, V (s) = 0.25, V ( 1
2 ) = 0.2,

V (1− s) = 0.5, V (1) = 0.8. Hence, already in the myopic case, the value function is non-monotonic. For
numerical simulations of market share dynamics in the myopic case, see Section 6.
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This is highlighted by the following proposition.

Proposition 8. Consider the grid G5 and let s ≤ 1
3
. If δ → δ−crit, then F (p | n) first-order

stochastically dominates F (p | 1− n) in position n = s, and the probability that the firm

with the larger customer base (firm 2) gains market share converges to 1.

If follows from the proposition that, for larger values of δ, a tendency towards the

extremes of the market share space emerges.30 If δ is sufficiently large (δ ≥ δcrit), market

shares never cross the center of the market share space in equilibrium, and a firm that has

reached a dominant position in the market, maintains this position forever. Proposition 8

conforms to our intuition indicated earlier. Small values of s correspond to situations

where most consumers communicate via word-of-mouth. It is intuitive that in such

markets, a high market share is particularly valuable, since firms with a small customer

base can attract few additional customers when gaining market shares. The market

shares, thus, tend to become more skewed when s is small and δ is raised.

Figure 3 illustrates these findings for a discount factor of δ = 0.66, which is, given

s = 0.2, just below δcrit ≈ 0.6653.31 We observe that — whereas prices are quite dispersed

at the center of the market share space (n = 1
2
) — the mean is almost equal to the

minimal price in position 1 − n. Recall, that in this position of the market share grid,

firm 1 conducts limit pricing, because its dominant market position is at stake. As a

result, this firm gains market share with a probability of (almost) 1. Market shares, thus,

fluctuate around one of the extremes of the market share space, as illustrated also by

our numerical simulations conducted in Section 6. Note also that the lowest price p(n)

is below zero when n = 1
2
. Price competition is, thus, rather intense at the center of the

market share space, where each firm competes to obtain the dominant market position.

This effect becomes more pronounced when the discount factor is raised further.32

In markets where few consumers communicate via word-of-mouth, we would expect

this effect to be less pronounced. A larger value of s can be interpreted as a smaller

fraction of consumers communicating via word-of-mouth (smaller µ and φ), which makes

it less valuable for a firm with a large customer base to defend its dominant market

position. It is, thus, important to note that there are fundamental differences in the

dynamics when comparing situations where s is small (s < 1
3
) to situations where s is

large (s > 1
3
). Namely, when s < 1

3
and δ is sufficiently large, market shares never cross

30We show in the Appendix that the results of Proposition 8 are preserved when δ > δcrit; see also
Proposition 6.

31The value function for these parameters is: V (0) = 0.15, V (s) = 0.10, V ( 1
2 ) = 0.27, V (1− s) = 0.68,

V (1) = 1.25.
32In fact, it can be shown that as s → 0, price competition becomes so intense in this position that

both firms charge a negative limit price when δ > δcrit, which eliminates all payoffs when n1 = 1
2 is the

initial state. This is because only a dominant firm can earn a positive profit under these conditions, so
firms compete in a Bertrand-fashion for this payoff.
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the center, and a firm that has obtained a dominant position in the market, maintains this

position indefinitely. Conversely, when s > 1
3
, then even for discount factors arbitrarily

close to 1, markets shares continue to cross the center, and price competition is not

particularly intense in position n = 1
2

(as compared to the other positions).

These differences in the dynamics can be explained intuitively by highlighting pro- and

anti-competitive effects in this dynamic model, compared to a Bertrand model without

locked-in consumers. An anti-competitive effect occurs when a firm has an incentive to

exploit the locked-in consumers in its customer base by charging high prices. A counter-

acting pro-competitive effect arises when the discount factor becomes sufficiently large,

and firms start to “invest” in the size of their customer base by charging very low prices

(even below zero). Depending on the state of competition (captured by n), either the

pro- or the anti-competitive effect can dominate.33

If s < 1
3
, the anti-competitive effect dominates in position n = 0, as the larger

firm 2 tries to exploit the monopoly power over its locked-in consumers. This leads to

positive expected prices in equilibrium. In position s (and 1 − s), the pro-competitive

effect dominates if δ is sufficiently large, because the dominant firm vigorously defends

its position, and even charges a negative limit price if δ ≥ δcrit. Moreover, the pro-

competitive effect also dominates in position n = 1
2
, as each firm is trying to become

dominant in the next period. Hence, most of the probability mass lies at prices below

the competitive price (zero) when the discount factor is sufficiently large.

When s > 1
3

and δ is sufficiently large, price competition is also more intense for even

market splits than for skewed ones. However, which effect dominates depends on the

exact size of s. If s is large (close to 1
2
), then the anti-competitive effect dominates in

all positions of the grid (with the highest expected prices in positions n = 0 and n = 1).

However, as s becomes smaller (closer to 1
3
), price competition intensifies in all positions

of the grid (for fixed δ). If s is close to 1
3
, then the anti-competitive effect still dominates

in position n = 0, whereas the pro-competitive effect now dominates in position s where

the expected price of the firm with the larger customer base becomes negative.

5.1 Other market share grids

We have shown in the previous sections that the grid G5 is especially suitable to analyze

market share dynamics when many consumers communicate via word-of-mouth. For this

grid, we were able to derive analytical results in a simple way, and could extend our basic

findings from Propositions 1 and 2 to discount factors arbitrarily close to 1. Depending

33Related effects can also be found in dynamic models with switching costs. Similarly as in our model,
firms can be tempted to exploit their monopoly power over locked-in consumers. However, also the firms’
desire to attract new customers may be higher when consumers are (partially) locked-in due to switching
costs. Beggs and Klemperer (1992) show that, overall, the first effect tends to dominate, so switching
costs make markets less competitive.
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on the parameters φ and µ that characterize the process of consumers’ information acqui-

sition, it is generally possible to construct a specific grid with a small number of positions

N , designed to represent this set of parameter values particularly well. The advantage of

this approach is analytical tractability.34

In this section, we briefly discuss the usage of two alternative market share grids (with

a small number of positions). First, we add two additional positions (near the extremes) to

the grid G5, which converts this into a new grid G7, with new state transition functions.

The advantage of this is that the G7 allows to approximate the state transitions even

more accurately than the G5. The disadvantage is that (as we will show below) the state

transition functions no longer satisfy condition (17), which implies that Proposition 4

does not apply.35 We find that the results for this grid remain qualitatively very similar

to the results for G5. We again obtain a critical value of the discount factor so that case

(A) applies in all positions (with n ≤ 1
2
) when δ lies below the critical value. For δ large,

case (B) applies in position a3. When δ increases, market shares become more skewed,

and cross the center of the market share space less frequently. In particular, when δ

is sufficiently large, the firm with the larger customer base prices very aggressively in

position n = a3, and market shares tend to fluctuate near one of the extremes of the

market share space. Hence, extended intervals of dominance are obtained, interrupted

by sudden changes in the identity of the leading firm.

