
Schwager, Robert

Conference Paper

Majority Vote on Educational Standards

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2013: Wettbewerbspolitik und
Regulierung in einer globalen Wirtschaftsordnung - Session: Electoral Control, No. B03-V3

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Schwager, Robert (2013) : Majority Vote on Educational Standards, Beiträge
zur Jahrestagung des Vereins für Socialpolitik 2013: Wettbewerbspolitik und Regulierung in
einer globalen Wirtschaftsordnung - Session: Electoral Control, No. B03-V3, ZBW - Deutsche
Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft, Kiel und
Hamburg

This Version is available at:
https://hdl.handle.net/10419/79971

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/79971
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Majority Vote on Educational Standards

Robert Schwager∗
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Abstract

The direct democratic choice of an examination standard, i.e., a performance

level required to graduate, is evaluated against a utilitarian welfare function. It

is shown that the median preferred standard is inefficiently low if the marginal

cost of reaching a higher performance reacts more sensitively to ability for high

than for low abilities, and if the right tail of the ability distribution is longer

than the left tail. Moreover, a high number of agents who choose not to graduate

may imply that the median preferred standard is inefficiently low even if these

conditions fail.

Keywords: examination, school, drop-outs, democracy, median voter

JEL classification: I21, D72, I28

1 Introduction

Improving educational achievements and promoting excellence is a stated goal in most

countries. In the same time, as the periodic PISA studies of the OECD show, many

countries struggle to reach this goal. The present paper provides an explication of this

dilemma based on the nature of politics in a democracy: Since in a well-functioning

democracy, the median voter is decisive, education policy is governed by the mid-

dle ground rather than by the highest achievers, and so tends to promote mediocrity

rather than excellence. Specifically, the analysis in this paper shows why, and under

what conditions, educational standards chosen by a majority of voters tend to be less

demanding than would be efficient.

The tension between democratic policy and excellence in education can be illustrated

by some observations. For example, the best universities around the world are private
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institutions who owe their existence to large endowments donated by rich individuals,

rather than to a political choice by a majority. Even among the public universities,

the best ones typically date from monarchical times, whereas newly founded public

institutions hardly match the traditional ones in terms of quality. Similarly, many

excellent secondary schools are privately run.

Another observation relates to the demands of parents or their organisations in ed-

ucation policy debates. Here, a common complaint, at least in Europe, is that school

is too tough for children, and that politics should aim at reducing the stress created

by school. Probably reacting to such demands, some German states currently con-

sider abolishing the repetition of grades. Conversely, one hardly sees parents pushing

teachers, schools, or politicians to tighten the standards at school.

Finally, in countries where the responsibility for education is assigned at a lower

level of government, a typical reaction to insufficient student performance is to call for

a transfer of power to a higher layer. However, while this will likely improve performance

in the least performing jurisdictions, it is equally likely to reduce achievement in the

best performing places, which is why they will typically oppose such a centralisation of

education policy.

In the present paper, I provide a theoretical analysis which explains, at a general

level, the tension between the preferences of the majority and the quality of education.

A model is presented where students of differing abilities decide how much effort to

put into schooling. The effort determines whether a student graduates, which requires

to reach a certain performance at the examination called the standard. The standard

determines the wage earned by graduates and effort is costly, but more able students

find it easier to comply with any given standard. For this reason, more able students

prefer higher standards than students with lower abilities.

The standard is determined by a majority vote among agents, say the students’

parents, who care for the interest of students. In the main results it is analysed whether,

starting from the standard preferred by agents with median ability, a marginal increase

in the standard improves a utilitarian welfare criterion. Such a result obtains if two

kinds of conditions are satisfied. The first type of condition requires that the marginal

cost of satisfying a higher standard decreases more steeply in ability when ability is

above the median than when it is below the median. The second kind of condition

requires that the distribution of abilities is spread out more widely at the high end

than at the low end. Intuitively, there is a lot to gain by tougher standards if there

are a few students with very high abilities, and if for those students it is very easy to
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satisfy more demanding standards.

There is an additional force which pushes down the median preferred standard

compared to an efficient choice. Students with lowest abilities may find it optimal

to forgo graduation and not to put in any effort. Such ‘drop-outs’ are not affected

by a marginal increase in standard since they anyway do not bear any effort costs.

Consequently, the standard should rise if the number of drop-outs is large. In an

example, I illustrate that this effect may cause the democratically chosen standard to

be too low even when then general condition on effort cost is not met.

The theoretical literature on examination standards focuses on the choice of stan-

dards by schools. In that literature, which was initiated by Costrell (1994, 1997) and

Betts (1998), the school trades off a higher wage for graduates, which requires a higher

standard, against a larger number of graduates, which calls for a more lenient stan-

dard. Building upon this trade-off, more recent contributions such as Chan, Hao, and

Suen (2007), Mechtenberg (2009), Popov and Bernhardt (2010), Ostrovsky and Schwarz

(2010), and Himmler and Schwager (forthcoming, 2013), analyse the causes and conse-

quences of grade inflation, i.e, the tendency of schools to award good grades which are

not justified by student’ performance.

Among all these contributions, only Costrell (1994, p. 963-964) contains a short

section about a majority vote on standards. Remarkably, he concludes that the demo-

cratically chosen standard is excessively tough, based on an assumption on the ability

distribution which is similar to the conditions which in the present model imply an

inefficiently low standard. The difference between both approaches is that in Costrell

(1994), voters, like schools, are only concerned with wages and hence educational out-

comes but do not take students’ effort into account. In the model presented here, such a

disutility of learning is a major driver of voters’ decisions, and consequently the chosen

standard tends to be lower. In this sense, my model is tailored to parents who take

great care to protect their children from stress, whereas Costrell (1994) rather features

an aspiring type of parents who push their children to highest performance.

