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Evaluating misspeci�cation in DSGE models using
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Abstract

In this paper I discuss the estimation of the process governing the structural shocks

(or wedges) to a DSGE model, arguing that a well-speci�ed model would satisfy certain

sets of moment conditions. Based on tests for overidentifying restrictions, I compare

three speci�cations of the Taylor rule within a simple New Keynesian model. I �nd that

a rule which allows for the Fed to respond to four lags of in�ation shows less evidence of

misspeci�cation than one where the Fed responds only to contemporaneous in�ation.

Raising the coe¢ cient on the output gap to 1 instead of 0.5 gives more ambiguous

results.
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1 Introduction

In this paper I discuss the evaluation of the evidence in favor of misspeci�cation for a

DSGEmodel using tests for overidentifying restrictions, where the overidentifying restrictions

represent a hypothesis that the model is not misspeci�ed along some set of dimensions. First

I show how an unrestricted VAR process governing the shocks (or wedges) in a DSGE model

can be estimated by running a VAR on observables and then backing out the implied law

of motion for the wedges given a set of deep structural parameters for the model. Then

I propose a set of absolute and relative misspeci�cation test statistics based on �2 tests

for overidentifying restrictions, based on the heuristic notion that a well-speci�ed model

satis�es certain zero restrictions. In practical terms, some combinations of parameters which

govern the law of motion for the wedges�particularly wedge processes which feature strong

relationships among di¤erent "structural" wedges�are more indicative of misspeci�cation

than other combinations of parameters. These test statistics can provide practical guidance

toward building better models.

I use the speci�cation of the Taylor rule in a three-equation New Keynesian model as a

concrete example to see how tests for overidentifying restrictions could be used to improve

model speci�cation. In particular, I test to see to what extent the data reject the null

hypothesis that the errors for a set of three model equations are not correlated across equa-

tions, for a number of time horizons. Based on the model misspeci�cation statistics, I show

that a Taylor rule where monetary authorities respond to one year�s worth of cumulative

in�ation requires assumptions about the underlying shock process which are less unbeliev-

able along the speci�ed dimensions than a Taylor rule where monetary authorities respond

only to current quarterly in�ation. I also compare a model with a Taylor rule coe¢ cient on

output of 1 with a rule with a coe¢ cient of 0.5, and I �nd that a larger coe¢ cient seems to

be better-speci�ed when looking at contemporaneous data but worse-speci�ed when looking

at lagged data. In summary, it is possible to test for certain types of model misspeci�cation

in DSGE models given that the data follow a VAR process and to make improvements to
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model speci�cation based on the results from these tests.

There is already a small literature which seeks to estimate the wedges in dynamic eco-

nomic models using generalized shock processes, given a �xed set of deep model parameters.

Relative to that literature, I present a computationally simpler way to estimate the process

governing the evolution of model errors (or wedges), which can then be applied to the de-

tection and correction of model misspeci�cation. This contribution is potentially useful

in its own right. Chari, Kehoe, and McGrattan (2007) estimate a set of wedges in an

RBC framework, and �ustek (2011) estimates a version of the Smets-Wouters (2007) model

with a generalized driving process governing the model wedges. �ustek, for instance, has

to resort to simulated annealing in order to approximate the wedge process. Cúrdia and

Reis (2011) attempt to estimate both the deep parameters and the parameters governing

the errors to a large DSGE model with VAR(1) errors through the use of computationally

intensive Bayesian methods. It turns out that there is no need to use computationally in-

tensive methods to estimate the underlying driving process if the data and driving processes

are both VARs, since it is possible to estimate the VAR which governs the data and then

back out the VAR which governs the wedges. This result makes it possible to derive an

estimated law of motion for the wedges in a fast and accurate way.

While in this paper I adopt a classical approach, this paper is also related to the Bayesian

model evaluation literature. An and Schorfheide (2007) extensively discuss the use of

Bayesian methods such as posterior predictive checks and odds ratios to compare poten-

tially misspeci�ed models; the model misspeci�cation statistics discussed in this paper could

be seen as applying the logic of posterior predictive checks to a more classical setting. Ad-

ditionally, del Negro and Schorfheide (2004) discuss how the use of a DSGE model as a prior

distribution for a VAR model could improve forecasting performance and policy predictions,

while del Negro and Schorfheide (2009) discuss further ways in which misspeci�cation can

be taken into account when doing policy analysis with DSGE models. In contrast with the

Bayesian literature, I adopt a classical approach for the sake of computational simplicity,
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though this paper retains the spirit of much of the Bayesian literature. Mechanically, the

test statistics used in this paper are the same test statistics as those used in the generalized

method of moments (GMM) literature as well as in the structural equation modeling (SEM)

literature. These test statistics do not represent a coherent approach to the estimation of

deep parameters in the way that maximum likelihood, GMM, and Bayesian estimation do;

rather, I seek to develop a set of relatively simple tools which can be used to help diagnose

misspeci�cation and to make it possible to build better models. Future work could see to

what extent evidence penalties for misspeci�cation could be integrated into a more general

estimation strategy.

