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1 Introduction

This paper analyzes incentives for intertemporal effort provision in organiza-

tions. It is common practice to use tournament-like incentive systems in such

contexts rather than providing agents with contracts that are based explicitly

on their own performance. A well-known argument for why tournaments are

often used is that they are less prone to manipulation by the principal than

standard contractual incentives: When performance is not verifiable, a prin-

cipal may claim that performance was low to save on performance pay. With

relative performance measures such as tournaments, this incentive is reduced,

because the total payments to the agents are independent of performance.

We contribute to a substantial literature that has analyzed the effects

of different designs of such contests on effort provision. We allow for two

possible objectives of the principal. First, in line with the existing literature,

we consider the case that a principal regards efforts in different periods and

by different agents as perfect substitutes and is therefore interested in the

maximization of total effort. Second, contrary to most of the existing litera-

ture, we also consider the case that the principal regards efforts in different

periods as imperfect substitutes, so that he wants them to be suffi ciently

balanced across periods.2 This is plausible when per-period profits are a

concave function of efforts in the same period. We use a particularly simple

way to capture such a situation: We assume that the principal maximizes

the product of the period efforts. This can be rationalized if period profits

are logarithmic functions of efforts.

Specifically, we consider a two-period setting with two risk-neutral agents

with identical and known abilities. In each period, the principal can conduct

a tournament with a fixed prize; we allow for the degenerate case that one

of the prizes is zero. The principal chooses a three-dimensional incentive

system. First, he decides how to spread a given total prize budget over

the two periods. Second, he chooses to which extent first-period performance

plays a role in the evaluation of agents in the second period. In particular, he

decides whether to give more weight to first- or second-period performance.

Third, the principal may or may not reveal information about perfomance in

2Aoyagi (2010) also allows for more general objective functions.
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the first period to the agents. After observing the policy, the agents choose

effort levels in each period. The principal observes the performance of each

agent, which is an imperfect measure of his effort. In period 1, he awards

the prize (if any) to the agent with the higher performance. In the revelation

regime, he communicates the performance in the first period to the agents.

In the no revelation regime, he neither communicates performance, nor who

the winner was. In period 2, the agents choose efforts again. The principal

then observes the second-period performance levels. He allocates the prize

to the agent for whom a weighted sum of first-period and second-period

performance is highest. We allow for negative and positive weights. To

sum up, the principal commits to an incentive system consisting of the prize

distribution, the information revelation regime and the weight of first-period

performance in the second-period tournament. Given this incentive system,

the agents choose their effort strategies.

We first characterize the equilibrium behavior of the agents for a given

incentive system, then we discuss the optimal choices of the principal.

In the revelation regime, every first-period performance vector results in a

second-period strategic situation that is equivalent to an ordinary asymmetric

all-pay auction with noise. The asymmetry comes from potential differences

in measured first-period performance. The larger the asymmetries resulting

from the first period, the lower the sequentially rational second-period efforts.

Moreover, both agents choose the same effort levels in the second period.

First-period efforts are identical as well. Second-period asymmetry therefore

results exclusively from error realizations. Potentially, first-period efforts

have two effects on expected second-period payoffs. First, there is a direct

effect: If, for instance, there is a positive weight of first-period performance on

the probability of winning the second-period prize, then for any given second-

period effort vector an increase in first-period effort increases the expected

second-period payoff. Second, there is an indirect (strategic) effect: Any

effort increase in period 1 affects the second-period behavior of the opponent

and thus own payoffs. In the symmetric weakly perfect Bayesian equilibrium,

the indirect effect vanishes. As a result, the characterization of first-period

efforts becomes simple, resulting from equating marginal effort costs with

the marginal benefits that consist only of the increased chances of winning
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the first-period prize and the direct effect on the chances of winning the

second-period prize.

In the no-revelation regime, the two players have to commit to both effort

levels. As a result, second-period efforts are chosen based on the expected

first-period performance rather than the actual performance. Strategic effects

of own first-period choices on the second period choices of others are therefore

absent. As in the revelation regime, the marginal benefit of higher first-

period efforts therefore consists only of the direct effects. It thus turns out

that first-period efforts are the same as in the revelation regime.

The preceding discussion has several implications for the optimal choice of

the incentive system. First, for any given choice of the remaining instruments,

the information revelation regime only affects the expected second-period

effort, but not the first-period effort. The sign of the difference between the

expected effort levels depends on third derivatives of the effort cost function.

With quadratic effort costs, there is no difference between the two cases.

When the third derivative of the effort cost function is positive, then expected

efforts are lower with revelation than without; conversely for negative third

derivative. For both types of objectives, this implies that the principal favors

the no revelation policy for a positive third derivative, while he favors the

full revelation policy for a negative third derivative. These results generalize

previous results of Aoyagi (2010) who considers only the case that there is

no first-period prize and the principal gives equal weight to efforts in both

periods in the second period prize. By considering the optimal choices of

relative prize sizes and the weights of the two periods in the second period

prize, we next show under which circumstances Aoyagi’s (2010) simplification

is justified in the sense that it arises endogenously.

We show that, for both types of objectives and general cost functions

as well as observation error distributions, the optimal weight of first-period

performance in the second-period tournament is strictly positive. This re-

sult holds for both revelation regimes. The analysis is particularly simple for

quadratic cost functions and normally distributed observation errors. The

optimal choice of the first-period weight for perfect substitutes is then com-

pletely determined by the relative precision of the first-period and second-

period observations: It is the ratio of the variances of the second-period obser-
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vation error differences and first-period-period observation error differences.

An interesting implication of this result is that it holds independently of the

distribution of first- and second-period prizes. For imperfect substitutes, the

optimal weight is the ratio of the standard deviations of second-period obser-

vation error differences and first-period-period observation error differences,

given that the principal assigns no first-period prize. Moreover, because of

the previous result that expected efforts are independent of the revelation

regime in this simple case, the same weights should be applied in both reve-

lation regimes.

Finally, we consider the optimal prize distribution. For both revelation

regimes and for perfect and imperfect substitutes, the optimal first-period

prize will be zero if the distribution of the first-period observation error dif-

ference is not too concentrated near zero, that is, suffi ciently noisy. For

quadratic cost functions and normally distributed observation errors, the

optimal first-period prize is zero for perfect substitutes, given that the first-

period weight is chosen optimally, while it is always strictly positive for im-

perfect substitutes.

The paper is organized as follows. In Section 2, we introduce the model.

In Section 3, we analyze the behavior of agents for given policies. Section 4

characterizes optimal policy. Section 5 introduces a simple example. In Sec-

tion 6, we discuss our contribution in the light of existing literature. Section

7 concludes.

2 The Model

We consider a class of two-stage tournaments. Given a fixed budget W for

effort provision, a principal chooses an incentive system I, which is a tuple
(η,W1, ρ) ∈ (−∞,∞) × [0,W ] × {0, 1} to be explained below. For given I,
agents i ∈ {1, 2} choose effort levels eit ≥ 0 (t ∈ {1, 2}).3 The properties of
the effort cost function Kit (eit) are summarized as follows:

Assumption 1: The effort cost function Kit is symmetric and time-

3In the following, the use of i and/or j as an index always implies i, j ∈ {1, 2} and
i 6= j.
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invariant, satisfies Kit (0) = 0 and K ′it (0) = 0, and is increasing and strictly

convex. K ′′′it (eit) ≥ 0 or K ′′′it (eit) ≤ 0 must hold globally.

By Assumption 1, we can write K ≡ Kit. The agents are risk-neutral

and their utility is additively separable in (expected) period-specific income

and costs. At the end of each period t, the principal observes performance,

which is an imperfect measure sit = eit+εit of effort, where the error term εit

is independently distributed across agents and periods. In each period, the

error distribution is identical for both agents. However, we allow for different

error distributions in both periods.

Based on the first-period performance, the principal awards the first-

period prize W1 to agent i if and only if si1 > sj1.4 The second-period prize

W2 = W −W1 is awarded to agent i if and only if

si2 + ηsi1 > sj2 + ηsj1.

η is the first-period weight chosen by the principal and can be interpreted as

the influence of the past on the chance of winning in the second period.

In the revelation regime (ρ = 1), the principal communicates his per-

formance assessment of both players to the agents before they choose their

second-period efforts. In the no-revelation regime (ρ = 0), the principal does

not communicate the performance assessment; he does not even communicate

who won the first-period prize.

The following notation is helpful to describe the solution of the game.

Definition 1 The error difference of player i in period t (t = 1, 2) is

∆εit = εit−εjt, his relative first-period performance is ∆si1 = si1−sj1 =

∆ei1 + ∆εit, where ∆eit = eit − ejt.

Clearly, ∆eit = −∆ejt, ∆εit = −∆εjt, ∆si1 = −∆sj1.

We make the following assumption on the error distributions:

Assumption 2 ∆εit is distributed as Ft (s) with a symmetric and con-

tinuously differentiable density ft (s), for which ft (s) > 0∀s ∈ R and that is

4In case of a tie, the principal assigns the prize to each agents with probability one
half.
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single-peaked at s = 0.5

The assumption implies that ft (s) = ft (−s), f ′t (s) = −f ′t (−s) and that
E (∆εit) = 0.

We assume that the efforts of different agents within periods are perfect

substitutes for the principal. However, we allow first- and second period ef-

forts to be either perfect or imperfect substitutes. For perfect substitutes,

the principal chooses the incentive system so as to maximize expected to-

tal efforts. For imperfect substitutes, he maximizes the expected product

of first and second-period efforts. To motivate these two different objective

functions, one should think of the principal as maximizing total profits. If

per-period profits are linear functions of total efforts in the same period,

the perfect substitutes assumption is appropriate; the imperfect substitutes

case corresponds to a logarithmic relation between efforts and profits in each

period, which is a simple example of a concave relation.6

3 Behavior of the agents

We first analyze the equilibrium behavior of agents for given policy regime.

