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Abstract

The paper considers two rival models referring to the new macroeconomic consensus: a

standard three-equations model of the New-Keynesian variety and dynamic adjustments

of a business and an inflation climate in an ‘Old-Keynesian’ tradition. Over the two

subperiods of the Great Inflation and Great Moderation, both of them are estimated

by the method of simulated moments. An innovative feature is here that it does not

only include the autocovariances up to eight lags of quarterly output, inflation and the

interest rate, but optionally also a measure of the raggedness of the three variables. In

short, the performance of the Old-Keynesian model is very satisfactory and similar to,

unless better than, the New-Keynesian model. In particular, the Old-Keynesian model

is better suited to match the new moments without deteriorating the original second

moments too much.

JEL classification: C52; E32; E37.

Keywords: Sentiment dynamics; new macroeconomic consensus; method of simulated

moments; Great Inflation, Great Moderation.

1. Introduction

The paper brings together two strands of economic research on small-scale modelling

in the context of the so-called new macroeconomic consensus. First, there is the New-

Keynesian approach with its extensive estimation literature. While Bayesian likelihood
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methods have become dominant here in the past decade, a smaller number of studies

has alternatively used moment matching procedures. They seek for parameter values

such that a set of model-generated summary statistics, or ‘moments’, comes as close as

possible to their empirical counterparts. The goodness-of-fit of a model, or a trade-off

between the merits and demerits in matching specific moments, can thus also be assessed

in finer detail than by just referring to the optimization of a single and relatively abstract

objective function.

In particular, this method has recently been applied to a hybrid three-equations model

with forward- and backward-looking elements, which focusses on the quarterly output

gap, the inflation gap and the interest gap (i.e., the deviations of these variables from

a constant or possibly time-varying trend). Within mainstream macroeconomics, the

model represents a sort of common-sense middle ground that preserves the insights of

standard rational expectations with some sort of sluggish behaviour, while allowing for

better empirical fit by dealing directly with a well-known empirical deficiency of the

purely forward-looking models. As a result, this class of models has been widely used in

applied monetary policy analysis, with the policy implications depending importantly on

the values of the coefficients on the expected and lagged variables, respectively.

When estimating the New-Keynesian model, the moments to be matched were the

auto- and cross-covariances of the three variables with lags up to eight quarters. Admit-

ting sufficiently backward-looking behaviour (in some contrast to the ordinary likelihood

literature), the performance of these estimations on US data for the two sub-periods of

the so-called Great Inflation and Great Moderation was so good that they were said to

constitute a challenging yardstick for any macroeconomic model of a similar complexity

(Franke, 2011a; Franke et al., 2011).

The second strand of research that we address are macroeconomic theories that refuse

the paradigm of the optimizing representative agents and their rational expectations.

To face the task of providing strong alternatives, two new types of models have been

advanced within the three-variables framework that put special emphasis on translating

the idea of the famous ‘animal spirits’ into a formal canonical framework. They can thus

be briefly characterized as models of sentiment dynamics (Franke, 2008 and 2011a; De

Grauwe, 2010). Their cycle-generating properties have been demonstrated by numerical

simulations with suitably calibrated parameters, but so far these models have not yet

been subjected to econometric procedures.

This is where the present paper sets in. It takes up the model by Franke (2011a), which

is based on the notion of endogenously determined transition probabilities with which

the individual firms switch between an optimistic and a pessimistic investment attitude.

In addition, entering the Phillips curve is an inflation climate the adjustments of which

are influenced by a parameter that represents the general credibility of the central bank.

For a better contrast, this model is called an Old-Keynesian model. Because of its intrin-

sic nonlinearities, the second moments for the estimation can no longer be analytically
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computed as in the linear New-Keynesian case but have to be simulated over a long time

horizon (which introduces the problem of sample variability). The obvious question is,

of course, whether the general match of the Old-Keynesian model can compete with the

New-Keynesian model (NKM).

Three different versions of the Old-Keynesian model are studied. The first one is

deterministic and the exact discrete-time analogue of Franke (2011a), except that it

slightly extends the Taylor rule in order to have the same specification with interest rate

smoothing as in NKM. The persistent cyclical behaviour in this model is mainly brought

about by a sufficiently strong herding mechanism; it renders the long-run equilibrium

unstable, while the nonlinearities prevent the dynamics from exploding. The goodness-

of-fit that can here be achieved deserves already some respect, although it will clearly

fall behind the stochastic NKM.

Versions two and three of our model are stochastic, which, incidentally, will deempha-

size the role of herding in the estimations. They introduce the analogous quarterly ran-

dom shocks from NKM, i.e. demand shocks, supply shocks and monetary policy shocks,

all of them being serially uncorrelated. In the second version they only take direct effect

in an output equation, the Phillips curve and the Taylor rule, respectively. Being inspired

by NKM where in the reduced-form solution each shock acts on each of the three vari-

ables, our third version additionally allows the demand shock to act on the adjustments

of the inflation climate and the cost push shock to act on the adjustments of the firms’

investment attitude.

When estimating the models with the second moments mentioned above one will note

that the general pattern of the simulated time series exhibits a similar level of noise. This

is in contrast to the empirical series where the quarterly inflation rates are much noisier

than the other two variables. As an innovative feature we specify a measure of raggedness

of the time series and add these statistics to the other moments. By and large it turns

out that the Old-Keynesian model is better suited to match the new moments without

deteriorating the original second moments too much. A short and succinct characteriza-

tion of the overall matching quality will then be that the second version is fairly similar

to that of NKM, whereas the third version is markedly superior. The paper thus shows

that, in the framework indicated, there is indeed an alternative ‘Old-Keynesian’ model

that can well bear comparison with the workhorse model of orthodox macroeconomics.

The remainder of the paper is organized as follows. The next section describes our

estimation approach of the method of simulated moments. Section 3 introduces the two

rival models, the New- and the Old-Keynesian one. The estimation results are presented

in Sections 4 and 5, where Section 4 deals the period of the Great Inflation and Section

5 with the Great Moderation. Section 4 is actually the main part of the paper as it also

contains the discussion of many specification details when they are first applied. Section

6 concludes. Several more technical issues are relegated to a number of appendices.
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2. The estimation approach

2.1. The minimization problem

The approach to estimate our New- and Old-Keynesian models is concerned with their

dynamic properties in general. They are quantitatively described by a number of sum-

mary statistics, also called ‘moments’, and the estimation seeks to identify numerical

parameter values such that the model-generated moments come as close as possible to

their empirical counterparts. In linear models such as the log-linearized New-Keynesian

rational expectations models, all or a larger set of the moments can be computed ana-

lytically. If this is not possible, which because of its nonlinearity will be the case for the

Old-Keynesian model, the moments can still be computed from numerical simulations of

the model. Hence, briefly, we are using the method of moments (MM) or the method of

simulated moments (MSM), respectively.

The crucial point is, of course, the choice of the moments, which by some critics is

branded as arbitrary. Here the approximate nature of modelling should be taken into

account. Since any structural model focusses on a specific purpose, it is only natural that

it would be able to match, at best, some of the ‘stylized facts’ of an actual economy. MM

and MSM, then, require the researcher to definitely make up his or her mind about the

dimensions along which the model should be most realistic. Correspondingly, one can

look at the single moments and find out which of them are more adequately matched

than others. This will also provide more detailed diagnostics about the particular merits

and demerits of a model than an objective function that summarizes many (and perhaps

infinitely many) features in a single value. In our view, it is the explicit choice of the

moments and, in practice, their easy interpretation that are strong arguments just in

favour of the moment matching approach. 1

Generally, there are nm moments that are collected in a column vector m ∈ IRnm . The

moments that are obtained from an empirical sample of T observations are designated

memp
T . The model-generated moments depend on the numerical values of a vector θ of nθ

structural parameters, which are confined to a (rectangular) set Θ⊂ IRnθ . If analytical

expressions for these moments are available (which are the asymptotic moments), we

could unambiguously write m=m(θ). If the moments have to be simulated, the simula-

tion size should be made explicit, i.e., the effective number of periods S over which the

model is simulated. As an approximation to the infinite simulation size that would be

needed for the asymptotic moments, the final estimations of our discrete-time, quarterly

models will be based on S = 10, 000 quarters. 2

1 Which does not rule out that other estimation procedures have their virtues as well. Note,
however, that likelihood methods become fairly complicated if, as it will be the case for us, the
models contain unobservable state variables and are nonlinear.
2 “Effective” simulation size means that, starting from the steady state position, the models are
simulated over 200+S quarters and the first 200 quarters are discarded to rule out any transient
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The long time horizon reduces, but does not completely eliminate, the sample variabil-

ity from different random number sequences that are underlying the simulations when

the models are stochastic. These sequences may be identified by a natural number c∈ IN,

which corresponds to their random seed. In sum, a model-generated vector of moments

is thus determined as m = m(θ; c, S).

The distance between the vectors of the theoretical and empirical moments is measured

by a quadratic function J that is characterized by an (nm×nm) weighting matrix W . The

value of this loss function is to be minimized, where it goes without saying that across

different parameters θ only simulations with the same random seed are comparable. 3

Accordingly, the model is estimated by the following set of parameters:

θ̂ = θ̂(c, S) = arg min
θ∈Θ

J(θ;memp
T , c, S)

:= arg min
θ∈Θ

[m(θ; c, S) − memp
T ]′ W [m(θ; c, S) − memp

T ]
(1)

The problem of how to treat the variability arising from different random seeds c is

addressed below. 4

Minimization of (1) is not a straightforward matter. Given the relatively high number

of parameters in our applications, there is for functions of type (1), just as it is the case

for likelihood functions, a great danger of a larger number of local extrema, possibly also

located at a farther distance from each other. Our search therefore proceeds in two steps.

First, in order to reduce the risk of being trapped in a wrong region of the parameter

space, we use simulated annealing as a globally effective procedure. 5

Since, with different initial conditions and different random sequences for the stochas-

tic search, the algorithm does not always settle down in the same region, it is necessary

to carry out several minimization runs and identify from them a parameter region with

the lowest losses. A situation typically encountered is that two or four out of ten runs

effects (which proves to be more than sufficient).
3 For our random variables, which are of the form εt ∼ N(0, σ2), this means that in period
t always the same random number ε̃t is drawn from the standard normal N(0, 1) and then,
depending on the specific value of σ under examination, εt is set equal to εt = σ ε̃t.
4 If in the course of the minimization search procedure for (1) some parameter leaves an ad-
missible interval, it is temporarily reset to the boundary value, the loss J of the thus resulting
moments is computed, and then a sufficiently strong penalty is added to J that proportionately
increases with the extent of the original violation. In this way also corner solutions to (1) can be
safely identified.
5 In detail, we apply the algorithm put forward by Corona et al. (1987); see also Goffe et al.
(1994) and Goffe (1996). The most critical ‘tuning parameters’ are the reduction factor rT and
the initial temperature To. We set rT = 0.75, a conservative value “which is suitable for a function
one has little experience with” (Goffe, 1996, p. 172). To obtain To, first the median loss M of
500 widely dispersed parameter vectors is computed. Requiring that the algorithm’s (desirable)
probability of accepting an increase in the loss is about 0.50, at temperature To and at the same
step sizes that in the initial procedure have scaled the changes in the single parameter values,
subsequently Boltzmann’s formula exp(−M/To) = 0.50 is solved for To.
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fail to find sufficiently low values of the loss function, while the remaining trials yield

fairly close values in the same region. 6

In a second stage, we choose the optimal parameter vector from the stage of simu-

lated annealing and take it as a starting vector for another minimization procedure, the

Nelder-Mead simplex search algorithm (see Press et al., 1986, pp. 289–293). 7 Even when

repeatedly restarting it upon convergence until no more noteworthy improvement in the

minimization occurs, this algorithm is faster than simulated annealing (it takes a few

minutes). Combining the two search strategies, we can be rather confident that for all

practical purposes the global minimum of (1) has indeed been found.

Turning to the weighting matrix W that sets up the loss function in (1), an obvious

since asymptotically optimal choice would be the inverse of an estimated moment covari-

ance matrix Σ̂m (Newey and McFadden, 1994, pp. 2164f). Unfortunately, the moments

underlying our estimations will not be independent of each other, so that such a matrix

would be nearly singular and its inverse could not be relied on. The usual option, then, is

to employ a diagonal weighting matrix the entries of which are given by the reciprocals

of the variances of the single moments.

There are several methods to estimate these variances from the empirical data. Here

we employ a bootstrap procedure. It is in detail somewhat different from an ordinary

block bootstrap but seems more appropriate to us for the present problem (the details

are described in Appendix A1). This being understood, we have

Wii = 1 / V̂ar(memp
T,i ) , i = 1, . . . nm (2)

(and of course Wij = 0 if i 6= j). Clearly, the less precisely a moment is estimated

from the data, that is, the higher is its variance, the lower is the weight attached to

it in the loss function. Since the width of the confidence intervals around the empirical

moments memp
T,i is proportional to the square root of these variances, it may be stated that

the model-generated moments obtained from the estimated parameters lie “as much as

possible inside these confidence intervals” (Christiano et al., 2005, p. 17). Nevertheless, a

formulation of this kind, which with almost the same words can also be found in several

other applications, should not be interpreted too narrowly. In particular, a minimum of

the loss function in (1) need not simultaneously imply a minimal number of moments

outside the confidence intervals. 8

As useful feature of the approach of moment matching is that it does not only provide

a measure of the model’s overall goodness-of-fit, it also allows us to locate potential

shortcomings in single moments. A convenient since directly available measure to evaluate

6 A shorter simulation horizon of S = 2, 000 proves to be sufficient for these global investigations.
The reduction is helpful here since on average one such run takes about 25 minutes on a standard
personal computer.
7 It has broader scope than gradient methods to escape from small local valleys.
8 An example for this can be found in Franke et al. (2011, p. 11, Table 1).
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how serious the deviations of a model-generated moment from the empirical moment may

be can be obtained by relating them to the standard errors of the latter. With respect

to a moment i, this is the t-statistic

ti = [mi(θ; c, S) − memp
T,i ] /

√
V̂ar(memp

T,i ) , i = 1, . . . nm (3)

(reference of ti to c and S is omitted as it will be understood from the context). Although

statistically not exactly justified, we would be satisfied with the matching of a moment

if its t-statistic will be less than two in absolute value; otherwise we would have to admit

that the model has a certain weakness in this respect. It may also be noted in passing

that, with the diagonal weighting matrix from (2), estimation means nothing else than

minimizing the sum of the squared t-statistics, which is a fairly intuitive criterion.