The paper continues in Section 2 with a description of the basic economic struc-

ture. Voting decisions, and the assumptions required to establish the median preferred

standard as a Condorcet winner, are analysed in Section 3. Based on this, Section 4

provides the main welfare analysis, and Section 5 discusses the role of drop-outs. The

final Section 6 offers some policy conclusions.
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2 The Economic Model

There is a continuum of agents with mass one. Agents have two roles in the model,

as students and as voters. One can interpret agents literally as adult individuals who

still are in education, for example at a university, at an age where they have the right

to vote. Alternatively, and more broadly, agents can be seen as representing families

composed of children in education and parents who use their right to vote so as to

promote the interests of their children.

Agents are characterised by their ability a ∈ A := [ao, a1), where ao ≥ 0 and a1

may be infinite. Abilities are distributed according to the c.d.f. F : A → [0, 1] which

is continuous and strictly increasing on the support A. Thus, the density is strictly

positive for a ∈ A. The mean and median abilities are denoted by a =
∫

A
a dF (a) and

am = F−1(1/2).

In order to succeed at school, agents must exert effort denoted by e ≥ 0. An agent

with ability a who provides effort e incurs cost c(e, a). The cost function c : R≥0×A →

R≥0 is assumed to be three times continuously differentiable. I denote derivatives by

subscripts, so that, for example, ce(e, a) is the partial derivative of cost with respect to

effort.

Assumption 1. (i) c(0, a) = 0 and lime→∞[c(e, a)/e] > 1 for a ∈ A.

(ii) ce(e, a) > 0 and ca(e, a) < 0 for (e, a) ∈ R>0 ×A

(iii) cee(e, a) > 0, caa(e, a) > 0, and cea(e, a) < 0 for (e, a) ∈ R>0 × A

According to Assumption 1(i), a student who does not exert any effort does not incur

any cost, and for increasing effort, the cost eventually exceeds the effort. Assumption

1(ii) says that cost increases in effort but decreases in ability. Finally, Assumption 1(iii)

states that the marginal cost of effort is strictly increasing, that the cost-saving effect of

ability becomes weaker (in absolute terms) as ability increases, and that higher ability

decreases the marginal cost of effort. While effort is costly for all agents a ∈ A, an

agent at the upper bound of the ability distribution may be able to learn without any

cost. That is, I do not rule out that c(e, a1) := lima→a1 c(e, a) = 0 for all e.

The standard s ∈ R≥0 defines the performance level required to pass the examina-

tion. Performance is entirely determined by, and measured in the same units as, effort,

subsuming the influence of ability in the cost function c(e, a). Students who exert effort

e ≥ s graduate, while those with e < s fail and will be referred to as drop-outs.
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After leaving school, agents will be employed by firms which operate a constant

returns to scale technology transforming one efficiency unit of labour into one unit

of a numéraire output. The amount of efficiency units supplied by a worker is given

by her examination performance, and hence by the effort level e deployed at school.

Firms cannot observe the examination performance of an individual worker but know

whether she graduated or not. Therefore, all graduates will obtain the same wage

ws, and all drop-outs will receive the same wage wo. In a competitive equilibrium on

the labour market, the graduate wage ws (the drop-out wage wo) must be equal to the

expected productivity of all agents who exert effort e ≥ s (e < s). Ownership of firms is

sufficiently widely distributed among the agents that price-taking behaviour is justified,

but otherwise need not be specified. The reason is that, because of constant returns

to scale, firms earn zero profits whatever the standard or the behaviour of students,

so that firm ownership does not change the stakes any individual has in the choice of

standards.

For given standard s, a student of ability a ∈ A chooses effort so as to maximise

the expected wage net of effort cost. Conditional on choosing an effort e ≥ s sufficient

to graduate this payoff is ws − c(e, a). Since the wage does not depend on effort as

long as the constraint e ≥ s is met, from ce > 0 the minimal effort e = s dominates

all effort levels e > s. In the same way, conditional on not graduating (e < s), the

payoff is wo − c(e, a) which is maximised by e = 0. Thus, students either just meet the

standard and graduate, or they do not put in any effort at school and fail. Observing

c(0, a) = 0 from Assumption 1(i), one sees that graduation (dropping out) is optimal if

ws − c(s, a) ≥ (<)wo.

With this behaviour, equilibrium wages will be ws = s and wo = 0. Thus, in

equilibrium graduation is optimal if

s− c(s, a) ≥ 0 . (1)

Figure 1 shows the payoff from graduating on the l.h.s. of (1) as a function of the

standard s for several levels of ability. From Assumption 1(i), this payoff is zero at

s = 0 and eventually becomes negative for high enough s. Moreover, from assumption

1(ii), the payoff’s slope 1 − ce(s, a) is positive at s = 0 so that for all a ∈ A, at some

(possibly low) standard, graduation is worthwhile and a positive payoff can be reached.

Assumptions 1(i,iii) imply that for each a ∈ A there is a unique positive standard

smax(a), given by the solution to (1) as an equality, which yields a payoff of zero. As is
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s

payoff

0

s−c(s, ao)
s−c(s, a)

s−c(s, a′)

s−c(s, a′′)

s−c(s, a1)

v(s, a)

s(a)
smax(a)

Figure 1: The payoff from graduating and indirect utility.

apparent from Figure 1, an agent with ability a will graduate if s ≤ smax(a) and drop

out if s > smax(a). Thus, smax(a) is the maximal standard which an agent of ability a

is willing to satisfy.

Combining these observations, one finds the indirect utility function v(s, a) =

max{0; s − c(s, a)} of an agent a ∈ A. This function, which in Figure 1 is illustrated

by a bold red line, relates the standards about which agents vote to the individual

agent’s utility, anticipating her own effort and graduation choices and the equilibrium

wages ensuing from the chosen standard. From assumption 1(iii), the payoff from grad-

uating is strictly concave in s so that for each a ∈ A, there is a unique standard

s(a) = argmaxs{v(s, a)} > 0 which maximises the payoff of an agent with ability a.