Second, we will discuss a market share grid with only four positions (G4). This grid

has been introduced earlier (see Section 4). It is particularly suitable to approximate

market share dynamics when most (but not all) consumers are fully informed. More

specifically, let G4 ≡ {0, s, 1 − s, 1}, where s = φ assures a good approximation when φ

is small. The state transition functions for this grid are: l(1) = l(1 − s) = s, l(s) = 0,

and h(.) again defined by (4).36 For this grid, we can easily compute the value function,

using the assumption that in all positions of the grid, the firm with the larger customer

base charges the monopoly price with positive probability (hence, case (A) applies in

positions n = 0 and n = s). We find that when s is small, the evolution of market shares

is almost independent of the discount factor δ. Furthermore, the outcome converges to

the Bertrand equilibrium when the fraction of fully informed consumers converges to 1

(i.e., s→ 0). Intuitively, when most consumers are fully informed, then firms have little

incentive to invest into a large customer base. Even for large values of the discount factor

δ, dynamics reflect mainly firms’ current profit maximization, and price competition is

intense in all positions of the market share grid. Market shares exhibit a zig-zag pattern

between the extremes of the market share space, and their frequency of crossing the center

34The alternative approach is to use a finer grid with a large number of positions. This allows to
approximate the state-transition process more accurately, but analytical results are hard to obtain. This
is the approach we follow in Section 6, where we perform a numerical analysis using simulations.

35As an example, we consider G7 ≡ {0, 0.035, 0.2, 0.5, 0.8, 0.965, 1}, and assume l(1) = l(a6) = a5.
36Note, that also the G4 violates condition (17).
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declines only slightly when δ becomes large (see Section 6 for numerical simulations).

6 Numerical simulations

In this section, we simulate market share dynamics numerically in order to provide a

robustness check for our earlier results. For this purpose we again use a discretization of

the state space, where we abandon the assumption (17). In particular, we use a finer grid

with a larger number of positions (we use N = 400 positions for our simulations), and

allow for bigger steps along the grid when a firm gains or looses market share.37 Note,

however, that results are still obtained by deriving a closed-form solution for the value

function (for all positions of the grid) using the equilibrium conditions (11), (12), and

(13). Conceptually, the only difference is that for finer grids, the closed-form solution

for V (.) becomes so complicated that a solution is only derived for a given value of the

discount factor δ, and given state transition functions l(.) and h(.) defined on the grid,

reflecting the parameter values µ and φ.

In order to disentangle the driving forces behind the dynamics in the model, we first

analyze the dynamics in the myopic case (analyzed in Section 2.2), and compare our

results to the dynamics obtained for larger values of the discount factor δ. Furthermore,

the results in the myopic case are contrasted against the backdrop of a stochastic process

that assigns an equal probability to each firm and in each period of gaining or losing

market shares, independently of the current state n.

Figure 4 shows a simulation for this state-independent stochastic process assigning

equal probabilities of gaining or losing market shares in each period, using (15) with

the parameter values φ = 0.8, µ = 1 considered also in previous sections. The left

panel shows the evolution of market shares for 100 rounds. The right panel shows the

invariant distribution for the same parameter values, using a simulation with 5 million

rounds.38 Figure 4 shows that information processes characterized by a large amount

of word-of-mouth communication, have an inherent tendency to generate skewed market

splits. The invariant distribution indicates that there are natural ‘hotspots’ in the market

share space, where most of the probability mass is found near them. In particular, in

Figure 4 these hotspots are around the values {0, 0.2, 0.5, 0.8, 1}, which correspond to the

positions of the grid G5 when s = 0.2.

37This can be described using functions L,H : {1, 2, . . . , N} → {1, 2, . . . , N} that specify by how many
positions firm 1’s market share “jumps” to the left/right along the grid, when firm 1 looses/gains market
share, i.e., l(ak) = aL(k) and h(ak) = aH(k). In the simulations we further assume equal distances
between the positions of the grid: ak = (k − 1)/(N − 1). Note that if N is large, this is sufficient to
represent market share dynamics accurately for any set of parameter values. For a given set of parameter
values, the transition functions L(.) and H(.) are specified by choosing the position on the grid nearest
to the true value of l(ak), i.e., L(k) = arg mink′ |ak′ − l(ak)|.

38Note, that the irregularities (peaks) in the invariant distributions are not due to numerical impreci-
sion. They result from the specification of the process of information transmission.
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Figure 5 uses the same parameter values, but adds strategic interaction. Future

profits are fully discounted away (myopic case). By Propositions 3 and 7, we expect

market shares to be (on average) less skewed than under the state-independent stochastic

process. This reflects the tendency of the firm with the smaller customer base to price

more aggressively than its larger rival in order to gain market shares. Figure 5 confirms

this prediction.

Figure 6 simulates the full dynamic game for the same parameter values and δ = 0.8.

According to Proposition 8, we expect market shares to be skewed most of the time. The

invariant distribution in the right panel confirms this prediction. Whenever market shares

are skewed but not extreme (n near 0.2 or 0.8), the firm with the large customer base

starts to price very aggressively in order to defend the dominant position in the market.

When market shares are closer to the extremes (n near 0 or 1), the dominant firm prices

less aggressively and charges the monopoly price with positive probability in order to

exploit the locked-in consumers in its customer base. This explains the zig-zag pattern

of market shares in the left panel. Confirming our theoretical predictions (see Section 5),

Figure 6 illustrates that when many consumers rely on word-of-mouth, and the discount

factor is sufficiently large, then extended intervals of dominance are observed, interrupted

by sudden changes in the identity of the leading firm.

Summing up, when word-of-mouth communication among consumers is the dominant

source of information, a “natural” tendency towards skewed market splits emerges, that

can be observed in the absence of strategic interaction. Intuitively, when most consumers

rely on word-of-mouth, then few people find out about the offer of a firm that has served

a small fraction of the market in the previous period. This implies that market shares

are more volatile in the center than near the extremes of the market share space. In the

presence of strategic interaction, for small values of the discount factor δ, the smaller

firm’s attempts to gain market shares counteract the tendency towards skewed market

splits, so market shares tend to be more evenly distributed. When future profits are

important, the tendency towards skewed market splits is reinforced and becomes more

visible again. For sufficiently large values of δ, a firm that has reached a dominant position

in the market, tends to maintain this position for many consecutive periods.