The layout of this paper is as follows. First, I show how to back out an estimated law of

motion for model wedges from an estimated law of motion for the data, for a given set of deep

DSGEmodel parameters. Then I show how to set up a set of overidentifying restrictions tests

on undesirable parameter combinations, and I show how these overidentifying restrictions

tests could be used to improve the speci�cation of the Taylor rule in a three-equation New

Keynesian model. I conclude with a discussion regarding further possible directions for

research.

2 The mapping between data and wedges

2.1 The mapping from wedges to observables

In this section I show that an unrestricted VAR process for the shocks to an economic model

results in a VAR process for the observables. The following section shows the reverse.

This section and the next section closely follow the setup used by Reicher (2013) to discuss

identi�cation issues in DSGE models with generalized shock processes, although this paper

goes on to show how to computationally derive the estimated law of motion for the wedges

and to perform speci�cation tests.

A dynamic economic model is governed by a parameter set �. Elements of � may include
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parameters which govern production technology, labor supply, frictions in price and wage

formation, adjustment costs, and so on. A set of mean-zero exogenous structural wedges wt

of rank k follows a VAR process with the law of motion:

wt =
1X
i=1

Fiwt�i + �t, where E�t�
0
t = �w. (1)

A complete linearized, de-meaned DSGE model including wedges and observables can be

represented using the notation of Sims (2002), treating the law of motion (1) of the wedges

as given:

�0;0xt+1 = �1;0xt +�0�t+1 +	0�t+1, (2)

where the matrices �0;0, �1;0, �0, and 	0 are functions of deep model parameters and of

the law of motion of the wedges given by (1). The matrix xt contains the observables

zt, the wedges wt, and any other auxiliary variables included in the model. Endogenous

expectational errors, which are functions of the shocks to the wedges, are given by �t+1. I

assume that �t, wt, and zt have the same rank k, and that the model is stationary and locally

determinate. If the rank of wt exceeds the rank of zt, then the mapping from zt into wt

is not unique. If the rank of zt exceeds the rank of wt; then the model is stochastically

singular.

The observables zt are linked to the system through the observation equation zt = Hxt.

The law of motion for the wedges (1) and the model equations form the rows of (2). The

model has a solution of the form:

xt = A0xt�1 +B0�t, (3)

which usually has to be solved for numerically. I assume that the resulting law of motion is
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strictly stationary and determinate. Iterating (3) forward yields:

zt = Hxt = H
1X
i=0

Ai0L
iB0�t. (4)

The expectational error for zt, denoted by "t, equals HB0�t, assuming that H�B0 must be

of full rank for all square matrices � themselves of full rank. This is equivalent to assuming

that the model and data are relevant for each other. Substituting these relationships into

(4) gives the potentially in�nite-order MA and VAR processes which govern the evolution of

the data, respectively:

zt = H
1X
i=0

Ai0L
iB0(HB0)

�1"t, (5)

and

zt =
1X
i=1

�izt�i + "t, where E"t"0t = �z = HB0�wB
0
0H

0, (6)

with some set of VAR coe¢ cients given by � and a covariance matrix for the errors given

by �z. This result is an exact version of the result utilized by del Negro and Schorfheide

(2004, 2009) to form the basis of the DSGE-VAR literature. The VAR in observables be

of in�nite order as shown by Ravenna (2007), particularly when there are endogenous state

variables. This result implies that given a well-speci�ed linearized DSGE model, it makes

sense in the �rst place to look at situations where the observables themselves follow a VAR

process.

2.2 The mapping from observables to wedges

This section dervies the mapping between a VAR in observables and a VAR in the wedges,

using the same logic from the previous section. To show that a given process governing (6)

implies a process governing (1), I again represent the model using the notation of Sims (2002)
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in equation (2), but this time I treat the law of motion (6) as given instead of (1). The

steps otherwise proceed as before. The variables xt again contain the observables zt, the

wedges wt, and any other auxiliary variables included in the model. I again assume that "t,

wt, and zt have the same rank k and that the model is stationary and locally determinate.