Increasing ability shifts the payoff from graduating upward, since Assumption 1(ii)

implies that cost decreases in ability. Moreover, from Assumption 1(iii), the marginal

cost of effort decreases when ability rises. As illustrated in Figure 1, this means that

both the utility maximising standard s(a) and the highest standard smax(a) which an

agent will satisfy strictly increase in ability a.

Inverting the relationship smax(a), one can express the decision to graduate or not

by defining a minimal ability amin(s) which an agent must have so as to be willing to

satisfy a given standard s. This level is called the graduation threshold for standard s.
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To formalise this, one has to observe that for some s, the solution to (1) may not be

in the support A of the ability distribution. In such a case, all agents (no agent) will

graduate for the standard under consideration, and I define this threshold accordingly

to be ao or a1. Formally:

Definition 1. For all s ∈ R≥0:

amin(s) =











ao if s− c(s, a) > 0 for all a ∈ A

ã if s− c(s, ã) = 0 for some ã ∈ A

a1 if s− c(s, a) < 0 for all a ∈ A

Notice that from ca < 0 in Assumption 1(ii), ã in the second line of Definition 1 must

be unique if it exists and hence amin(s) is well defined. Moreover, all agents with

a < amin(s) will fail and all agents with a ≥ amin(s) graduate. In the first (third) line of

Definition 1, one has the case of a low (high) standard which yields positive (negative)

payoff for all agents and hence the graduation threshold is the lower (upper) bound of

the ability distribution. Finally, differentiating s− c(s, a) = 0 shows that

damin(s)

ds
=

1− ce(s, amin(s))

ca(s, amin(s))
> 0 , (2)

where the last inequality follows on ca < 0 and the fact that at amin(s), the payoff

from graduating must be decreasing. Therefore, the graduation threshold is weakly

increasing in the standard s, and strictly so if the threshold is in the interior of A.

The graduation threshold and the indirect utility function guide the voting be-

haviour of agents to which I now turn.

3 Voting

The analysis of voting outcomes starts with determining how agents of different ability

evaluate alternative standards. The upshot of this discussion will be that more able

individuals tend to prefer higher standards. To make this statement precise, consider

two standards s and s′ where s′ is more demanding than s, that is, 0 < s < s′, and

observe how the payoff from graduating under these two standards is affected by a
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marginal increase in ability. From ca < 0 and cea < 0 in Assumptions 1(ii,iii), we have

0 <
∂[s− c(s, a)]

∂a
<

∂[s′ − c(s′, a)]

∂a
(3)

Thus, graduation is more rewarding for more able individuals, and an increase in ability

procures a larger gain when the standard is higher.

It is useful to consider three cases depending on the preferences of the least (most)

able agents. In case [1], s− c(s, ao) ≤ s′ − c(s′, ao): Even for an agent with the lowest

ability, the payoff from graduating is at least as large with the more demanding standard

as with the more lenient standard. Case [2] is defined by s − c(s, ao) > s′ − c(s′, ao)

and s − c(s, a1) < s′ − c(s′, a1). Here, an agent with the lowest ability obtains a

higher payoff from the smaller standard, whereas an agent with an ability close to the

upper bound gains more from the higher standard. Finally, the last case [3] obtains if

s − c(s, a1) ≥ s′ − c(s′, a1). Here, even agents with the highest abilities reap a larger

payoff from graduating under the lower standard than under the higher standard.

From (3), in case [1], one has s − c(s, a) < s′ − c(s′, a) for all a ∈ A, a > ao, and

in case [3], it follows s − c(s, a) > s′ − c(s′, a) for all a ∈ A. Therefore, the three

cases are mutually exclusive and exhaust all possibilities. Moreover, in case [2], by

continuity, there is â ∈ A such that s− c(s, â) = s′ − c(s′, â). Again from (3), one has

s− c(s, a) > s′ − c(s′, a) for a < â and s− c(s, a) < s′ − c(s′, a) for a > â, so that â is

unique. This allows to define:

Definition 2. For all s, s′ ∈ R>0 with s < s′:

â(s, s′) =























ao if [1] s− c(s, ao) ≤ s′ − c(s′, ao)

â if [2] s− c(s, ao) > s′ − c(s′, ao)

and s− c(s, a1) < s′ − c(s′, a1)

a1 if [3] s− c(s, a1) ≥ s′ − c(s′, a1)

where in the second line, â is the solution to s− c(s, â) = s′ − c(s′, â). In case [2], the

ability â(s, s′) is the critical ability level where the payoff from graduating is the same

from both standards (see Figure 2). In cases [1] and [3], where no such level exists, the

critical value is defined to be, respectively, the lowest or the highest ability. In each

case, agents with ability below (above) â(s, s′) obtain a higher payoff from the lower

(higher) standard.

I turn now to analysing the preferences of agents in the three cases. Starting with
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ability

utility

b

a0 amin(s) amin(s
′)

a(s, s′) a1

s− c(s, a)

s′ − c(s′, a)

indifferent prefer s prefer s′

Figure 2: Preferences of agents in a vote between two standards s < s′.

case [1], it is apparent from Figure 1 that this case can only occur if the lower standard

s is on the increasing part of the payoff curve, so that s− c(s, a) > 0 for all a ∈ A, or

equivalently, amin(s) = ao. Therefore, all agents graduate under the standard s, yielding

v(s, a) = s − c(s, a) > 0. Together with s − c(s, a) < s′ − c(s′, a), one concludes that

in case [1], v(s, a) = s − c(s, a) < s′ − c(s′, a) = v(s′, a) for all a > ao. Hence in this

case, all agents except possibly those with the lowest ability strictly prefer the higher

standard.

In case [2], one sees from Figure 1 that at the critical ability â(s, s′) the payoff

from both standards must be positive, i.e., s − c(s, â(s, s′)) = s′ − c(s′, â(s, s′)) > 0.