A simple auxilliary results will often be used. The proof is straightforward

and will be omitted.

Lemma 1 (i) P (si1 > sj1) = F1 (ei1 − ej1)

(ii) P (si2 + ηsi1 > sj2 + ηsj1) = F2 (η∆si1 + ei2 − ej2)

In this section, we do not yet make the principal’s budget constraint

W2 = W −W1 explicit and simply write W2 for the second-period prize.

3.1 Full revelation

We first analyze the behavior of the agents in the revelation regime in period

2, then in period 1. In period 2, a player’s information set consists of all

5It is straightforward to show that it is suffi cient to make this assumption for one player,
as this immediately implies the statement for the other player.

6Maximizing ln (e11 + e21) + ln (e12 + e22) is equivalent to maximizing
(e11 + e21) (e12 + e22).
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combinations of period 1 efforts and error differences that are consistent with

the own first-period effort ei1 and the observed relative performance ∆si1.

We use the solution concept of Weak Perfect Bayesian Equilibrium (WPBE)

to deal with this imperfect information. The task is simplified by the fact

that period 1 enters player i’s payoffs only via ∆si1 and ei1, so that the

unobservable aspects of previous play are irrelevant for the players’choices.

A strategy σi consists of a first-period choice ei1 and a function Ei2 mapping

information sets (∆si1, ei1) to actions ei2. Given a strategy σj = (ej1, Ej2), a

player who played ei1, observes ∆si1 and assumes that player j plays σj, will

assign probability one to the event that ∆εi1 = ∆si1−∆ei1. In the following,

we will always assume that beliefs are formed in this way, without specifying

them explicitly.

3.1.1 Second-period efforts

Using Lemma 1(ii), the expected second-period payoff of agent i, conditional

on ∆si1 and ∆ei2, is7

Ui2 (ei2, ej2,∆si1; η,W2) = F2 (η∆si1 + ∆ei2)W2 −K (ei2) . (1)

Thus, the first period influences the second-period payoff via the first-period

relative performance ∆si1. The corresponding first-order condition is

f2(η∆si1 + ∆ei2)W2 = K ′ (ei2) . (2)

The following inequality will function as a global second-order condition:

f ′2 (η∆si1 + ∆ei2)W2 ≤ K ′′ (ei2) ∀∆si1 ∈ R, ei2, ej2 ∈ R+. (3)

By Assumptions 1 and 2, (3) always holds if η∆si1 + ∆ei2 > 0, that is, agent

i is ahead of agent j in terms of the sum of period 1 performance and period

2 effort differential. (3) requires K to be suffi ciently convex.8

7Since the case of a tie has zero measure, we ignore it in the formulation of the payoff
function.

8If f ′2 is bounded above, as for standard distributions, (3) holds globally if K
′′ has a

suffi ciently high lower bound.
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Though the game does not have any proper subgames because information

sets in period 2 are not singletons, payoffs in period 2 are independent of

the concrete node within an information set. We use this in the following

definition.

Definition 2 The second-period effort game induced by ∆si1 is the game

with players i = 1, 2 strategy spaces Xi = R+ and payoffs given by (1) for

(ei2, ej2) ∈ Xi ×Xj.

We obtain the following result:

Proposition 1 Suppose (3) holds. For any ∆si1, the second-period effort

game induced by∆si1 has a unique NE (e∗12(∆si1; η,W2, 1), e∗22 (∆si1; η,W2, 1)).

This equilibrium is symmetric, with

e∗i2 (∆si1; η,W2, 1) = (K ′)
−1

[f2 (η∆si1)W2] > 0 (4)

Proposition 1 has some simple but important comparative statics impli-

cations.

Corollary 1 Suppose ρ = 1, η 6= 0 and W2 > 0. Then e∗i2 is decreasing in

|∆si1| and η, and increasing in W2.

The result on |∆si1| implies that, if a laggard (an agent with ∆si1 < 0)

increases own effort or his competitor decreases efforts marginal in period 1,

the competitor increases his effort in period 2, whereas the converse statement

holds for a leader (an agent with ∆si1 > 0). The other two results identify

the straightforward effects of policy changes. In particular, increasing the

first-period weight η comes at the cost of reducing second-period efforts.

3.1.2 First-period efforts

The expected second-period utility, conditional on first-period performance

and second-period efforts, is given by (1). The expected payoff, conditional

on first-period effort choices can thus be written as

U∗i2 (ei1, ej1; η,W2) = E∆εi1Ui2(e∗i2 (∆si1; η,W2) , e∗j2 (−∆si1; η,W2) ,

∆si1; η,W2).
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With the characterization (4) of efforts in period 2, it is possible to char-

acterize the expected marginal effect of first-period payoff on second-period

payoff, which consists of two components. First, suppose η > 0. 9 For

any given second-period effort vector, the expected second-period payoff is

increasing in first-period effort. This is the direct effect of first-period effort.

Second, there is an indirect (strategic) effect: Any effort increase in period

1 affects the second-period behavior of the opponent and thus own payoffs.

For any choice of efforts and any realization of first-period error differences

where ∆si1 > 0, a higher ∆si1 would have led to lower ej2. Hence, if player

i had anticipated ∆si1 correctly, he would have had a strategic incentive to

increase ei1. Conversely, for ∆si1 < 0 there would have been a strategic in-

centive to reduce ei1. However, even if player i has certain beliefs that player

j chooses ej1, he only knows the distribution of ∆si1. In particular, he knows

that ∆si1 > 0 is more likely if ∆ei1 > 0. As a result, if player i has chosen

ei1 > ej1, a marginal increase in first-period effort makes the second-period

contest less competitive on expectation and thereby induces less effort of the

opponent (Corollary 1). Conversely, starting from a situation where player i

has chosen ei1 < ej1, marginally higher effort reduces the expected asymme-

try, which tends to increase second-period effort of the opponent. The effects

just described cancel out when first-period efforts are identical, so that the

strategic effect is zero. Using (1), the expected marginal effect of first-period

effort on second-period payoff simplifies to

∂U∗i2
∂ei1

∣∣∣∣
ei1=ej1

= 2ηW2

∫ ∞
0

f2 (ηs) f1 (s) ds (5)

Using Lemma 1(i), agent i’s optimization problem in period 1 is

max
ei1≥0

F1 (ei1 − ej1)W1 + U∗i2 (ei1, ej1; η,W2)−K (ei1) .

The corresponding first-order conditions is

f1 (∆ei1)W1 +
∂U∗i2
∂ei1

= K ′ (ei1) . (6)

9For η < 0, the argument is reversed.
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The second-order condition is

K ′′ (ei1) ≥f ′1 (∆ei1)W1 (7)

+ ηW2

∫ ∞
0

f2 (ηs) [f ′1 (s+ ∆ei1)− f ′1 (s−∆ei1)] ds

+ ηW 2
2

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f ′1 (s+ ∆ei1) + f ′1 (s−∆ei1)]

K ′′
(
(K ′)−1 (f2 (ηs)W2)

) ds

∀ei1, ej1 ∈ R+

The left-hand side of (7) is increasing in K ′′, while the right-hand side is

decreasing in K ′′. For given policy parameters and distributions, it therefore

holds as long as K is suffi cently convex.10

The following condition is needed to exclude corner solutions in period 1:

f1 (0)W1 + 2ηW2

∫ ∞
0

f2 (ηs) f1 (s) ds ≥ 0. (8)

(8) is only binding for negative η. For these, it essentially guarantees that the

punishment by weighting first-period performance negatively in the second

period is not prohibitively high. We will actually show in the later analysis

that the principal will never choose negative values for η.

We are now ready to characterize the WPBE:

Proposition 2 Suppose (3), (7) and (8) hold. For ρ = 1 (full revelation),

the game has a unique symmetric WPBE. Second-period efforts are given as

in Proposition 1. First-period efforts satisfy

e∗1 (η,W1,W2, 1) = (K ′)
−1

[
f1 (0)W1 + 2ηW2

∫ ∞
0

f2 (ηs) f1 (s) ds

]
> 0 (9)

Plugging the equilibrium efforts (9) in period 1 into the equilibrium efforts

(4) of the effort game and taking the expectation over ∆εi1, we obtain:

10As for the second-period effort games, the first-order condition can be guaranteed to
hold if if K ′′ has a suffi ciently high lower bound, whenever the slopes of f1 and f2 are
bounded.
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Corollary 2 The expected efforts in period 2 under the full revelation regime
satisfy

E (e∗2 (η,W2, 1)) = 2

∫ ∞
0

(K ′)
−1

[f2 (ηs)W2] f1 (s) ds (10)

3.2 No revelation

In the no-revelation regime, the maximization problem boils down to a simul-

taneous choice of first- and second-period efforts. The optimization problem

of agent i is thus

max
ei1≥0,ei2≥0

F1 (∆ei1)W1 + (11)

W2

∫ ∞
−∞

F2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds−K (ei1)−K (ei2) .

In this term, the integral is the probability of winning in the second period,

conditional on first-period effort choice and second-period effort choice.11

This leads to a simple characterization of the Nash equilibrium (NE).

Proposition 3 Suppose that (8) and the SOC (34), (35), and (36) hold. For
ρ = 0 (no revelation), the game has a unique symmetric NE. The equilibrium

efforts satisfy

e∗1 (η,W1,W2, 0) = (K ′)
−1

[
f1 (0)W1 + 2ηW2

∫ ∞
0

f2 (ηs) f1 (s) ds

]
(12)

> 0

e∗2 (η,W2, 0) = (K ′)
−1

[
2W2

∫ ∞
0

f2 (ηs) f1 (s) ds

]
> 0 (13)

Both effort levels reflect standard cost-benefit calculations. Here, the

marginal benefit of first-period efforts contains the increased winning prob-

ability in period 2. In the appendix, we show that in equilibrium (34), (35),

and (36) are automatically implied by the convexity of the cost function.