The system in the form of Sims (2002) now takes the form:

�0;1xt+1 = �1;1xt +�1�t+1 +	1"t+1, (7)

where the matrices �0;1, �1;1, �1, and 	1 are functions of deep model parameters and of

the law of motion of the observables given by (6). The wedges wt are linked to the system

through the observation equation wt = Dxt. The augmented model has a solution of the

form:

xt = A1xt�1 +B1"t, (8)

which usually has to be derived numerically. Iterating (8) forward yields:

wt = Dxt = D
1X
i=0

Ai1L
iB1"t. (9)

The expectational error for wt, denoted by �t, equals DB1"t, assuming that D�B1 must be

of full rank for all square matrices � themselves of full rank. This is a relevance assumption

similar to the relevance assumption made in the previous section. Substitution gives the

in�nite-order MA process which governs the evolution of the wedges:

wt = D

1X
i=0

Ai1L
iB1(DB1)

�1�t, (10)
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which, in lag notation, can be written as following wt = D(I � A1L)�1B1(DB1)�1�t, from

which the VAR coe¢ cients in the form of (1) may in principle be derived analytically.

In practice, lag notation is di¢ cult to work with in a computational environment. Instead,

the system governed by (1) can be approximated by �rst estimating (6) as a P -lag VAR for

a large enough P (typically 4 for quarterly data), deriving equations (7) and (8) for a given

�, and then calculating the implied contemporaneous covariance matrix of wt, denoted by

�w:0;0, the implied covariance matrix of the �rst P lags of wt, denoted by �w:1;P , and then also

calculating the implied partial covariance matrix between wt and its �rst P lags, denoted

by �w:1;P . These objects are of dimension k by k, kP by kP and kP by k, respectively.

Letting F equal the k by kP vector of the horizontally stacked individual matrices Fi from

(1), the matrices F and �w can be approximated using the population regression formula

F 0 = (�w:1;P )
�1 �w:1;P and the covariance formula �w = �w:0;0 � F�w:1;PF 0, respectively.

Alternately, a system given by (8) may be analyzed directly with respect to its covariance

structure.

The relatively straightforward mapping from the data generating process to the wedge

generating process makes it possible to examine the process which governs the wedges. It is

far easier to obtain this mapping than to nonlinearly optimize the likelihood function using

the mapping from Fi and �w to the observables, conditioning on �. Knowing the mapping

from the data generating process to the wedge generating process makes it possible to discuss

model misspeci�cation in a heuristic way. If the process which governs the wedges appears

to violate a set of zero restrictions, then the econometric evidence can be said to re�ect the

possibility of misspeci�cation along those dimensions. It is then possible to test for certain

types of misspeci�cation by performing tests for overidentifying restrictions on the model

implied by (1). The next section gives a concrete example of how this could be done in the

context of a simple New Keynesian DSGE model.
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3 A simple DSGE model

Here, I illustrate how the results from the previous section could be used to detect misspeci-

�cation in the Taylor rule in a simple 3-equation New Keynesian model. The output gap yt

is related to the in�ation gap �t through an aggregate supply equation where the parameter

� re�ects the e¤ect of in�ation on output, and � is the rate of time preference. Current

output is related to future output, future in�ation, and current interest rates through an

aggregate demand equation, where the parameter � governs the willingness of consumers to

substitute across time. Interest rates are governed by a Taylor rule which relates interest

rates to in�ation, output, and the lagged interest rate through the Taylor rule coe¢ cients

��, �y, and �i, respectively. The system, with wedges wt representing equation errors, is

expressed by the following three equations:

yt = ��t � ��Et�t+1 + wst ; (11)

yt = �
1

�
(it � Et�t+1) + Etyt+1 + wdt ; (12)

and

it = (1� �i)���t + (1� �i)�yyt + �iit�1 + wit. (13)

The wedges wst , w
d
t , and w

i
t represent, respectively, reduced-form disturbances to aggregate

supply, aggregate demand, and monetary policy.

The system written in the canonical form (7) takes the following form when the observ-

ables follow a VAR(1) as in (6):
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2666666666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 �� 0 0 0 0

�1 �1=� 0 0 0 0

(1� �i)�y (1� �i)�� �1 0 0 1

3777777777777775

2666666666666664

yt+1

�t+1

it+1

wst+1

wdt+1

wit+1

3777777777777775
(14)

=

2666666666666664

�11 �12 �13 0 0 0

�21 �22 �23 0 0 0

�31 �32 �33 0 0 0

�1 � 0 1 0 0

�1 0 �1=� 0 1 0

0 0 ��i 0 0 0

3777777777777775

2666666666666664

yt

�t

it

wst

wdt

wit

3777777777777775
+

2666666666666664

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

3777777777777775

266664
"yt+1

"�t+1

"it+1

377775+

2666666666666664

0 0 0

0 0 0

0 0 0

0 0 0

�1 �1=� 0

0 0 0

3777777777777775

266664
�wst+1

�wdt+1

�wit+1

377775 .

A larger lag length P would cause the system to include more lags of the observables or

of the wedges as auxiliary variables, but the same basic idea holds. Instead of trying to

estimate (1) directly by deriving what it implies for (6), it is possible to back out the law of

motion of wt by backing (1) out from (6), since (6) is much easier to estimate.