After thus establishing the econometric framework, we have to turn to the specific

moments on which we want to base our estimations. In the course of discussing the

results, we will demand more from the models and correspondingly extend the set of

these moments. For the time being, we make the matching criterion explicit from which

we start out. It is meant to characterize the fundamental dynamic relationships between

the observable variables of the model. For this purpose the second moments are well

suited, that is, the nine profiles of the unconditional contemporaneous and lagged auto-

and cross-covariances of (the gaps of) output (y), inflation (π) and the interest rate (i). 9

It may be emphasized that we fix these moments in advance and that their number

will not be too small, either. 10 In detail, we are concerned with the nine profiles of

Cov(pt, qt−h) for p, q = i, y, π and h = 0, 1, . . . up to some maximal lag H (the hat over

i or π for the New-Keynesian model below may be omitted here). Given that the length

of the business cycles in the US economy varies between (roughly) five and ten years,

the estimations should not be based on too long a lag horizon. A reasonable compromise

is a length of two years, so that we will work with H = 8 quarters. In this way we

have a total of 78 moments to match: 9 profiles with (1+8) lags, minus 3 moments to

avoid double counting the zero lags in the cross relationships. To distinguish it from the

extended versions below, we denote this loss function by J (78). For a definite reference,

we repeat

J (78) : loss function constituted by the 78 moments Cov(pt, qt−h)

and the corresponding weights Wii from (2),

for p, q = i, y, π and h = 0, 1, . . . , 8

(4)

9 The second moments provide similar information to the impulse-response functions of the three
types of shocks in the models, in which (or just one of them) many New-Keynesian studies take
a greater interest.
10 This commitment is different from an explicit moment selection procedure as it is, for example,
put to use by Karamé et al. (2008). They begin with a large set of moments, estimate their model
on them, and then step by step discard the moments that the model reproduces most poorly
until an over-identification test fails to reject the model any longer.
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2.2. Confidence intervals and J test

Under standard regularity conditions, the parameter estimates θ̂ from (1) are consistent

and asymptotically follow a normal distribution around the (pseudo-) true parameter

vector. There is moreover an explicit formula for estimates of the corresponding covari-

ance matrix, from which the standard errors of θ̂ are obtained as the square roots of

its diagonal elements (Lee and Ingram, 1991, p. 202). In the present case, however, this

approach faces two problems. First, it may turn out that locally the loss function J

may react only very weakly to the changes in some of the parameters. Hence these stan-

dard errors become extremely large and, beyond this qualitative message, are not very

informative. The second point is that one of the regularity conditions will be violated

if the minimizing parameter vector is a corner solution of (1) or close to an upper- or

lower-bound of some parameter; trivially, for some components i the distributions of the

estimated parameters cannot be symmetrically centred around the point estimates θ̂i

then.

These problems can be avoided by having recourse to a bootstrap procedure. Besides,

it is also expedient for coping with the small sample problem. In this respect it is only

natural to employ the bootstrap that already served to obtain the variances of the em-

pirical moments in the weighting matrix W above. From there we have a large set of

artificial moments on which, rather than on the single empirical moment vector memp
T , a

model can be re-estimated just as many times as we want. In this way we get a frequency

distribution for each of the parameters and can easily compute the confidence intervals

from them (see below).

The re-estimations are furthermore useful for a general evaluation of the model’s

goodness-of-fit. It is well-known that, under the null hypothesis that the model is true,

the minimized value of the loss function represents a statistic that is asymptotically chi-

square distributed—provided, it has to be added, that the weighting matrix entering the

loss function is optimal (Lee and Ingram, 1991, p. 204). Clearly, this standard J test

for overidentifying restrictions is not applicable here since the latter supposition is not

satisfied. The test distribution can, however, be simulated. The main idea is to exploit

the information that a distribution {J̃} of the minimized losses in the re-estimations

provides to us. After all, the bootstrapped moments that the model then tries to match

can be viewed as proxies for the moments that hypothetically would be produced by

different small-sample realizations of the unknown real-world data generation process

(DGP). Hence the distribution of the losses J̃ incurred from them would lend us a test

criterion for a possible rejection of the model, which we would have to do if the previously

estimated value J [θ̂(c, S);memp
T , c, S] exceeds the 95% quantile of these J̃ .

Although this concept is straightforward, the precise specification of the re-estimation

problem requires a little care. Denoting the distribution of the bootstrapped moment

vectors by {m̃T } and omitting the reference to c and S for a moment, it has to be
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taken into account that, except for special circumstances, there is no set of parameters θ

ensuring E[m(θ)− m̃T ] = 0 (as there are more moments than parameters in the model).

This fact becomes important for the first-order validity of the bootstrapped J test, for

which a null hypothesis must be imposed. 11 To this end we first observe that E(m̃T ) =

memp
T should prevail. Furthermore, different (hypothetical) realizations of the real-world

DGP would give rise to a distribution of the estimated parameters θ̂ and corresponding

moment vectors m(θ̂), while the parameters θ̃ that are re-estimated on the bootstrapped

moments give rise to a distribution m(θ̃). These two moment distributions should have

the same mean values, too; that is, E[m(θ̃)] = E[m(θ̂)] is supposed to hold true. Taken

together, we get the equation E{[m(θ̃)− m̃T ] − [m(θ̂)−memp
T ]} = 0. Writing it in this

form makes it clear that the moment conditions for the bootstrap version of the J test

are to be demeaned by the second term in square brackets.

The corresponding MSM re-estimations take two types of variability into account.

First, we allow for the variability in the generation of the data. To this end we apply the

procedure in Appendix A1 that we already referred to above, which gives us a collection

{mb
T }Bb=1 of B moment vectors bootstrapped from the empirical time series of length

T . Second, we allow for the sample variability in the model simulations by carrying out

each estimation with a different seed c. Thus, practically, each bootstrap sample b has

associated with it a random seed c=c(b).

In addition, suppose that we have a large number of original estimations (1) on the

empirical moment vector memp
T . Then, let us settle down on the random seed c̄ that yields

their median loss. That is, θ̂(c̄, S) is our benchmark point estimate of the model. On this

basis, the collection of the parameter re-estimates θ̂b is obtained as follows:

θ̂b = arg min
θ∈Θ

Jg(θ; b) := arg min
θ∈Θ

g(θ; b)′ W g(θ; b) ,

g(θ; b) := {m[θ; c(b), S] − mb
T } − {m[θ̂(c̄, S)] − memp

T } , b = 1, . . . , B

(5)

For the bootstrapped J test it remains to consider the distribution of the values Jbg =

Jg(θ̂
b; b). At the conventional significance level, the model with estimate θ̂(c̄, S) would

have to be rejected as being inconsistent with the data if the corresponding loss Ĵ =

J [θ̂(c̄, S);memp
T , c̄, S)] from (1) exceeds the 95% quantile of the distribution {Jbg}, other-

wise the model would have passed the test. In this way we can also readily construct a

p-value of the model. It is given by the value of p that equates the (1−p)-quantile of the

distribution {Jbg} to Ĵ , which says that if Ĵ were employed as a benchmark for model

rejection, then p is the error rate of falsely rejecting the null hypothesis that the model

is the true DGP. Hence, in short, the higher this p-value the better the fit. Certainly, it

11 See Hall and Horowitz (1996, p. 897) and Allen et al. (2011, p. 112) for the following recentring
procedure.
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may not be forgotten that, besides sample variability, this evaluation is conditional on

the specific choice of the moments that the model is required to match. 12

Regarding the confidence intervals that, from the re-estimations, can be built for

the i-th component of the originally estimated parameter vector θ̂(c̄, S), two versions

can be set up: the standard percentile interval and Hall’s percentile confidence interval.

Hall’s method has the advantage that it is asymptotically correct, but it may violate the

admissible range of a parameter. Therefore we use Hall’s interval if no such violation

occurs and the standard interval otherwise. The details are spelled out in Appendix A2,

equations (A1) and (A2).

Having available a reliable estimate θ̂(c̄, S), the minimizations in (5) can safely do

without further global explorations. That is, we can directly use the simplex algorithm

for them and let it start from a simplex around θ̂(c̄, S). Nevertheless, although a single

minimization with several re-initializations does not take very long, the computational

effort for, say, a battery of 1000 re-estimation accumulates considerably. For this reason

we will only make use of this method for our ‘showcase’ estimations. For the other versions

we content ourselves with the point estimations based on the same random seed c̄ as the

median loss of the best model version. They will not be perfect but good enough to

indicate the basic tendencies to us.

3. The two Keynesian approaches

3.1. The New-Keynesian model

The elementary New-Keynesian models are constituted by three equations determining

output, inflation and the rate of interest. It should be made clear from the beginning

that we are concerned with these variables in gap form, that is, with their deviations

from some trend values. 13 The exact specification of the latter depends on the partic-

ular microfoundation from which the equations are derived. In the simpler versions at

a textbook level, the ‘trend’ is just a fixed steady state value, which for the inflation

rate will furthermore be equal to zero. More generally, the trend may be given by some

moving frictionless output equilibrium or by time-varying target rates of inflation and

interest set by the central bank. To allow for a wider range of theoretical interpreta-

tions, we will treat the trend as a purely exogenous issue. 14 It can therefore remain in

12 An application of this bootstrap approach to another New-Keynesian model is Fève et al.
(2009), although they only estimate a subset of the parameters. Their moments are given by the
impulse-response functions to a monetary policy shock, so that they can be analytically computed
and the p-value is not plagued with the sample variability from c=c(b).
13 The literature is sometimes rather sloppy in this respect. Cogley et al. (2010, p. 43, fn 1), for
example, remarked when discussing inflation persistence that it is not always completely plain in
the literature whether the focus is on raw inflation or the inflation gap.
14 Ireland (2007) and, more ambitiously, Cogley and Sbordone (2008) are two proposals of an en-
dogenous determination of the central bank’s moving inflation target. Ireland (p. 1864), however,
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the background, so that, with respect to period t, the formulation of the model directly

refers to the output gap yt, the inflation gap π̂t, and the interest rate gap ît.
15 On this

basis the New-Keynesian model, labelled ‘NK’, that we are going to estimate reads:

yt = φy Et yt+1 + (1−φy) yt−1 − τ ( ît − Et π̂t+1) + vy,t (0 ≤ φy ≤ 1)

π̂t = φπβ Et π̂t+1 + (1−φπ)β π̂t−1 + κ yt + vπ,t (0 ≤ φπ ≤ 1)

ît = µr ît−1 + (1−µr) (µπ π̂t + µy yt) + εr,t

vπ,t = ρπ vπ,t−1 + επ,t

vy,t = ρy vy,t−1 + εy,t

(NK)

As already mentioned, the underlying time unit is one quarter. All of the parameters are

supposed to be nonnegative, but regarding the order of magnitude of some of them it

should be pointed out that the rates of inflation and interest will be annualized. Clearly,

(NK) is a hybrid model with forward-looking as well as backward-looking elements in the

dynamic IS relationship (the first equation) and the Phillips curve (the second equation,

where β is the usual discount factor). As it is standard in this framework, the third

equation is a Taylor rule with interest rate smoothing and contemporaneous reactions to

inflation and output. It goes without saying that the smoothing coefficient µr is contained

in the unit interval.

The same property for φπ and φy in the first two equations of (NK) is less obvious,

which is the reason why it is explicitly scheduled in the equation block. As a matter of fact,

the common specifications of the IS equation are based on a habit persistence parameter

χ between 0 and 1 that would give rise to a composite coefficient φy = 1/(1+χ) ≥ 1/2.

Concerning the Phillips curve, the two main proposals to establish a positive coefficient

on lagged inflation π̂t−1 are an introduction of rule-of-thumb price setters (following Gaĺı

and Gertler, 1999), or of an indexation rule on the part of the firms that currently are not

permitted to re-optimize their price (following Smets and Wouters, 2003, and Christiano

et al., 2005). In both cases the resulting coefficient φπ on expected inflation must exceed

one-half (roughly), too. 16

While the standard microfoundations are based on zero inflation and the absence of

output growth in the steady state, there is more recent work relaxing these assumptions.

The price to be paid for this step towards realism are (much) more complicated rela-

concludes from his estimations that still “considerable uncertainty remains about the true source
of movements in the Federal Reserve’s inflation target”.
15 In the verbal discussions we may nevertheless omit mentioning the ‘gap’ and, for instance,
simply speak of inflation.
16 Despite their wide acknowledgement, these stories do not perfectly meet the high and rigorous
standards of New-Keynesian modelling. Two examples of well-established authors who rather
characterize them as an ad hoc amendment are Fuhrer (2006, p. 50) and Rudd and Whelan
(2005, pp. 20f), which is the more detailed version of Rudd and Whelan (2007, p. 163, fn 7).
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tionships. 17 System (NK) in its desirable clarity could nevertheless still be viewed as

an approximation to the more ambitious generalizations in this field of macroeconomic

theory, arguing that a good understanding of its properties should come in handy before

engaging in more specialized versions.

The only microfounded approach we know of that admits a dominance of backward-

looking behaviour, in the sense that φπ or φy are also permitted to be less than one-half,

is that of Branch and McGough (2009). 18 Their paper sets up an economy in which

rational expectations coexist with boundedly rational expectations. Introducing a set

of axioms for consistent heterogenous expectations and their aggregation, the authors

derive a purely forward-looking Phillips curve and IS equation where, however, the ex-

pectation operator is a weighted average of the two types of expectations. Thus, in the

present notation, φπ and φx can be interpreted as the population shares of the firms

and households, respectively, that entertain rational expectations. 19 Moreover, the ex-

act form in (NK) with just one lagged inflation rate and output gap on the right-hand

side is obtained if the group of the non-rational agents is supposed to have static expec-

tations, that is, if (perhaps for lack of a better or more reliable idea) they do not expect

the value of the variable from their last observation to change until the next quarter.

The foundation proposed by Branch and McGough (2009) appears to be an attractive

alternative to motivate a general formulation like (NK); in particular, if estimations would

prefer lower values of φπ or φy outside the conventional range. Note that (NK) would

even be well-defined if φπ or φy were zero and all of the firms or households, respectively,

were purely backward-looking. On the other hand, besides the fact that this economy

is still stationary and does not allow for long-run inflation, and besides thinking of less

naive than just static expectations, a critical point of the approach is a justification of

why the population shares φπ and φy should remain fixed over time. Extensions of (NK)

taking this issue into account are easily conceivable but beyond the scope of the present

paper. 20

17 Contributions with positive trend inflation are Bakshi et al. (2003), Sahuc (2006), Ascari and
Ropele (2007), Ireland (2007), and Cogley and Sbordone (2008), among others. Mattesini and
Nisticò (2010) incorporate positive trend growth.
18 Fuhrer (2006) is a study of a Phillips curve similar to that in (NK) which likewise does not
require, or imply, that φπ (in the present notation) is positively bounded away from zero. In his
discussion of the inflation persistence effects that strongly favours low values of φπ, however, the
author does not care about a rigorous structural interpretation of these situations.
19 To be scrupulous, one of the axioms implies that the so-called rational agents are not fully
rational in the conventional sense (Branch and McGough, 2009, p. 1045).
20 In another paper, Branch and McGough (2010), the population shares are modelled as en-
dogenously changing over time according to a measure of evolutionary fitness, which includes a
(relatively higher) cost of forming rational expectations. It is, however, another question beyond
the scope of the present paper whether this conceptual progress would also yield a significantly
better econometric performance.
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Turning to the stochastic pert of the model, each of the three core equations is aug-

mented by an exogenous shock process. In the Phillips curve, serial correlation in the

random shocks is included as a possible additional source of inflation persistence. This is

in contrast to a common estimation practice that from the outset assumes either white

noise shocks in a hybrid Phillips curve, or purely forward-looking price setting behaviour

in combination with autocorrelated shocks. 21 Here we refrain from this prior decision

and try to find out whether the data indicate a certain tendency.