For comparison, we also simulate two additional situations: when there is no word-

of-mouth communication, and when most consumers are informed. Figure 7 shows a

simulation of the full dynamic game for the the former situation under parameter values

φ = 0.8, µ = 0, and δ = 0.99. Then 20 percent of the consumers are informed, whereas the

remaining 80 percent of consumers remain locked-in at their previous supplier. Figure 7

illustrates that market shares are more centered than in a market characterized by word-

of-mouth communication. Furthermore, the size of the discount factor δ does not have

a strong impact on the dynamics. For smaller values of δ, market shares are somewhat
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less skewed, but the effect is not as pronounced (not shown here).

Figure 8 shows a simulation of the full dynamic game for the latter situation (men-

tioned above) under parameter values φ = 0.1, µ = 1, and δ = 0.99 (which is the example

(i) in Section 4). In this case, 90 percent of consumers are informed and all remaining con-

sumers communicate (with one other consumer) via word-of-mouth. Figure 8 illustrates

that market shares are mostly concentrated in four extreme “hot spots” with frequent

jumps from one to the other extreme. Contrary to the case where many consumers com-

municate via word-of-mouth, the size of the discount factor has very little impact upon

equilibrium dynamics. The reason is that — since market shares are very volatile —

firms have little incentive to “invest” in the size of their customer base. Hence, dynamics

for δ close to 1 resemble those in the myopic case.

7 Conclusion

This paper presents a model of the dynamics of a duopoly, in which dynamics are gener-

ated by the firms’ usage of mixed pricing strategies. We demonstrate that with a small

set of assumptions, surprisingly rich dynamics are obtained. Depending on the parameter

values, our model can generate dynamics where market shares tend to equalize over time,

as well as dynamics where dominance persists over many consecutive periods. Mixed

pricing strategies are a feature well-known, for instance, from models with consumer

search. They characterize situations in which a firm is willing to undercut the competi-

tor’s price if this price can be predicted with certainty. This often applies in markets

with homogeneous products. We apply this concept to a dynamic pricing game.

In dynamic duopoly models, the state often tends to evolve into a direction where the

joint payoff increases.39 In our model, the joint (expected) payoff in the myopic case is

higher when market shares are skewed, because the firm with a larger customer base then

tends to price less aggressively. One may, therefore, suspect that market shares would

become more skewed when future profits are more important. Our results confirm this

prediction. Depending on the amount of word-of-mouth communication as well as on the

discount factor, different “classes” of dynamics are obtained in our model. When most

consumers are informed, market shares are very volatile, and firms have little incentive

to invest in the size of their customer base. The discount factor, then, does not strongly

affect the dynamics. When word-of-mouth plays a major role in consumers’ information

acquisition, market shares tend to become less volatile. If the discount factor is sufficiently

large, they rarely cross the center of the market share space, and extended periods of

dominance, interrupted by sudden changes in the leadership position, are obtained.

The intuition for our results can be illustrated by highlighting pro- and anti-competitive

39See Budd et al. (1993), Cabral and Riordan (1994), and Athey and Schmutzler (2001).
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effects due to partial consumer lock-in and word-of-mouth. The anti-competitive effect

arises if a firm tries to exploit the locked-in consumers in its customer base, which occurs

near the extremes of the market share space. When the discount factor is sufficiently

large, then the counter-acting pro-competitive effect arises. If market shares are skewed

but not extreme, then the larger firm tries to defend its dominant position. This effect

can be so strong that this firm charges a negative limit price in order to gain market

shares.

From the policy perspective, the anti- and pro-competitive effects can shed some

light on the behavior of dominant firms. Besides their incentive to exploit the locked-

in consumers, dominance can also benefit the consumers when a dominant firm defends

its position by pricing aggressively. While in the model, we relate this behavior to the

position in the market share space (or grid), it can also be interpreted in the following way:

a dominant firm tends to adopt an aggressive pricing strategy when it loses a significant

market share after being undercut by the rival, threatening its dominant position. In

order to verify this condition, standard methods, like estimation of the elasticity of the

firm-specific demand, can be used.

Finally, let us briefly revisit some of our assumptions. If our assumption of homoge-

neous goods is relaxed, a larger firm’s desire to undercut the competitor’s price in order

to defend its dominant market position may be reduced, if product differentiation gives

firms some monopoly power irrespective of past market shares. Therefore, product dif-

ferentiation may weaken some of our effects. Similarly, the size of the price differential

could, in addition to just the ranking of prices, also matter for consumers’ choices. This

feature seems relevant for some markets, and may generate dynamics that are less volatile

than in our model. Another interesting starting point for future research would be the

introduction of forward-looking consumers (e.g. Cabral, 2011). In our model, consumers

who become informed about both prices always choose the supplier with the lower price.

This behavior may not always be rational, if this firm is expected to charge higher prices

in future periods.
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A Appendix: Proofs

A.1 Proofs for Section 2

Before starting with the proof of Proposition 1, we state and prove the following lemma.

It claims that the gain h(n)− n from having a lower price is not arbitrarily small for the

firm with the smaller customer base. This sets a lower bound on the relative gain from

undercutting the rival and thus suggests a profitable deviation in potential equilibrium

candidates in pure strategies.

Lemma 1. There exists δ0 > 0 such that h(n) − n > δ/(1 − δ) for every n ∈ (0, 1
2
] and

every δ ∈ (0, δ0),

Proof of Lemma 1. As h(n) − n is continuous on the compact interval [0, 1
2
], it has a

minimum, let us denote it α. Clearly α > 0. As δ/(1−δ) is increasing in δ, the statement

follows by choosing δ0 such that δ0/(1− δ0) < α.

Proof of Proposition 1. We prove the claim by contradiction. Suppose there is an equilib-

rium where both firms use pure strategies p1 and p2 in a state n ∈ (0, 1). We consider sev-

eral cases. If p1 = p2 ≡ p and p > 0, either firm would benefit from marginally undercut-

ting the common price p. This leads to a discontinuous rise in demand that, for sufficiently

low δ, more than compensates for (potential) future losses resulting from the increase in

the size of the firm’s customer base.40 More precisely, a necessary condition for price p > 0

to be best response of firm i (with market share n) is that p′h(n) ≤ pn/(1 − δ) = Vi(n)

for all p′ < p. This implies that n > 0 and that h(n) ≤ n/(1 − δ). From this we obtain

the following necessary condition:

h(n)− n ≤ nδ

1− δ
≤ δ

1− δ
(22)

Now assuming without loss of generality that n ≤ 1
2
, we obtain a contradiction to

Lemma 1 when δ is small enough.