11This follows from Lemma 1(ii).
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3.3 Comparing full and no revelation efforts

First-period efforts are equal under both revelation regimes, reflecting the

fact that the positive marginal effect of first-period effort on expected second

period payoffs is identical. Intuitively, a marginal increase of ei1 has beneficial

second-period effects if it suffi ces to tip the balance in period 2 in favor

of player i. The probability that this happens is independent on whether

information on ∆si1 is revealed to players before they choose second-period

efforts, which is captured by 2
∫∞

0
f2 (ηs) f1 (s) in both cases.12 From now

on, we simply write e∗1 (η,W1,W2) for first-period equilibrium efforts. Using

Jensen’s inequality, we can compare the (expected) second-period efforts.

Proposition 4 (i) ∀η,∀W2 > 0, e∗2 (η,W2, 0) ≥ E (e∗2 (η,W2, 1)) if K ′′′ ≥ 0.

(ii) ∀η,∀W2 > 0, e∗2 (η,W2, 0) ≤ E (e∗2 (η,W2, 1)) if K ′′′ ≤ 0.

This result implies that second-period efforts are equal in expected value

for quadratic costs under both revelation regimes. Intuitively, the role of K ′′′

is an immediate consequence of the fact that second-period efforts are the

inverse of the expectation of marginal costs for ρ = 0 and the expectation

of the inverse of marginal costs for ρ = 1. Thus, concavity (convexity) of

the inverse marginal costs is decisive for which regime yields higher efforts

on expectation.

4 Optimal policy

We now characterize the optimal policy of the principal. To this end, we fix

the total budget as W , so that W2 = W −W1 must hold. Since the effort

profile is always symmetric, we can write the principal’s objective in terms of

the efforts of only one agent. Taking into account that first-period efforts are

non-stochastic, the principal’s objective functions for perfect and imperfect

12In this argument, it is important to start from the respecive equilibria, with equal
efforts in both periods.
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substitutes, respectively, are:

V P (η,W1, ρ) ≡ e∗1 (η,W1,W −W1) + E (e∗2 (η,W −W1, ρ)) (14)

V I (η,W1, ρ) ≡ e∗1 (η,W1,W −W1) · E (e∗2 (η,W −W1, ρ)) . (15)

4.1 Choosing the revelation regime

Since first-period efforts are non-stochastic and equal under both revela-

tion regimes, the choice of the revelation policy hinges on whether it in-

duces higher (expected) second-period efforts, no matter whether efforts

are perfect or imperfect substitutes. Proposition 4 applies to all values of

η and W1 and, in particular, to those that maximize e∗2 (η,W −W1, 0) or

E (e∗2 (η,W −W1, 1)). Thus, even if the principal has chosen the optimal

parameters for a given revelation policy, switching to the other revelation

policy is beneficial if the corresponding condition on K ′′′ holds. Hence, we

have proven:

Corollary 3 The optimal revelation policy is the same for perfect and imper-
fect substitutes. Maximizing expected payoff implies setting ρ = 0 if K ′′′ ≥ 0

and ρ = 1 if K ′′′ ≤ 0. For K ′′′ = 0, expected payoffs are independent of the

revelation regime.

4.2 Optimal policy choice for given revelation regime

For information revelation regimes ρ = 0 and ρ = 1 with perfect substitutes,

we denote the optimal choice of η conditional on W1 as ηP (W1, ρ) and the

optimal choice ofW1 conditional on η asW P
1 (η, ρ). For imperfect substitutes,

we write ηI(W1, ρ) and W I
1 (η, ρ).

4.2.1 Full revelation

We obtain the following results on the performance weight η.
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Proposition 5 (i) ηP (W1, 1) > 0 and ηI(W1, 1) > 0 for all W1 < W .

(ii) Suppose K ′′′ = 0 and W1 = 0. Then ηP (W1, 1) > 1 if and only if∫ ∞
0

f2 (s) f1 (s) ds > 2

∣∣∣∣∫ ∞
0

sf ′2 (s) f1 (s) ds

∣∣∣∣ (16)

Result (i), states that, no matter how high the share of period 1 of the

overall prize sum is, there should still be a positive weight of past perfor-

mance in the second-period contest. This result holds because, for η = 0, the

marginal effect of η on first-period effort is bounded away from zero, while

its marginal effect on second-period effort is zero. To understand the second-

period effect of η, it is important to note why increasing η has an adverse

effect on second-period efforts for η > 0. As η increases, any first-period

outcome is effectively translated into a more asymmetric second-period con-

test, with weaker competition; the size of the effect is driven by the slope of

the density at η∆si1 = η∆εi1. As this slope tends to zero with η, so does

the adverse effect of higher weight of the past. Result (ii) addresses the spe-

cific setting where there is only a second-period prize and asks which period

should get higher weight in the contest. The trade-off is clear: A lower period

one weight intensifies second-period competition, but reduces first-period in-

centives. (16) describes how this trade-off should be resolved. As before,

the left-hand side captures increases in first-period incentives from a higher

weight η, which are particularly high when close outcomes are likely. The

right-hand side captures the reduction in second-period incentives arising

from making the second-period contest less competitive.

Next, we ask under which circumstances there should only be one prize.

The result will rely on the assumption that K ′′′ ≤ 0. This is not a seri-

ous restriction: Proposition 4 states that K ′′′ ≤ 0 is the case in which full

revelation is optimal.

Proposition 6 Suppose K ′′′ ≤ 0.
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(i) W P
1 (η, 1) = 0 (W P

1 (η, 1) = W ) for all η > 0 if

f1 (0) < (>)
1

W
K ′
[
(K ′)

−1

(
2ηW

∫ ∞
0

f2 (ηs) f1 (s) ds

)
(17)

+2

∫ ∞
0

(K ′)
−1

(f2 (ηs)W ) f1 (s) ds

]
.

(ii) W I
1 (η, 1) = 0 for all η > 0 if

f1 (0) < 2η

∫ ∞
0

f2 (ηs) · f1 (s) ds. (18)

Otherwise W I
1 (η, 1) ∈ (0,W ).

For perfect substitutes (i), it is never optimal to have two prizes. To

understand the intuition for when the money is allocated to period 1 or 2,

respectively, note that Wf1 (0) is the marginal benefit for the agent from

exerting first-period effort when there is no second-period prize; hence, f1 (0)

is the increase in this marginal benefit that is induced by a marginal increase

in the first-period prize. Thus, when the left-hand side of (17) is small and

hence a close first-period outcome is unlikely in the symmetric equilibrium,

higher first-period prizes do not improve first-period effort incentives much.

The right-hand side of (17) captures increases in incentives from higher W2.

Intuitively, a small increase in second-period effort is valuable for the agent

when there is a high probability that the overall performance of the agents

after two periods is similar, that is, when it is likely that one player has a

lead of approximately s from period 1 and the other player has a lead of ηs

in period 2. The right-hand side of (17) tends to be large when such close

outcomes are likely.13

13More precisely, suppose W = W2. Moreover, for simplicity, consider the benchmark
case that K ′′′ = 0, so that the right-hand side of (17) simplifies to

1

W
K ′
[
(K ′)

−1
(
2ηW

∫ ∞
0

f2 (ηs) f1 (s) ds

)
+ (K ′)

−1
(
2W

∫ ∞
0

f2 (ηs) f1 (s) ds

)
When there is no first-period prize, 2η

∫∞
0
f2 (ηs) f1 (s) ds is the effect of a higher prize on

the marginal payoff of the principal from higher first-period effort and
∫∞
0
f2 (ηs) f1 (s) ds

is the effect of a higher prize on the expected marginal payoff from increasing second-period
efforts. Thus increases in these marginal payoffs lead to an increase in the right-hand side.
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For imperfect substitutes (ii), interior solutions are possible, reflecting

the importance of an even intertemporal effort distribution. The conditions

under which the prize budget is nevertheless concentrated on period 2 are

similar to those for perfect substitutes: (18) requires that first-period error

differences near zero are not too common, whereas error differences from

period 1 and period 2 often cancel out approximately.

4.2.2 No revelation

In the revelation case, it is also true that first-period weights should be

positive.

Proposition 7 ηP (W1, 0) > 0 and ηI(W1, 0) > 0 for all W1 < W .

The intuition for the result is as in the case of full revelation. We now ask

how the prize money is optimally spread across periods. Again, we restrict

the third derivative of the cost function in such a way that the revelation

regime is optimal by Proposition 4.

Proposition 8 Suppose K ′′′ ≥ 0.

(i) W P
1 (η, 0) = 0 if

f1 (0)− 2η
∫∞

0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (2ηW ∫∞

0
f2 (ηs) f1 (s) ds

)] (19)

−
2
∫∞

0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (2W ∫∞

0
f2 (ηs) f1 (s) ds

)] ≤ 0.

(ii) W P
1 (η, 0) = W if

f1 (0)− 2η
∫∞

0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (f1 (0)W )

] −
2
∫∞

0
f2 (ηs) f1 (s) ds

K ′′ (0)
≥ 0. (20)

(iii) If neither (19) nor (20) holds, W P
1 ∈ [0,W ].

Again, the reason forW1 > 0 is analogous to Proposition 5. In particular,

a suffi cient condition for W P
1 (η, 0) = 0 is f1 (0)− 2η

∫∞
0
f2 (ηs) f1 (s) ds < 0.

