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Abstract

We present a duopoly model of strategic capital accumulation in
continuous time with uncertainty, such that investment takes the form
of singular control. Spot competition is of Cournot type. For this
model there exists a parameterized and Pareto-rankable family of
Markov perfect equiblibria in symmetric strategies, according to which
implicit collusion induces positive option values. However, preemption
can also eliminate any option value in a limiting case corresponding
to Bertrand prices.

JEL subject classification: C73, D43, D92
Keywords: Irreversible investment, oligopoly, Markov perfect equilibrium,
singular stochastic control

1 Introduction

The aim of this work is to establish a mathematically precise framework for
studying strategic capital accumulation under uncertainty. Such a model
arises as a natural extension from three different perspectives that all lead
to singular control exercised by the agents, which induces some essential
formalization problems.

Capital accumulation as a game in continuous time originates from the
work of Spence (1979), where firms make dynamic investment decisions to
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Models (EBIM)’ is gratefully acknowledged.
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expand their production capacities irreversibly. Spence analyses the strate-
gic effect of capital commitment in a deterministic world and elaborates on
the crucial distinction between precommitment (or open loop) strategies and
feedback (or closed loop) strategies, of which only the latter can support
subgame-perfect equilibria. We add uncertainty to the model — as he sug-
gests — to account for an important further aspect of investment. Uncertain
returns induce a reluctance to invest and thus allow to abolish the artificial
bound on investment rates, leading to repeated interaction in the form of
singular control.

The strategic aspects of sequential irreversible investment under uncer-
tainty have only played a limited role so far. In the extreme case of perfect
competition, an individual firm’s action does not influence other players’
payoffs and decisions, see Baldursson and Karatzas (1997). The perfectly
competitive equilibrium is linked via a social planner to the other extreme,
monopoly, which benefits similarly from the lack of interaction. There is
considerable work on the single agent’s problem of sequential irreversible in-
vestment, see e.g. Pindyck (1988), Bertola (1998) and Riedel and Su (2011).
All these instances also involve singular control. In our model, the number
of players is finite and actions have a strategic effect, so this is the second
line of research we extend.

With irreversible investment, the firm’s opportunity to freely choose the
time of investment is a perpetual real option. It is intuitive that the value of
the option is strongly affected when competitors can influence the value of
the underlying by their actions. The classical option value of waiting — see
McDonald and Siegel (1986) or Dixit and Pindyck (1994) — is threatened
under competition and the need arises to model option exercise games. While
typical formulations like Huisman and Kort (1999) or Mason and Weeds
(2010) assume fixed investment sizes and pose only the question of timing a
single action, we determine investment sizes endogenously. Our framework
is also the limiting case for repeated investment opportunities of arbitrarily
small size. Since investment is allowed to take the form of singular control,
its rate need not be defined even where it occurs continuously.

An early related model was formulated by Grenadier (2002). It received
much attention because it connects the mentioned different lines of research,
but it became also clear that one has to be very careful with the formulation of
strategies. As Back and Paulsen (2009) show, it is exactly the singular nature
of investment which poses the difficulties. They explain that Grenadier’s
results hold only for open loop strategies, which are investment plans merely
contingent on exogenous shocks. Even to specify sensible feedback strategies
poses severe conceptual problems.

One can formulate games of singular control with open loop strategies in
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a quite general setting and still obtain qualitative results as has been done in
Steg (2012), taking a different approach than Grenadier or Back and Paulsen.
It turns out that the scope for strategic behaviour is rather limited, and it is
not preemption what reduces option values under competition1. Therefore,
we now propose a first explicitly strategic model of singular control with
closed loop strategies in a mathematically rigorous way.

After establishing the formal framework in the following, we encounter
different control problems than in the open loop case and take a dynamic pro-
gramming approach to develop a suitable verification theorem. It is applied
to construct different classes of Markov perfect equilibria for a model with
spot competition as in Grenadier (2002) to study the effect of preemption
on the value of the option to delay investment. In fact, there are Markov
perfect equilibria with positive option values despite perfect circumstances
for preemption.