For symmetry, the IS equation should be treated in the same way (although this point

seems to have been somewhat neglected in the literature). The shocks in the interest

rate reaction function, i.e. the Taylor rule, are i.i.d. and, as it is standard in the three-

equations framework, persistence is only supposed to be brought about by the lagged rate

of interest. The white noise innovations εz,t, for z = i, π, y, are mutually uncorrelated and

normally distributed with variance s2
z. Certainly 0 ≤ ρπ, ρy < 1 in the AR(1) processes

in the last two equations of (NK).

Over the relevant range of the numerical parameters, determinacy of (NK) will prove

to be no problem. 22 Under this condition, there are two uniquely determined matrices

Ω,Φ ∈ IR3×3 (Ω being a stable matrix) such that, with respect to x = (i, y, π)′, v =

(vi, vy, vπ)′, ε = (εi, εy, επ)′ and N ∈ IR3×3 the diagonal matrix with entries (0, ρy, ρπ),

the reduced-form solution to (NK) is given by an ordinary ‘backward-looking’ stochastic

difference equations system:

xt = Ωxt−1 + Φ vt

vt = N vt−1 + εt
(6)

Calculation of the matrices Ω and Φ is a routine matter in New-Keynesian economics,

the details of which can therefore be omitted. Equation (6) is here quoted for a better

comparison with the structure of our Old-Keynesian model, which is presented next.

3.2. The Old-Keynesian model

The Old-Keynesian model that we want to put forward as an alternative to the New-

Keynesian model (NK) abjures the representative and intertemporally optimizing agents

and their rational expectations. The central notion is rather that of an average business

sentiment of firms that either have an optimistic or pessimistic attitude towards the fixed

capital investment decisions they face. Jointly with the dynamic law that is to govern

its changes over time, this sentiment variable is meant to capture some of the meaning

21 In similar models to ours, examples of i.i.d. shocks in a hybrid Phillips curve are Lindé (2005),
Cho and Moreno (2006) or Salemi (2006), while the purely forward-looking models studied by,
e.g., Lubik and Schorfheide (2004), Del Negro and Schorfheide (2004), Schorfheide (2005) permit
some persistence in the shock process. These references have been chosen from the discussion in
Schorfheide (2008; see p. 421, Table 3).
22 Determinacy means that, given a sequence of the random shocks, the model has a unique
solution that remains bounded over time.
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of Keynes’ famous ‘animal spirits’ in a highly stylized manner. These issues and the

specification details of this and other model elements are discussed in greater depth in

Franke (2011a). Here we content ourselves with a short recapitulation of the model. In

addition, we introduce a few extensions in order to put it on a similar footing to the

New-Keynesian model.

The present model will deviate from Franke (2011a) in three ways: (i) the continuous-

time formulation is transformed into discrete time, where the time unit is again a quarter;

(ii) the Taylor rule is the same as in (NK), which slightly extends the version without

interest rate smoothing in Franke (2011a); (iii) this model, which is still deterministic,

will be investigated first, but subsequently random shocks will be included as well.

To begin with the model description, it has already been indicated that the central

dynamic variable is the business sentiment, or the business climate, in the firm sector.

Denoting it by bt, it is predetermined in period t and given by the difference between

the optimistic and pessimistic firms in this period, scaled by their total number. Hence

−1 ≤ bt ≤ 1; the extreme values −1 and +1 are attained if all firms are pessimistic

and optimistic, respectively; and bt = 0 if there are as many optimists as pessimists.

The optimistic firms let their capital stock increase at a given and common high rate of

growth, the pessimistic firms at a given and common low rate of growth. This yields the

aggregate capital growth rate as a linearly increasing function of the business climate

variable.

Total output (or the output-capital ratio) is determined by fixed investment (or the

aggregate capital growth rate, respectively) via a multiplier relationship in a temporary

IS equilibrium. Specifying the output gap yt as the percentage deviations of this output-

capital ratio from the value that would prevail in a balanced state bt = 0, yt is easily

seen to be directly proportional to bt with a proportionality factor η > 0. Lastly, for

the general case, we add a normally distributed demand shock εy,t to this relationship.

Since the core of the model should contain sufficient mechanisms to generate any desired

degree of persistence, we forego the option of serial correlation in this and the other shock

processes. Thus, given bt in period t, we have

yt = η bt + εy,t (7)

Our Phillips curve looks like a purely forward-looking New-Keynesian curve except for

one crucial conceptual difference: it does not refer to expected inflation for the next

quarter but to a so-called inflation climate πct , which is the firms’ general aggregated

assessment of inflation over a longer time horizon. 23 This inflation climate is treated as

a predetermined variable, too. Complementing it with supply or cost push shocks επ,t,

the Phillips curve thus reads,

23 Franke (2007) discusses the ideas underlying this variable at greater length and also compares
its ‘microfoundations’ with heterogenous firms to the New-Keynesian way of deriving a Phillips
curve.
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πt = πct + κ yt + επ,t (8)

Output and inflation being determined by (7) and (8), the nominal interest rate it is

subsequently obtained from the Taylor rule with interest rate smoothing. Just as the

Phillips curve, we write it here in level form. To this end, we now explicitly introduce

the central bank’s target rates of inflation and interest, π? and i?, which are supposed

to be constant. This gives us

it = µi it−1 + (1−µi) [ i? + µπ (πt − π?) + µy yt ] + εi,t (9)

A little bit sloppily, eqs (7) – (9) can be said to constitute the static part of the model.

The second part describes the updating of the two climate variables bt and πct . To begin

with the simpler rule, the inflation climate is assumed to adjust, instantaneously or with

some delay, to a benchmark that is given by a weighted average of current inflation and

target inflation,

πct+1 = πct + απ [ γ π? + (1−γ)πt − πct ] + χπy εy,t (10)

Certainly, both the adjustment speed απ and the weight γ are contained in the unit

interval, 0 ≤ απ, γ ≤ 1. The higher γ, the stronger the confidence of firms that inflation

will soon return to its target. For this reason, and for a more formal argument given in

Franke (2007, p. 22) or Franke (2011a, Section 3), the parameter γ can be interpreted as

representing the credibility of the central bank. 24

Another influence on the inflation climate in (10) may be exerted by the demand

shocks. That is, positive demand shocks εy,t in (7) could also induce the firms to expect

generally higher inflation rates, not necessarily immediately but with some delay. 25 As a

consequence, the actual rate of inflation πt is now affected by two shocks, directly by επ,t

in the Phillips curve and indirectly, from the previous period via the climate variable πct ,

by χπy εy,t−1. It may also be said that positive values of χπy indicate ‘crossover effects’

of the demand shocks, from output to inflation.

The motivation for this higher flexibility of the model springs from the structure of

system (6), which solves the New-Keynesian model. If the present model, when com-

24 Complementarily, (1−γ) can be interpreted as measuring the inflation persistence in the Phillips
curve; see Franke (2007), p. 22. Assimilating an idea from de Grauwe’s (2010) bounded rationality
version of the New-Keynesian three-equations model, a more ambitious modelling could introduce
two types of inflation attitude between which the firms may switch according to some rule. If
one attitude is given by π? and the other by πt−1, the role of the coefficient γ in (10) would be
taken over by a long-run time average of the share of target inflation believers. The charm of
this generalization is that such a central bank credibility would be endogenously determined. On
the other hand, for the present model we will be interested in ‘what the data say’ on a specific
numerical value of our fixed γ.
25 Within a one-sector world, this would be an argument of self-fulfilling expectations. It would
perhaps appear less artificial in a multi-sectoral setting, when firms in one sector learn about
positive demand effects in another sector, notice that these firms increase inflation for the goods
they sell, and then expect some spill-over effects from there to the other sectors of the economy,
including their own.
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pleted, is analogously decomposed into a deterministic part and a linear stochastic part

of the form Φ̃ εt for a suitable matrix Φ̃ with some zero rows, the 3×3 nonzero core

of Φ̃ would be a diagonal matrix when χπy = 0, whereas the entries in the matrix Φ in

(6) are all nonzero. It could thus be said that the shock-free version of eq. (10) puts the

stochastic structure of the present model at a certain disadvantage in comparison with

its New-Keynesian competitor. Admitting χπy > 0 is meant to make up for this. In this

respect it may be noted that in the matrix Φ̃ many zero entries would still remain; on

the other hand, the nine entries in Φ are not all independent, either. Nonetheless, in the

end we will leave it to the estimations whether or not they call for a positive value of

χπy.

The adjustments of the business climate bt are conceptually more involved. They are

based on the uniform transition probabilities prob−+
t and prob+−

t with which, within

the current quarter t, a single pessimistic (optimistic) firm switches to an optimistic

(pessimistic) investment attitude. Assuming a sufficiently large number of firms, the

probabilistic elements become negligible at the macro level. The changes in the business

climate bt are then easily seen to be described described by the following deterministic

adjustment equation,

bt+1 = bt + (1−bt) prob−+
t − (1+bt) prob+−

t (11)

The probabilities in (11) are functions of a so-called feedback index ft, where higher

values of ft increase the probability of switching from pessimism to optimism. Assuming

symmetry and linearity with respect to relative changes, the transition probabilities of

the firms are given by

prob−+
t = prob−+(ft) = min{ 1, αb exp(ft) }

prob+−
t = prob+−(ft) = min{ 1, αb exp(−ft) }

(12)

The coefficient αb measures the general responsiveness of the transition probabilities to

the arrival of new information, as it is summarized by ft. It may thus be characterized as

a flexibility parameter (Weidlich and Haag, 1983, p. 41). Note that even in the absence

of active feedback forces in the index ft, or when the different feedback variables behind

ft neutralize each other such that ft = 0, the individual firms will still change their

attitude with a positive probability. These reversals, which can occur in either direction,

are ascribed to idiosyncratic circumstances, and their probability per quarter is given by

prob−+
t = prob+−

t = αb > 0.

In the determination of the feedback index ft, two components are distinguished. The

first grasps the idea of herding, saying that the probability of switching from pessimistic

to optimistic increases as the population share of the firms that are already optimistic

increases. The second component can be conceived of as a counterpart of the central

stabilizing effect in the so-called new macroeconomic consensus, which is the real interest

rate transmission mechanism of monetary policy. It is correspondingly assumed that
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optimism in the investment decisions tends to decline as the real interest rate increases.

Combining the components in a linear way, we have ft = φb bt − φi (it− πt− ρ?) so far,

where φb, φi ≥ 0 and ρ? is the long-run equilibrium real rate of interest (from which i?

in the Taylor rule derives as i? = ρ? + π?).

In addition, we want to allow for a possible influence of the random shocks επ,t in the

Phillips curve. Viewing them as cost pushes, positive shocks somewhat darken the pros-

pects of the firms’ future profitability and so tend to weaken their optimism. Introducing

another coefficient χfπ ≥ 0 and augmenting the equation above by this effect, which in

the end is a crossover random effect from inflation to output, the following functional

expression for the feedback index ft is postulated:

ft = φb bt − φi (it − πt − r?) − χfπ επ,t (13)

Equation (13) completes the description of the general model. It has a simple recursive

structure. There are three predetermined variables at the beginning of period t: bt, π
c
t

and it−1. From them, eqs (7), (8), (9) compute successively the output gap, the inflation

rate, and the interest rate for that quarter. Subsequently, the climate variables for the

next quarter are obtained: πct+1 from (10) and bt+1 from, in that order, (13), (12), (11).

In the following we will speak of model (7) – (13) as a model of sentiment dynamics and

use the acronym SD for that. 26 Our estimations will be concerned with three different

versions: the deterministic one; a stochastic versions with only the diagonal shocks, so

to speak; and the model in its full generality, which includes the crossover shock effects.

For easier reference, we denote these cases as:

SD–1 : eqs (7) – (13) with εz,t ≡ 0 (z = i, π, y) ;

SD–2 : eqs (7) – (13) with εz,t ∼ N(0, σ2
z) , χπy = χfπ = 0 ;

SD–3 : eqs (7) – (13) with εz,t ∼ N(0, σ2
z) , χπy, χfπ ≥ 0 .

(SD)

The option of incorporating herding with φb > 0 is certainly an alluring feature of the

model, especially if high values of φb destabilize the steady state position and it is the

nonlinear component in eq. (12) that keeps the dynamics within bounds (see Franke,

2011a, for a detailed analysis of this property). However, the socio-psychological dimen-

sions behind the herding coefficient let its assumed constancy appear somewhat doubtful.

It seems perhaps more likely that φb is varying over the business cycle and, in particular,

it may be heavily affected by special exogenous events. Of course, φb is treated here as a

constant for the sake of simplicity, but it is an open question if, or what kind of, formal

estimations would be able to identify a time-varying coefficient, even if it indeed played

a stronger role over certain episodes in the real world.

26 Although the model will later be compared to the New-Keynesian model, an acronym for
‘Old-Keynesian’ might be in dispute as a matter of good or bad taste.
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In this perspective we may distinguish between a strong and a weak version of the

model. The strong version prevails if φb is markedly positive, so that we could informally

speak of a “significant” contribution of herding to the dynamics. A confirmation of this

Old-Keynesian disequilibrium component with its appeal to the ‘animal spirits’ would be

a conceptually attractive result. On the other hand, a model without herding, i.e. with

φb equal or close to zero, may be labelled a weak version of (SD). Here the only direct

feedback on the business sentiment and thus the output gap is the real rate of interest,

which together with a Taylor rule and a sort of expectations-augmented Phillips curve is

the central stabilizing feedback channel in the so-called new macroeconomic consensus

(NMC). Apart from the different treatment of expectations, (SD) is then on a similar

footing to the New-Keynesian model. In this case the main question is for the relative

moment matching performance of the rational expectations and our purely backward-

looking variant of NMC.

4. Estimations of the Great Inflation period

4.1. Preliminaries

The estimations of both the New-Keynesian and Old-Keynesian models are concerned

with three observable macroeconomic variables: prices and output of the private sector,

and the nominal interest rate set by the central bank. Following usual practice, our

empirical counterpart of the latter is the federal funds rate. Considering the economic

background of the models, however, it seems appropriate to us to deviate from much

of the estimation literature and work with price and output data from the firm sector

rather than the GDP magnitudes (the firm sector being essentially nonfinancial corporate

business). Appendix A3 gives the data source from which output and the price deflators

have been obtained, and a URL from which our gap variables can be directly downloaded.

The modelling has assumed a given trend behaviour and so it is only straightforward to

employ a deterministic trend concept for the empirical variables. As it should also reflect

the business cycle frequencies of the fluctuations, we choose the convenient Hodrick-

Prescott filter with the standard smoothing parameter λ= 1600 for quarterly data; the

same for output, inflation and the interest rate. The total sample period covers the years

from 1960 to 2007. 27 However, over these years one observes great changes in the general

variability of the three variables and partly also in the qualitative profiles of their cross-

covariances, which not only holds true for the variables in level but also in gap form.

This makes it necessary to subdivide the period into two subsamples. They are commonly

referred to as the periods of the Great Inflation (GI) and the Great Moderation (GM),

where we specify the former by the interval 1960:1 – 1979:2 (78 observations) and the

27 The Hodrick-Prescott trend itself is computed over a longer period, to avoid end-of-period
effects.
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latter by 1982:4 – 2007:2 (99 observations). The time inbetween is excluded because of its

idiosyncrasy (Bernanke and Mihov, 1998). The need of the subdivision becomes obvious

from the autocovariance diagrams below. To give an immediate and sufficient example,

the standard deviation of the annualized firm inflation gap in GI is twice as high as in

GM: 2.12% versus 1.04%.