Arguing as in the discussion of Proposition 5, the condition is fulfilled if the
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density does not have too much weight near 0, and it is likely that a lead

from period 1 is approximately cancelled out after period 2..

5 Example

We introduce a simple normal-quadratic example which allows us to obtain

explicit solutions for the equilibrium efforts and the optimal policy in terms

of primitives.

Example E1: The cost function is K (eit) = k
2

(eit)
2. The error differ-

ence ∆εit is normally distributed with variance σ2
t . Furthermore,

k ≥ W

σ2
2

√
2π exp (1)

(21)

k ≥ W

σ2
1

√
2π exp (1)

+
W 2

σ2
1σ

2
2 (2π)

3
2

√
exp (1)

1

k
(22)

Example E1 satisfies assumptions 1 and 2 directly, and satisfies the second-

order conditions (3) and (7) (see the proof of Corollary 4).

Corollary 4 In E1, a WPBE exists. The first-period equilibrium efforts for

ρ = 0 and ρ = 1 are

e∗1 (η,W1,W2) =
W1

kσ1

√
2π

+
ηW2

k
√

2π
√

(σ2)2 + (σ1)2 η2

. (23)

The second period efforts for ρ = 0 and the expected second-period efforts for

ρ = 1 are

e∗2 (η,W2, 0) = E (e∗2 (η,W2, 1)) =
W2

k
√

2π
√

(σ2)2 + (σ1)2 η2

. (24)

Comparative statics for second-period efforts are straightforward. Lower

effort costs, higher second-period prize, lower first-period weight and higher

second-period precision work in favor of high second-period efforts. Analo-

gous results hold for period one. More interestingly, first-period efforts also
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increase if the second-period precision increases, given η > 0: The parameter

change makes first-period effort more worthwhile, because the positive effect

on winning the second-period prize increases. The effect of prizes on first-

period efforts is slightly more subtle. If the budget constraint (W1 + W2)

is not taken into account, both prizes have positive effects on first-period

efforts. However, the positive effect of an increase in the first-period prize

is always stronger than the negative effect of an identical decrease in the

second-period prize. As a result, the following result holds.

Corollary 5 When the total budget is fixed at W , e∗1 is increasing in W1.

Corollary 4 immediately leads to a simple characterization of the optimal

first-period weight and the optimal first-period prize for the principal who

regards efforts as perfect substitutes or as imperfect substitutes.

Corollary 6 For the normal-quadratic case,
(i) ηP (W1, 0) = ηP (W1, 1) =

σ22
σ21
∀ W1 > 0, W P

(
σ22
σ21
, 0
)

= W P
(
σ22
σ21
, 1
)

= 0.

(ii) ηI (0, 0) = ηI (0, 1) = σ2
σ1
, W I (η, 0) = W I (η, 1) > 0 ∀ η ≥ 0.

The corollary sharpens the general results of Section 4. It shows that

there is only one prize, with the weight of period 1 determined entirely by

the relative precision of the two performance measures.

6 Discussion and Related Literature

Previous literature has addressed some of the issues we deal with in this

paper.

For instance, several papers have asked whether a principal should re-

veal interim information or not. Most closely related is Aoyagi (2010) whose

framework is similar to ours. In particular, there is only one prize. Both pe-

riods always receive equal weights, so both handicapping and reverse handi-

capping are excluded by assumption. With these restrictions, he also obtains

the result that third derivatives determine whether information should be

revealed. Our contribution to the information revelation discussion can be

seen as complementary to the one of Aoyagi: We show that the assumptions
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of Aoyagi can be endogenized under certain conditions. However, we also

provide clear conditions (in particular, for the normal quadratic case) under

which a principal would optimally give different weights to the two periods.

However, Aoyagi is also more general in some respects: He allows for par-

tial information revelation where the agents obtain incomplete performance

signals.14

Another strand of literature has dealt with the issue of whether handi-

capping or reverse handicapping of first-period winners should take place in

settings with one prize, that is, whether the first-period weight should be

lower or higher than the second-period weight. These papers usually focus

on a setting where information is revealed. For instance, Meyer (1992) con-

siders a setting similar to ours, but with risk-averse agents. She shows that

reverse handicapping, that is, favoring the first-period winner, is optimal.

Gershkov and Perry (2009) address both the information revelation deci-

sion and the handicapping decision. However, they consider only the infor-

mation who is ahead of the other one after one period.

7 Conclusion

This paper analyzes intertemporal effort provision in two-stage tournaments.

A principal with a fixed budget for prizes faces two risk-neutral agents. He

observes noisy signals of effort in both periods. He aims at maximizing either

total efforts (perfect substitutes) or the product of first- and second-period

efforts (imperfect substitutes). He decides (i) how to weigh performance in

the two periods when awarding the second period prize, (ii) how to spread

prize money across the two periods, and (iii) whether to reveal performance

after the first period. Under very general conditions, the principal puts

positive weight on both periods in period two. Furthermore, he sets no

first-period prize provided the observations in period one are too noisy. The

information revelation policy depends on the third derivative of the effort

cost function.

14Ederer (2010) introduces incomplete information about ability.

20



References

[1] Aoyagi, M. (2010): Information feedback in a dynamic tournament.

Games and Economic Behavior, 70, 242—260.

[2] Ederer, F. (2010): Feedback and Motivation in Dynamic Tournaments.

Journal of Economics & Management Strategy, 19, 733—769.

[3] Gershkov, A. and Perry, M. (2009): Tournaments with midterm reviews.

Games and Economic Behavior, 66, 162—190.

[4] Meyer, M. (1992): Biased Contests and Moral Hazard: Implications for

Career Profiles. Annals of Economics and Statistics, 165—187.

21



8 Appendix

8.1 Proof of Proposition 1

By assumption 1, K (ei2) increases beyond bounds as ei2 goes to infinity. As

the expected prize is bounded by W2, the set of undominated effort levels is

contained in the compact interval [0, K−1 (W2)]. As expected net payoffs are

continuous in ei2 and concave by (3), a Nash equilibrium of the second-period

effort game exists.

The first-order condition for agent i in period 2 is (2). Since the density

is symmetric and

− (η∆s11 + ∆e12) = η∆s21 + e22 − e12,

the left-hand side of (2) is equal for both agents and hence e∗i2 (∆si1; η,W2, 1) =

e∗j2(∆si1; η,W2, 1) for any solution. Thus, (2) becomes

f2 (η∆si1)W2 = K ′ (ei2) .

The convexity of the cost function guarantees that K ′ is strictly increasing

and thus invertible. As (3) is globally satisfied, (4) thus defines an equi-

librium. The equilibrium must involve positive efforts, because f2 > 0 and

K ′ (0) = 0.

8.2 Proof of Corollary 1

The inverse function theorem yields[
(K ′)

−1
]′

(f2 (η∆si1)W2) =
1

K ′′
(
(K ′)−1 (f2 (η∆si1)W2)

) ,
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so that (4) implies

∂e∗i2
∂∆si1

=
ηf ′2 (η∆si1)W2

K ′′
(
(K ′)−1 (f2 (η∆si1)W2)

) , (25)

∂e∗i2
∂η

=
∆si1f

′
2 (η∆si1)W2

K ′′
(
(K ′)−1 (f2 (η∆si1)W2)

) , (26)

∂e∗i2
∂W2

=
f2 (η∆si1)

K ′′
(
(K ′)−1 (f2 (η∆si1)W2)

) . (27)

From assumption 2, if ∆si1 < (>)0∧ η 6= 0∧W2 > 0, then ηf ′2 (η∆si1) >

(<)0 and thus ∂e∗i2
∂∆si1

> (<)0 . This implies that e∗i2 is decreasing in |∆si1|. As
∆si1 = ∆ei1 + ∆εi1 we obtain the results for ei1 and ej1. Similar arguments

show that ∂e∗i2
∂η

< 0. Since f2 > 0, we have ∂e∗i2
∂W2

> 0.

8.3 Proof of Proposition 2

We first derive an expression for ∂U∗i2
∂ei1

for symmetric first-period efforts.

Lemma 2
∂U∗i2
∂ei1

∣∣∣∣
ei1=ej1

= 2ηW2

∫ ∞
0

f2 (ηs) f1 (s) ds (28)

∂2U∗i2
(∂ei1)2 = ηW2

∫ ∞
0

f2 (ηs) [f ′1 (s+ ∆ei1)− f ′1 (s−∆ei1)] ds (29)

+η (W2)2

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f ′1 (s+ ∆ei1) + f ′1 (s−∆ei1)]

K ′′
(
(K ′)−1 (f2 (ηs)W2)

) ds.

Proof. For the payoffof agent i for a particular ∆si1 in period 2 we write

U s
i2 (∆si1; η,W2) = Ui2

(
e∗i2 (∆si1; η,W2) , e∗j2 (−∆si1; η,W2) ,∆si1; η,W2

)
.

Applying the envelope theorem, we obtain

∂U s
i2

∂∆si1
=
∂Ui2
∂ej2

∂e∗j2 (−∆si1; η,W2)

∂∆si1
+

∂Ui2
∂∆si1

.
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Using the symmetry of the density and (25),

∂e∗j2 (−∆si1; η,W2)

∂∆si1
=
∂e∗j2 (∆si1; η,W2)

∂∆si1
=

ηf ′2 (η∆si1)W2

K ′′
(
(K ′)−1 (f2 (η∆si1)W2)

) .
(1) implies

∂Ui2
∂ej2

= −f2 (η∆si1 + ∆ei2)W2,

∂Ui2
∂∆si1

= ηf2 (η∆si1 + ∆ei2)W2,

Using ∆e∗i2 = 0, we obtain

∂U s
i2

∂∆si1
= − ηf2 (η∆si1) f ′2 (η∆si1) (W2)2

K ′′
(
(K ′)−1 (f2 (η∆si1)W2)

) + ηf2 (η∆si1)W2.