The case p1 = p2 ≡ p with p ≤ 0 cannot arise in equilibrium either. Otherwise, state

n would remain constant, so firms choose p1 = p2 ≡ p in all periods and total discounted

profits are non-positive (a deviation to the monopoly price 1 yields a positive profit to a

firm with a positive customer base size, and there is at least one such firm). If p1 6= p2

and p1, p2 < 1, the high-price firm would benefit from deviating to the monopoly price

because current demand and, thus, the state next period are not affected. Finally, there

can be no pure strategy equilibrium where pi = 1 and pj < 1 (where j 6= i), as the

40Note that an increase in the size of a firm’s customer base can lead to a reduction in profit, unless
the value function is monotonically increasing. However, this cannot be imposed here.
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low-price firm would benefit from deviating to a higher price, which again only affects

the current period profit.

Before proceeding with the Proof of Proposition 2, we derive some useful properties

of mixed strategy equilibria. In the text below we clarify when the indifference condition

known from mixed strategies equilibria in finite games holds. After that we state and

prove a lemma with useful properties of the firms’ price distribution supports that will

be used in the Proof of Proposition 2.

Consider an MPE and a state n. Let S1 and S2 be the supports of F1(p | n) and

F2(p | 1−n), respectively. Firm i’s value from choosing the price p can be written as (let

j 6= i)41

[pl(n) + δVi(l(n))] Pr(pj < p | 1− n) + [ph(n) + δVi(h(n))] Pr(pj > p | 1− n)

+[pn+ δVi(n)] Pr(pj = p | 1− n). (23)

In the case when p is a mass-point (atom) of firm i’s price distribution, the indifference

condition clearly holds and (23) is thus equal to Vi(n). The second case where the

indifference condition holds is when the price p ∈ Si is not a mass-point of firm j’s price

distribution. In that case the last term in (23) is equal to zero and firm i’s value is

continuous in its price. The indifference condition then becomes

Vi(n) = [pl(n) + δVi(l(n))]Fj(p | 1− n) + [ph(n) + δVi(h(n))] (1− Fj(p | 1− n)). (24)

For all other prices the value (23) does not exceed Vi(n). Note that (23) may be strictly

smaller than Vi(n) even for prices from the support Si when p is a mass-point of firm j’s

but not firm i’s price distribution.42

Now, let us fix some price p and consider prices p′ that are not mass-points of firm

j’s price distribution and are sufficiently close to p (such clearly exist). Choosing price p′

does not deliver a higher value than Vi(n), thus,

Vi(n) ≥ [p′l(n) + δVi(l(n))] Pr(pj < p′ | 1− n) + [p′h(n) + δVi(h(n))] Pr(pj > p′ | 1− n).

(25)

41We elaborate more on this dynamic equation in the main text just below Proposition 2.
42Having a continuous strategy space, the indifference condition for firm i in mixed strategy equilibrium

needs to hold over every set on which firm i puts a positive measure. Point-wise it is required to hold (i)
in points that are mass-points of firm i’s price distribution, and (ii) in points in Si that are not mass-
points of firm j’s price distribution (as firm i’s expected value is continuous at such points). Similar
arguments can be found, for example, in Baye, Kovenock, and de Vries (1996) in the context of all-pay
auctions.
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Considering prices p′ < p and taking the limit p′ → p− we have43

Vi(n) ≥ [pl(n)+δVi(l(n))] Pr(pj < p | 1−n)+[ph(n)+δVi(h(n))] Pr(pj ≥ p | 1−n). (26)

Similarly, for prices p′ > p and in the limit p′ → p+ we obtain

Vi(n) ≥ [pl(n)+δVi(l(n))] Pr(pj ≤ p | 1−n)+[ph(n)+δVi(h(n))] Pr(pj > p | 1−n). (27)

With these preliminaries, we can now state the following lemma.

Lemma 2. Let δ ∈ [0, 1) and consider an MPE and a state n ∈ (0, 1). Let i, j ∈ {1, 2},
j 6= i. Then, for any price p ∈ Si, p < 1 the following statements hold:

(i) p ∈ Sj.

(ii) If (p, p′) ∩ Sj = ∅ for some p′ ∈ (p, 1), then p is a mass-point of firm j’s price

distribution.

(iii) If [p, p′] ⊆ Si for some p′ ∈ (p, 1), then p is not a mass-point of firm j’s price

distribution.

Proof of Lemma 2. (i) Suppose, by contradiction, that p ∈ Si but p 6∈ Sj. Then, by

choosing price p ∈ Si, firm i gets a value that satisfies (24). Since the complement of Sj

is open, we can find p′ > p so that (p, p′]∩Sj = ∅. In that case Fj(p
′ | 1−n) = Fj(p | 1−n).

As l(n) > 0, by choosing price p′ instead of p in the current period, firm i obtains a higher

current profit, but the probabilities as well as future values remain unchanged.44 Thus,

it cannot be an equilibrium. The fact that both firms use mixed strategies follows from

identical supports.

(ii) If p is not a mass-point of firm j’s (the firm with market share 1 − n) price

distribution, then firm i by choosing price p gets a value as in (24). Choosing price

p′ increases the price, but changes neither firm i’s probabilities of having a lower/higher

price, nor its future value functions. This contradicts p being a best response (i.e., having

p ∈ Si).

(iii) Suppose to the contrary that p is such a mass-point. Note that now the indif-

ference condition for firm i may not hold at the price p (see footnote 42). For any price

p′′ ∈ [p, p′] that is not a mass-point of firm j’s price distribution, the indifference condition

holds. Taking the limit p′′ → p+ we obtain that (27) holds with equality. Now we compare

43This follows from the fact that Pr(pj > p′ | 1− n) converges to Pr(pj ≥ p | 1− n).
44Here we consider only a deviation (to price p′) in the current period, leaving the future strategy

unchanged.
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this value to (26). After subtracting identical terms and dividing by Pr(pj = p | 1− n),

which is positive as p is a mass-point, we obtain

pl(n) + δVi(l(n)) ≥ ph(n) + δVi(h(n)). (28)

Finally, consider some price p′′ > p outside of the limit (again such that is not a

mass-point of firm j’s price distribution). We show that (28) implies that there is a

profitable deviation to such price p′′. Let V ′′ denote the value from choosing price p′′ and

let X = Pr(pj ≤ p′′ | 1− n) and Y = Pr(p < pj ≤ p′′ | 1− n). Using (27) that (as noted

above) now holds with equality, and substituting these equalities, we obtain

V ′′ − Vi(n)

= [p′′l(n) + δVi(l(n))] Pr(pj ≤ p′′ | 1− n) + [p′′h(n) + δVi(h(n))] Pr(pj > p′′ | 1− n)

− [pl(n) + δVi(l(n))] Pr(pj ≤ p | 1− n)− [ph(n) + δVi(h(n))] Pr(pj > p | 1− n)

= [p′′l(n) + δVi(l(n))]X + [p′′h(n) + δVi(h(n))] (1−X)

− [pl(n) + δVi(l(n))] (X − Y )− [ph(n) + δVi(h(n))] (1−X + Y )

= (p′′ − p) [l(n)X + h(n)(1−X)]

+
[
[pl(n) + δVi(l(n))]− [ph(n) + δVi(h(n))]

]
Y.