The estimations in the present section concentrate on the Great Inflation period. This

section will be rather extensive since most of the additional methodological issue arising

in the course of the discussion of the results will be dealt with here. Section 5, which

covers the Great Moderation, can then be somewhat shorter.

The main focus of our investigations will be on the Old-Keynesian model, which has

not been subjected to a formal estimation before. Concerning the deterministic part

of this sentiment dynamics, there are 10 parameters to estimate: four determining the

output gap dynamics (αb, φb, φi, η), three determining the inflation dynamics (κ, απ, γ),

and the three policy parameters in the Taylor rule (µi, µπ, µy). For the simple stochastic

version (SD–2), the standard deviations of the three shock variables are to be added,

and for the more elaborate version with the cross-over shock effects there are two more

coefficients, namely, χπy and χfπ in eqs (10) and (13).

A first problem with the parameters should be considered right at the beginning. If

prob−+
t , prob+−

t in (12) were linear functions of the feedback index ft, the flexibility

parameter αb could not possibly be identified: multiplying it by an arbitrary number

and dividing φb, φi and χfπ by the same number would not alter anything. Although the

exponential function introduces a nonlinearity in these transition probabilities, it is more

of a global nature. Locally around ft=0 its curvature is not very pronounced, so that an

identification of αb may remain an arduous task. We therefore prefer to fix this coefficient

exogenously. To this end, recall its interpretation in the remark on eq. (12), according to

which in the hypothetical absence of other influences a firm, for idiosyncratic reasons,

would switch its attitude with a probability αb per quarter. In this respect let us assume

that this kind of switching would occur every two years (8 quarters) on average. Hence,

αb = 1/8 = 0.125 (14)

Regarding the steady state parameters, target inflation π? is set equal to 2.5% and the

associated equilibrium rate of interest i? equal to 5% (both rates being annualized as

already mentioned above), which is just a matter of scaling.

4.2. The deterministic version of the Old-Keynesian model

The estimations begin with the most elementary sentiment dynamics (SD–1) without

any random forces. An obvious steady state position is given by y=0, π=π? and i= i?.

For the continuous-time model with the simplified Taylor rule (µi = 0), in Franke (2011a)

a broad range of parameters with a sufficiently high herding coefficient φb (in the present
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notation) was shown to exist that ensure uniqueness of this equilibrium, render it locally

repelling, and give rise to a unique and globally attractive limit cycle. This feature carries

over to the present formulation in discrete time and the slightly more general Taylor rule

(9). Such a limit cycle can be viewed as the model’s representative business cycle. 28 Our

first MSM estimation then searches for a numerical parameter combination such that the

78 autocovariances from the list in (4) that it induces are as close as possible to their

empirical counterparts. The solution of the corresponding minimization problem (1) with

J = J (78) is reported as Scenario SD–1a in Table 1.

Before trying to assess whether a minimal loss of J (78) = 71.45 is more indicative of

a good or a bad match, we should have a look at the cycles thus generated. The time

series of the output gap yt and the inflation rate πt are shown in the upper two panels

in Figure 1. With a bit of more than five years, they may perhaps exhibit acceptable

amplitudes and an acceptable period, but the pattern of the cyclical motions is clearly

unsatisfactory. Output in reality simply does not crawl along a ceiling for roughly two

years, then suddenly drops down on a floor and proceeds creeping there for another two

years. It is thus also superfluous to comment on the tent-shape pattern of the inflation

rate.

Figure 1: Time series yt, πt resulting from Scenario SD–1a and SD–1b.

Responsible for this behaviour is the fact that the constraints in the transition prob-

abilities, prob−+
t ,prob+−

t ≤ 1 in (12), become binding over these stages. If we look at

the specification of the feedback index ft in eq. (13) then, owing to the high values of

28 To be more precise, there is a unique one-dimensional manifold P in the three-dimensional
space towards which all (non-degenerate) trajectories converge in the sense that they move on P
in the limit, although the limit motion itself may not be strictly periodic but only quasi-periodic.
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Scenario Model SD Model NK

1a 1b 2a 2b 3a 3b a b

φb 4.937 0.726 0.563 0.564 0.000 0.159 — —

φi 13.834 2.962 0.067 0.726 0.238 0.307 — —

η 1.545 1.841 99.729 3.850 8.606 5.336 — —

κ 0.241 0.243 0.245 0.454 0.620 0.657 0.113 0.000

απ 1.000 1.000 1.000 0.356 0.440 0.375 — —

γ 0.000 0.000 0.065 0.000 0.000 0.000 — —

µi 0.757 0.717 0.000 0.394 0.748 0.772 0.435 0.936

µπ 1.481 1.460 1.208 1.578 1.504 1.564 1.374 3.695

µy 0.792 0.627 0.000 0.000 0.773 0.869 0.086 4.977

σy — — 0.000 0.351 0.238 0.045 0.428 0.543

σπ — — 0.520 0.963 1.340 1.525 0.429 1.822

σi — — 0.401 0.331 0.000 0.000 0.000 0.283

χπy — — — — 0.576 3.074 — —

χfπ — — — — 0.430 0.551 — —

J (78) 71.45 75.15 47.70 68.81 32.22 33.35 37.13 107.45

J (79) 999.00 75.15 47.70 68.92 32.22 33.38 — —

J (82) — — 333.04 98.53 46.78 43.08 286.68 119.04

Table 1: Estimations of models SD and NK (Great Inflation).

Note: Bold face figures indicate the type of loss function for which the scenario is optimal. High
values of J (79) are truncated at 999. Underlying NK–a, NK–b and the four stochastic scenarios
of SD is the same random seed c̄: among 1000 estimations with different random seeds, this c̄
yields the median loss J (82) for Scenario 3b.

the (stabilizing) coefficient φi on the real rate of interest and the (destabilizing) herding

coefficient φb, ft actually becomes so large in modulus that it takes quite a while for

it to return to more moderate values; and if it eventually does, it only takes two or

three quarters until, with signs reversed, ft soars to similarly high levels again. Apart

from the unrealistic time series pattern, the resulting extreme probabilities are not very

convincing, either.

These observations suggest introducing an additional moment m79 into the objective
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function for the estimations. It considers the, as we may call them, “excess transition

probabilities” αb exp(±ft) −1 from (12) and penalizes the occurrence of positive values

so heavily that the loss minimization procedure better seeks to avoid them, even at the

cost of a worse match of the other 78 moments. Formally we proceed in three steps.

First, m79 is specified as the average excess transition probability over the simulation

horizon S (with respect to a given time path of the feedback index ft, which in turn, of

course, depends on the parameters θ and possibly a random seed c); second, its empirical

counterpart is set equal to zero, to conform to the notation of the loss function (1);

and third, we incorporate the penalty in the new diagonal element of the now (79×79)

weighting matrix W , for which a value of 1000 turns out to be perfectly suitable. Thus,

m79 =
1

S

S∑
t=1

max{ 0, αb exp(ft)− 1 } + max{ 0, αb exp(−ft)− 1 }

memp
T ;79,79 = 0 (15)

W79,79 = 1000

The correspondingly augmented loss function is designated J (79),

J (79) : loss function constituted by the 78 autocovariances and weights

from (2), (4), plus moment m79 with weight W79,79 from (15)
(16)

Applying the new function J (79) to Scenario SD–1a quantifies its deficient time series

features; the value we compute is so unacceptably high that in Table 1 we arbitrarily

truncated it at 999.

The re-estimation of the deterministic model with J (79), which forms our Scenario 1b,

confirms that the model can do better. As the table shows, adding the new criterion

somewhat deteriorates the original matching, i.e. the loss J (78) from the autocovariances

increases from 71.45 to 75.15. However, this seems a relatively low price for the total

success concerning the excess transition probabilities, which have practically vanished

(the 79th component of the loss is practically zero). Comparing the parameters in Sce-

narios 1a and 1b it is seen that the general improvement is essentially brought about

by considerably lower values of the two sentiment parameters φb and φi. They neverthe-

less balance in a certain way, such that the (repelling) instability of the steady state is

maintained. The smooth oscillations of Scenario 1b that we obtain are documented in

the lower two panels of Figure 1. The slight asymmetry in the output gap proves that

the nonlinearities in function (12) for the transition probabilities do take some effect in

the outer regions of the state space.

On this sound basis we can now ask what is behind the pure number of the minimized

loss J (79) = 75.15. Figure 2 presents the profiles of the nine auto- and cross-covariances

of the three single variables it, yt, πt over a lag horizon of 20 quarters, which—it may

be taken into account—is longer than the eight quarters underlying the estimations
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themselves. The empirical covariances are given by the dotted lines with the shaded

area of a 95% confidence band around them. 29 The profiles generated by Scenario 1b

are plotted as the thin (blue) lines. At a glance and taking the confidence bands as

a guideline, the matching can already be reckoned quite satisfactory. While there is a

certain moderate tendency to leave the confidence band at the higher lags, within the

first eight lags we observe only three cases with stronger deviations in this respect, all of

which at a zero lag. That is, these are the simulated variances of the interest rate in the

upper-left panel, of the output gap in the central panel, and of the inflation rate in the

lower-right panel, where all of these moments are too low.

Figure 2: Auto- and cross-covariance profiles of the
sentiment dynamics (SD–1b) and (SD–3b) (GI).

Note: Thin (blue) lines indicate Scenario 1b, bold (red) lines Scenario 3b. Shaded areas are
the bootstrapped 95% confidence bands around the empirical moments (dotted lines).

Table 2 reports selected t-statistics of our different estimations. With respect to Sce-

nario 1b it shows that, in terms of this criterion, the first two “violations” are not very

29 The lower and upper bounds are the 2.5% and 97.5% quantiles from the bootstrap procedure
described in Appendix A1. Besides, these confidence intervals tend to be narrower than those
derived from a Newey-West estimator of the covariance matrix of the empirical moments.
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serious. The most critical point of the deterministic model is rather its inability to match

the variance of the inflation rate or, more precisely, to trace out the sudden drop of

Cov(πt, πt−h) from h= 0 to h= 1; since afterwards the changes in the autocovariances

remain relatively limited, the estimation decides to “sacrifice” the matching of the zero

lag. It will have to be seen if the stochastic versions of the model can fare better in this

respect.

As a secondary aspect we note in Table 2 that there is essentially one moment with

which Scenario 1b pays for the more appropriate time series pattern vis-à-vis Scenario

1a. This is the variance of the output gap with its deterioration to ti = −2.30, which the

estimation of Scenario 1a had managed to keep inside the confidence interval. Regarding

the autocovariances of the inflation rate, Scenario 1a and 1b share the same problem.

Scenario Model SD Model NK

1a 1b 2a 2b 3a 3b a b

Covariancge

(it, it) −2.32 −2.38 −0.69 −0.11 −0.90 −0.84 −0.76 −0.46

(it, πt) −0.20 −0.22 1.08 1.02 1.28 1.31 1.01 −0.25

(yt, yt) −1.41 −2.30 −0.64 −1.22 −0.37 −0.57 −0.34 −0.56

(yt, πt−1) −0.72 −0.64 −1.04 0.04 − 2.21 −2.05 −0.84 −1.60

(πt, yt−3) −0.12 −0.07 0.05 −0.71 0.14 −0.01 0.10 −2.89

(πt, πt) −4.42 −4.40 −3.49 −3.60 −1.87 −1.33 −3.57 0.65

Raggedness

R(it) — — 2.31 2.07 0.17 0.33 −1.82 −0.65

R(yt) — — −0.12 0.31 1.61 0.75 −0.14 −0.14

R(πt) — — −16.73 −5.02 −3.45 −3.00 −15.86 −3.25

J (78) 71.45 75.16 47.70 68.81 32.22 33.35 37.18 107.45

J (79) 999.00 75.16 47.70 68.92 32.22 33.38 — —

J (82) — — 333.04 98.53 46.78 43.08 290.37 119.04

Table 2: Selected t-statistics of the estimations of models SD and NK (GI).

Note: Bold face figures indicate the most important shortcomings of the corresponding esti-
mation.
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4.3. The simple stochastic version

In this subsection we activate the demand shocks εy,t in the output equation (7), the

cost push shocks επ,t in the Phillips curve (8), and the monetary policy shocks εi,t in

the Taylor rule (9). Hence the standard deviations σy, σπ, σi have to be estimated as

three additional parameters (the crossover effects via χπy and χfπ are still switched off).

This also means that we have to choose a random seed c. As remarked on eq. (5) above,

we adopt the same c = c̄ that will yield a median loss in our best estimation further

below. The outcome from the minimization of our new loss function J (79) is reported as

Scenario 2a in Table 1.

Comparing the loss J (79) = 47.70 to that of Scenario 1b, it is seen that the random

shocks can indeed achieve a nonnegligibly better match. More specifically, Table 2 with

the t-statistics shows us a considerable improvement in the variances of the interest rate

and the output gap, both of which are now inside the confidence intervals, and a more

moderate improvement in the most critical moment, the variance of the inflation rate.

Nonetheless, the latter is still clearly outside the confidence interval. Apart from that,

note also that again there is no problem with excessively high transition probabilities as

J (78) ≈ J (79) in Table 1.

If we look at the parameter estimates themselves, the extraordinarily high value of

the proportionality factor η leaps to the eye. It is explained by the low value of φi

in the sentiment dynamics which, in combination with the other coefficients, generates

extremely narrow fluctuations of the business climate bt (since ft stays close to zero and

so prob−+
t and prob+−

t in (11) differ only marginally). The high η then takes care that

the thus induced fluctuations of the output gap yt in eq. (7) are wide enough. While in

this way the motions of the observable variables may appear acceptable, the implausible

behaviour of the nonobservable bt leaves an unpleasant aftertaste.

Instead of thinking about any immediate consequences of how to deal with this prob-

lem, we widen the horizon for the empirical regularities that we want the model to repro-

duce. The two middle panels in Figure 3 document the well-known fact that the empirical

oscillations of the output gap yt as a level variable are relatively smooth, whereas the

motions of the inflation gap—as basically a first differences series of the (log) prices—are

much more irregular. The upper two panels in the figure take the simulations of Scenario

2a and extract a time interval of the same length for the two variables. This example is

sufficiently representative to illustrate that this scenario cannot account for the different

time series patterns. It does not succeed in this respect even though the estimation gets

along without any demand shocks (i.e., σy=0 in Table 1). The output gap is nevertheless

affected more indirectly by the monetary policy shocks, which take effect on the business

climate via the feedback index ft. They actually turn out to be so strong that the kind

of raggedness in yt and πt looks about the same. Thus, compared to the empirical series,

the simulated yt seem to exhibit a similar degree of raggedness, and the simulated πt are
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clearly too smooth.

Figure 3: Empirical time series and yt, πt resulting from Scenarios 2a and 2b.

The human eye has no problem making these qualitative assessments. For a formal

treatment, however, an unambiguous summary statistic is needed. To this end, let us

begin with a straightforward characterization which would call a time series extremely

ragged if it, from one observation to another, continuously alternates between increasing

and decreasing. It appears “fairly” ragged if this occurs rather frequently, and the series is

almost perfectly smooth if it steadily increases or decreases with the possible exception of

some infrequent turning points. Furthermore, a time series where, for example, a strong

increase between two observations is followed by a weak decline is at that stage less

ragged than a series where the opposite changes are of a similar order of magnitude.