4 Model evaluation using the estimated wedge process

As del Negro and Schorfheide (2009) and Cúrdia and Reis (2011) point out in a Bayesian

context, signi�cant o¤-diagonal elements in the VAR coe¢ cients and in the contemporaneous

covariance matrix of the driving process (1) may give a clue as to the dimensions along which

a model is misspeci�ed. An understanding of the ways in which a model is misspeci�ed can

make it possible to build a better model. Here, I develop that heuristic into a set of tests

for overidentifying restrictions, using the New Keynesian model as a pedagogical device.
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4.1 The empirical behavior of the wedges

First, I discuss a baseline model ("Model 0") whose parameters are set to � = 1; � = 5:8252

(which corresponds with a price stickiness coe¢ cient of 0.75 and a labor supply elasticity

of one); � = 0:99; �� = 1:5; �y = 0:5=4; and �i = 0:75. I use the OLS estimates for �

and �z, based on a four-lag VAR with real GDP, GDP de�ator in�ation, and the three-

month Treasury interest rate for the United States from the �rst quarter of 1985 through

the fourth quarter of 2007. This period represents something like a stable monetary regime,

and it omits the Great Recession. All variables are detrended using a HP �lter with a

smoothing parameter of 100,000 to remove the lowest-frequency trends, and the in�ation

rate and interest rate are expressed as quarterly log gross rates. I �lter the data in order

to avoid having to model nonstationarity in these three variables. A more serious analysis

(as opposed to a pedagogical exercise) would take the issues of �rst moments, �ltering, and

nonstationarity more explicitly into account in the context of a more fully-developed model.

The solid lines in Figure 1 show the dynamic cross-correlations among the observables

and wedges. The interest rate wedges wit show a particularly strong negative correlation

with current and lagged in�ation �t as shown by the sub�gure located in the second row and

sixth column. There is also a strong contemporaneous correlation between wit and w
s
t . The

wedge-extraction exercise has demonstrated that the Taylor rule wedge wit is a particularly

poor candidate for a structural monetary policy shock in Model 0�there are large variations

in that wedge which seem to be related to past in�ation, even allowing for interest rate

smoothing.

To understand how the Taylor rule might be misspeci�ed, �rst I express the Taylor rule

wedge as a function of observables. The wedge wit equals it�(1��i)���t�(1��i)�yyt��iit�1.

It appears that the calibrated Taylor rule might claim that the contemporaneous response

of interest rates to current in�ation is much stronger than it is in the data, while it might

claim that the response to lagged in�ation is weaker than it is in the data. Based on this

�nding, I now add lags of in�ation into the Taylor rule and reduce the dependence of interest
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rates on current in�ation. The modi�ed Taylor rule allows for the Fed to respond to up to

four lags of in�ation, which accounts for the fact that it takes time for the Fed to decide

upon and implement its new policies as well as to observe in�ation data. The modi�ed rule

follows the form:

it = (1� �i)
4X
p=1

��;p�t�p+1 + (1� �i)�yyt + �iit�1 + wit. (15)

I set ��;1 = ��;2 = ��;3 = ��;4 = 1:5=4 and redo the previous analysis, calling the new model

"Model 1". The resulting cross-correlations among observables and wedges are given by the

dashed lines in Figure 1. The interest rate wedge wit behaves much better, especially with

respect to lagged in�ation. There is no longer a nearly �1 contemporaneous correlation

between the interest rate wedge and current in�ation. By attenuating the response of

interest rates to current in�ation, I have found a model of interest rate determination which

visually appears to be somewhat less misspeci�ed than the baseline along this particular

dimension.

There still seems to be an excessively strong positive relationship between the demand

wedge wdt and the Taylor rule wedge w
i
t. This suggests that it may be desirable to increase

the response of interest rates to output, given by �y. In "Model 2", I take Model 1 and

feed in a value of �y = 1=4, which is double its previous value. Figure 2 compares the

cross-correlations implied by Model 1 with those implied by Model 2. Model 2 seems to

imply less of a relationship than Model 1 between the Taylor rule wedge wit and the other

two wedges. It does seem to imply a slightly stronger relationship between the Taylor rule

wedge and lagged output than before. When modeling Fed behavior, it may or may not

make a certain amount of sense to use a larger value for the response coe¢ cient �y than that

which is typically used in the literature. In general, the wedges approach has indicated that

the Fed�s response to lagged in�ation and its stronger-than-expected response to cyclical
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conditions may be important things to take into account when quantitatively evaluating the

three-equation New Keynesian model.