Now, the first term is clearly positive as p′′ > p, whereas the second term is non-negative,

as follows from (28). Thus, V ′′ > Vi(n), which is a contradiction.

Proof of Proposition 2. (i) It follows directly from Lemma 2, part (i) that S̃ = S1 \{1} =

S2 \ {1}. However, it can still be the case that the supports S1 and S2 differ in the

monopoly price p = 1. In part (ii) we will also show that this case does not occur. More

precisely, we will show that S̃, and thus also S1 and S2, contains prices arbitrarily close

to 1. Because S1 and S2 are closed, then also 1 ∈ S1 and 1 ∈ S2, completing the proof of

part (i).

(ii) We show that if p ∈ S̃ for some p < 1, then also [p, 1) ⊆ S̃. The statement in the

proposition then follows directly. Suppose to the contrary that the above claim is not

true. So, there exist p < p′′ < 1 such that p ∈ S̃, but p′′ /∈ S̃. We can without loss of

generality choose p such that S̃ ∩ (p, p′′) is empty.45

Now we proceed in three steps. In Step 1 we show that both firms’ price distributions

have a mass-point at price p. In Step 2 we derive a necessary condition that pn/(1− δ)
is an upper bound for the value Vi(n). In Step 3 we show that this upper bound cannot

be satisfied for δ sufficiently small (when n ≤ 1
2
).

45Such p is equal to the maximum of the closed set S̃ ∩ (−∞, p′′].
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Step 1. This follows directly from Lemma 2, part (ii).

Step 2. Being a mass-point, price p satisfies firm i’s indifference condition

Vi(n) = [pl(n) + δVi(l(n))] Pr(pj < p | 1− n) + [ph(n) + δVi(h(n))] Pr(pj > p | 1− n)

+ [pn+ δVi(n)] Pr(pj = p | 1− n). (29)

Comparing this to the inequality (26), subtracting identical terms and dividing by Pr(pj =

p | 1− n) > 0, we obtain

pn+ δVi(n) ≥ ph(n) + δVi(h(n)). (30)

By the same argument, comparing (29) and (27), we obtain

pn+ δVi(n) ≥ pl(n) + δVi(l(n)). (31)

Substituting inequalities (30) and (31) into (29) implies pn+δVi(n) ≥ Vi(n), which yields

the necessary condition
pn

1− δ
≥ Vi(n). (32)

This completes the second step. Note that this argument holds for any δ ∈ [0, 1).

Step 3. It follows from (32) that the price p is non-negative. By rearranging (32) we

obtain pn/(1 − δ) ≥ pn + δVi(n). This, together with (30) implies that pn/(1 − δ) ≥
ph(n) + δVi(h(n)) ≥ ph(n). Thus, h(n) ≤ n/(1 − δ) and h(n) − n ≤ δ/(1 − δ), which is

exactly condition (22). Now, as all arguments above are symmetric, we can without loss

of generality assume that firm j has a higher market share, i.e., n ≤ 1
2
. Similarly as in

the proof of Proposition 1, we obtain a contradiction to Lemma 1 if δ is sufficiently small.

(iii) Having established the statement (ii), it follows from Lemma 2, part (iii) that

there are no mass-points at prices p < 1. It only remains to show that at most one firm

can have a mass-point at price p = 1 when δ is small enough. Suppose to the contrary

that both firms have a mass-point at p = 1 and without loss of generality let firm j be

the larger firm with customer base size 1 − n (so n ≤ 1
2
). As the indifference condition

needs to hold, we again obtain the necessary condition (30) where we set p = 1. Thus,

h(n)− n ≤ δ[Vi(n)− Vi(h(n))] ≤ δ/(1− δ). Now, for n ≤ 1
2
, we obtain a contradiction to

Lemma 1 if δ is sufficiently small.

Proof of Proposition 3. We show that n < 1
2

if and only if F (p | 1− n) < F (p | n) for all

p > p(n). This, in turn yields the required stochastic dominance result.
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Rewriting the inequality F (p | 1− n) < F (p | n), we obtain

h(n)

h(n)− l(n)

(
1−

p(n)

p

)
<

h(1− n)

h(1− n)− l(1− n)

(
1−

p(n)

p

)
.

Because h(1 − n) − l(1 − n) = h(n) − l(n) > 0, the above inequality is, for p > p(n),

equivalent to h(n) < h(1− n), or n < 1
2

(as h(·) is increasing).

A.2 Proofs for Section 4

Proof of Proposition 4. Clearly the arguments in the proofs of Propositions 1 and 2 that

do not use δ small do apply here as well. We, therefore, only focus on the most relevant

parts of the arguments where δ small is necessary.

First we show that there is no pure strategy equilibrium with identical (positive)

prices (Proposition 1). Suppose to the contrary that prices p1 = p2 = p > 0 constitute an

equilibrium for some n in period t. We derive a necessary condition for such strategies

to occur in equilibrium. For this we consider the following two (one-shot) deviations:

undercutting to a price p′ close to p in position n, and setting the monopoly price in

position h(n).

Undercutting (by firm i with market share n) to price p′ < p should not be profitable.

In the limit p′ → p− the necessary condition becomes

pn+ δV (n) ≥ ph(n) + δV (h(n)), (33)

where the left-hand side is equal to V (n).

Now consider state h(n) and let us denote q = Pr(pj = 1 | 1 − h(n)) the probability

that the rival chooses the monopoly price. Choosing the monopoly price pi = 1 with

probability 1 should also not be a profitable deviation in state h(n), thus

V (h(n)) ≥ [h(n) + δV (h(n))] q + [n+ δV (n)] (1− q). (34)

Expressing V (h(n)) we obtain

V (h(n)) ≥ q

1− δq
[h(n)− n] +

1

1− δq
[n+ δ(1− q)V (n)], (35)

which after substituting into (33) and rearranging yields(
p+

δq

1− δq

)
[n− h(n)] ≥ δ

1− δq
[n− (1− δ)V (n)]. (36)
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The left-hand side is clearly negative,46 whereas the right-hand side is non-negative as

V (n) = pn/(1− δ) ≤ n/(1− δ). This is a contradiction.