Since the payoff is increasing in a, the graduation thresholds for both standards and

the critical ability must then be ordered according to amin(s) ≤ amin(s
′) < â(s, s′) < a1,

as displayed in Figure 2. Thus, there are some agents willing to satisfy both standards.

However, both amin(s) and amin(s
′) may be equal to or larger than ao. If ao < amin(s),

then agents with a ∈ [ao, amin(s)) will fail under both standards and obtain the same

indirect utility v(s, a) = v(s′, a) = 0. Agents with a ∈ (amin(s)), â) will graduate under

s, whether ao = amin(s) or ao < amin(s), procuring them a positive utility. Since for
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such a, the payoff from graduating is higher under the lower standard s than under s′,

one has v(s, a) = s− c(s, a) > v(s′, a) = max{0; s′ − c(s′, a)}, regardless of whether the

agent would graduate under the more demanding standard s′ or not. Finally, agents

with ability a > â(s, s′) graduate under both standards, but obtain a higher payoff when

the more severe standard is chosen, v(s, a) = s − c(s, a) < s′ − c(s′, a) = v(s′, a). To

summarise, in case [2] agents with ability below the graduation threshold of the more

lenient standard, if such agents exist, are indifferent between both standards since they

do not plan to graduate under either of them. Agents with intermediate ability between

the graduation threshold for s but below the critical value â(s, s′) strictly prefer the

lower standard, and agents with ability above â(s, s′) strictly prefer the higher standard.

In case [3], it may arise that no agent is willing to satisfy s′ or even s, so that

amin(s) = a1 is possible. Whether or not this is the case, agents with ability a < amin(s)

will again fail under both standards and obtain v(s, a) = v(s′, a) = 0. If there exist

agents with ability a ∈ (amin(s), a1), they will graduate under s and obtain utility

v(s, a) = s − c(s, a) > v(s′, a) = max{0; v(s′, a)}. Altogether, in case [3], agents with

ability below the graduation threshold for the lower standard are indifferent between

both standards, and agents whose ability exceeds this threshold, if they exist, strictly

prefer the lower standard.

Using Definitions 1 and 2, the following Lemma, which is illustrated in Figure 2,

summarises the preceding discussion:

Lemma 1. For any two standards s, s′ ∈ R>0 with s < s′:

(i) If ao ≤ a < amin(s), then v(s, a) = v(s′, a).

(ii) If amin(s) < a < â(s, s′), then v(s, a) > v(s′, a).

(iii) If â(s, s′) < a ≤ a1, then v(s, a) < v(s′, a).

For completeness, note that for a = amin(s) or a = â(s, s′), one has v(s, a) = v(s′, a)

as long as ao < a < a1. If the graduation threshold or the critical ability level are ao,

then only weak inequalities can be stated. If ao = amin(s) = â(s, s′) (case [1]), then

v(s, ao) ≤ v(s′, ao). If ao = amin(s) < â(s, s′), then v(s, ao) ≥ v(s′, ao) (cases [2], [3]).

The standard is determined by the agents in a series of pairwise votes. It is assumed

that agents vote sincerely so that voting for s in a vote against s′ is optimal for an

agent with ability a if v(s, a) ≥ v(s′, a). There is an open agenda in the sense that any

previously decided standard may be challenged in a new vote by some other standard.
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A standard will be democratically chosen if it collects a majority of votes against any

other standard. This is captured by the following

Definition 3. Standard s ∈ R≥0 is a weak Condorcet winner if for all standards s′ ∈

R≥0, s
′ 6= s:

∫

{a ∈ A|v(s, a) ≥ v(s′, a)}
dF (a) > 1/2 .

In Definition 3, it is worth noting that in order to prevail, a standard must be weakly but

not necessarily strictly preferred to any other standard by a majority of agents. Thus,

agents behave optimally in each vote, but ties are broken in a way which supports the

equilibrium, like in a mixed strategy Nash equilibrium. For this reason, I prefer to call

it a weak Condorcet winner.

Lemma 2. The standard sm := s(am) preferred by agents with median ability is a weak

Condorcet winner.

Proof: See Appendix.

Lemma 2 differs from a standard median voter result in that the median preferred

standard sm is only shown to be a weak Condorcet winner, and that the Lemma does

not claim uniqueness. This is because the opportunity to drop out transforms the

payoff from graduating s − c(s, a), a single-peaked function which strictly rises when

the standard is moved towards the optimum, into the indirect utility v(s, a) which stays

equal to zero for all standards where the agent fails to graduate. If such flat parts are

allowed in the indirect utility function (as, for example, in Persson and Tabellini, 2002,

Definition 2, p. 22), the indifference of voters must be resolved in a suitable way for a

median voter theorem to hold.

Specifically, in a vote between sm and a higher standard, the majority for sm must be

secured by low ability agents. If some of these drop out under sm, i.e., if amin(sm) > ao,

they will also drop out under the alternative, higher standard. These agents are then

indifferent and so might vote together with high ability agents in favour of the more

demanding standard. Thus, with an arbitrary tie breaking rule, sm might fail to win

such a vote and hence might not be a Condorcet winner. By requiring only that

agents have to vote for some optimal standard, Definition 3 allows to assign indifferent

low ability drop-outs to the camp of supporters of the median preferred standard,

establishing sm as a weak Condorcet winner. Definition 3 does not, however, ensure
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uniqueness: It is not ruled out that, by attributing votes of indifferent agents in a

different way, one can support other standards as weak Condorcet winners as well.

Conversely, it becomes clear from this discussion that without drop-outs, sm is the

unique Condorcet winner in the usual sense, defined by replacing, in Definition 3, the

“≥” in the condition v(s, a) ≥ v(s′, a) by “>”.