Let

U e,∆εi1
i2 (ei1, ej1; η,W2) = U s

i2 (∆ei1 + ∆εi1; η,W2) .

Taking into account that ∆si1 = ∆ei1 + ∆εi1, we obtain

∂U e,∆εi1
i2

∂ei1
= −ηf2 (ηei1 − ej1 + ∆εi1) f ′2 (η (∆ei1 + ∆εi1)) (W2)2

K ′′
(
(K ′)−1 (f2 (η (∆ei1 + ∆εi1))W2)

)
+ηf2 (η (∆ei1 + ∆εi1))W2.

As U∗i2 (ei1, ej1; η,W2) = E
(
U e,∆εi1
i2 (∆si1; η,W2)

)
, integrating over ∆εi1 and

rearranging yields

∂U∗i2
∂ei1

=

∫ ∞
−∞

[
−ηf2 (η (∆ei1 + s)) f ′2 (η (∆ei1 + s)) (W2)2

K ′′
(
(K ′)−1 (f2 (η (∆ei1 + s))W2)

)
+ηf2 (η (∆ei1 + s))W2

]
f1 (s) ds

= ηW2

∫ ∞
−∞

f2 (η (∆ei1 + s)) f1 (s) ds

−η (W2)2

∫ ∞
−∞

f2 (η (∆ei1 + s)) f ′2 (η (∆ei1 + s))

K ′′
(
(K ′)−1 (f2 (η (∆ei1s))W2)

) f1 (s) ds.
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Let

A : =

∫ ∞
−∞

f2 (η (∆ei1 + s)) f1 (s) ds,

B : =

∫ ∞
−∞

f2 (η (∆ei1 + s)) f ′2 (η (∆ei1 + s))

K ′′
(
(K ′)−1 (f2 (η (∆ei1 + s))W2)

)f1 (s) ds.

With this notation, ∂U∗i2
∂ei1

= ηW2A − η (W2)2B. Using the substitution t =

∆ei1 + s in A, we obtain

A =

∫ ∞
−∞

f2 (ηt) f1 (t−∆ei1) dt

=

∫ 0

−∞
f2 (ηt) f1 (t−∆ei1) dt+

∫ ∞
0

f2 (ηt) f1 (t−∆ei1) dt.

For u = −t, the symmetry of the density implies f2 (ηt) = f2 (ηu) and

f1 (t−∆ei1) = f1 (u+ ∆ei1). Hence,∫ 0

−∞
f2 (ηt) f1 (t−∆ei1) dt =

∫ ∞
0

f2 (ηu) f1 (u+ ∆ei1) du.

Thus,

A =

∫ ∞
0

f2 (ηu) f1 (u+ ∆ei1) du+

∫ ∞
0

f2 (ηt) f1 (t−∆ei1) dt

=

∫ ∞
0

f2 (ηt) [f1 (t+ ∆ei1) + f1 (t−∆ei1)] dt.

Similarly, using the substitution t = ∆ei1 + s in B, we obtain

B =

∫ ∞
−∞

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′
(
(K ′)−1 (f2 (ηt)W2)

) dt
=

∫ 0

−∞

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′
(
(K ′)−1 (f2 (ηt)W2)

) dt+

∫ ∞
0

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′
(
(K ′)−1 (f2 (ηt)W2)

) dt.
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For u = −t, the symmetry of the density guarantees that f2 (ηt) = f2 (ηu),

f ′2 (ηt) = −f ′2 (ηu) and f1 (t−∆ei1) = f1 (u+ ∆ei1), and we obtain∫ 0

−∞

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′
(
(K ′)−1 (f2 (ηt)W2)

) dt =

∫ ∞
0

f2 (ηu) (−f ′2 (ηu)) f1 (u+ ∆ei1)

K ′′
(
(K ′)−1 (f2 (ηu)W2)

) du.

Thus,

B =

∫ ∞
0

−f2 (ηu) f ′2 (ηu) f1 (u+ ∆ei1)

K ′′
(
(K ′)−1 (f2 (ηu)W2)

) du

+

∫ ∞
0

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′
(
(K ′)−1 (f2 (ηt)W2)

) dt
=

∫ ∞
0

f2 (ηt) f ′2 (ηt) [−f1 (t+ ∆ei1) + f1 (t−∆ei1)]

K ′′
(
(K ′)−1 (f2 (ηt)W2)

) dt.

With the transformed expressions for A and B, and substituting back s = t,

we obtain

∂U∗i2
∂ei1

= ηW2

∫ ∞
0

f2 (ηs) [f1 (s+ ∆ei1) + f1 (s−∆ei1)] ds (30)

+η (W2)2

∫ ∞
0

f2 (ηs) f ′2 (ηs)

K ′′
(
(K ′)−1 (f2 (ηs)W2)

) ·
[f1 (s+ ∆ei1)− f1 (s−∆ei1)] ds. (31)

With ∆ei1 = 0, we obtain (28). (29) follows directly from (30).

Using Lemma 2, we now prove Proposition 2. The second-order condition

is

f ′1 (∆ei1)W1 +
∂2U∗i2 (ei1, ej1; η,W2)

(∂ei1)2 ≤ K ′′ (ei1)∀ei1, ej1 ∈ R+

Using (29), we obtain (7).

Note that by assumption 1, K (ei1) increases beyond bounds as ei1 goes to

infinity. As the expected prize is bounded byW1+W2, the set of undominated

effort levels is contained in the compact interval [0, K−1 (W1 +W2)]. As

expected net payoffs are continuous in ei1 and concave by (7), an equilibrium

of the WPBE thus exists.
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For ∆ei1 = 0, we can apply (28) in (6) and obtain

f1 (0)W1 + 2ηW2

∫ ∞
0

f2 (ηs) f1 (s) ds = K ′ (e1) .

Because K ′ is invertible, we obtain (9).

8.4 Proof of Corollary 2

Symmetry of the equilibrium implies ∆si1 = ∆εi1. Hence, e∗i2 (∆si1; η,W2, 1)

= (K ′)−1 (f2 (η∆εi1)W2) from (4). Taking the expectation over ∆εi1, we

obtain

E (e∗i2 (η,W2, 1)) =

∫ ∞
−∞

(K ′)
−1

(f2 (ηs)W2) f1 (s) ds.

From the symmetry of the density, we get (10).

8.5 Proof of Proposition 3

The first-order conditions are

f1 (∆ei1)W1 (32)

+ηW2

∫ ∞
−∞

f2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds = K ′ (ei1) ;

W2

∫ ∞
−∞

f2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds = K ′ (ei2) . (33)
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Second-order conditions are

f ′1 (∆ei1)W1 + η2W2

∫ ∞
−∞

f ′2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds (34)

≤ K ′′ (ei1)∀ei1, ei2, ej1, ej2 ∈ R+

W2

∫ ∞
−∞

f ′2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds (35)

≤ K ′′ (ei2)∀ei1, ei2, ej1, ej2 ∈ R+

K ′′ (ei1)W2

∫ ∞
−∞

f ′2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds

+K ′′ (ei2) · (36)[
f ′1 (∆ei1)W1 + η2W2

∫ ∞
−∞

f ′2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds

]
−f ′1 (∆ei1)W1W2

∫ ∞
−∞

f ′2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds

≤ K ′′ (ei1)K ′′ (ei2)∀ei1, ei2, ej1, ej2 ∈ R+

We now show that they hold for given policy parameters and distributions

as long as K is suffi ciently convex. In case of (34) and (35), this is obvious,

as their right-hand sides are increasing in K ′′ (). To see that it also holds for

(36), let

A ≡ W2

∫ ∞
−∞

f ′2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds

B ≡ f ′1 (∆ei1)W + η2W2

∫ ∞
−∞

f ′2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds

C ≡ −f ′1 (∆ei1)W1W2

∫ ∞
−∞

f ′2 (η (∆ei1 + s) + ∆ei2) f1 (s) ds

With this notation, (36) can be written as

K ′′ (ei1) · A+K ′′ (ei2) ·B + C ≤ K ′′ (ei1)K ′′ (ei2) (37)

Now suppose that (36) does not hold for some K̃. Let

D ≡ K̃ ′′ (ei1) · A+ K̃ ′′ (ei2) ·B + C − K̃ ′′ (ei1) K̃ ′′ (ei2) (38)
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and K̂ (e) = K̃ (e) + k
2
e2, so that

K̂ ′′ (e) = K̃ ′′ (ei2) + k. (39)

K̂ is a cost function which is made more convex than K̃ by adding a quadratic

term. (39) allows to write (37) for K̂ as

K̃ ′′ (ei1) · A+ K̃ ′′ (ei2) ·B + C + k (A+B) ≤
K̃ ′′ (ei1) K̃ ′′ (ei2) + kK̃ ′′ (ei1) + kK̃ ′′ (ei2) + k2

Using (38), we obtain

K̃ ′′ (ei1) K̃ ′′ (ei2)+D+k (A+B) ≤ K̃ ′′ (ei1) K̃ ′′ (ei2)+kK̃ ′′ (ei1)+kK̃ ′′ (ei2)+k2

or, cancelling out and rearranging,

D ≤ k
(
K̃ ′′ (ei1) + K̃ ′′ (ei1)− A−B

)
+ k2 (40)

For all A and B, the right-hand side of (40) can be made arbitrarily high by

increasing k, so that (40) and thus (36) eventually hold. Consequently, it is

always possible to fulfill (36) by making K suffi ciently convex.