4.2 A model misspeci�cation statistic M

The analysis of the New Keynesian model has so far been undertaken heuristically, based on

the belief that if wedges are truly structural, they should be uncorrelated with each other

or with certain observables. It is possible to formalize this notion and to develop tools to

measure the evidence in favor of model misspeci�cation. A model � is said to be properly

speci�ed along dimensions 1 through N when it satis�es N moment restrictions stacked into

an N by 1 vector of the form:

g(�; ��) = 0, (16)

where �� consists of all of the parameters governing the data generating process for the

observables Z = fztgTt=1. In the context of a VAR, this would equal a column vector of the

stacked coe¢ cients f�;�g where � consists of the lower triangular elements derived from the

Cholesky decomposition of �z such that �z = ��0. The elements of g(�; ��) might include

the contemporaneous covariances between the wedges, the covariances between current and

lagged other wedges, and so on. Since true moments cannot be observed, one must construct

the sample counterpart g(�; ~�(Z)) of the theoretical moment g(�; ��), given an estimate ~�(Z)

of ��, and weigh the evidence against the hypothesis that g(�; ��) equals zero.

There is already a large literature which has dealt with evaluating statements like (16).

From the perspective of GMM estimation (which includes maximum likelihood as a special

case), (16) is a set of overidentifying restrictions. It is possible to transform (16) into a

coherent statistic summarizing the evidence in favor of model misspeci�cation along dimen-

sions which the econometrician thinks is important. The traditional approach is to de�ne
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an ideal misspeci�cation statistic (which I call M) such that:

M(�;Z) = [g(�; ~�(Z))]0W (Z)[g(�; ~�(Z))], (17)

for some weighting matrix W (Z). If g(�; ~�(Z)) has a covariance matrix Sg(�; ~�(Z)) such

that Sg(�; ~�(Z)) = E[g(�; ~�(Z))][g(�; ~�(Z))]0, then the most common approach approach

from the GMM literature has been to set W = [Ŝg(�; ~�(Z))]
�1 for some consistent estimator

of Sg(�; ~�(Z)) given by Ŝg(�; ~�(Z)).

Letting D(Z) equal @g(�; ~�(Z))=@ ~�(Z)0 evaluated at ~�(Z), and letting Ŝ~�(Z) equal a

consistent estimate of S~�, where S~� = E(~�(Z)���(Z))(~�(Z)���(Z))0, then the delta method

gives one formula for a feasible version of M , such that:

M(�;Z) = [g(�; ~�(Z))]0[D(�; ~�(Z))0Ŝ~�(Z)D(�;
~�(Z))]�1[g(�; ~�(Z))]=N . (18)

In practice, the matrix of derivatives D(�; ~�(Z)) may have to be found numerically.

The model misspeci�cation statistic M(�;Z) has a number of good properties. It is

invariant to the scaling of g. Furthermore, Hansen (1982) shows that under a wide vari-

ety of conditions, g(�; ~�(Z)) is asymptotically multivariate normal, and so under the null

hypothesis (16),

N [M(�;Z)]
d�! �2N . (19)

It is therefore relatively simple to test the null hypothesis that the model implied by � is

properly speci�ed along the dimensions given by g. One has to �rst estimate the system

(6) using the data Z in order to come up with the estimates ~�(Z) and Ŝ~�(Z). One can

then �nd g(�; ~�(Z)), and then �nd D(�; ~�(Z)), from which one could calculate M based on

(18) Furthermore, the magnitude of M is informative in its own right; it has a mean of

one under the null hypothesis that (16) is true, and it neither grows nor shrinks with N .

13



Numbers far above one indicate strong evidence in favor of of model misspeci�cation along

the dimensions given in (16).

Table 1 contains a complete comparison of Models 0, 1, and 2 based on the misspeci�ca-

tion statistic M given in (18), along with the p-values given by the chi-squared test statistic

NM given in (19). For the sake of clarity, Appendix A contains pseudocode describing the

exact calculations which I have undertaken. I take as the elements of g the model-implied

o¤-diagonal covariances of the wedges at a number of lags. I treat strong relationships

among the di¤erent wedges as evidence that the baseline model is misspeci�ed. To be pre-

cise, I let g(�; ��) consist of the set fEwjtwkt�p; j 6= kgPp=0; for values of P ranging from 0 to

4. A low value of P puts most of its weight on contemporaneous correlations while a high

value of P puts more of its weight on medium-frequency movements in the wedges.

For four of the �ve lag windows which I have explored, Model 1 outperforms Model 0

by a wide margin. At lag 0, Model 0 �ts the data rather poorly, with an M value of 9.61.

Model 1 �ts the data at lag 0 much better, with an M value of 2.27. Model 2 appears to

�t the data even better than Model 1 with an M value of 1.52. The visual improvements

in speci�cation moving between these models shows up in the M statistic as well, when one

looks only at contemporaneous correlations.

At lag 1, Model 0 improves drastically, while Model 1 deteriorates slightly and Model

2 deteriorates drastically. The relative ranking between Model 1 and Model 2 reverses.