These verbal descriptions of what our eye perceives without further reflection lead us to

measure the raggedness of a time series {xt}Nt=1 (N = T, S) in the following way, 30

RN (xt) :=

∑N
t=3Xg

max[ 0, −(xt − xt−1)(xt−1 − xt−2) ]∑N T̂

t=3 | (xt − xt−1)(xt−1 − xt−2) |
(N = T or S) (17)

30 Strictly speaking, the notation RN (xt) is slightly incorrect, but a correct one such as R({xt}Nt=1)
would look rather cumbersome.

25



Clearly, this statistic is independent of the length and scale of the time series, and it

can vary between unity and zero, indicating perfect raggedness and perfect smoothness,

respectively. The index N for the sample period T or S can be omitted in the following

since it will be easily understood from the context.

As a time average, R(xt) is an ordinary summary statistic that can be effortlessly

added to the previous moments for a more ambitious moment matching. Also their

variances can be bootstrapped from the empirical data in the same way as those in

eq. (2) for our 78 autocovariances. Hence we may augment the present estimations by

including the three moments

m80 = R(it) , m81 = R(yt) , m82 = R(πt) (18)

which gives rise to the loss function J (82),

J (82) : loss function constituted by J (79) plus moments m80,m81,m82

from (17) with their weights determined by (2)
(19)

Endowed with a measure of raggedness, Table 2 now reassures us that the output gap in

Scenario 2a displays an even perfect behaviour in this respect. The interest rate is less

satisfactory, and the t-statistic of the inflation rate points out a serious failure.

The next question therefore is if the model can alleviate this mismatch by minimizing

the augmented loss function J (82). The answer is given by the outcome of Scenario 2b.

First of all, this estimation brings about a higher degree of raggedness for the inflation

rate, although it is still markedly lower than in empirical inflation. On the other hand,

the raggedness in it and yt is similar to Scenario 2a (see Table 2 and the illustration in the

two bottom panels in Figure 3). Unfortunately, this improvement comes at the cost of a

sizeable deterioration in the matching of the autocovariances, with J (78) = 68.81 versus

47.70 for Scenario 2a. Actually, Scenario 2b thus falls back to a level that is not very

much better than in the deterministic model version. The deterioration is a relatively

general phenomenon; there is no single moment that is mainly responsible for it (this

does not only hold for the few moments shown in Table 2). In addition, the slightly

higher value of J (79) versus J (78) for SD–2b indicates rare cases where the transition

probabilities prob−+
t or prob+−

t hit their upper bound.

Turning to the estimated parameters in Table 1, we see a couple of differences from

the previous estimations. First and most importantly, the high value in Scenario 2a for η

and the low value value for φi with their dubious implications for the sentiment dynamics

do not carry over. Second, the slope parameter κ in the Phillips curve, which was very

stable in the first three scenarios, has almost doubled. This goes along with a structural

change in the adaptive inflation climate entering the Phillips curve. Before, we had απ=1

and γ ≈ 0, so that the climate was (nearly) equal to the rate of inflation most recently

observed, πct+1 =πt, whereas now, with απ ≈ 1/3, its adjustments occur in a truly gradual

manner. The credibility coefficient γ of the central bank remains nevertheless zero.
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Third, Scenario 2b has a moderate interest rate smoothing in the Taylor rule versus

no smoothing, µi = 0, in Scenario 2a and considerably stronger smoothing in the deter-

ministic cases. The zero responsiveness of the interest rate to output is maintained (even

though it is again in stark contrast to the deterministic cases). Fourth, the present esti-

mation differs from Scenario 2a in that it can no longer do without random perturbations

on the demand side (σy > 0), and it also requires stronger effects of the cost post shocks.

In sum, as far as the simple stochastic model is concerned, these features render

Scenario 2b more trustworthy than Scenario 2a.

4.4. The stochastic version with crossover shock effects

Although Scenario 2b is more satisfactory than Scenario 2a, can we be happy enough with

its overall goodness-of-fit? Instead of further meditating on this question, we postpone it.

We rather take a next step and augment the model by admitting the crossover random

shock effects. That is, we add the coefficients χπy in (10) and χfπ in (13) to the list

of the parameters. This gives us model version SD–3 and a total of 14 parameters to

estimate. We alternatively employ the loss functions J (79) and J (82), without and with

the attempted matching of the raggedness in it, yt, πt, the minimization of which gives

rise to Scenario 3a and 3b, respectively.

The corresponding two columns in Table 1 reassure us that both coefficients χπy

and χfπ come out with the correct positive sign, and they testify to a (very) strong

improvement of these two estimations over the simple stochastic version of the model.

The two parameters are also both remarkable in that the much better match of the

autocovariances that they produce simultaneously implies a good match of the raggedness

statistics, too. That is, as evidenced by the small difference in J (79) for Scenario 3a and 3b,

now only a very low price has to be paid in terms of a deterioration of the autocovariances

if the model is additionally desired to reproduce the raggedness of the empirical time

series.

Comparing the profiles of the autocovariances from Scenario 3b to those of the deter-

ministic Scenario 1b in Figure 2, it can generally be stated that the former remain over

longer lags in the empirical confidence bands, even though the estimation itself with its

lag horizon of 8 quarters has not called for that. The most important achievement of χπy

and χfπ is they allow the model to trace out the initial sudden drop in the autocovari-

ances of the inflation rate: the entire profile is now inside the confidence band. The other

moments are not too seriously affected by this enhancement except one: Cov(yt, πt−1) in

the output-inflation nexus—but only this single covariance—slides out of the confidence

band with a t-statistic of −2.05 (see Table 2). This is a somewhat strange outlier since

we had no indication of any problems with this moment before.

Regarding the t-statistics of the three raggedness moments reported in Table 2, we

can be fully satisfied with R(it) and R(yt), and we see a further improvement for the
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inflation rate. However, with R(πt) = 0.91 the empirical raggedness is so high that the

best we can get is a t-statistic of −3.00 for Scenario 3b (from a simulated R(πt) that

after all is already as high as 0.80).

Our inspection of the single moments thus comes to just two moments the matching

of which shows a deficiency. In both cases, however, it is not overly worrying, either. In

sum, we can now be happy enough with the overall match of the model.

Despite this feeling of success, we should nevertheless check the numerical parameter

estimates. The most critical one is the herding coefficient φb: it is rather low in Scenario

3b and even completely vanishes in Scenario 3a. Hence the herding component is no

longer supported by the data and it is essentially only the real rate of interest that feeds

back on the business climate. Referring to the distinction at the end of Section 3, what

comes out of the estimation is the weak version of the Old-Keynesian model, but not the

strong version.

As a consequence of the zero or low value of φb, both scenarios do not generate

endogenous cycles in their deterministic core. The long-run equilibrium is (not only

locally but also) globally asymptotically stable, so that the random shocks are necessary

to keep the system in motion. Convergence occurs, however, in a cyclical manner and

after a one-time shock it would take the economy about 12 – 14 years to return to the

steady state. This feature still shines through in the stochastic simulations in that at

least the output gap displays a pronounced cyclical behaviour, similar in kind to what is

shown in Figure 3.

The reduced role of herding in the business sentiment dynamics has a bearing on the

two other parts of the model, the Phillips curve as well as the Taylor rule. Compared to

Scenario 2b, the slope parameter κ in the Phillips curve rises once again by more than

one-third, although the degree of sluggishness in the adjustments of the inflation climate

(the coefficient απ) and the credibility of the central bank (which is totally missing, i.e.

γ=0) have largely remained the same.

The policy parameters in the Taylor rule look more familiar now: there is a considerable

degree of interest rate smoothing, the central bank pays considerable attention to the

output gap, and µπ is close to Taylor’s reference value of 1.50. Unfamiliar and actually

economically dubious is the absence of monetary policy shocks. There are three ways

to cope with it if σi = 0 is deemed unacceptable. First, as in many empirical studies on

the Taylor rule, the quarterly inflation rates in (9) may be replaced with four-quarter

inflation. This reduction in the variability of the interest rate might broaden the scope

for random shocks. Second, it is a well-known problem that estimations could assign a

spurious role to a lagged interest rate in the Taylor rule because it helps pick up the

central bank’s serially correlated measurement errors (Lansing, 2002) or episodes where

the central bank has to react to financial market perturbations (Rudebusch, 2002). It

would therefore be worthwhile to set µi equal to zero and add an AR(1) shock process

in (9), which will certainly not be degenerate.
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A third option would require the least effort. It maintains the present form of the

Taylor rule and treats the noise σi as an exogenous parameter. After all, the increase in

the loss brought about by moderately positive levels of σi is not very dramatic. More

specifically, information from outside the model could be used to introduce a lower bound

for σi. The goodness-of-fit achieved by the corresponding re-estimations would only be

slightly worse than for Scenario 3b; the naked eye would hardly be able to notice any

differences in the autocovariance profiles. 31

Lastly, it may be mentioned that the difference in the values for χπy in Scenario 3a

and 3b is no reason for concern. The much higher value in Scenario 3b is easily explained

by the small demand shocks prevailing here. The product (χπy σy) is actually almost the

same in the two scenarios.

The little discussion of the parameter estimates can be briefly summarized by saying

that, despite the reduced or even missing significance of herding, the numerical parameter

values still make economic sense; or they easily can make good sense if the remarks on σi

are taken into account. Therefore the successful matching of our moments that we have

pointed out before rests on solid economic grounds.

4.5. Estimation of the New-Keynesian model

The point of departure of this paper was the finding from previous research that the

elementary three-equations model (NK) is remarkably successful in reproducing the au-

tocovariance profiles of its three variables it, yt, πt. The obvious question is now how this

compares to the matching of our Old-Keynesian model in the last two Scenarios 3a and

3b, which were equally claimed to be a good success. Such a comparison is even more

meaningful as the a priori possible herding effect was not confirmed by these estimations.

Hence the New-Keynesian and the Old-Keynesian models are on a similar footing and

could be viewed as two variants of the New Macroeconomic Consensus. That is, they in-

clude similar arguments centring around the real rate of interest, while the expectations

involved in them are specified in different ways: in a so-called forward-looking manner in

the New-Keynesian model and—in that language—a purely backward-looking manner

in the Old-Keynesian approach.

Let us then reconsider the estimation of the New-Keynesian model on the 78 autoco-

variance moments. The linear structure of the model is very convenient in this respect

because it saves us from the sample variability across different simulation runs. In fact,

the closed-form solution of such rational expectations models takes the form of a vector

autoregression, so that its autocovariances can be computed analytically without having

to simulate the model (they are the asymptotic moments, corresponding to an infinite

31 Apart from this it is worth noting that the “aggregate” noise level σi+σy+σπ in the economy
is similar across the Scenarios 2b, 3a, 3b, only the distribution across the three random sources
varies.
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simulation size in MSM; see Appendix A4 for further details). Column NK–a in Table 1

reproduces the estimation in Franke (2011b), which is the outcome from the minimiza-

tion of the present loss function J (78). Its value of 37.13 is a bit higher than in Scenarios

SD–3a and SD–3b, but the difference will not be reckoned significant. So far it can there-

fore be stated that the New-Keynesian and the Old-Keynesian score about equally well

in matching the empirical autocovariances.

Nevertheless, the close values of J (78) in these estimations are just an overall evalua-

tion, they do not mean that also the entire autocovariance profiles of NK–a and SD–3a are

similar. The most conspicuous example is the following. We already know that the main

weakness of SD–3a is the relatively strong underestimation of the empirical Cov(yt, πt−1).

Model NK–a, on the other hand, has no problem at all with that moment. Instead, Ta-

ble 2 indicates that it cannot overcome a serious underestimation of the variance of the

inflation rate, which is not perfect but still acceptable in SD–3a.

Regarding the additional moments that we consider, moment m79 does not apply to

the New-Keynesian model and can be omitted here. We can thus directly turn to the

three raggedness statistics. Although there is no analytical expression for them and we

cannot get around simulating them, their sample variability over our long simulation

horizon of S = 10, 000 quarters is so limited that effects from different random seeds can

be neglected. Column NK–a in Table 2 shows the implications of this estimation for the

time series patterns: R(yt) is perfect, R(it) is still tolerable, but R(πt) points out that the

inflation rate is much too smooth as to claim it could mimic the behaviour of the empirical

series to any decent degree. This failure is also reflected in the dramatically higher value

of the augmented loss function J (82) in Table 1. 32 Hence the original estimation of model

NK yields a good matching of the autocovariances, whereas it is very unsatisfactory when

it comes to the raggedness of the inflation rate.

It may be noted in passing in Table 1 that the estimation of those parameters that

the New- and Old-Keynesian model have in common are very dissimilar in NK–a and

SD–3a. The only two exceptions are the complete absence of noise in the Taylor rule

(σi = 0) and the policy coefficient on inflation µπ, which in both estimations is also

not too different from Taylor’s benchmark value 1.50. The relatively low value of the

Phillips curve noise level σπ in NK–a (0.429 versus 1.340 in SD–3a) is certainly the most

immediate explanation for the insufficient raggedness of inflation in this estimation (in

both cases the supply shocks, as a feature that is remarkable in itself, exhibit no serial

correlation, so that the levels σπ are directly comparable).

As we did for the three versions of the Old-Keynesian model, we should finally include

the raggedness moments in the loss function and re-estimate model NK accordingly.

This procedure, which gives rise to Scenario NK–b, is successful insofar as the ragged-

32 In order not to change or extend the numbering in the superscript of J , J (79) may be identified
with J (78) for the New-Keynesian model.
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ness statistics are similarly good to those in SD–3b (see Table 2). In all other respects,

however, NK–b is inferior to SD–3b. First of all, the minimal value of J (82) is distinctly

higher (119 versus 43). Second, the extended minimization seriously deteriorates the pre-

vious matching of the autocovariances; J (78) increases from 37 to 107. Third, the policy

coefficients on inflation and output, µπ and µy, are heavily affected by the re-estimation

and their high values are no longer fully credible. 33

A comparison of the New-Keynesian model and the most elaborate version of the

Old-Keynesian model can now be briefly summarized as follows. Both models are almost

equally successful in reproducing the autocovariances of their state variables it, yt, πt. The

performance in this dimension can indeed be said to be rather convincing. However, the

autocovariances and the raggedness R(πt) of the inflation rate can hardly be reconciled

in the New-Keynesian model. Either it produces a good match of the former and a bad

match of R(πt), or the other way around. By contrast, in the Old-Keynesian model the

two types of moments are largely compatible; a good match of one type can go along

with at least an acceptable match of the other type. Hence in one single sentence, if we

are more ambitious concerning the features that a model should be able to reproduce,

the Old-Keynesian model with the crossover random shock effects model does a better

job than the New-Keynesian three-equations model.

4.6. Confidence intervals and an assessment of the goodness-of-fit

The discussion was so far mainly concerned with how well in general and in detail the

model-generated moments can match the empirical statistics. The Old-Keynesian upshot

of this analysis was Scenario SD–3b, for which we already expressed our satisfaction.

Coming to terms with the complete absence of monetary policy shocks and (more or

less) the herding mechanism, the numerical parameters make good economic sense as

well. This notwithstanding, it should not be forgotten that they are point estimates and

we do not know how precise they are. This is the issue that we turn to now.