2 The model

We want to formulate a stochastic continuous-time model, in which two play-
ers strategically accumulate capital by irreversible investment. Their respec-
tive objective is to maximize the value of a profit flow depending on both
capital levels and exogenous uncertainty, net of investment costs. Formally,
when the capital stock processes of player i and the opponent are Qi and
Q−i, the payoff of player i is given by

J(Qi, Q−i) , E

[∫ ∞
0

e−rtΠ(Xt, Q
i
t, Q

−i
t ) dt−

∫ ∞
0

e−rt dQi
t

]
, (2.1)

with a constant positive discount rate r. Since we focus on the pure strategic
effect of capital commitment, the payoffs to the players differ only through
the capital stock processes. The instantaneous revenue function Π is further
affected by an exogenous stochastic process X, which is defined on the prob-
ability space (Ω,F ,P) and adapted to the filtration (F t )t≥0. Assume the
latter satisfies the usual conditions of right-continuity and completeness and
F∞ = F . Concerning the stochastic capital stock processes Qi and Q−i, we
allow the same class of processes available to the monopolist in the related
irreversible investment problem. For given initial capital q ∈ R+, any feasible
capital stock process has to belong to the class

A (q) , {Q adapted, right-continuous, nondecreasing, and Q0 ≥ q, P-a.s.}.
1Similar to static Cournot models, the externality from output expansion — that the

sales price for existing output decreases — loses importance under increasing competition
and accelerates aggregate investment.
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Thus, we rule out foresight and capital is installed without delay. In contrast
to the monopolist, who chooses a control policy from A (q), the capital stock
processes here will result from the strategies of the players described below.

For the payoffs (2.1) to be well defined, we make the following

Assumption 1.

i. Π : R×R2
+ → R, (x, qi, q−i) 7→ Π(x, qi, q−i) is continuous and continu-

ously differentiable in qi. The partial derivative Πqi increases in x and
decreases in qi, respectively.

ii. e−rtΠ(Xt(ω), Qi
t(ω), Q−it (ω)) is P ⊗ dt-integrable for any (Qi, Q−i) ∈

A (qi)×A (q−i).

Our assumption on marginal instantaneous revenue relates to the local
investment incentives of each firm, and gives some structure to the state
space. The profitability of investment decreases for fixed competitive output
q−i, which together with the monotonicity in the exogenous shock will be
helpful for the emergence of action and inaction regions. If there is further-
more an adverse influence of opponent capital on marginal revenue, i.e. if
Πqi decreases in q−i as well, the capital stocks are strategic substitutes. This
will frequently be true, but we do not assume it for the entire state space a
priori.

2.1 Strategies

Although the processes in A (q) reflect the continuous revelation of uncer-
tainty, if they were to represent action plans, they would have to be termed
open loop strategies and would not be rich enough for our purposes. We would
like to enable the players to condition their investment decisions explicitly
on the evolution of the capital stocks, too. Allowing reactions to deviating
investment is necessary to obtain subgame perfect equilibria. Instead of con-
sidering investment processes adapted to a broadened filtration including the
capital stock histories, we take a Markovian state space approach.

However, if one tries to define investment as a function of the state of
the game, the following difficulty arises. Since the investment cost is lin-
ear, we know from the monopolistic and open loop cases that investment is
likely to occur not in lumps, but continuously if the shock process does not
jump. Nevertheless is instantaneous investment in terms of the growth rate
dQi unsuitable as an action variable if we do not artificially bound the rate.
Although typical control paths in similar optimization problems are contin-
uous, all exercise of control occurs at singular events and with an undefined
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rate. This phenomenon arises when one tries to keep a diffusion X off some
barrier at minimal effort, here corresponding to a price trigger strategy, for
instance. Since we do not want to exclude such policies, the increments dQi

are only meaningful in integrals as for the investment cost in (2.1).
Our earlier treatment of the open loop case, Steg (2012), hints at a possi-

bility to reconcile dynamic strategic decision making with the required prop-
erties of the resulting capital stock processes and consistency across sub-
games. There we showed that for any starting state the optimal investment
policy is given by tracking the running supremum of a certain signal process
Li, once it exceeds currently installed capital. Formally,

Qi
t = qi0 ∨ sup

0≤s≤t
Lis, t ∈ [0,∞), (2.2)

with fixed initial capital qi0. Li is the base capacity below which the firm never
wants to operate. Such base capacities, which have to be optional processes,
are in principle suitable to be determined by strategies or functions of the
state of the game. The decisions of the players will then be related to the base
capacity. If it exceeds installed capital, the latter is adjusted by investment,
otherwise the signal is ignored. This idea is formalized as follows.