Second, let us review Step 3 from Proposition 2, part (ii). The argument is basically

identical to the one above, it just needs to be refined. The inequality (33) is now not

straightforward, but follows from (30). The inequalities (34)–(36) are then obtained in

the same way. In order to argue that the right-hand side of (36) is non-negative, we use

(32), which yields the same contradiction as above.

Finally, we show that at most one firm can have a mass-point at the monopoly price

p = 1 as in Proposition 2, part (iii). Assuming that both firms have a mass-point at the

monopoly price p = 1, by the same procedure as above, we obtain the inequality (36)

where we set p = 1. Moreover, the inequality also holds for firm j 6= i which has a market

share 1− n. Thus, we have

n− h(n) ≥ δ[n− (1− δ)Vi(n)],

(1− n)− h(1− n) ≥ δ[(1− n)− (1− δ)Vj(1− n)]

Summing these inequalities, we obtain

1− h(n)− h(1− n) ≥ δ[1− (1− δ)(Vi(n) + Vj(1− n))].

Now, the left-hand side is clearly negative, while the right-hand side is non-negative,

because the joint profit is bounded from above by 1/(1− δ). This is a contradiction.

A.3 Discussion of case (C)

In what follows we provide a characterization of equilibrium for those positions where

l(n) = 0 or h(n) = 1, which are excluded from Proposition 4. Due to symmetry, it is

sufficient to consider l(n) = 0, i.e., n = a1 = 0 or n = a2. Compared to Proposition 2,

Lemma 3 allows for a broader class of equilibrium strategies in positions a1 and a2, where

the supports may differ. In this case the firm with the larger customer base conducts limit

pricing by setting the price equal to the lower bound of the rival’s support.47 Note that,

although the lemma refers to positions a1 and a2, case (C) is relevant only for position

a2.
48

46We can assume n ≤ 1
2 without loss of generality.

47We show in the following that if case (A) does not apply in position n = a2 of the grid, then case
(C) applies and firm 2 (the firm with the larger customer base) conducts limit pricing. Note, however,
that case (B) may nevertheless apply in other positions n (with a2 < n < 1/2) if the grid has more than
five positions.

48See the main text, directly before Section 5. The argument remains valid if case (B) is replaced by
case (C) in position a1. Namely, under limit pricing in position a1, firm 1 would earn a payoff of zero.
To sustain such an equilibrium, firm 2 (the firm with a large customer base) would have to charge a
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Lemma 3. Let δ ∈ (0, 1) and consider a MPE and n such that l(n) = 0. Let firm 1 have

market share n. Then the results of Proposition 2 hold with case (A) being applied, or

the supports satisfy

(C) S2 = {p̄2} ⊂ S1 ⊆ [p̄2, 1].

Proof. First we show that the supports S1 and S2 coincide for prices p ≤ p̄2, i.e., that

S1 ∩ (−∞, p̄2] = S2. The proof is analogous to the proof of Proposition 2, part (i). The

argument however fails for prices p > p̄2. This failure stems from the failure of Lemma 2.

In particular, in the proof of statement (i) we argue that “As l(n) > 0, by choosing

price p′ instead of p in the current period, firm i obtains a higher current profit, but the

probabilities as well as future values remain unchanged.” However, the profit is strictly

higher only when l(n) > 0 or Pr(p2 > p | 1− n) > 0. Thus, in a special case when

l(n) = 0 and p > p̄2 (37)

it is indeed possible that p ∈ S1 but p /∈ S2. Otherwise the original argument holds.

Recall that l(n) = 0 for some n > 0 does not occur in our original specification with

continuous values of n. However, it does occur once we consider a discrete grid.

Now we show that S1 ∩ (−∞, p̄2] = S2 is a connected set (i.e., an interval or a

singleton). The proof is the same as in part (ii) of Lemma 2. However, by the same

argument as above, it holds only for prices p < p̄2. For prices p > p̄2 the same difficulties

as described above arise.

Next, we argue that if case (A) does not apply in position n (such that l(n) = 0),

then49

V (n) = δV (0). (38)

On the one hand, if S1 = S2, we end up in case (B), where the smaller firm sets a

monopoly price with a positive probability. On the other hand, if the supports S1 and

S2 are not identical, then p̄1 > p̄2. In both cases, there is a price (or range of prices) in

the support S1 that is chosen with positive probability and yields a certain loss in the

market share for firm 1. Charging such price p yields the value p·l(n)+δV (l(n)) = δV (0).

Moreover, because such price (or range of prices) belongs to S1, it satisfies the indifference

condition, which now becomes (38).50

As the last step, we show that if V (a2) = δV (0), then S2 is a singleton (in position

n = a2). Assume to the contrary that S2 is an interval. Consider a price p ∈ S2 such

that p < p̄2 and p is not a mass-point. Clearly there are infinitely many such prices and

non-positive limit price, which would lead to a non-positive value for this firm.
49Observe that for l(n) = 0, condition (13) reduces to (38).
50Note that in the case n = 0 this condition implies V (0) = 0.
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all of them satisfy the indifference condition

V (a2) = [p · 0 + δV (0)] Pr(p2 < p | 1− a2) + [p · a3 + δV (a3)] Pr(p2 > p | 1− a2).

Now we use (38) and substitute δV (0) = V (a2). After collecting identical terms and

dividing by Pr(p2 > p | 1 − a2) > 0 we obtain V (a2) = p · a3 + δV (a3). This, however,

cannot hold for infinitely many prices p, which is a contradiction.

A.4 Proofs for Section 5

Proof of Proposition 5. The solution of the system (20) and (21) is given by:

V (0) =
4s(1− s) + (1− 2s+ 4s2)δ − 2(1− 5s2)δ2 − (1− 4s+ 10s2)δ3

2(1− δ2)(2− δ2)
, (39)

V (s) =
1− 2(1− 4s)δ − δ2 − 2sδ3

2(1− δ2)(2− δ2)
, (40)

V (1/2) =
4s+ δ − 2(1− s)δ2 − δ3

2(1− δ2)(2− δ2)
, (41)

V (1− s) =
1 + 2sδ − δ2 − (1− s)δ3

(1− δ2)(2− δ2)
, (42)

V (1) =
2(1− s) + δ − (3− 5s)δ2 − δ3

(1− δ2)(2− δ2)
. (43)

The values in (39)–(43) can be used in (10) to derive the firms’ randomization strategies

in the MPE at each position n on the grid. For the sake of brevity we present only the

values of the distribution functions for price p = 1:

F (1 | 1) =
2s[2s+ δ + (2− 5s)δ2]

4s+ (1 + 4s2)δ − 2(1− 2s)δ2 − (1− 4s+ 10s2)δ3
, (44)

F (1 | 1− s) =
(1 + δ)[1 + 2(1− 2s)δ]

2 + 2(1 + 2s2)δ − (1− 2s)δ2 − (1− 4s+ 10s2)δ3
, (45)

F (1 | 0) = F (1 | s) = F (1 | 1/2) = 1. (46)

The last set of equalities holds by construction.