Under standard regularity conditions, the parameter estimates θ̂ from minimizing the

loss function (1) are consistent and asymptotically follow a normal distribution around

the (pseudo-) true parameter vector. There is furthermore an explicit expression for

estimating the corresponding covariance matrix (Lee and Ingram, 1991, p. 202), from

which the standard errors of the single components θ̂i are obtained as the square roots of

the diagonal elements. Apart from the general question concerning the extent to which

the asymptotic result may carry over to small samples, and the possibility that the local

shape of the loss function around θ̂ (which enters the calculation of the covariance matrix)

33 They origin with an identification problem, which we do not discuss here. For completeness, the
estimates of the other parameters in NK–a and NK–b are reported in Appendix A5. Incidentally,
in NK–b the dynamic IS equation becomes more backward-looking than in NK–a, while the
Phillips curve becomes (much) more forward-looking.
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may be different from the global behaviour, we face the more elementary inconvenience

of corner solutions. Trivially, a parameter cannot be distributed around an estimate on

a lower boundary, as it is the case for γ and σi. A symmetric distribution is also quite

unlikely to prevail if the estimate is ‘close’ to the boundary, which seems to be the case

for σy and perhaps also φb.

These problems can be dealt with by having recourse to a bootstrap procedure. In

this respect it is only natural to make use of the bootstrap that served us to obtain the

variances of the empirical moments for the weighting matrix W in eq. (2) above. From

there we already have a large set of artificial moments on which, rather than on the

single empirical moment vector memp
T , a model can be re-estimated just as many times

as we want. In this way we get a frequency distribution for each of the parameters and

can easily compute the confidence intervals from them. We only have to factor in that

the original loss function (1) should be suitably demeaned, such that if the bootstrapped

moments coincide with the empirical moments and the simulation is run with the random

seed underlying the original MSM, the re-estimation would yield the original parameters

with a zero loss (the finer details of this recentring have been provided in Section 2.2).

Note that in this way two types of variability are taken into account. First, we allow

for the variability in the generation of the data in the real world, which is captured by

the bootstrapping of the empirical moments as just mentioned. Second, we allow for

the sample variability in the model simulations by carrying out each estimation on the

bootstrapped moments with a different random seed.

For the re-estimations themselves, the minimization procedure for the loss function

can start out from the original estimates. This saves us the exploratory stage of the

minimization procedure and we can directly apply the simplex algorithm. It nevertheless

turns out that the algorithm has to be re-initialized several times until the minimum has

been sufficiently approximated, which is a very time-consuming endeavour. We therefore

limit this investigation to our Old-Keynesian showcase scenario, i.e. SD–3b, where 1000

re-estimations should be enough for the present purpose (they can easily take up to

almost two days on a standard personal computer).

Figure 4 shows the resulting frequency distributions of the 14 parameters (their esti-

mated density functions, to be exact). The shaded areas indicate the 95% range of the

bootstrap distribution, that is, they are delimited by the 2.5% and 97.5% quantiles. We

see that not only the parameters that gave rise to a corner solution have a skewed dis-

tribution (γ and σi) but also φb and σy, which confirms that their benchmark estimates

happened to be ‘close’ to a corner solution indeed. Perhaps somewhat unexpectedly, the

latter also holds true for χπy.

There are other parameters for which, although they may have a more or less symmet-

ric bootstrap distribution, the median values deviate to some extent from the estimates

in Table 1. In Figure 4, the more pronounced cases are illustrated by the vertical dotted

lines for the medians, which may be compared to the short thick bars for the original
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Figure 4: Frequency distributions of the re-estimated parameters for SD–3b (GI).

Note: The shaded areas represent 95% of the estimates. The dotted vertical lines in selected
panels indicate the median values, the short (red) vertical bars the estimates from Table 1.

estimates. This phenomenon could be an implication of a bias in the estimations, accord-

ing to which the bootstrap distribution may not be centred around the (pseudo-) true

value of the parameter but around this value plus a bias term. As a consequence, the

standard 95% interval given by the 2.5% and 97.5% quantiles would provide a distorted

information.

Besides reporting the numerical values of the medians of the bootstrap distribution,

Table 3 presents more suitable confidence intervals for the single parameters, whenever

they are meaningful. The recipe for this is the concept of Hall’s percentile confidence

interval, which corrects for a possible bias and thus ensures asymptotic accuracy (see

Appendix A2 for the details). Of course, the upper and lower bounds of them must remain

within the admissible range. This applies to φi, η, κ, απ, σπ, µi, µπ, χπf . Specifically,

taking also the shape of their distribution into account, the (pseudo-) median seems to

be underestimated to some degree for κ, σπ and µi, while for η and απ it seems to be

overestimated. In the cases for which the feasibility condition is violated, we resort to the

standard percentile intervals. This concerns the parameters φb, σy, γ, µπ, σi and χyπ. 34

34 Regarding µπ, we require that the Taylor principle be respected, i.e., this coefficient should not
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φb φi η σy

0.00 0.02 3.30 0.00
Median GI : 0.01 0.30 6.12 0.06

0.68 0.43 9.38 0.59

κ απ γ σπ

0.52 0.06 0.00 1.17
Median GI : 0.59 0.47 0.01 1.43

0.99 0.58 0.54 1.97

µi µπ µy σi

0.64 1.08 0.18 0.00
Median GI : 0.74 1.49 0.71 0.01

0.93 2.44 1.16 0.34

χπy χfπ

0.00 0.05
Median GI : 1.33 0.52

8.68 0.72

Table 3: Median values and confidence intervals from the re-estimations
of SD–3b (GI).

Note: The figures shifted up- and downwards are the upper and lower bounds of the confidence
intervals; the standard percentile intervals for φb, σy, γ, µπ, σi, χπy, and Hall’s intervals for
the other parameters.

By and large, one might feel that the parameters are not too precisely estimated. 35 In

particular, the confidence intervals for the policy coefficients on the inflation and output

gap, µπ and µy, are wider than what would usually considered to be a reasonable range

for them. We would have also preferred a slightly narrower range for the slope coefficient

κ in the Phillips curve. On the other hand, all of their values are definitely higher than

the (very) low estimates of κ for the New-Keynesian model (which incidentally are quite

in line with many other estimations in the literature). For most of the other parameters,

which relate to the latent variables in the model, it does not seem so easy to assess what

would be deemed a decent width of the confidence intervals. In any case, unless one does

not want to exogenously calibrate some of the 14 parameters, it would be desirable to

include additional moments in the estimations in order to obtain a greater precision.

Evidently, the bootstrap distributions in Figure 4 are the marginal distributions. They

are generally not independent of each other, that is, they do not tell us whether or to

fall short of unity.
35 Perhaps it would be more adequate to de-emphasize the more extreme estimates and report
the 90% confidence intervals.
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what extent high values of one parameter go along with high or low values of some

other parameters. This information is briefly summarized by the pairwise correlation

coefficients of the parameter re-estimates. Actually, surprisingly many of these 13 × 12

relationships are relatively weak. The strongest connection prevails between the three

policy parameters µi, µπ, µy, whereas other noteworthy relationships seem to have an

almost accidental character (except the one between κ and σπ in the Phillips curve). For

completeness, the correlation coefficients signalling the tightest relationships are listed

in Table 4.

µπ µy απ σπ φb φi η

µi 0.69 0.69 −0.53

µπ 0.64

κ 0.46 −0.46

χπf 0.59 −0.65

Table 4: Main correlations between the re-estimated parameters of SD–3b (GI).

A by-product of the re-estimations is that they serve for a general evaluation of the

model’s goodness-of-fit. It is well-known that, under the null hypothesis that the model is

true, the minimized value of the loss function represents a statistic that is asymptotically

chi-square distributed—provided, it has to be added, that the weighting matrix entering

the loss function is optimal (Lee and Ingram, 1991, p. 204). This standard J test for

overidentifying restrictions is not applicable here since the latter supposition is not sat-

isfied. However, we can employ the minimized losses Jb from the bootstrap experiment

as our test distribution (b = 1, . . . , 1000). The benchmark estimation of SD–3b in Table

1 would have to be rejected at the conventional significance level if its estimated loss

Ĵ = Ĵ (82) = 43.08 exceeds the 95% quantile J0.95 of the distribution of the Jb. Actually,

however, we obtain J0.95 = 60.76. Hence model SD–3b passes the bootstrapped J test

without any problem.

We can even take one step further and construct a p-value of the model to characterize

its goodness-of-fit by a single number. It is given by the value of p that equates the (1−p)-
quantile of the distribution {Jb} to Ĵ , which says that if Ĵ were employed as a benchmark

for model rejection, then p is the error rate of falsely rejecting the null hypothesis that

the model is the true data generation process. Clearly, the higher this p-value the better

the fit. Here we calculate,

p-value of SD–3b for GI = 21.5% (20)

The bootstrap distribution {Jb} and the critical quantiles are illustrated in Figure 5.

Recall that Ĵ = 43.08 is the median loss of 1000 estimations on the empirical moments
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Figure 5: Distribution {Jb} of the bootstrapped losses for SD–3b (GI).

Note: The short (red) vertical bar represents the 95% quantile of {Jb}, J0.95 = 60.76, the

dotted (blue) line the loss Ĵ = 43.08 from the original estimation in Table 1.

with different random seeds. If instead we consider their 97.5% quantile as a relatively

unfavourable outcome, which gives rise to J = 45.87, we still get a p-value of 17.7%.

Nevertheless, despite the high matching quality of our Old-Keynesian model as it is

indicated by the p-value in (20), it may not be forgotten that this evaluation is conditional

on the specific choice of the moments that the model is required to match.

5. Estimations of the Great Moderation period

5.1. Equivalent matches in the deterministic Old-Keynesian model

When turning to the estimations for the Great Moderation period, it is only natural to

take the same steps as for the Great Inflation, though occasionally in a more compact

form. Accordingly, let us again begin with the deterministic version of the Old-Keynesian

model, where now we skip the most elementary estimation and include the smoothing

condition (15) in the set of moments right from the start. That is, we employ J (79) to

estimate SD–1.

During the minimization, the first couple of trials with simulating annealing drew our

attention to a fundamental problem that we face for GM, namely, that not all of the

parameters can be sufficiently identified. It is particularly serious for the deterministic

model, but in a somewhat weaker form the stochastic version will not be able to escape

it, either. Regarding the present model version SD–1 we can most suitably concentrate

on two parameters: the adjustment speed απ in the updating of the inflation climate and

the policy coefficient µπ on inflation in the Taylor rule. Both of them cannot be pinned
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down, which means we can exogenously fix them at arbitrary values over a wide range,

estimate the remaining eight parameters, and nevertheless find nearly identical values of

the minimized loss.

απ = 0.250 απ = 0.750 απ = 1.000 απ = 0.050

φb 1.772 1.773 1.768 1.785 1.785 1.788 1.793 1.770

φi 1.225 1.225 1.222 1.232 1.231 1.231 1.237 1.220

η 1.292 1.291 1.289 1.288 1.287 1.285 1.290 1.296

κ 0.446 0.446 0.444 0.358 0.361 0.357 0.325 0.495

γ 0.763 0.764 0.757 0.694 0.697 0.688 0.638 0.207

µi 0.800 0.792 0.783 0.799 0.791 0.781 0.790 0.792

µπ 1.000 1.500 2.000 1.000 1.500 2.000 1.500 1.500

µy 1.279 0.986 0.701 1.273 0.980 0.691 0.972 0.987

J (79) 102.27 102.27 102.30 102.36 102.42 102.45 102.41 102.16

Table 5: A continuum of almost equivalent matches for SD–1 (GM).

Note: The parameters απ and µπ are exogenously fixed as indicated. Setting απ = 0.00 yields
J (79) = 106.34.

Table 5 documents this phenomenon for a number of selected values for απ and µπ.

Fixing απ at 0.25 and 0.75, respectively, it is seen that in each case an increase of µπ from

1.00 to 2.00 yields a systematic increase of J (79), which, however, can only be said to be

negligible. As far as variations of απ for a given value of µπ are concerned, we obtain a

decline of J (79) = J (79)(απ) from the higher to the lower values of απ, which likewise is

hardly worth mentioning. Only the rise of J (79) as απ decreases from 0.05 down to zero

is a bit more noticeable (see the note on the table).

Certainly, these exogenous variations of απ and µπ induce variations in the estimates

of the other coefficients. They are quite limited for the parameters governing the output

adjustments, i.e., for φb, φi and η. A ceteris paribus rise of µπ causes a moderate decline

in the other two policy coefficients µi and µy, while ceteris paribus changes of απ have

almost no effect on them. Things are the other way around for the parameters κ and

γ in the inflation dynamics. They remain essentially unaffected by changes in µπ, while

both of them moderately decline when απ rises from zero to unity—with the exception

of γ which tends to become fairly low as απ gets close to zero.

One can therefore choose almost any value of απ and µπ which, or the implications

of which, one likes and obtain practically the same match. This is econometrically un-

satisfactory, but it may not be unwelcome to the economist. For example, he or she may
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prefer to set µπ at the famous and credible Taylor benchmark value µπ = 1.50, or he or

she may have a feeling for reasonable values of the adjustment speed απ or the slope in

the Phillips curve κ. These are elements of calibration which invoke other information or

just common sense, and despite the scepticism of econometricians they are often found

in empirical macroeconomic research. The lack of identification could also be regarded

as a price for flexible modelling with a rich description, which does not wish to limit too

early the number of meaningful structural parameters.

On the other hand, a positive side of the almost equivalent matches is a certain scope

for the model that a smaller subset of the parameters might succeed in reproducing

some additional empirical regularities. Incidentally, this reasoning does not apply to

estimations employing a one and only likelihood function, whereas it is a fairly natural

argument (or hope) in a moment matching approach.

In evaluating the general goodness-of-fit of scenario SD–1 for the Great Moderation,

we can compare the measure of J (79) ≈ 102 from Table 5 to the corresponding result for

the Great Inflation, which in Table 1 was reported to be J (79) = 75.15. Although this

is a quantitative deterioration, the covariance profiles for GM still do not appear to be

too bad after all; see the thin (blue) lines in Figure 6. 36 The main differences from the

thin (blue) lines in Figure 2 are the larger deviations, from the empirical statistics, of the

model-generated Cov(yt, yt−h) for h = 0, 1 and Cov(yt, πt−h) for h = 2, 3, 4 (i.e., larger in

terms of the width of the confidence bands). In many other respects, the profiles for GM

and GI are not remarkably different. It may, in particular, be observed that in both cases

the model does not manage to mimic the sudden initial drop in the autocovariances of

the inflation gap.

5.2. Estimations of the simple stochastic model

Though being less severe than in the previous section, the identification problem carries

over to the stochastic versions of the Old-Keynesian model. Here it is useful to consider

the adjustment speed απ as the only freely varying parameter. While, as will be seen,

the minimized loss is no longer essentially constant, its changes will nevertheless remain

rather limited over almost the entire range of απ. At least, these changes can be eas-

ily dominated by variations arising from the sample variability, if the estimations have

different random seeds underlying.