Some aspects of Model 1 �t the lagged data better�in particular, the correlation between the

current interest rate shock and the future supply shock is smaller under Model 1 than Model

2. The pattern which is apparent at lag 1 continues all the way through lag 4, with Model

0 performing better than the other models beginning at lag 4. Interestingly, the Taylor rule

in Model 1 ends at the third lag, so the reversal in performance between Model 1 and Model

0 at lag 4 provides evidence that the speci�cation of Model 1 can be improved yet further.

The comparison of M statistics can be formalized.by borrowing some tools from the

SEM literature. Models 1 and 2 seem to be particularly close to each other in their M
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statistics when looking at test statistics for lags 1 through 3, and it may be worthwhile to

know how precisely the di¤erences misspeci�cation statistics between Model 1 and Model 2

are estimated.

4.3 A relative misspeci�cation statistic R

It is relatively simple to construct a relative misspeci�cation test statistic (denoted by R),

which compares the strength of the evidence against the proper speci�cation of �1 along

some dimensions with the strength of the evidence against the proper speci�cation of �2

along the same dimensions, for given parameter sets �1 and �2. Such a test would compare

M(�1;Z) and M(�2;Z) by taking their relative ratio R(�1; �2;Z) = M(�1;Z)=M(�2;Z).

If Pr(M(�1;Z) > M(�2;Z)) is large given the estimated process which governs Z, this

is evidence that �1 appears to be a worse model speci�cation than �2 along the dimensions

captured by g. If, by contrast, Pr(M(�1;Z) < M(�2;Z)) is large over the measure of possible

Z, this is evidence that �1 is a better model speci�cation than �2 along those dimensions.

In practice, it is necessary to simulate the distributions ofM(�1;Z) andM(�2;Z) for a large

number of draws of ~�(Z) since these quantities will be highly correlated with each other

and their ratio will therefore not necessarily follow a standard F distribution. R(�1; �2;Z)

is in fact a monotonic transformation of the Normed Fit Index (NFI) of Bentler and Bonett

(1980) which is used in the SEM literature. The NFI does not penalize models for additional

complexity, which may be an issue when comparing estimated models with di¤erent numbers

of parameters. Other �t indices contain corrections for degrees of freedom. Yuan (2005)

further discusses the role of di¤erent �t indices in the SEM literature and their use in

evaluating statements about misspeci�cation. In general, these �t indices follow from the

types of test statistics discussed in the previous section.

The lower portion of Table 1 shows R statistics which compare Models 0, 1, and 2 each

in a pairwise manner with each other, using a zero-lag window and a one-lag window. At

windows covering both zero lags and one lag, both Model 1 and Model 2 appear to decisively
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show less evidence in favor of misspeci�cation than Model 0. Their R statistics against

Model 0 are well below one, and more extreme R statistics are highly improbable given the

estimated process governing Z. It is not completely clear that Model 2 dominates Model

1 at a lag of zero. At the MLE of ~�(Z), there is about an 83% chance of observing an R

statistic comparing Model 2 against Model 1 which is larger than the observed statistic of

0.670. By contrast, Model 1 appears to clearly dominate Model 2 at a lag of one, along

the dimensions speci�ed by g. While taking lagged in�ation into account in the Taylor rule

reduces the evidence in favor of the hypothesis that the New Keynesian model is misspeci�ed

when looking at lagged data, strengthening the Taylor rule�s response to the output gap does

not have robust implications for this particular choice of model misspeci�cation statistics.

Despite having abstracted from the issue of identi�cation which is a problem when the

wedge process follows a su¢ ciently general law of motion, is possible to coherently discuss

the strength of the evidence on which model speci�cations exhibit stronger or weaker ev-

idence of misspeci�cation. To the extent that the estimated process governing a DSGE

model may violate the commonly-held view that shocks should be orthogonal to each other,

such violations contain information about how the model is misspeci�ed along with ways to

improve the model.

5 Conclusion

It is possible to quickly and accurately estimate an unrestricted VAR driving process (i.e.,

a wedge process) for the model errors of a DSGE model, given that the data also follow a

VAR process. It is possible to test for overidentifying restrictions on the wedge process and

to investigate model misspeci�cation, based on the heuristic idea that some combinations

of parameters governing the wedge process are more or less believable than others. Using

the example of the Taylor rule in a three-equation new Keynesian model, based on data

from the Great Moderation period, I test to see the degree to which o¤-diagonal covariances
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in the wedge process are re�ected in three di¤erent model speci�cations. Along several

key dimensions, all three of versions of the model appear to be misspeci�ed, though the

simplest textbook version of the model shows much more evidence of misspeci�cation than

those with modi�ed Taylor rules. It appears that allowing for the Fed to lagged as well as

current in�ation allows a calibrated Taylor rule to better match the data along my chosen

dimensions. Increasing the parameter �y, which represents Fed�s sensitivity to the output

gap, results in marginal improvements when looking at contemporaneous data, but it results

in stronger evidence of misspeci�cation when looking at lagged data.