Since drop-outs are a relevant issue in education and in particular when it comes to

determine examination standards, I do not want to restrict the analysis by excluding

them. Alternatively, a suitable tie-breaking assumption which ensures that no other

standard can win a majority against sm consists in requiring that agents who drop out

under both standards on the ballot support the lower one of these standards. Since such

agents are located at the lower tail of the ability distribution, this kind of behaviour

is rather plausible. For example, from earlier experiences these agents might have

developed general reservations against a tough educational regime, or they might feel

compelled to mimic the voting behaviour of their peers with slightly higher ability, who

strictly prefer the lower standard.

More substantively, this kind of tie-breaking rule can also be supported by refining

the Condorcet equilibrium in the spirit of trembling hand perfection. To make this

precise, I define an ε-education model where for every standard s ∈ R≥0 each of the

two choices ‘e = s’ and ‘e = 0’ will be chosen with probability of at least ε > 0,

where ε is a small number. Thus, with probability ε the agent will make an ‘error’ in

her graduation decision. While such an error is conceivable in any strategic situation,

modeling a deviation from planned behaviour is particularly appealing if one interprets

agents as families where education decisions are taken by children. Here, ε measures

the possibility that children do not follow the educational course which their parents

deem optimal for them.

In an ε-education model, the payoff from standard s for an agent with ability a

will be v(s, a; ε) = (1 − ε)[s − c(s, a)] if s − c(s, a) ≥ 0 and v(s, a; ε) = ε[s − c(s, a)]

if s − c(s, a) < 0. Adapting Definition 3 and Lemma 2 to the ε-education model, one

obtains

Definition 4. Standard s ∈ R≥0 is a weak Condorcet winner in the ε-education model

if for all standards s′ ∈ R≥0, s
′ 6= s:

∫

{a ∈ A|v(s, a; ε) ≥ v(s′, a; ε)}
dF (a) > 1/2 .

12



Lemma 3. For all 0 < ε < 1, the standard sm preferred by agents with median ability

is the unique weak Condorcet winner in the ε-education model.

Proof: From 1− ε > 0, v(s, a; ε) = (1 − ε)[s− c(s, a)] is strictly increasing (strictly

decreasing) in s for 0 ≤ s < s(a) (for s(a) < s < smax(a)). From ε > 0, v(s, a; ε) =

ε[s−c(s, a)] is still strictly decreasing in s for s > smax(a). Therefore, in a vote among sm

and a lower (higher) alternative standard s < sm (s′ > sm), all agents with a > â(s, sm)

(a < â(sm, s
′)) strictly prefer sm over s (over s′). As seen in the proof of Lemma 2,

these agents constitute more than half of the electorate. Therefore, sm beats every

alternative standard, and no alternative standard can attract a majority against sm.

The key difference between Lemmas 2 and 3 is that in the ε-education model, the

median preferred standard is the unique Condorcet winner. This arises from the fact

that the ‘trembling hand’ assumption blurs the decision to drop out from school. While

the standard smax(a) still defines the cut-off above which an agent of ability a does not

plan to graduate anymore, she may still do so erroneously and thus experience the

(negative) payoff from graduating with probability ε > 0. This breaks the indifference

of low ability agents in favour of the less demanding standard, making the indirect

utility function v(s, a; ε) single-peaked.

According to the idea of trembling hand perfectness, a Condorcet winner in the

original model is only reasonable if it is robust against the possibility of small errors.

This is captured by the following definition:

Definition 5. A standard s ∈ R≥0 is a strong Condorcet winner if

(i) s is a weak Condorcet winner, and

(ii) there is a sequence {sn}n=1,2,... such that sn → s and for all n, sn is a weak

Condorcet winner in an εn-education model, where εn ∈ (0, 1) and εn → 0.

Thus, a weak Condorcet winner is called ‘strong’ if it is the limit of a sequence of weak

Condorcet winners in ε-education models the error probabilities of which converge to

zero. One immediately concludes from Lemmas 2 and 3:

Proposition 1. The standard sm preferred by agents with median ability is the unique

strong Condorcet winner.

To summarise, there are three ways to establish a median-voter theorem in the

present model. First, the median-preferred standard sm is the unique Condorcet winner

13



in the usual sense, i.e., it is strictly preferred by a majority of agents in any pairwise

vote, if all agents graduate under this standard, amin(sm) = ao. Second, even if there

are some dropouts, sm is a weak Condorcet winner in the sense that a majority of

agents weakly prefers this standard in any pairwise vote. Third, sm is the only strong

Condorcet winner, that is, it is the only voting outcome which is robust against small

errors in the education decision.

In the following Sections 4 and 5, the welfare properties of the median preferred

standard are examined.

4 Welfare Analysis

Welfare is defined by a utilitarian criterion, aggregating the indirect utility of all agents:

Definition 6. For any given standard s, welfare is

W (s) =

∫ a1

ao
v(s, a) dF (a) .

For agents who graduate, utility is the wage earned net of effort cost, and for drop-

outs, utility is zero. Therefore, welfare is given by W (s) =
∫ a1

amin(s)

[

s − c(s, a)
]

dF (a).

Differentiating this equation w.r.t. s and using the definition of amin(s), one finds that

an increase in the standard changes welfare by

W ′(s) =

∫ a1

amin(s)

[

1− ce(s, a)
]

dF (a) . (4)

To understand (4), notice that a change in the standard affects both the graduation

threshold amin(s) and the utilities v(s, a). The first effect cancels, however, since the

utility of an agent at the threshold is zero by definition. Since drop-outs anyway receive

a utility of zero, the second effect is relevant only for those agents who will graduate

under the original standard. For these individuals, raising the standard by one unit

increases the wage by one unit, since wage and standard are normalised to be equal.

On the other hand, in order to satisfy the higher standard, students have to incur

additional effort cost so that, for an agent with ability a, the net gain from increasing

the standard is 1− ce(s, a).

The goal of this section is to examine under what conditions welfare will increase if

the standard is raised above the standard chosen by the majority. That is, I provide
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sufficient conditions for W ′(sm) > 0. Only a local welfare analysis is offered since any

second order conditions ensuring a global maximum will necessarily require assumptions

on the shape of the density F ′(a), which are likely to be either very strong or difficult

to interpret.