Strategies prescribe actions. In the related theory of differential games,
see Dockner et al. (2000), the possible actions of a player at a particular mo-
ment are given by the space of instantaneous control. In our case, accounting
for the exogenous uncertainty, the time-t action set of each player is defined
as Ut, the set of F t -measurable random variables, taking values in R+ al-
most surely. A dynamic choice of actions {uit ∈ Ut|t ∈ [0,∞)} by player i is
feasible if the collection forms an optional process. Then, the capital stock
process with the “law of motion”

Qi
t = qi0 ∨ sup

0≤s≤t
uis, t ∈ [0,∞), (2.3)

is well defined and belongs to A (qi0).
With this concept, we can now define strategies, which are assignments

of actions for all points in time t, conditional on the information available
to the players including the history of investment carried out. An important
subset of such closed loop strategies are Markovian strategies that are condi-
tioned only on the current state of the game. Such strategies are particularly
appropriate if the state represents all payoff-relevant information concerning
past play, see e.g. Fudenberg and Tirole (1991). In our case the payoff func-
tions (2.1) imply that at any moment all payoff-relevant influence of past
investment is contained in the current capital levels (Q1

t , Q
2
t ).
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While one could conceive of accounting for the exogenous shock X sepa-
rately2, the presentation becomes clearer if we suppose it is a Markov process
and include its current value Xt in the state. Then, we may focus on sta-
tionary strategies since the horizon is infinite.

A stationary Markovian strategy assigns an action for any possible state
(x, q1, q2) of the game, independent of time t. Formally, we define a stationary
Markovian strategy for player i as a measurable function φi : R×R2

+ → R+.
Thus, player i’s action at time t given by the Markovian strategy φi is

uit = φi(Xt, Q
i
t, Q

−i
t ), (2.4)

an F t -measurable random variable for given (Qi, Q−i) ∈ A (qi) × A (q−i).
Note that it is not clear at all at this point, whether there exist feasible capital
stock processes Qi, Q−i satisfying (2.4) and (2.3) for i = 1, 2 simultaneously.
On the other hand, there may also be a multitude of solutions.

This is a key issue in any continuous-time game, independent of the added
uncertainty3, and it will become clear in our examples. We propose to resolve
it by the equilibrium definition, rather than by restricting the strategy spaces.
Since it depends on the particular hypothesized equilibrium whether the
outcome of the game might not be uniquely defined, it would seem to require
a very strong restriction to exclude all such cases a priori.

2.2 Markov perfect equilibrium

We are looking for subgame perfect equilibria in Markovian strategies. Con-
sequently, we identify a subgame by a starting time t0 ∈ [0,∞) and an initial
state (x, q1, q2) ∈ R×R2

+ only. From t0 onwards, the game evolves according
to (2.3) with (2.4) and payoffs follow (2.1) with time t = 0 shifted to t0 and
the initial state moved to (x, q1, q2), since X is by assumption Markovian.

Our notion of optimizing behaviour by the players is analogous to the
differential games literature. In equilibrium, given the Markovian strategy
of the opponent, player i should not be able to increase the payoff in any
subgame by any feasible control path. Consider first the “subgame” starting
at t0 = 0 with x ∈ R fixed and let player i solve the following verification
problem

max
uit∈Ut,t≥0

J(Qi, Q−i) (2.5)

2φi : R+×R+×[0,∞)→ U∞ with φi(qi, q−i, t) ∈ Ut for all (qi, q−i) ∈ R2
+ and t ∈ [0,∞)

3Anderson (1984) addresses the multiplicity problem, while it is not explicitly men-
tioned in Dockner et al. (2000).
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s.t.