Despite the lack of a full identi�cation and estimation strategy, there are coherent ways

to discuss which models have more unbelievable implications than others. A chi-squared

misspeci�cation statistic (M) can document the strength of the evidence against the null

hypothesis that a particular model is correctly speci�ed along a given set of dimensions.

A relative misspeci�cation statistic (R) can document the relative strength of the evidence

that one model is misspeci�ed in comparison with another. To the extent that one does

not truly believe the assumptions governing the structural wedges in DSGE models, one can

still talk intelligently about models which appear to be better-speci�ed or worse-speci�ed,

and one can then use evidence from the wedge process to build better models.

This paper has deliberately abstracted from the issue of estimation, focusing instead on

the issue of testing for model misspeci�cation conditional on a known value of �. This

paper has treated misspeci�cation as a qualitative issue related to model structure rather

than as a purely quantitative issue related to parameter values. Posterior predictive checks

as discussed by An and Schorfheide (2007) in a Bayesian setting may also be used to �ag

misspeci�cation using similar logic to that expressed here. The DSGE-VAR literature as

discussed by del Negro and Schorfheide (2004, 2009) o¤ers another method to combine

the issues of estimation and misspeci�cation into a coherent analysis. Further work on

combining the issues of estimation and misspeci�cation from a "wedge" perspective might

o¤er additional guidance as how to balance these issues.
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A Pseudocode for generating M and R statistics

This appendix discusses the steps needed to generate theM and R statistics. The generation

of these statistics is fairly straightforward once the data are collected, read in, and �ltered.

(1) First I estimate the VAR coe¢ cients �̂ and �̂z on the data Z. I then take �̂ =

chol(�̂z)
0 and stack �̂ and the unique elements of �̂ into ~�.

(2) For Ŝ~�, I use the quasi-MLE consistent covariance matrix formula given by Hamilton

(1994, equation 5.8.7). This covariance matrix is a function of the outer-product covari-

ance matrix of �̂ and the one based on the Hessian of the quasi-likelihood, assuming a

homoskedastic Gaussian process for the data. The choice of asymptotic covariance matrices

is up to the researcher; I choose this approach because it is more robust than strict Gaussian

maximum likelihood to slight misspeci�cation in the likelihood function of the VAR which

governs the data.

(3) I evaluate the moment condition g(�i; ~�(Z)) for i = f0; 1; 2g, where g(�i; ~�(Z)) is an

enumeration of the o¤-diagonal model-implied covariances which I wish to penalize. These

covariances are enumerated in Section 4.2. This requires solving the model using equations

(7) and (8) from the main text, given the law of motion estimated in step 1, and then deriving

the model-consistent covariances.

(4) I then obtain D(�i; ~�(Z)) for i = f0; 1; 2g by numerically di¤erentiating g(�i; ~�(Z))

with respect to the elements of ~�(Z), evaluated at ~�(Z). This requires repeating step (3)

for a large number of slightly di¤erent vlaues of ~�(Z) and then evaluating how g(�i; ~�(Z))

changes when one varies ~�(Z). I use a small step size for ~�(Z), in this case 0.001.

(5) Based on the output of the previous steps, I construct M(�i;Z) for i = f0; 1; 2g as

in (18) and calculate the approximate probability with which M(�i;Z) exceeds its observed

value under the null hypothesis of no misspeci�cation, using the chi-squared distribution

given in (19). An F test is also reasonable under this circumstance, but I use a large-sample

chi-squared approximation instead.

(6) Based on the output of the previous steps, I construct R(�i; �j;Z) for [i; j] = f0; 1; 2g2
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and test the degree to which R(�i; �j;Z) is statistically distinguishable from one. I simulate

the distribution of the ratio of two nonindependent chi-squares in order to generate p-values.

I simulate 1,000,000 values for the pair fM(�i;Z);M(�j;Z)g by �rst drawing � from a

multivariate normal distribution with a mean of zero and a covariance matrix given by

Ŝ~�(Z). Then I approximate g(�i; ~�(Z)+�) by g(�i; ~�(Z))+D(�i; ~�(Z))
0�, and I approximate

g(�j; ~�(Z) + �) the same way. Then I compare the resulting M statistics. If M(�i;Z) is

greater than M(�j;Z) I set an indicator variable equal to one; otherwise I set it to zero. I

repeat ten million times and take the average of that indicator variable as the p-value in

Table 1. A high p-value is an indication that the evidence that model i is misspeci�ed is

stronger than the evidence that model j is misspeci�ed.