The starting observation in this analysis is that, because sm is optimal, agents with

median ability are indifferent to an increase in standard, 1 − ce(sm, am) = 0. Since

marginal cost of effort is strictly decreasing in ability, agents with above-median ability

will gain from an increase in standard, i.e., 1 − ce(sm, a) > 0 for all a > am. Agents

with below-median ability will lose, 1 − ce(sm, am) < 0, as long as they still graduate.

Therefore, the net welfare effect of an increase in the standard hinges on the relative

sizes of aggregate gains and losses by high and low ability agents respectively. These

aggregate amounts in turn are determined by three features: the shape of the marginal

cost function ce, the distribution function F (·), and the graduation threshold amin(sm).

In this section, I provide two results highlighting the role of the first two features,

whereas the importance of the graduation threshold is taken up in Section 5.

The properties of the cost and distribution functions used in these results are de-

scribed by two pairs of conditions. The first one of these are

Condition 1. ceaa(sm, a) ≤ 0 for a ∈ [ao, a1).

Condition 2. a ≥ am.

Condition 2 simply states that mean ability exceeds median ability. Condition 1, which

is illustrated in Figure 3, requires that the marginal cost of effort ce is a concave function

of ability. In Figure 3, ability is depicted on the horizontal axis and marginal cost and

benefits of an increase in standard are measured on the vertical axis. The marginal

cost of effort evaluated at the median preferred standard, ce(sm, a), decreases according

to Assumption 1(iii), and cuts the marginal benefit of 1 at the median ability am. As

illustrated in this figure, if the cost function satisfies Condition 1, the marginal cost

curve should become steeper as ability increases. Thus, the effort-enhancing effect of

ability increases in ability.

Alternatively, I consider the following pair of conditions:

Condition 3. For all x ∈ (0,min{am − ao; a1 − am}]:

1

2
ce(sm, am − x) +

1

2
ce(sm, am + x) ≤ 1 .
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0

1 b

a0 am a1

Figure 3: Marginal cost of effort is concave in ability (Condition 1).

Condition 4. For all x ∈ (0,min{am − ao; a1 − am}]:

1

2
− F (am − x) ≥ F (am + x)−

1

2
.

In Condition 3, two agents are considered whose abilities exceed and fall short of the

median ability by the same amount x. The condition requires that the average marginal

cost of these two individuals does not exceed the marginal benefit. Thus, on average,

these two agents gain from raising the standard. Figure 4 gives a geometric intuition

for this property, which is based on splitting the graph of the marginal cost curve ce

in the two parts corresponding to the domains of below and above median abilities.

Condition 3 requires that, when one of these parts is mirrored at the point (am, 1), the

image should be located below the other part.

Finally, also Condition 4 (see Figure 5) starts from considering two ability levels

which are located symmetrically around the median. The condition requires that the

mass of agents with abilities between the lower one of these values and the median is

at least as large as the mass of agents with abilities between the median and the higher

one of these values.

To summarize, Conditions 1 and 3 represent the idea that the impact of ability on

marginal effort cost should be stronger on the high side of the ability distribution than

on the low side. Put differently, this means that academic performance is very sensitive

to ability when one compares good and very good students, whereas below the median

ability, differences in ability do not matter much. It is an empirical issue whether such

a property holds in reality. A priori, it seems plausible to me because, on the one hand,

weak students mostly can reach a satisfactory performance with sufficient training,
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0

1 b
ce(am − x)− 1

1− ce(am + x)

a0 am − x am am + x a1

Figure 4: On average, two agents with abilities symmetric to the median gain by a
marginal increase in standard (Condition 3).

a

density

0
a0 amam − x am + x a1

1
2 − F (am − x) F (am + x)− 1

2

Figure 5: Higher abilities are more spread out than lower abilities (Condition 4).
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whereas, on the other hand, really excellent achievements are out of reach except for

the very brightest.

According to Conditions 2 and 4, the distribution of abilities is more ‘spread-out’

at the upper end of the support than at the lower end. This can arise, for example, by

the presence in the economy of a few agents with very high ability, who raise the mean,

whereas a large mass of agents is concentrated at moderately low ability levels. This

corresponds to the empirical fact that income distributions, which at least partially

reflect distributions of productivity or ability, are typically right-skewed.

Proposition 2. If Conditions 1 and 2 hold, then W ′(sm) ≥ 0. If in addition, an

inequality in one of these conditions is strict or amin(sm) > ao, then W ′(sm) > 0.

Proof. See Appendix.

Proposition 3. If Conditions 3 and 4 hold, then W ′(sm) ≥ 0. If in addition, an

inequality in one of these conditions is strict or amin(sm) > ao, then W ′(sm) > 0.

Proof. See Appendix.

Propositions 2 and 3 show that democratic choice leads to an inefficiently low examina-

tion standard if the cost function and the distribution function satisfy one of the pairs

of Conditions 1 and 2, or 3 and 4. Intuitively, an increase in standard is beneficial if

the gain conferred this way to agents whose abilities exceed the median by a certain

amount outweighs the loss incurred by agents whose abilities fall short of the median

by a similar amount. This is the case if the marginal cost of effort decreases fast once

ability is raised above the median but rises only slowly when ability falls below the

median, as required by Conditions 1 or 3. Moreover, the aggregate gain (loss) is large

(small) if the mass of agents with very high (low) ability is relatively large (small), as

postulated in Conditions 2 or 4.

Looking closer at the pairs of conditions required in each proposition, one notices

that Condition 1 implies Condition 3, and that Condition 4 implies Condition 2. There-

fore, there is a substitutive relationship between the properties of the cost function and

the distribution function in the sense that it is possible to weaken one of them if one

strengthens the other.

As mentioned in the introduction, Costrell (1994) proves a result which appears to

be contrary to Propositions 2 and 3. In his model, the standard chosen by majority vote

is inefficiently high if the distribution of preferred standards is symmetric unimodal.