We next show that in equilibrium the SOC are automatically implied

by the convexity of cost functions. Using the symmetry of the density and
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taking into account that f ′1 (0) = 0, we can write (34), (35) and (36) as

η2W2

∫ ∞
−∞

f ′2 (ηs) f1 (s) ds ≤ (41)

K ′′ (e1)∀ei1, ei2, ej1, ej2 ∈ R+

W2

∫ ∞
−∞

f ′2 (ηs) f1 (s) ds ≤ (42)

K ′′ (e2)∀ei1, ei2, ej1, ej2 ∈ R+

1

K ′′ (e2)
W2

∫ ∞
−∞

f ′2 (ηs) f1 (s) ds (43)

+
1

K ′′ (e1)
η2W2

∫ ∞
−∞

f ′2 (ηs) f1 (s) ds ≤

1∀ei1, ei2, ej1, ej2 ∈ R+

Because f1 (s) = f1 (−s) and f ′2 (ηs) = −f ′2 (ηs), we have
∫∞
−∞ f

′
2 (ηs) ·

f1 (s) ds = 0, so that the left-hand sides of (41), (42) and (43) are all 0 and

the inequalities hold automatically.

We now show existence of a NE. Note that by assumption 1, K (ei1)

and K (ei2) increase beyond bounds as ei1 and ei2 go to infinity. As the

expected prize is bounded by W1 + W2, the set of undominated effort levels

is contained in the compact set [0, K−1 (W1 +W2)]2. As expected net payoffs

are continuous in ei1 and ei2 and concave by (34), (35) and (36), a NE thus

exists.

Finally, for the symmetric case ∆ei1 = ∆ei2 = 0, (32) and (33) yield

f1 (0)W1 + 2ηW2

∫ ∞
0

f2 (ηs) f1 (s) ds = K ′ (e1) ;

2W2

∫ ∞
0

f2 (ηs) f1 (s) ds = K ′ (e2) .

Inverting K ′ yields (12) and (13).
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8.6 Proof of Proposition 4

From (13) and (10),

e∗2 (η,W −W1, 0)− E (e∗2 (η,W −W1, 1)) =

(K ′)
−1

(
2W2

∫ ∞
0

f2 (ηs) f1 (s) ds

)
− 2

∫ ∞
0

K ′−1 (f2 (ηs)W2) f1 (s) ds

Because of the symmetry of the density, the right-hand side can be written

as

(K ′)
−1

(
W2

∫ ∞
−∞

f2 (ηs) f1 (s) ds

)
−
∫ ∞
∞

K ′−1 (f2 (ηs)W2) f1 (s) ds

Substituting g (s) ≡ W2f2 (ηs) we obtain

e∗2 (η,W −W1, 0)− E (e∗2 (η,W −W1, 1)) =

K ′−1

(∫ ∞
−∞

g (s) f1 (s) ds

)
−
∫ ∞
−∞

K ′−1 (g (s)) f1 (s) ds.

According to Jensen’s inequality, this difference is weakly negative (weakly

positive) if K ′−1 is convex (concave), which is the case if and only if K ′ is

concave (convex), which, in turn, is the case if and only if K ′′′ ≤ 0 (K ′′′ ≥ 0).

8.7 Proof of Proposition 5

(i) From (9) and (10),

V P (η,W1, 1) = (K ′)
−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) f1 (s) ds

)
+2

∫ ∞
0

(K ′)
−1

(f2 (ηs) (W −W1)) f1 (s) ds.
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We first show that η < 0 never maximizes V P (η,W1, 1). Suppose η1 > 0 and

η2 = −η1. Since f2 (η2s) = f2 (η1s), we have

V P (η1,W1, 1)− V P (η2,W1, 1) = (44)

(K ′)
−1

(
f1 (0)W1 + 2η1 (W −W1)

∫ ∞
0

f2 (η1s) f1 (s) ds

)
− (K ′)

−1

(
f1 (0)W1 − 2η1 (W −W1)

∫ ∞
0

f2 (η1s) f1 (s) ds

)
As (K ′)−1 is strictly increasing from K ′′ > 0, the second term in (44) is

strictly smaller than the first term. Thus, for every η < 0, −η > 0 yields

strictly higher expected payoffs, so that all η < 0 are strictly dominated. To

see that the optimal η > 0, note that

∂V P (η,W1, 1)

∂η
= (45)

2 (W −W1)
[∫∞

0
f2 (ηs) f1 (s) ds+ η

∫∞
0
sf ′2 (ηs) f1 (s) ds

]
K ′′
[
(K ′)−1 (f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)]
+2

∫ ∞
0

sf ′2 (ηs) (W −W1)

K ′′
[
(K ′)−1 (f2 (ηs) (W −W1))

]f1 (s) ds

Hence,

∂V P (η,W1, 1)

∂η

∣∣∣∣
η=0

=
2 (W −W1) f2 (0)

∫∞
0
f1 (s) ds

K ′′
[
(K ′)−1 f1 (0)W1

]
+ 2

∫ ∞
0

sf ′2 (0) (W −W1) f1 (s)

K ′′
[
(K ′)−1 (f2 (0) (W −W1))

]ds
=

(W −W1) f2 (0)

K ′′
[
(K ′)−1 f1 (0)W1

] ,
where the second equality follows from f ′2 (0) = 0 and

∫∞
0
f1 (s) ds = 1

2
. As

K ′′ > 0, ∂V S(η,W1,1)
∂η

∣∣∣
η=0

> 0 provided W1 < W . Hence, η > 0 is always

optimal for W1 < W .
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From (9) and (10),

V I (η,W1, 1) = K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)
·

2

∫ ∞
0

K ′−1 (f2 (ηs) (W −W1)) f1 (s) ds

We first show that η < 0 never maximizes V I (η,W1, 1). Suppose η1 > 0 and

η2 = −η1. Since f2 (η2s) = f2 (η1s), we have

V I (η1,W1, 1)− V I (η2,W1, 1) = (46)[
K ′−1

(
f1 (0)W1 + 2η1 (W −W1)

∫ ∞
0

f2 (η1s) · f1 (s) ds

)
−K ′−1

(
f1 (0)W1 − 2η1 (W −W1)

∫ ∞
0

f2 (η1s) · f1 (s) ds

)]
·

2

∫ ∞
0

K ′−1 (f2 (η1s) (W −W1)) f1 (s) ds

As (K ′)−1 is strictly increasing from K ′′ > 0, the second term in the first

bracket in (46) is strictly smaller than the first term. Thus, for every η < 0,

−η > 0 yields strictly higher expected payoffs, so that all η < 0 are strictly

dominated. To see that the optimal η > 0, note that

∂V I (η,W1, 1)

∂η
=

2 (W −W1)
∫∞

0
f2 (ηs) · f1 (s) ds+ 2η (W −W1)

∫∞
0
s · f ′2 (ηs) · f1 (s) ds

K ′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) · f1 (s) ds

)] ·

2

∫ ∞
0

K ′−1 (f2 (ηs) (W −W1)) f1 (s) ds+

K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)
·

2

∫ ∞
0

sf ′2 (ηs) (W −W1)

K ′′ [K ′−1 (f2 (ηs) (W −W1))]
f1 (s) ds
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Hence,

∂V I (η,W1, 1)

∂η

∣∣∣∣
η=0

=

2 (W −W1)
∫∞

0
f2 (0) · f1 (s) ds

K ′′ [K ′−1 (f1 (0)W1)]
· 2
∫ ∞

0

K ′−1 (f2 (0) (W −W1)) f1 (s) ds+

K ′−1 (f1 (0)W1) · 2
∫ ∞

0

sf ′2 (0) (W −W1)

K ′′ [K ′−1 (f2 (0) (W −W1))]
f1 (s) ds =

(W −W1) f2 (0)

K ′′ [K ′−1 (f1 (0)W1)]
· 2
∫ ∞

0

K ′−1 (f2 (0) (W −W1)) f1 (s) ds,

where the second equation follows from f ′2 (0) = 0 and
∫∞

0
f1 (s) ds = 1

2
. As

K ′′ > 0, ∂V I(η,W1,1)
∂η

∣∣∣
η=0

> 0 provided W1 < W . Hence, η > 0 is always

optimal for W1 < W .

(ii) To understand the condition for η = 1, note that (45) implies that
∂V P (η,W1,1)

∂η
> 0 if and only if∫ ∞

0

f2 (ηs) f1 (s) ds+ (η + 1)

∫ ∞
0

sf ′2 (ηs) f1 (s) ds > 0.

Inserting η = 1 gives the result.

8.8 Proof of Proposition 6

(i) We have

∂V P (η,W1, 1)

∂W1

=

f1 (0)− 2η
∫∞

0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)]
−2

∫ ∞
0

f2 (ηs)

K ′′
[
(K ′)−1 (f2 (ηs) (W −W1))

]f1 (s) ds
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and

∂2V P (η,W1, 1)

(∂W1)2 = −
(f1(0)−2η

∫∞
0 f2(ηs)f1(s)ds)

2

(K′′[(K′)−1(f1(0)W1+2η(W−W1)
∫∞
0 f2(ηs)f1(s)ds)])

3 · (47)

K ′′′
[
(K ′)

−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) f1 (s) ds

)]
−2

∫ ∞
0

(f2 (ηs))2(
K ′′
[
(K ′)−1 (f2 (ηs) (W −W1))

])3 ·

K ′′′
[
(K ′)

−1
(f2 (ηs) (W −W1))

]
f1 (s) ds

K ′′′ ≤ 0 implies ∂2V P (η,W1,1)

(∂W1)2
> 0. Thus, there is no interior optimum. For

W1 = 0 and W1 = W , the principal’s expected payoffs are

V P (η, 0, 1) = (K ′)
−1

(
2ηW

∫ ∞
0

f2 (ηs) f1 (s) ds

)
+2

∫ ∞
0

(K ′)
−1

(f2 (ηs)W ) f1 (s) ds.