Let us first study this phenomenon in the stochastic model SD–2a without the cross

random effects, which is estimated with J (79). The upper panel in Figure 7 is based on

two different random seeds and depicts the resulting estimated losses as a function of

απ. For both random seeds there is a clear minimum value of these Ĵ (79) at απ = 0.02.

36 For completeness, these profiles result from the estimation with απ = 0.25 and µπ = 1.50 in
Table 5. However, they are virtually indistinguishable from the profiles of the other parameter
combinations in the table.
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Figure 6: Auto- and cross-covariance profiles of the
sentiment dynamics (SD–1) and (SD–3b) (GM).

Note: Thin (blue) lines indicate Scenario SD–1 (see Table 5 and footnote 36), bold (red) lines
Scenario SD–3b(2) from Table 6. Shaded areas are the bootstrapped 95% confidence bands
around the empirical moments (dotted lines).

However, we are not perfectly happy with this situation. First, the minimum is less

outstanding than a first glance at the function might suggest. A zero adjustment speed

and a speed απ = 0.02 will certainly be regarded as being essentially the same. Hence,

if we take the upper function in the panel as an example, the associated losses of 43.5

and 41.5, respectively, should not be classified as being very different. Besides, referring

to the autocovariance profiles of these two estimations, the naked eye has considerable

difficulty recognizing any differences between them. Taking this evaluation for granted,

it has to be concluded from the function απ 7→ Ĵ (79)(απ) in Figure 7 that (almost) all of

the admissible adjustment speeds απ give rise to a matching that is equally acceptable.

A second point is that, as shown in the bottom panel of Figure 7, the estimated

credibility γ̂ of the central bank exhibits an excessive sensitivity near απ = 0.02. Shortly

after that value the coefficient rises from zero to γ̂ = 0.85 at απ = 0.10, say. Hence one

may not have too much faith in the estimation with απ = 0.02. In particular, if it is
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Figure 7: Estimations of SD–2a from two different random seeds
under exogenous variations of απ (GM).

Note: In the bottom panel, the functions απ 7→ γ̂(απ) from the two random seeds almost
coincide.

believed that the central bank credibility should be somewhat higher in GM than in GI,

where it was close to zero, one may prefer higher adjustments speeds απ that lead to

higher estimates γ̂.

The estimates of the other coefficients are fairly robust to the variations of απ. Fixing

απ at the extreme values 0.02 and 1.00, respectively, the results in the first two columns

of Table 6 may serve as a representative example. They are based on the same random

number seed that gives rise to upper relationships in Figure 7 (actually, it yields the

median loss in our showcase estimation later on). The middle panel of Figure 7 shows

the moderate variations of the slope coefficient κ over the entire range of απ. Apart from

γ, this parameter exhibits the relatively strongest reactions, but the panel also shows

that they are not monotonic. The second example represented by the thin (blue) lines in

the figure indicate that the phenomena just described do not seem to be due to a special

random number sequence.

Returning to the goodness-of-fit of the estimations, we may compare the SD–2a(1) and

SD–2a(2) to the estimation SD–2a in Table 1 for GI, where we obtained J (79) = 47.70.
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Scenario Model SD Model NK

2a(1) 2a(2) 2b(1) 2b(2) 3b(1) 3b(2) a b

φb 1.171 1.171 1.255 1.262 0.630 0.596 — —

φi 0.115 0.116 0.152 0.124 0.266 0.172 — —

η 10.583 9.892 9.419 10.832 3.692 5.803 — —

κ 0.368 0.343 0.350 0.323 0.559 0.438 0.027 0.031

απ 0.020 1.000 0.020 1.000 0.001 1.000 — —

γ 0.000 0.955 0.001 0.973 0.998 0.999 — —

µi 0.774 0.783 0.748 0.761 0.801 0.804 0.801 0.807

µπ 1.546 1.648 1.396 1.422 1.001 1.000 1.197 1.215

µy 0.871 0.875 0.886 0.944 1.225 1.241 1.240 1.297

σy 0.919 0.948 0.169 0.161 0.003 0.019 0.556 0.373

σπ 0.829 0.847 0.854 0.911 0.649 0.423 0.328 0.457

σi 0.248 0.237 0.313 0.305 0.331 0.333 0.307 0.335

χπy — — — — 5.403 40.664 — —

χfπ — — — — 0.932 0.932 — —

J (79) 41.49 43.44 56.02 59.61 28.25 26.63 41.16 45.64

J (82) 71.45 74.41 56.70 60.25 28.62 27.54 65.17 59.20

Table 6: Estimations of models SD and NK (Great Moderation).

Note: The parameter απ is exogenously fixed. Bold face figures indicate the type of loss function
for which the scenario is optimal. Underlying the estimations is the same random seed, which
yields a median estimate of the loss J (82) for Scenario 3b(2).

It is thus seen that the simple stochastic version of the model produces a similarly good

match for the two sample periods, at least as far as the more elementary set of moments

is concerned.

The match of SD–2a(1) and SD–2a(2) can furthermore be contrasted with that of the

New-Keynesian model, as it was estimated in Franke (2011b). The (partial) reproduction

of the latter result in column NK–a in Table 6 shows a similar performance of the Old- and

New-Keynesian model; none of them is superior to the other in the present context. 37 It

37 As concerns the notation when comparing J (79) for SD–2a and NK–a, footnote 32 may be taken
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is interesting to note that nevertheless some of the common parameters come out quite

distinct. In the first instance, these are the slope κ in the Phillips curve and the two

noise levels for output and inflation, σy and σπ.

Let us next consider the raggedness moments. Trivially, this increases the loss function

for SD–2a(1), SD–2a(2) and NK–a. However, the increase of Ĵ (82) versus Ĵ (79) is much

more moderate than it was for SD–2a and NK–a in GI (cf. the last row in Table 1).

The main reason for this is the lower empirical raggedness of the inflation gap in GM

and so, with R(πt) = 0.84 versus R(πt) = 0.91 in GI, the models have less difficulty

reproducing it. For example, while SD–2a and NK–a in GI are burdened with t-statistics

higher than 15 in modulus (see Table 2), the estimations SD–2a(1) and SD–2a(2) in GM

imply a perfect match with t-statistics of −0.07 and −0.28, respectively; on the other

hand, the t-statistics for R(yt) are worse with 5.39 and 5.40. Not the single statistics but

the overall effect is similar for NK–a, which gives rise to values of −4.83 for R(πt) and

0.85 for R(yt).

These observations suggest that when now all of our moments are included in J (82),

we will get a better performance than in GI. For the corresponding model versions SD–

2b, we proceed in the same way as for SD–2a. The most important result is that these

estimations are fraught with the same identification problem as before. Employing the

same random seeds as in Figure 7, the functions Ĵ (82) = Ĵ (82)(απ) are even, except for

the higher scale, an almost exact reproduction of the functions Ĵ (79) = Ĵ (79)(απ) in that

figure. Also the functions for the two parameters κ and γ resemble closely those in Figure

7. A diagram like Figure 7 would therefore be superfluous for SD–2b.

Regarding the presentation of the numerical parameter estimates and the level of the

total loss, we again choose the adjustments απ = 0.02 and απ = 1.00; see columns

SD–2b(1) and SD–2b(2) in Table 6. The parameter values from these estimations are

generally not too different from the previous ones, with the exception of the noise σy in

the output adjustments. Consequently this leads to a considerable deterioration in the

matching of the autocovariances, as indicated by the increase in J (79). In exchange, the

minimized values of Ĵ (82) are only marginally higher than J (79). Hence the lower level of

σy primarily contributes to a better matching of the raggedness of the output gap, the

t-statistics of which drop from around 5.40 for SD–2a to approximately 0.30. Thus all

three raggedness moments are now exceptionally well reproduced in SD–2b.

How does the New-Keynesian model perform under the enriched loss function? The

main details of the estimation of this model with J (82) are reported in the last column

of Table 6 as NK–b. Concerning the overall goodness-of-fit, we see that again the Old-

and New-Keynesian models are equally good. There are only differences in that NK–b is

better than SD–2b in matching the autocovariances (J (79) = 45.64 versus losses of more

into into account for the latter. The complete parameter estimates of NK–a as well as NK–b are
reported in Appendix A5.
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than 56), and SD–2b is better in matching the raggedness of the dynamic variables.

Back to the Old-Keynesian model, the general evaluation of SD–2b(1) is the same as

for SD–2a(1): it provides the best match but the extremely low values of απ and γ pose

a severe credibility problem. As remarked above, because of the minor losses associated

with them one may therefore decide on higher values of these parameters, where απ =

1.00 in SD–2b(2) represents the polar case. The latter is also worth presenting since

the corresponding estimate of γ is so close to unity. Actually, note that in the limit,

for απ = 1 and γ = 1, eqs (8) and (10) governing the inflation dynamics simplify to a

special Phillips curve where the variations in expectations or the inflation climate, for

that matter, play no longer any role. By virtue of the maximum central bank credibility,

this Phillips curve is also perfectly anchored on the target rate of inflation π?,

πt = π? + κ yt + επ,t + χπy εy,t−1 (21)

(the coefficient χπy is presently still equal to zero). To complete this reasoning, the

increase in Ĵ (82) will be negligible when we fix γ directly at one and estimate the model

once more; the loss just rises from 60.25 in SD–2b(2) to 60.28. We should like to point out

that the parsimony of eq. (21), which frees us from the two parameters απ and γ, could be

regarded as a solution to the original identification problem. After the discussion above

we know that the decline in the matching that we trade off for this is easily acceptable.

5.3. Estimations of the full stochastic model

It remains to include the cross random effects into the stochastic model. We abstain from

the estimations without the raggedness moments, which would have been version SD–3a,

and proceed straight to the minimization of the loss function J (82), which gives us SD–

3b. Again, we exogenously vary απ over the entire unit interval and estimate the other

parameters, which by now total 13. The functions of the resulting losses Ĵ (82) = Ĵ (82)(απ)

for the same two random seeds as above are depicted in the top panel of Figure 8.

Also here, for both cases a minimum is obtained at a low value of απ. For the random

seed that gives rise to the bold (red) line in the diagram, it is this time as extreme as

απ = 0.001. The corresponding parameter estimates are given in column SD–3b(1) in

Table 6. This estimation is even less trustworthy than its counterparts SD–2a(1) and

SD–2b(1) above. In contrast to them, the obvious expectation dramatically fails that a

ceteris paribus lowering of απ to precisely zero should produce no substantial differences:

J (82) jumps from 28.62 to a value higher than 400. Strangely enough, re-estimating the

model with απ = 0 reduces the loss to the previous order of magnitude, Ĵ (82) = 29.47,

without any greater changes in the parameters. Because of the excessive sensitivity of

the loss function in that region of the parameter space, estimation SD–3b(1) will thus

better be discarded.
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Figure 8: Estimations of SD–3b from two different random seeds
under exogenous variations of απ (GM).

As it was observed for the previous estimations, the reactions of the minimized losses

to the variations in απ are again fairly limited, so that the identification problem persists.

Now, however, the function Ĵ (82) = Ĵ (82)(απ) decreases rather than increases from a cer-

tain and relatively low level of απ on. As a result, the function attains another minimum

at the upper bound απ = 1.00, and at least for the two cases shown in Figure 8 it happens

to be lower than the first one. As here the corresponding estimate γ̂ is practically equal

to one, we have two reasons for settling down on this situation: first the above argument

of the parsimony of the thus (approximately) implied Phillips curve (21), and second the

fact that it even constitutes a global minimum.

The outcome is estimation SD–3b(2) in Table 6, which we put forward as our show-

case estimation for the Great Moderation. To justify the particular random seed it has

underlying we add that after running 1000 estimations with απ fixed at unity it was

selected as the seed yielding the median loss. 38

The second panel in Figure 8 plots the estimates κ̂ = κ̂(απ) of the Phillips curve

slope parameter. Unlike the function in Figure 7, it remains essentially constant from

38 To make sure, it may be repeated that the same random seed has then been employed for the
previous estimations in Table 6 and for the bold (red) lines in both Figure 7 and 8.
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απ = 0.40 on and does not rise again after its initial decline. The estimates γ̂ = γ̂(απ)

are close to one over practically the entire range of απ (cf. estimation SD–3b(1)). As this

makes a graph uninteresting, the bottom panel of 8 presents the induced variations of

φ̂b = φ̂b(απ), from which we see that throughout and quite independently of απ herding

plays a certain role; not a very striking one but still stronger than in GI. The other

parameter estimates behave in similar ways, except for the intensity σ̂y of the supply

shocks, which is inversely related to απ.

If we consider the absolute level of the loss in SD–3b(2), we observe that including

the crossover random effects as they are represented by the two parameters χπy and

χfπ achieves a sizeable improvement over model SD–2b and thus also over the New-

Keynesian model NK–b. Again, as in GI, in the context of the full stochastic version the

Old-Keynesian model can be said to outperform the New-Keynesian model.

There is nevertheless a slight difference of GM from GI. In GI, both SD–3b and NK–b

yield a similar good match of the raggedness moments and the superiority of SD–3b

originates with the autocovariance moments. In GM, the superiority of SD–3b is more

evenly distributed across both types of moments. Apart from that, a comparison of the

corresponding minimized losses shows for all models a tendency for a better matching in

GM than GI.

For a finer analysis we can additionally ask which of the two parameters χπy and χfπ

provides a stronger contribution to the improvement by the full model. The answer is

χfπ, that is, the crossover effects from the supply shocks επ,t to the business climate

in eq. (13) are more important than the demand shocks εy,t in (indirectly) the Phillips

curve. If χfπ is fixed at zero and χπy is treated as a free parameter, the loss Ĵ (82) = 60.25

in SD–2b(2) falls to Ĵ (82) = 59.35 only. Conversely, if χπy is fixed at zero and χfπ is freely

estimated, a reduction to Ĵ (82) = 36.62 is obtained. Nonetheless, adding now χπy as a

free parameter succeeds in a nonnegligible further improvement down to Ĵ (82) = 27.54.

At the end, the precision of the parameter estimates in SD–3b(2) should be examined.

Of course, the same bootstrap re-estimations are applied as for GI in Section 4.6. There

are only two differences. First, we commit ourselves to the polar case of the scenario where

απ and γ are both fixed at unity. Second, we draw on our explorations where we found

a strong tendency of the policy coefficient µπ toward one (and even lower values if this

lower boundary was dropped). Hence we also fix µπ = 1.00 right away. The other details

of the re-estimations have been described above, so we can directly turn to the marginal

frequency distributions in Figure 9 for the 11 remaining parameters. The median values

and the confidence intervals derived from them are reported in Table 7, which may also

be compared with Table 3 for GI.

A by-product of these re-estimations was that they enable us to characterize the overall

goodness-of-fit by the handy statistic of a single p-value for the model. Equation (20)

thus established a value of 21.5% for GI. As there the benchmark scenario gave rise to a

median loss of J (82) = 43.08, whereas now SD–3b(2) yields J (82) = 27.54, a considerably
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απ = 1.00 γ = 1.00

µπ = 1.00

Figure 9: Frequency distributions of the re-estimated parameters for SD–3b(2) (GM).