We now verify when the necessary conditions F (1 | 1) ≤ 1 and F (1 | 1− s) ≤ 1 hold.

In particular, we show that both these inequalities hold if and only if s ≥ 1
3

or δ ≤ δcrit

(where δcrit depends on s). First, observe that the inequalities hold for δ = 0, and thus

by continuity also for δ small. Second, it can be easily established that the denominator

of (45), which is identical to the denominator of 1− F (1 | 1− s), is positive. Third, the

numerator of 1− F (1 | 1− s), which is

N = 1− (1− 4s− 4s2)δ − 3(1− 2s)δ2 − (1− 4s+ 10s2)δ3, (47)
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has a unique root δcrit ∈ (0,∞) for every s ∈ (0, 1
2
). Then N ≥ 0 is equivalent to

δ ≤ δcrit. Moreover, δcrit is increasing in s for s ∈ (0, 1
2
). A direct computation reveals

that δcrit =
√

2− 1 for s = 0, and δcrit = 1 for s = 1
3
. Thus, δcrit > 1 when s > 1

3
. Finally,

it can be verified that N ≥ 0 implies that also F (1 | 1) ≤ 1.51

We now show that the above solution indeed establishes a Markov perfect equilibrium.

As the value functions are bounded, it is sufficient to verify that there is no profitable

one-shot deviation to a price outside of the support. First, consider a deviation to a

price p < p(n). This is straightforward, as for prices p ≤ p(n), firm 1’s value equals

ph(n) + δV (h(n)). Note that this is also the value for p = p(n) as there are no mass-

points lower than the monopoly price. Since this is increasing in p, there is clearly no

benefit from charging a price below p(n). Second, consider a deviation (by firm 1) to the

price p = 1 if the rival (firm 2) has a mass-point at this price.52 Such a deviation is not

profitable, if and only if

V (n) = [l(n) + δV (l(n))]F (1 | 1− n) + [h(n) + δV (h(n))] (1− F (1 | 1− n))

≥ [l(n) + δV (l(n))]F (1 | 1− n) + [n+ δV (n)] (1− F (1 | 1− n)),

where the expression in the first line is firm 1’s value in the limit p → 1−, and the

expression in the second line is firm 1’s value when choosing the price p = 1. After

subtracting identical terms and dividing by 1−F (1 | 1−n) > 0, we obtain an equivalent

formulation

h(n) + δV (h(n)) ≥ n+ δV (n). (48)

It remains to verify that condition (48) holds for n = 0 and n = s. For n = 0, this

condition becomes 4s + (1 + 4s2)δ − 2(1 − 2s)δ2 − (1 − 4s + 10s2)δ3 ≥ 0, whereas, for

n = s it is 2(1− 2s) + δ + (1− 2s)δ2 ≥ 0. It can be verified (for example, using a simple

plot as in footnote 51) that both of these conditions are satisfied, when N ≥ 0.

Proof of Proposition 6. It follows from Lemma 3 that an equilibrium involves either case

(A) or case (C) in position n = s. Now consider an equilibrium of the latter form. The

value functions then satisfy the following system of equations:

V (1)− δV (1− s) = 1− s, V (s)− δV (0) = 0, V (1/2)− δV (s) = s, (49)

V (0)− δV (s) = s(1− δ)V (1). (50)

51A formal proof is algebraically demanding. However, both inequalities can be rewritten as quadratic
inequalities in s. Solving for s as a function of δ, we can plot the solutions and the corresponding regions.
The plot indeed confirms that N ≥ 0 implies that F (1 | 1) ≤ 1 for δ ∈ [0, 1] and s ∈ [0, 12 ].

52The deviation for the other firm is not profitable due to continuity.
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The first and the third equation in (49) are identical to the equations in (20), whereas

the second equation is identical to (38). Equation (50) is identical to the second equation

in (21). Note that the first equation from (21) does not apply now, as firms 2’s price

distribution has a mass point at p. We show below (equation (59)) that it holds with an

inequality.

Thus, we have only four equations with five unknowns. This system then has infinitely

many solutions of the form

V (0) = ω, (51)

V (s) = δω, (52)

V (1/2) = s+ δ2ω, (53)

V (1− s) =
(1 + δ)

δs
ω − 1− s

δ
, (54)

V (1) =
(1 + δ)

s
ω, (55)

parametrized by ω ∈ R. Non-negativity of the value functions requires that ω ≥ 0. The

corresponding firm 2’s price p̄2 (in position n = s) can be computed from firm 2’s value

function:

V (1− s) = p̄2 · 1 + δV (1), (56)

which now gives

p̄2 =
(1− δ)(1 + δ)2

δs
ω − 1− s

δ
. (57)

As the next step we derive some necessary conditions for the above solution to establish

an equilibrium. Undercutting the lowest price p = p̄2 should not be strictly profitable for

firm 1 (in position n = s). Thus, in the limit p→ p̄−2 we obtain

p̄2 · 1/2 + δV (1/2) ≤ V (s). (58)

Substituting for p̄2 from (56) then gives the first necessary condition

V (1− s)/2− δV (1)/2 ≤ V (s)− δV (1/2), (59)

which under the solution (51)–(55) yields an upper bound for ω:

ω ≤ s(1− s− 2sδ2)

(1− δ2)(1 + δ − 2sδ2)
. (60)

Moreover setting a price p > p̄2 (that is not a mass point of firm 1’s distribution)

should not be profitable for firm 2. Let us denote q = Pr(p1 = 1 | s). In the limit p→ 1−
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we obtain

V (1− s) ≥ [1/2 + δV (1/2)] · (1− q) + [1 + δV (1)] · q.