V P (η,W, 1) = (K ′)
−1

(f1 (0)W ) .

Therefore

V P (η, 0, 1)− V P (η,W, 1) =

(K ′)
−1

(
2ηW

∫ ∞
0

f2 (ηs) f1 (s) ds

)
+2

∫ ∞
0

(K ′)
−1

(f2 (ηs)W ) f1 (s) ds− (K ′)
−1

(f1 (0)W )

Hence, V P (η, 0, 1)− V P (η,W, 1) > 0 if and only if (17) holds.
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(ii) We have

∂V I (η,W1, 1)

∂W1

=

f1 (0)− 2η
∫∞

0
f2 (ηs) · f1 (s) ds

K ′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) · f1 (s) ds

)] ·
2

∫ ∞
0

K ′−1 (f2 (ηs) (W −W1)) f1 (s) ds

−K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)
·

2

∫ ∞
0

f2 (ηs)

K ′′ [K ′−1 (f2 (ηs) (W −W1))]
f1 (s) ds
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and

∂2V I (η,W1, 1)

(∂W1)2 =

−
(
f1 (0)− 2η

∫∞
0
f2 (ηs) · f1 (s) ds

)2(
K ′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) · f1 (s) ds

)])3 ·

K ′′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)]
·

2

∫ ∞
0

K ′−1 (f2 (ηs) (W −W1)) f1 (s) ds

−2

∫ ∞
0

f2 (ηs)

K ′′ [K ′−1 (f2 (ηs) (W −W1))]
f1 (s) ds·

f1 (0)− 2η
∫∞

0
f2 (ηs) · f1 (s) ds

K ′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) · f1 (s) ds

)]
−

f1 (0)− 2η
∫∞

0
f2 (ηs) · f1 (s) ds

K ′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) · f1 (s) ds

)] ·
2

∫ ∞
0

f2 (ηs)

K ′′ [K ′−1 (f2 (ηs) (W −W1))]
f1 (s) ds

−K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)
·

2

∫ ∞
0

(f2 (ηs))2(
K ′′
[
(K ′)−1 (f2 (ηs) (W −W1))

])3 ·

K ′′′
[
(K ′)

−1
(f2 (ηs) (W −W1))

]
f1 (s) ds

Collecting terms, we obtain
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∂2V I (η,W1, 1)

(∂W1)2 =

−
(
f1 (0)− 2η

∫∞
0
f2 (ηs) · f1 (s) ds

)2(
K ′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) · f1 (s) ds

)])3 ·

K ′′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)]
·

2

∫ ∞
0

K ′−1 (f2 (ηs) (W −W1)) f1 (s) ds

−4

∫ ∞
0

f2 (ηs)

K ′′ [K ′−1 (f2 (ηs) (W −W1))]
f1 (s) ds·

f1 (0)− 2η
∫∞

0
f2 (ηs) · f1 (s) ds

K ′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) · f1 (s) ds

)]
−K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)
·

2

∫ ∞
0

(f2 (ηs))2(
K ′′
[
(K ′)−1 (f2 (ηs) (W −W1))

])3 ·

K ′′′
[
(K ′)

−1
(f2 (ηs) (W −W1))

]
f1 (s) ds

K ′′′ ≤ 0 implies ∂2V I(η,W1,1)

(∂W1)2
> 0 if f1 (0)− 2η

∫∞
0
f2 (ηt) · f1 (t) dt < 0. Thus,

there is no interior optimum. Since V I (η,W, 1) = 0, W1 = W is never opti-

mal. Thus, the principal always chooses W1 = 0. For f1 (0)− 2η
∫∞

0
f2 (ηs) ·

f1 (s) ds > 0, we know that W1 ∈ [0,W ).

8.9 Proof of Proposition 7

From (12) and (13),

V P (η,W1, 0) ≡ (K ′)
−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) f1 (s) ds

)
+ (K ′)

−1

(
2 (W −W1)

∫ ∞
0

f2 (ηs) f1 (s) ds

)
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We first show that η < 0 never maximizes V P (η,W1, 0). Suppose η1 > 0 and

η2 = −η1. Since f2 (η2s) = f2 (η1s), we have

V P (η1,W1, 0)− V P (η2,W1, 0) = (48)

(K ′)
−1

(
f1 (0)W1 + 2η1 (W −W1)

∫ ∞
0

f2 (η1s) f1 (s) ds

)
− (K ′)

−1

(
f1 (0)W1 − 2η1 (W −W1)

∫ ∞
0

f2 (η1s) f1 (s) ds

)
As (K ′)−1is strictly increasing fromK ′′ > 0, the second term in (48) is strictly

smaller than the first term. Consequently, for every η < 0, −η > 0 yields

strictly higher expected payoffs, so that all η < 0 are strictly dominated. To

see that the optimal η > 0, note that

∂V P (η,W1, 0)

∂η
=

2 (W −W1)
[∫∞

0
f2 (ηs) f1 (s) ds+ η

∫∞
0
sf ′2 (ηs) f1 (s) ds

]
K ′′
[
(K ′)−1 (f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)]
+

2 (W −W1)
∫∞

0
sf ′2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (2 (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)]
We have

∂V P (η,W1, 0)

∂η

∣∣∣∣
η=0

=
2 (W −W1) f2 (0)

∫∞
0
f1 (s) ds

K ′′
[
(K ′)−1 f1 (0)W1

] +

2 (W −W1)
∫∞

0
sf ′2 (0) f1 (s) ds

K ′′
[
(K ′)−1 (2 (W −W1)

∫∞
0
f2 (0) f1 (s) ds

)] =

(W −W1) f2 (0)

K ′′
[
(K ′)−1 f1 (0)W1

] ,
where the second equation follows from f ′2 (0) = 0 and

∫∞
0
f1 (s) ds = 1

2
. As

K ′′ > 0, ∂V P (η,W1,0)
∂η

∣∣∣
η=0

> 0 provided W1 < W . Hence, η > 0 is always

optimal for W1 < W .
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From (12) and (13),

V I (η,W1, 0) = K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)
·

(K ′)
−1

[
2 (W −W1)

∫ ∞
0

f2 (ηs) f1 (s) ds

]
We first show that η < 0 never maximizes V I (η,W1, 0). Suppose η1 > 0 and

η2 = −η1. Since f2 (η2s) = f2 (η1s), we have

V I (η1,W1, 0)− V I (η2,W1, 0) = (49)[
K ′−1

(
f1 (0)W1 + 2η1 (W −W1)

∫ ∞
0

f2 (η1s) · f1 (s) ds

)
−K ′−1

(
f1 (0)W1 − 2η1 (W −W1)

∫ ∞
0

f2 (η1s) · f1 (s) ds

)]
·

(K ′)
−1

[
2 (W −W1)

∫ ∞
0

f2 (η1s) f1 (s) ds

]
As (K ′)−1 is strictly increasing by K ′′ > 0, the second term in the first

bracket in (49) is strictly smaller than the first term. Consequently, for every

η < 0, −η > 0 yields strictly higher expected payoffs, so that all η < 0 are

strictly dominated. To see that the optimal η > 0, note that

∂V I (η,W1, 0)

∂η
=

2 (W −W1)
∫∞

0
f2 (ηs) · f1 (s) ds+ 2η (W −W1)

∫∞
0
s · f ′2 (ηs) · f1 (s) ds

K ′′
[
K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) · f1 (s) ds

)] ·

(K ′)
−1

[
2 (W −W1)

∫ ∞
0

f2 (ηs) f1 (s) ds

]
+

K ′−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) · f1 (s) ds

)
·

2 (W −W1)
∫∞

0
sf ′2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (2 (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)] .
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We have

∂V I (η,W1, 0)

∂η

∣∣∣∣
η=0

=
2 (W −W1)

∫∞
0
f2 (0) · f1 (s) ds

K ′′ [K ′−1 (f1 (0)W1)]
·

(K ′)
−1

[
2 (W −W1)

∫ ∞
0

f2 (0) f1 (s) ds

]
+

K ′−1 (f1 (0)W1) · 2 (W −W1)
∫∞

0
sf ′2 (0) f1 (s) ds

K ′′
[
(K ′)−1 (2 (W −W1)

∫∞
0
f2 (0) f1 (s) ds

)] =

(W −W1) f2 (0) · (K ′)−1 [2 (W −W1) f2 (0)]

K ′′ [K ′−1 (f1 (0)W1)]

where the second equation follows from f ′2 (0) = 0 and
∫∞

0
f1 (s) ds = 1

2
. As

K ′′ > 0, ∂V I(η,W1,0)
∂η

∣∣∣
η=0

> 0 provided W1 < W . Hence, η > 0 is always

optimal for W1 < W .

8.10 Proof of Proposition 8

We have

∂V P (η,W1, 0)

∂W1

=

f1 (0)− 2η
∫∞

0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)]
−

2
∫∞

0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (2 (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)]
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and

∂2V P (η,W1, 0)

(∂W1)2 = (50)

−
(
f1 (0)− 2η

∫∞
0
f2 (ηs) f1 (s) ds

)2(
K ′′
[
(K ′)−1 (f1 (0)W1 + 2η (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)])3 ·

K ′′′
[
(K ′)

−1

(
f1 (0)W1 + 2η (W −W1)

∫ ∞
0

f2 (ηs) f1 (s) ds

)]
−

(
2
∫∞

0
f2 (ηs) f1 (s) ds

)2(
K ′′
[
(K ′)−1 (2 (W −W1)

∫∞
0
f2 (ηs) f1 (s) ds

)])3 ·

K ′′′
[
(K ′)

−1

(
2 (W −W1)

∫ ∞
0

f2 (ηs) f1 (s) ds

)]

K ′′′ ≥ 0 implies∂
2V P (η,W1,0)

(∂W1)2
< 0.