This contrasts with Conditions 2 and 4, both of which are satisfied with equality if the
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distribution of abilities is symmetric. The main difference in my set-up and the analysis

by Costrell (1994) lies in the objective function of voters: In Costrell (1994), voters

care only about academic performance and hence try to maximise the productivity of

students, but do not take effort cost into account. In contrast, in the present analysis,

it is assumed that parents will vote for reducing the standard if they feel that their

children suffer too much from the effort required in school. Not surprisingly then, an

education system where effort cost of students is politically important is likely to be

less demanding than a system which only aims at raising educational outcomes.

In Propositions 2 and 3 the existence of agents who do not graduate under the

median preferred standard figures only as a tie-breaking device in case both of the

respective conditions are just satisfied as equalities. In the following Section 5, I show

that the presence of a substantial number of drop-outs independently contributes to an

insufficiently high median preferred standard. For this reason, the pairs of conditions

used in each proposition are not at all necessary.

5 The Role of Dropouts

As long as one considers only agents who graduate under the median preferred standard,

increasing marginal effort cost for given ability will clearly reduce the net benefit of a

higher standard. Geometrically, if one bends the ce-function in Figures 3 and 4 upwards

while keeping the point (am, 1) fixed, so that the median preferred standard does not

change, then it is apparent that losses of an increase in standard increase and gains

shrink. From this effect, one concludes that the higher the marginal cost for low ability

agents, the less likely it is that the median preferred standard is too lenient. Intuitively,

a high standard hurts the agents with below median ability ever more if they suffer more

and more form learning, and so society should increasingly protect these students from

being pushed to high effort.

This argument however misses the fact that students have the opportunity to avoid

such costly effort by not graduating. Moreover, from the individual education decision,

students are increasingly likely to do so when marginal effort cost rises. Therefore, the

presence of drop-outs creates a countervailing effect of rising marginal effort cost which

may well overcompensate the increasing loss of those who graduate.

In the following, I will illustrate this effect by means of an example. In this example,

ability is uniformly distributed on A = [ao, a1] = [0, 2] so that am = a = 1. Moreover,
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effort cost is given by a family of functions

c(e, a; γ) =
e2

2

[

1 + (am − a) + γ(am − a)2
]

, (5)

where the parameter is restricted to 0 ≤ γ ≤ 1/2 to ensure that c(e, a; γ) satisfies

Assumption 1. Computing sm = 1 and

ce(sm, a; γ) = 2− a + γ(1− a)2 ,

cea(sm, a; γ) = −1− 2γ(1− a) ,

ceaa(sm, a; γ) = 2γ ,

one sees that γ determines the curvature of the marginal cost of effort. Specifically, for

γ > 0 the example violates both Conditions 1 and 3.

The graduation threshold amin(sm; γ) solves the equation c(sm, a; γ) = sm, or equiva-

lently, 1+(am−a)+γ(am−a)2 = 2/sm. With am = sm = 1 it follows that for all admissi-

ble γ, the marginal cost of effort at the graduation threshold is ce(sm, amin(sm; γ); γ) = 2.

The change in welfare induced by a marginal increase in the standard can be computed

from (4) as

∂W (sm; γ)

∂sm
= −

1

2

∫ 2

amin(sm; γ)

[

(1− a) + γ(1− a)2
]

da .

From these equations, one derives:

Proposition 4. If the cost of effort is given by (5) and ability is distributed uniformly

on [0, 2], then ∂W (sm; γ)/∂sm > 0 for all 0 < γ < 1/2.

Proof. Computations done with Mathematica, and available from the author upon

request, reveal that the only two values of γ ∈ [0, 1/2] with ∂W (sm; γ)/∂sm = 0 are

γ = 0 and γ = 1/2, and that ∂W (sm; γ)/∂sm is increasing in γ at γ = 0. From this, it

follows ∂W (sm; γ)/∂sm > 0 for 0 < γ < 1/2.

The logic of Proposition 4 is illustrated in Figure 6. Here, the downward sloping

straight line is the marginal cost of effort for the lowest admissible value γ = 0, which

leads to the graduation threshold amin(sm; 0) = ao = 0. When γ rises above zero, the

marginal cost of effort bends upwards and becomes strictly convex, as seen in the green

curve. The highest possible γ = 1/2 finally results in the highest curve, painted red.

With uniform distribution of ability, the aggregate losses and gains of an increase in
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γ = 1/2

0 < γ < 1/2γ = 0

aminamin am a1

Figure 6: If marginal effort cost bend upwards, the graduation threshold rises.

standard are directly measured by the areas between these curves and the marginal

benefit of 1. It is apparent that the net gain would decrease in γ if the graduation

threshold remained at ao = 0. However, the threshold moves to the right as γ increases,

so that the area representing the loss, which is bounded below by the vertical line at

amin(sm; γ), shrinks.

6 Conclusion

It is difficult to derive an immediate policy recommendation from the inefficiency shown

in the present paper, since one obviously would not argue against democracy. Never-

theless, it is worthwhile to discuss some effects not included in the model which may

possibly counteract the tendency of democratic education policy towards overly lenient

standards. The first such feature is the fact that turnout is generally lower among low

income voters than in the general electorate. Inasmuch as income and ability are cor-

related, this otherwise deplorable fact tends to raise median ability among voters and

hence works in favor of a higher standard. Second, a tax-transfer scheme may give low

ability agents, who would be recipients of transfers, a stake in higher standards since

these will raise wages and tax revenues. Finally, the present analysis suggests that there

is a role for the private sector in education, if only in order to promote excellence.
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Appendix

Proof of Lemma 2

Consider sm in a vote against some standard s < sm. I first show that â(s, sm) < am.