After using the inequality 1 + δV (1) ≥ p̄2 + δV (1) = V (1− s), rearranging, and dividing

by 1− q > 0, we obtain the second necessary condition

V (1− s) ≥ 1/2 + δV (1/2), (61)

which under the solution (51)–(55) yields a lower bound for ω:

ω ≥ s[2(1− s) + δ + 2sδ2]

2 + 2δ − 2sδ4
. (62)

It follows from the inequalities (60) and (62) that

s[2(1− s) + δ + 2sδ2]

2 + 2δ − 2sδ4
≤ s(1− s− 2sδ2)

(1− δ2)(1 + δ − 2sδ2)
,

which is equivalent to

δsN

2(1− δ2)(1 + δ − 2sδ2)(1 + δ − sδ4)
≤ 0,

where N is given by (47). As the denominator is clearly positive, we obtain a necessary

condition N ≤ 0, which holds if and only if s ≤ 1
3

and δ ≥ δcrit.

Finally, we show existence of the equilibrium when N < 0. In particular, we show that

for ω which satisfies (60) with equality (which is actually the condition for case (B)), the

solution (51)–(55) indeed establishes an equilibrium. In that case, the solution becomes

V (0) =
s(1− s− 2sδ2)

(1− δ2)(1 + δ − 2sδ2)
, (63)

V (s) =
sδ(1− s− 2sδ2)

(1− δ2)(1 + δ − 2sδ2)
, (64)

V (1/2) =
s(1 + δ − 3sδ2 − δ3)

(1− δ2)(1 + δ − 2sδ2)
, (65)

V (1− s) =
δ[1− s− 2s2 + (1− 3s)δ − 2s(1− s)δ2]

(1− δ)(1 + δ − 2sδ2)
, (66)

V (1) =
1− s− 2sδ2

(1− δ)(1 + δ − 2sδ2)
. (67)

Then in position n = s we have

p̄2 = − 2sδ(s+ δ)

1 + δ − 2sδ2
.
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Observe that all value functions in (51)–(55) are increasing in w. Therefore, this equilib-

rium yields the highest value in all states.

By the same argument as in the proof of Proposition 5, it is sufficient to consider

one-shot deviations. Moreover, we can again use the arguments from the proof of Propo-

sition 5. Thus, it remains to consider deviations to the following prices: (i) the monopoly

price by firm 1 in position n = 0; (ii) p < p̄2 by firm 1 in position n = s; (iii) p = p̄2

by firm 1 in position n = s; (iv) p > p̄2 by firm 2 in position n = s. In order to

rule out (i), we verify condition (48). This, after substituting the solution (63)–(67),

becomes equivalent to 1 + (1 + s)δ + (1 − 2s)δ2 ≥ 0, which clearly holds. Deviation (ii)

is not profitable, if p̄2s + δV (s) ≤ V (s). After substitution, this becomes equivalent to

1− s + 2s2 + 2s(1 + s)δ ≥ 0, which clearly holds. Deviations (iii) and (iv) are not prof-

itable due to the conditions derived above. Deviation (iii) corresponds (for p → p̄−2 ) to

the inequality (60), which now holds with equality. Similarly, deviation (iv) corresponds

to (62), which is satisfied as N < 0.

Proof of Proposition 7. When δ = 0, the firms’ randomization strategies are (using (39)–

(43) in (10)) given by:

F (p | 1/2) =
1− s− s/p

1− 2s
, (68)

F (p | 1− s) = 1− 1

2p
, F (p | s) = 2− 1

p
= 2F (p | 1− s), (69)

F (p | 1) = 1− 1− s
p

, F (p | 0) =
1− (1− s)/p

s
=

1

s
F (p | 1), (70)

First-order stochastic dominance of F (p | 1 − n) over F (p | n) requires that F (p | n) ≥
F (p | 1 − n) for all p ∈ [p(n), 1]. For n = 0 and n = s we have F (p | 0) = F (p | 1)/s >

F (p | 1) (with s < 1
2
) and F (p | s) = 2F (p | 1− s) > F (p | 1− s), respectively. The claim

for δ small follows by the continuity of (39)–(43) in δ.

Proof of Proposition 8. Let us rewrite (10) for position n = 1− s and use h(s) = 1
2

and

l(s) = 0 to obtain:

1−F (p | 1−s) = 1− δV (h(s))− V (s) + h(s)p

δV (h(s))− δV (l(s)) + [h(s)− l(s)]p
=

V (s)− δV (0)

δV (1
2
)− δV (0) + p/2

. (71)

Now recall from the proof of Proposition 5 that δcrit was obtained as a root of (47), which

is equivalent to F (1 | 1 − s) = 1. Moreover, F (1 | 1 − s) → 1 when δ → δ−crit. Then it

follows from (71) that V (s) − δV (0) → 0. Thus, also F (p | 1 − s) → 1 when δ → δ−crit,

for all p in the support of F (· | n). This in turn implies that, in the limit, firm 2 (the
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firm with the larger customer base) chooses the lower bound of the support, p(n), with

probability 1, while firm 1 continues to randomize over the interval [p(n), 1]. Note that

here we actually obtain the case (C) where the supports are different (see Lemma 3 as

well as the text preceding the lemma for more details).
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B Appendix: Figures
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Figure 1: Approximation by a grid with 5 positions, for φ = 0.8, µ = 1, s = 0.2
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Figure 2: Prices and transition probabilities for the G5, for s = 0.2 and δ = 0
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Figure 3: Prices and transition probabilities for the G5, for s = 0.2 and δ = 0.66
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Figure 4: State-independent stochastic process, simulation for φ = 0.8, µ = 1
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Figure 5: Myopic case (δ = 0), simulation for φ = 0.8, µ = 1
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Figure 6: Full dynamic game, simulation for φ = 0.8, µ = 1, and δ = 0.8
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Figure 7: Full dynamic game, simulation for φ = 0.8, µ = 0, and δ = 0.99
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Figure 8: Full dynamic game, simulation for φ = 0.1, µ = 1, and δ = 0.99
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frageträgheit. Zeitschrift für die gesamte Staatswissenschaft, 121, 301–324 and 667–

689.

[26] Spiegler, R. (2006). The Market for Quacks. Review of Economic Studies, 73, 1113–

1131

[27] Stahl, D.O. (1989). Oligopolistic Pricing with Sequential Consumer Search. Ameri-

can Economic Review, 79, 700–712.

[28] Sutton, J. (2007). Market Share Dynamics and the “Persistence of Leadership” De-

bate. American Economic Review, 97. 222–241.

[29] Varian, H.R. (1980). A Model of Sales. American Economic Review, 70, 651–659.

46



[30] Vettas, N. (1997). On the informational role of quantities: durable goods and con-

sumers’ word-of-mouth communication. International Economic Review, 38, 915–944

47