(i) Thus, the principal will set W1 = 0 provided

∂V P (η,W1, 0)

∂W1

∣∣∣∣
W1=0

=
f1 (0)− 2η

∫∞
0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (2ηW ∫∞

0
f2 (ηs) f1 (s) ds

)]
−

2
∫∞

0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (2W ∫∞

0
f2 (ηs) f1 (s) ds

)] ≤ 0.

(ii) He will set W1 = W provided

∂V P (η,W1, 0)

∂W1

∣∣∣∣
W1=W

=
f1 (0)− 2η

∫∞
0
f2 (ηs) f1 (s) ds

K ′′
[
(K ′)−1 (f1 (0)W )

]
−

2
∫∞

0
f2 (ηs) f1 (s) ds

K ′′ [0]
≥ 0

8.11 Proof of Corollary 4

For E1,

K (eit) =
k

2
(eit)

2 (51)

ft (s) =
1

σt
√

2π
exp

(
− s2

2 (σt)
2

)
(52)
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We first provide some auxiliary results. From (52),

f ′t (s) = − s

σ3
t

√
2π

exp

(
− s2

2 (σt)
2

)
(53)

f ′′t (s) = − exp

(
− s2

2σ2
t

)
+
s2

σ2
t

exp

(
− s2

2σ2
t

)
f ′′′t (s) =

s

σ2
t

exp

(
− s2

2σ2
t

)
+

2s

σ2
t

exp

(
− s2

2σ2
t

)
− s3

σ4
t

exp

(
− s2

2σ2
t

)
With s = −σ (the solution to f ′′t (s) = 0 and f ′′′t (s) < 0) and s = σ (the

solution to f ′′t (s) = 0 and f ′′′t (s) > 0), (53) yields

max
s
f ′t (s) =

1

σ2
t

√
2π exp (1)

(54)

min
s
f ′t (s) = − 1

σ2
t

√
2π exp (1)

(55)

From (54) and (55),

f ′t (x) ≤ 1

σ2
t

√
2π exp (1)

∀x ∈ R (56)

− 2

σ2
t

√
2π exp (1)

≤ f ′t (s+ x)− f ′t (s− x) (57)

≤ 2

σ2
t

√
2π exp (1)

∀s, x ∈ R (58)

− 2

σ2
t

√
2π exp (1)

≤ f ′t (s+ x) + f ′t (s− x) (59)

≤ 2

σ2
t

√
2π exp (1)

∀s, x ∈ R (60)

Furthermore, (52) implies
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∫ ∞
0

f2 (ηs) ds =
1

2 |η| (61)∫ ∞
0

f2 (ηs) f1 (s) ds =
1

2
√

2π
√

(σ2)2 + (σ1)2 η2

(62)

∫ ∞
0

f2 (ηs) f ′2 (ηs) ds = − 1

4πησ2
2

(63)

From (51),

K ′′ (e) = k (64)

K ′′′ (e) = 0 (65)

K−1 (t) =
t

k
(66)

Next, we show that the second-order conditions are fulfilled. Using (64),

(3) can be written as

Wtf
′
t (x) ≤ k∀x ∈ R (67)

From Wt ≤ W and (56),

Wtf
′
t (x) ≤ W

σ2
t

√
2π exp (1)

(68)

(67) and (68) imply that a suffi cient condition for (3) to hold is (21).

Similarly, using (64), (7) can be written as

f ′1 (x)W1 + ηW2

∫ ∞
0

f2 (ηs) [f ′1 (s+ x)− f ′1 (s− x)] ds (69)

+
ηW 2

2

k

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f ′1 (s+ x) + f ′1 (s− x)] ds ≤ k∀x ∈ R

Using (56), (57) and (59), we obtain
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f ′1 (x)W1 ≤ (70)
W1

σ2
1

√
2π exp (1)

∀x ∈ R (71)

ηW2

∫ ∞
0

f2 (ηs) [f ′1 (s+ x)− f ′1 (s− x)] ds ≤ (72)

2

σ2
t

√
2π exp (1)

W2

∣∣∣∣η ∫ ∞
0

f2 (ηs) ds

∣∣∣∣ ∀x ∈ R

ηW 2
2

k

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f ′1 (s+ x) + f ′1 (s− x)] ds ≤ (73)

2

σ2
t

√
2π exp (1)

W 2
2

k

∣∣∣∣η ∫ ∞
0

f2 (ηs) f ′2 (ηs) ds

∣∣∣∣ ∀x ∈ R

With (70), (72) and (73), we obtain for the left-hand side of (69)

f ′1 (x)W1 + ηW2

∫ ∞
0

f2 (ηs) [f ′1 (s+ x)− f ′1 (s− x)] ds

+
ηW 2

2

k

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f ′1 (s+ x) + f ′1 (s− x)] ds ≤ (74)

W1

σ2
1

√
2π exp (1)

+
2

σ2
1

√
2π exp (1)

W2

∣∣∣∣η ∫ ∞
0

f2 (ηs) ds

∣∣∣∣
+

2

σ2
1

√
2π exp (1)

W 2
2

k

∣∣∣∣η ∫ ∞
0

f2 (ηs) f ′2 (ηs) ds

∣∣∣∣

45



With (61) and (63), the right-hand side of (74) can be written as

W1

σ2
1

√
2π exp (1)

+
2W2

σ2
1

√
2π exp (1)

∣∣∣∣η 1

2 |η|

∣∣∣∣
+

2

σ2
1

√
2π exp (1)

W 2
2

k

∣∣∣∣−η 1

4πησ2
2

∣∣∣∣ = (75)

W1

σ2
1

√
2π exp (1)

+
W2

σ2
1

√
2π exp (1)

(76)

+
W 2

2

σ2
1σ

2
2 (2π)

3
2

√
exp (1)

1

k
≤ (77)

W

σ2
1

√
2π exp (1)

+
W 2

σ2
1σ

2
2 (2π)

3
2

√
exp (1)

1

k

where the last inequality in (76) follows from W1 + W2 = W and W2 ≤ W .

(69), (74) and (76) thus imply that a suffi cient condition for (7) to hold is

(22).

With (65), Proposition 4 implies that efforts under both revelation regimes

are equal in expected value. With (52), (62) and (66), (9) and (10) yield (23)

and (24).

8.12 Proof of Corollary 5

With W2 = W −W1, Corollary 4 yields

e∗1 (η,W1,W −W1) =
W1

kσ1

√
2π

+
η (W −W1)

k
√

2π
√

(σ2)2 + (σ1)2 η2

.

Thus,
∂e∗1
∂W1

=
1

kσ1

√
2π
− η

k
√

2π
√

(σ2)2 + (σ1)2 η2

> 0.

8.13 Proof of Corollary 6

(i) With (65), Proposition 4 allows to write V P (η,W1, 0) = V P (η,W1, 1) =

V P (η,W1), so that ηP (W1, 0) = ηP (W1, 1) = ηP (W1) and W P
1 (η, 0) =
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W P
1 (η, 1) = W P

1 (η). (23) and (24) imply

V P (η,W1) =
W1

kσ1

√
2π

+
(η + 1) (W −W1)

k
√

2π
√

(σ2)2 + (σ1)2 η2

From Proposition 5, ηP (W1) > 0 for W1 < W . The optimal solution must

satisfy

∂V P (η,W1)

∂η
= (78)

(W −W1)

k
√

2π
√

(σ2)2 + (σ1)2 η2

− (η + 1) (W −W1) (σ1)2 2η

2k
√

2π
(
(σ2)2 + (σ1)2 η2

) 3
2

= 0

The only solution to (78) is η =
(
σ2
σ1

)2

= ηP (W1). With (51), (52), (62) and

(66), the condition for W P
1 (η, 1) = 0 in (17) for η =

(
σ2
σ1

)2

can be written as

1

σ1

√
2π

<

(
2

(
σ2

σ1

)2

+ 2

)
1

2
√

2π

√
(σ2)2 + (σ1)2

(
σ2
σ1

)4

which is equivalent to σ2 <
√

(σ2)2 + (σ1)2. Thus, W P
1

((
σ2
σ1

)2
)

= 0.

(ii) With (65), Proposition 4 allows to write V I (η,W1, 0) = V I (η,W1, 1) =

V I (η,W1), so that ηI (W1, 0) = ηI (W1, 1) = ηI (W1) andW I
1 (η, 0) = W I

1 (η, 1)

= W I
1 (η). (23) and (24) imply

V I (η,W1) =

 W1

kσ1

√
2π

+
η (W −W1)

k
√

2π
√

(σ2)2 + (σ1)2 η2

 ·
(W −W1)

k
√

2π
√

(σ2)2 + (σ1)2 η2

Thus
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V I (η, 0) =
ηW 2

2πk2
(
(σ2)2 + (σ1)2 η2

)
From Proposition 5, ηI (0) > 0. The optimal solution must satisfy

∂V I (η, 0)

∂η
=

W 2

2πk2
(
(σ2)2 + (σ1)2 η2

) (79)

− η2 (σ1)2W 2

πk2
(
(σ2)2 + (σ1)2 η2

)2 = 0

The only positive solution to (79) is η = σ2
σ1

= ηI (0). Next, observe that

with (52) and (62), (18) can be written as

1

σ1

√
2π

<
η

√
2π
√

(σ2)2 + (σ1)2 η2

which is equivalent to (σ2)2 < 0, a contradiction. Consequently,W I
1 (η) >

0 for η > 0. Since V I (0, 0) = 0, we conclude W I
1 (η) > 0 for η ≥ 0.
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