If case [1] applies, this is immediate from â(s, sm) = ao < am. In case [2], it exists

â(s, sm) ∈ A such that s − c(s, â(s, sm)) = sm − c(sm, â(s, sm)). Since the payoff

from graduating s − c(s, ·) is strictly concave in s, for the standard s(â(s, sm)) which

maximises the utility of an agent with ability â(s, sm), it must hold s < s(â(s, sm)) < sm.

Now â(s, sm) < am follows from the second inequality and the fact that the optimal

standard s(a) is strictly increasing in ability. Finally, case [3] would imply s−c(s, am) >

sm − c(sm, am), contradicting the fact that sm is optimal for the median. Hence case

[3] is ruled out, establishing â(s, sm) < am. Therefore, the mass of agents with ability

a ∈ (â(s, sm), a1) exceeds 1/2. From Lemma 1(iii), these agents strictly prefer s over

sm so that
∫

{a∈A|v(sm,a)>v(s,a)}
dF (a) > 1/2 follows.

Consider now sm in a vote against some standard s′ > sm. By an argument anal-

ogous to the one laid out in the previous paragraph, one derives am < â(sm, s
′).

From Lemma 1(i), all agents with ability a such that ao ≤ a < amin(sm) are indif-

ferent between both standards. From Lemma 1(ii), all agents with ability a such that

amin(sm) < a < â(sm, s
′) strictly prefer the lower standard sm. From am < â(sm, s

′),

these subsets of agents together make up more than half of the electorate so that
∫

{a∈A|v(sm,a)≥v(s′,a)}
dF (a) > 1/2 is proved.

Proof of Proposition 2

(i) For brevity, define β := −cea(sm, am) > 0. With this, from Condition 1, one has

ce(sm, a) ≤ ce(sm, am) + β(am − a) (A.1)

for all a ∈ A (see Figure 3 ), and, since ce(sm, am) = 1, it follows ce(sm, a) ≤ 1+β(am−a)

for all a ∈ A. Inserting into (4), one obtains

W ′(sm) ≥ β

∫ a1

amin(sm)

(a− am) dF (a) (A.2)

= β
[

1− F (amin(sm))
]

·
[

E
(

a|a > amin(sm)
)

− am
]

,
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where E
(

a|a > amin(sm)
)

=
∫ a1

amin(sm)
a dF (a)/

[

1− F (amin(sm))
]

is the expected ability

of graduates, which is well defined since under the median preferred standard, a positive

mass of agents will graduate. Clearly, E
(

a|a > amin(sm)
)

≥ a, and hence (A.2) implies

W ′(sm) ≥ β
[

1− F (amin(sm))
]

· [a− am] . (A.3)

From this and Condition 2, it follows W ′(sm) ≥ 0.

(ii) If the inequality in Condition 1 is strict, then (A.1), and by consequence (A.2)

hold with strict inequality. If the inequality in Condition 2 is strict, then the right-

hand-side of (A.3) is strictly positive. If amin(sm) > ao, then E
(

a|a > amin(sm)
)

> a

so that in (A.2), the right-hand-side is strictly positive. In all three cases, it follows

W ′(sm) > 0.

Proof of Proposition 3

(i) Splitting the integral in (4) at the median and writing am − x = a for a < am and

am + x = a for a > am, one obtains

W ′(sm) = −

∫ am

amin(sm)

[

ce(sm, am − x)− 1
]

dF (am − x) (A.4)

+

∫ a1

am

[

1− ce(sm, am + x)
]

dF (am + x) .

From Condition 4, it must hold am − ao ≤ a1 − am so that Condition 3 implies

ce(sm, am − x)− 1 ≤ 1− ce(sm, am + x) (A.5)

for all x ∈ (0, am − ao]. Using (A.5) in (A.4), one concludes

W ′(sm) ≥ −

∫ am

amin(sm)

[

1− ce(sm, am + x)
]

dF (am − x) (A.6)

+

∫ a1

am

[

1− ce(sm, am + x)
]

dF (am + x) .

Define the two distribution functions G(x) := 1 − 2F (am − x) for x ∈ [0, am − ao]

and H(x) := 2F (am + x) − 1 for x ∈ [0, a1 − am]. (G(x) resp. H(x) is the probability

that ability is at most a distance x away from the median, conditional on being below

resp. above the median.) One has dG(x) = −2dF (am − x) and dH(x) = 2dF (am + x).
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Using G and H in (A.6), adjusting the integration bounds appropriately and reversing

the order of integration in the first integral, one arrives at

W ′(sm) ≥ −
1

2

∫ am − amin(sm)

0

[

1− ce(sm, am + x)
]

dG(x)

+
1

2

∫ a1 − am

0

[

1− ce(sm, am + x)
]

dH(x) .

Since amin(sm) ≥ ao and 1− ce(sm, am + x) > 0 for x > 0, it follows furthermore

W ′(sm) ≥ −
1

2

∫ am − ao

0

[

1− ce(sm, am + x)
]

dG(x) (A.7)

+
1

2

∫ a1 − am

0

[

1− ce(sm, am + x)
]

dH(x) .

Now observe that the two integrals in (A.7) have the form of expected utilities, with

1− ce(sm, am+x) as the utility function which strictly increases in the random variable

x because of Assumption 1(iii). Moreover, Condition 4 implies that the distribution

H(x) first order stochastically dominates the distribution G(x). Since a decision-maker

with monotonic preferences will prefer the dominating to the dominated lottery (see

Yildiz, 2010), the second integral must be at least as large as the first one. This implies

W ′(sm) ≥ 0.

(ii) If the inequality in Condition 3 is strict, then (A.5) and hence (A.6) hold as strict

inequalities. If the inequality in Condition 4 is strict, the dominance of the second over

the first integral in (A.7) is strict, implying that the right-hand-side of this inequality

is strictly positive. Finally, if amin(sm) > ao, extending the integration in (A.7) to the

values x ∈ (am − amin(sm), am − ao] adds a positive mass of strictly negative values, so

that (A.7) holds as a strict inequality. In all three cases, it follows W ′(sm) > 0.
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