Note: The shaded areas represent 95% of the estimates. The short (red) vertical bars indicate
the estimates from Table 6.

higher p-value will be expected for the GM benchmark scenario. Actually, we obtain,

p-value of SD–3b(2) for GM = 90.0% (22)

One might suspect that (22) is in fact too good to be true. A possible explanation of it

could be that our setting of απ = γ = µπ = 1.00 is overly restrictive and causes unduly

high losses in the bootstrap distribution {Jb}. To check this, we drop the constraint and

repeat the entire re-estimation experiment with 14 free parameters. By construction, the

new bootstrapped losses will be somewhat lower. Nevertheless, the resulting reduction

in the p-value is fairly limited: what we get in this way is a new p-value of 88.5%.

In sum, we do not take the p-value in (22) literally but content ourselves with the

conclusion that it is indicative of a very good or even excellent match. Then, however,

we should not forget to add that this holds with respect to the moments as we have

chosen them. It goes without saying that by including additional moments in the esti-

mations which are qualitatively different from the ones employed so far, the matching

statistic would tend to deteriorate. The present moments, however, represent our present

ambitions of what dynamic properties a small-scale Old-Keynesian model should be able

to reproduce.
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φb φi η σy

0.17 0.09 3.70 0.01
Median GI : 0.65 0.17 5.95 0.02

1.24 0.26 11.67 0.28

κ απ γ σπ

0.21 — — 0.11
Median GI : 0.44 1.00 1.00 0.41

0.63 — — 0.73

µi µπ µy σi

0.70 — 0.79 0.20
Median GI : 0.80 1.00 1.25 0.32

0.89 — 2.49 0.56

χπy χfπ

12.1 0.40
Median GI : 38.0 0.91

80.1 1.86

Table 7: Median values and confidence intervals from the re-estimations
of SD–3b(2) (GM).

Note: The figures shifted up- and downwards are the upper and lower bounds of the confidence
intervals; the standard percentile intervals for φb, η, σy, µy, σi, χfπ, and Hall’s intervals for
the other parameters.

6. Conclusion

The point of departure of the present paper was contemporary macroeconomic theory

and the rich estimation literature it has brought forward. We expressed our preference for

the method of simulated moments, according to which a set of model-generated summary

statistics should come as close as possible to their empirical counterparts. Briefly saying,

it is a more transparent estimation approach than the currently dominant likelihood pro-

cedures. In the context of the New-Keynesian stochastic three-equations models of the

New Macroeconomic Consensus, a result from recent research was particularly remark-

able: referring to the profiles of the autocovariances of output, inflation and the interest

rate up to eight quarterly lags, such a model was found to provide a superb match. If

unorthodox theory is to compete with mainstream theory and gain more acceptance,

it has to understand this success as a challenge and try to develop models of similar

complexity with a similar goodness-of-fit.

Taking up a fresh Old-Keynesian model (Franke, 2011a) from the literature, the paper

claims to be a contribution that can fulfill these needs. Treating the periods of the so-
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called Great Inflation (GI) and Great Moderation (GM) separately, the deterministic

version exhibits an already respectable match in both of them, though it does not yet

come up to the New-Keynesian model. This becomes possible if monetary policy as well

as demand and supply random shocks are introduced. A simple stochastic version is

limited to the direct shock effects, while a more detailed one adds two crossover effects.

As a result, these two versions are able to achieve a similar good matching to the New-

Keynesian model.

The paper also extends the estimation framework with the additional requirement

that the abovementioned three model variables should reproduce the different degrees of

raggedness in the empirical series. We established that at this level the elaborate Old-

Keynesian model clearly outperforms the New-Keynesian model. This comes, however, at

the ‘price’ of weakening the attractive herding component in the Old-Keynesian model;

or it may even completely disappear so that, as in the New-Keynesian model, the real

interest rate channel becomes the main dynamic mechanism.

This discussion emphasizes the excellent matching properties of the Old-Keynesian

model. Regarding the parameter estimates that we obtain, certain problems should not be

concealed. One is the possible absence of monetary policy shocks in GI. It was indicated

that this shortcoming could be remedied by employing a slightly different (and perhaps

more palatable) variant of the Taylor rule which replaces the lagged interest rate with

serially correlated policy shocks.

More fundamental are possible identification problems, especially in GM. Three re-

marks may be in order here. First, the situation can be accepted as it is, regarding the

lack of identification as a price that one may have to pay for flexible modelling with

a richer structural description. Second, although denounced by econometricians, some

parameters may be fixed exogenously. This will, in particular, be satisfactory or even

welcome if they constitute a polar case that leads to a more parsimonious version of

the original model, without deteriorating the previous matching too much. Third, from

a positive point of view one has some reason to hope that, if there is a continuum of

parameter combinations with no great differences in the fit, a suitable subset of them

will be able to reproduce several additional moments not yet included in our estimations.

These are some immediate problems for future research. For the time being, however,

we are satisfied with the moment matching properties of the Old-Keynesian model and

its competitiveness vis-à-vis the New-Keynesian rival model.

Appendix A1: Bootstrap distribution of the empirical second moments

The following procedure is a modification of the block bootstrap, which seems more

appropriate to us for the present problem. As will become clear in a moment, it may be

called a period–cum–history sampling bootstrap. Although it is straightforward, we have

so far not found another example of its application in the literature.
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The estimations are concerned with the auto- and cross-covariances of the three

macroeconomic variables xt, πt, rt over a sample period of size T . For two represen-

tative empirical variables pt, qt from the ‘true’ data generation process of the real world

(p, q = x, π, r), the sample covariance γpq(h) := Cov(pt, qt−h) with lag h ≥ 0 is given by

γpq(h) = (1/T )

T∑
t=1+h

(pt − p̄) (qt−h − q̄) , h = 0, 1, . . . , H ,

where p̄ = (1/T )

T∑
t=1

pt , q̄ = (1/T )

T∑
t=1

qt

(H being the maximal lag in the covariances we are dealing with.) With a view to the

bootstrap procedure specified in a moment, it is convenient to define the set of the time

indices

Io = { 1, 2, . . . , T }

and rewrite this empirical covariance as

γemppq (h) = (1/T )
∑
t∈Io

(pt − p̄) (qt−h − q̄) (qτ = 0 if τ ≤ 0)

(the superscript ‘emp’ has been added for greater clarity.)

Bootstrapping summary statistics that involve lagged values of the dynamic variables

is usually carried out as a block bootstrap of the time series data. This is not an entirely

satisfactory procedure because the independence between the randomly selected single

blocks cannot reproduce the dependence structure of the original sample, a phenomenon

known as the join-point problem. In addition, the variability of various moments may

thus be increased (cf. Andrews, 2004, p. 674).

While these are serious problems in likelihood or dynamic regression estimations, 39

they can be circumvented in the present moment matching approach. To put up a boot-

strap sample b, we need not form a new series of consecutive data points and compute

the moments from them, but we can sample directly from the time indices: alternatively

to Io they give us a new set Ib on which we can base the same calculations as above.

Accordingly, a bootstrap sample in our approach is constituted by T random draws

with replacement from the set Io (each time index having the same probability 1/T ).

Repeating this B times, we have b = 1, . . . , B index sets

Ib = { tb1, tb2, . . . , tbT }

from which analogously to the empirical magnitudes we can subsequently obtain the

bootstrapped moments

39 For which Andrews (2004) proposes the concept of a block-block bootstrap.
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γbpq(h) = (1/T )
∑

t∈Ib, t>h
(pt − p̄b) (qt−h − q̄b) , h = 0, 1, . . . , H; b = 1, . . . , B;

where p̄b = (1/T )
∑
t∈Ib

pt , q̄b = (1/T )
∑
t∈Ib

qt

Note that while in an empirical covariance γemppq (h) exactly h of the T terms in the sum

are vanishing, there may be more or less such zero terms in a bootstrapped covariance

γbpq(h). In this way also the first h time indices 1, . . . , h can contribute to the variability

in these moments, although this effect might not appear fully appropriate. It could be

avoided by fixing tbh = h for h = 1, . . . , H in the index set Ib and sampling only from

the remaining time indices H+1, . . . , T . Such a device might indeed be acceptable for

lags h close to the maximum lag H, but would unduly restrict the bootstrap variability

of the covariances at shorter lags, for which more data than from period H+1 onward

are available. 40

Having completed the calculations of all of the γbpq(h), we can for each such moment

compute the variance

Var[γpq(h)] = (1/B)

B∑
b=1

[ γbpq(h)− γ̄pq(h) ]2 , γ̄pq(h) := (1/B)

B∑
b=1

γbpq(h)

As made explicit in (2), the reciprocals form the diagonal of the weighting matrix W

in the loss function. The square roots of these variances, i.e. the bootstrapped standard

errors, can also be used to compute t-statistics in order to assess the deviations of the

model-generated from the empirical moments; see eq. (3).

Appendix A2: The standard percentile and Hall’s percentile confidence
interval

Let a collection { θ̂b : b = 1, . . . , B } of parameter re-estimates be given, as stated in (5).

With respect to a significance level α = 0.05, let θ̂i,L be the estimate from (5) such that

only a fraction α/2 of all the bootstrap estimates θ̂bi are less than this value, and likewise

θ̂i,H the estimate that is exceeded by only α/2 of the bootstrap estimates. The standard

percentile confidence interval is then given by

CIS(θi) = [ θ̂i,L, θ̂i,H ] (A1)

(the index S indicating that (A1) is regarded as the standard method.) If the original

estimate θ̂i from (1) lies on the boundary of the admissible set of the parameters, Θ, and

θ̂i,L (or θ̂i,H) coincides with it, then θ̂i,H (or θ̂i,L) itself will be the (1−α/2)-quantile (the

α/2-quantile, respectively).

40 Another option would be to use the data prior to the sample period for the lagged covariances.
We experimented with this alternative but found that already at medium lags the covariances of
the Great Moderation period were somewhat strangely influenced by the preceding data.
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Although (A1) is a straightforward specification, it has to be taken into account that

it may not have the desired coverage probability. In particular, if θ̂i is a biased estimate

of θoi , the bootstrap distribution may be asymptotically centred around θoi plus a bias

term. CIS(θi) is then a (1−α)% confidence interval for the latter quantity and may thus

have a grossly distorted range as a confidence interval for θoi .

An alternative to (A1) that fixes this problem is Hall’s percentile confidence interval,

which essentially is defined as

[ 2θ̂i − θ̂i,H , 2θ̂i − θ̂i,L ] (A2)

It is based on the idea that the bootstrap distribution (θ̂bi− θ̂i) approximates the distribu-

tion (θ̂i− θoi ). This implies that Prob(θ̂i,L− θ̂i < θ̂i− θoi < θ̂i,H − θ̂i) ≈ Prob(θ̂i,L− θ̂i <
θ̂bi − θ̂i < θ̂i,H − θ̂i) = 1−α, and the first probability expression is easily seen to be equal

to Prob(2θ̂i − θ̂i,H < θoi < 2θ̂i − θ̂i,L) = Prob(θoi ∈ CIH(θi)). Hence Hall’s percentile

method is asymptotically correct.

It can, however, happen that 2θ̂i − θ̂i,H falls short of a lower bound θi,aL of the

admissible range of the parameter (something which by construction is not possible with

the standard percentile interval). The lower end of the confidence interval may then be set

equal to θi,aL. Similarly so if 2θ̂i − θ̂i,L exceeds an upper bound θi,aH of the admissible

range. We leave such a modification of (A2) aside since in these cases it seems more

meaningful to resort to (A1).

Appendix A3: Data sources

It was convenient for us to extract the quarterly price and output time series from the

database fmdata.dat in the zip file fmfp.zip that is provided by Ray Fair for work-

ing with his macroeconometric model. It is a plain textfile downloadable from http://

fairmodel.econ.yale.edu/fp/fp.htm . The acronyms to identify real output and the

price deflator, respectively, are GDPR and GDPD for the GDP data, and Y and PF

for the firm sector (which essentially is nonfinancial corporate business). These ex-

planations can be found in Appendix A.4, Table A.2., of the script Estimating How

The Macroeconomy Works by R.C. Fair, January 2004, which can be downloaded from

http://fairmodel.econ.yale.edu/rayfair/pdf/2003a.pdf .

The gap series π̂t, xt, r̂t constructed from these data (detrending done by Hodrick-

Prescott with smoothing parameter λ = 1600) can be downloaded from

http://www.bwl.uni-kiel.de/gwif/downloads_papers.php?lang=en.

Appendix A4: The second moments of the New-Keynesian model

The (n×n) square matrices Ω and Φ that constitute the reduced-form solution (6) of

system (NK) can be determined by using the method of undetermined coefficients (n = 3
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presently). They are successively obtained as the (unique, under determinacy) solutions

to the following two matrix equations (In being the (n×n) identity matrix),

AΩ2 + B Ω + C = 0

(AΩ +B) Φ + AΦN + In = 0

As indicated, our aim in the moment matching estimation is that the stochastic process

(6) reproduces the autocovariances of the empirical counterparts of the variables in the

vector xt ∈ IRn. It is convenient in this respect that (6) is essentially a first-order vector

autoregression (VAR). The theoretical autocovariances can thus be easily obtained from

the closed-form expressions given, e.g., in Lütkepohl (2007). We only have to adjust the

notation by changing the dating of the shocks and rewrite (6) as[
xt
vt+1

]
=

[
Ω Φ

0 N

] [
xt−1

vt

]
+

[
0

I

]
εt+1 (A3)

With zt = (x′t, v
′
t+1)′, D = (0 I)′, ut = Dεt+1, and A1 the (2n×2n) matrix on the right-

hand side associated with the vector (x′t−1, v
′
t)
′ = zt−1, eq. (A3) can be more compactly

written as

zt = A1 zt−1 + ut , ut ∼ N(0,Σu) , Σu = DΣεD
′ (A4)

The (asymptotic) contemporaneous and lagged autocovariances of this VAR(1) are given

by the matrices

Γ(h) := E(zt z
′
t−h) ∈ IRK×K , K = 2n, h = 0, 1, 2, . . . (A5)

Following Lütkepohl (2007, pp. 26f), their computation proceeds in two steps. First, Γ(0)

is obtained from the equation Γ(0) = A1 Γ(0)A′1 + Σu, which yields

vec Γ(0) = (IK2 −A1 ⊗A1)−1 vec Σu (A6)

(the symbol ‘⊗’ denotes the Kronecker product and invertibility is guaranteed since A1

is clearly a stable matrix). Subsequently the Yule-Walker equations are employed, from

which the lagged autocovariances are recursively obtained as

Γ(h) = A1 Γ(h− 1) , h = 1, 2, 3, . . . (A7)

52



Appendix A5: The parameter estimates of the New-Keynesian model

GI GM

a b a b

φy 0.466 0.226 0.000 0.000

τ 0.112 0.192 0.289 0.283

ρy 0.000 0.130 0.000 0.366

φπ 0.326 0.823 0.567 0.612

κ 0.113 0.000 0.027 0.031

ρπ 0.000 0.000 0.000 0.000

µi 0.435 0.936 0.801 0.807

µπ 1.374 3.695 1.197 1.215

µy 0.086 4.977 1.240 1.297

σy 0.428 0.543 0.556 0.373

σπ 0.429 1.822 0.328 0.457

σi 0.000 0.283 0.307 0.335

J (79) 37.13 107.45 41.16 45.64

J (82) 286.68 119.04 65.17 59.20

Table 8: Estimations of the New-Keynesian model.

Note: Bold face figures indicate the type of loss function for which the scenario is optimal.
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