(7) To generate Figures 1 and 2, I solve for the model using the algorithm discussed in

Section 2.2 from the paper using the OLS estimates for the VAR coe¢ cients governing zt

and then simulate that model for one million quarters, tossing out the �rst 10,000 quarters.

Alternately, it is possible to derive expressions for the correlation coe¢ cients of the system by

solving the augmented model using equations (7) and (8) from the paper and then expressing

the correlation coe¢ cients of the model as a transformation of model�s law of motion.

Matlab programs which implement these steps are available from the author upon request.
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Table 1: Comparison of Models 0, 1, and 2
Parameter / Statistic Model 0 Model 1 Model 2
Taylor rule coe¢ cient ��;1 1.5 1.5/4 1.5/4

Taylor rule coe¢ cients ��;2, ��;3, and ��;4 0 1.5/4 1.5/4
Taylor rule coe¢ cient �y 0.5/4 0.5/4 1.0/4
Taylor rule coe¢ cient �i 0.75 0.75 0.75

Misspeci�cation statistic M(�;Z), 0 lags 9.61 2.27 1.52
Misspeci�cation test p-value <0.001 0.078 0.206

Misspeci�cation statistic M(�;Z), 1 lag 5.64 2.74 3.36
Misspeci�cation test p-value <0.001 0.003 <0.001

Misspeci�cation statistic M(�;Z), 2 lags 4.14 3.49 3.62
Misspeci�cation test p-value <0.001 <0.001 <0.001

Misspeci�cation statistic M(�;Z), 3 lags 3.56 2.97 3.05
Misspeci�cation test p-value <0.001 <0.001 <0.001

Misspeci�cation statistic M(�;Z), 4 lags 3.11 3.20 3.29
Misspeci�cation test p-value <0.001 <0.001 <0.001

Comparison with Model 0 R(�x; �0;Z), 0 lags 1 0.240 0.160
Pr(M(�x;Z) < M(�0;Z)) - >0.999 0.999

Comparison with Model 1 R(�x; �1;Z), 0 lags 4.24 1 0.670
Pr(M(�x;Z) < M(�1;Z)) <0.001 - 0.833

Comparison with Model 2 R(�x; �2;Z), 0 lags 6.31 1.49 1
Pr(M(�x;Z) < M(�2;Z)) <0.001 0.167 -

Comparison with Model 0 R(�x; �0;Z), 1 lag 1 0.49 0.60
Pr(M(�x;Z) < M(�0;Z)) - >0.999 0.999

Comparison with Model 1 R(�x; �1;Z), 1 lag 2.06 1 1.23
Pr(M(�x;Z) < M(�1;Z)) <0.001 - 0.002

Comparison with Model 2 R(�2; �2;Z), 1 lag 1.68 0.82 1
Pr(M(�x;Z) < M(�2;Z)) 0.001 0.998 -

This table compares Models 0, 1, and 2. The top portion of this table show the calibrated

parameter values in each model speci�cation. The middle portion of this table shows the

M statistics for each model and the p-value of a test of non-misspeci�cation for wedge cross-

covariances of lags 0 through 4 The bottom portion of this table shows the R statistics

for each model pair and the p-value of a test of equal misspeci�cation between the models.

A low p-value indicates that the model in each of the three columns appears to be more

misspeci�ed than the comparison model along the dimensions covered by g.
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Figure 1: Cross-correlations under Model 0 and Model 1
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This �gure compares the cross-correlations among the data and the wedges for the three-

equation New Keynesian model with a Taylor rule which responds only to contemporaneous

in�ation (Model 0: ��;1 = 1:5, solid blue lines) versus a speci�cation where the Fed responds

to in�ation over the past year (Model 1: ��;1 = ��;2 = ��;3 = ��;4 = 1:5=4, dashed magenta

lines). Time is on the x axis and is in quarters. Correlation coe¢ cients are on the y axis.

The wedges were estimated using U.S. data from 1985 to 2007, using four lags of HP �ltered

output, in�ation, and interest rates.
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Figure 2: Cross-correlations under Model 1 and Model 2
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This �gure compares the cross-correlations among the data and the wedges for the three-

equation New Keynesian model with a Taylor rule which responds weakly to output (Model

1: �y = 0:5=4, solid blue lines) versus a speci�cation where the Fed responds more strongly

to output (Model 2: �y = 1=4, dashed magenta lines). Both models allow for the Fed to

respond to the past year�s in�ation with coe¢ cients of ��;1 = ��;2 = ��;3 = ��;4 = 1:5=4.

Time is on the x axis and is in quarters. Correlation coe¢ cients are on the y axis. The

wedges were estimated using U.S. data from 1985 to 2007, using four lags of HP �ltered

output, in�ation, and interest rates.
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