X0 = x

Qi
t = qi ∨ sup

0≤s≤t
uis ∈ A (qi)

Q−it = q−i ∨ sup
0≤s≤t

φ−i(Xs, Q
−i
s , Q

i
s)

In this problem, we can identify any control {uit|t ∈ [0,∞)} satisfying the
second constraint by the generated capital process Qi itself. A feasible control
for problem (2.5) is one that satisfies all constraints and by which Q−i ∈
A (q−i) is uniquely (P-a.s.) determined. Otherwise, the value of this problem
would not be clear. The existence of feasible controls depends of course on
the particular function φ−i. A control is optimal for this problem if it is
maximal among all feasible controls.

Note that in this optimization problem, player i has the same controls
available as in the open loop problem in Steg (2012). This is however not a
restriction but in fact gives the player the greatest conceivable power. With
the reactions of the opponent specified by φ−i, player i can in (2.5) perfectly
control the entire evolution of the “subgame”, without having to worry how
to implement the desired outcome by a Markovian strategy. Player i can
for instance perfectly preempt the opponent in (2.5), as will be illustrated
below, without even an ε-margin.

Also note that because of our Markovian assumption on X and the sta-
tionarity of the strategies φi, a subgame starting at any time t0 ∈ [0,∞) is
fully characterized by its initial state (x, q1, q2). So, the verification problem
analogous to (2.5) for the subgame beginning in t0 is in fact of the same
form as (2.5) with the appropriate initial state. Then, if we allow player i to
optimize in any subgame by solving the related problem (2.5), this endows
the player also with the greatest conceivable flexibility.

Summing up, if we require for a subgame perfect equilibrium in Markov
strategies, called Markov perfect equilibrium, that each player i fares in any
subgame as well as in the related verification problem (2.5), the players could
not improve by any other closed loop strategy. The equilibrium would still
persist with richer strategy spaces.

Definition 2.1. The pair (φ1, φ2) of Markovian strategies is a Markov perfect
equilibrium for initial capital stocks (q1

0, q
2
0) ∈ R2

+ if for each state (x, q1, q2) ∈
R× R2

+ with qi ≥ qi0 there exist a solution (Q̃1, Q̃2) ∈ A (q1)×A (q2) to

Q1
t = q1 ∨ sup

0≤s≤t
φ1(Xs, Q

1
s, Q

2
s)

Q2
t = q2 ∨ sup

0≤s≤t
φ2(Xs, Q

2
s, Q

1
s), t ∈ [0,∞)

(2.6)
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where X0 = x, P-a.s., and a pair of optimal controls {u1
t |t ∈ [0,∞)} and

{u2
t |t ∈ [0,∞)} for problem (2.5) with initial state (x, q1, q2) yielding payoffs

J(Q̃1, Q̃2) and J(Q̃2, Q̃1), respectively.

In the equilibrium definition, we do not ask for a unique solution of the
combination of Markov strategies (2.6), which is still a drawback and hoped
to be resolved in further research. But the chosen solution (Q̃1, Q̃2) has to be
optimal for both players simultaneously in the strong notion above. None of
the players has at any moment or state of the game an incentive to employ
any different control.

To identify any equilibria, we need to address the central optimization
problems (2.5). These are singular control problems, but not of the mono-
tone follower type as in the open loop case. Owing to the argument of the
Markovian strategy φ−i, there is a stronger path dependence and the meth-
ods employed in Steg (2012) are not applicable4. Now, for planning ahead,
not only the capital stock at a certain future time matters from that point
onwards, but also how capital has evolved until then. The decision to delay
investment thus obtains a new aspect and we have to take an alternative
approach to account for it.

3 A verification theorem

We aim to establish a verification theorem for the optimization problems
(2.5). We already argued that for a given Markovian strategy φ−i and a
Markov process X, the value of the problem depends only on the initial
state (x, q1, q2) and not on the starting time, set to zero in (2.5). With our
Assumption 1, the value function

V ∗(x, qi, q−i) , sup
Qi∈A (qi)

J(Qi, Q−i) (3.1)

s.t.

X0 = x

Q−it = q−i ∨ sup
0≤s≤t

φ−i(Xs, Q
−i
s , Q

i
s)

is well defined, provided φ−i is sufficiently regular such that the additional fea-
sibility constraint for the “controls” Qi to uniquely determine Q−i is satisfied.

4In particular, we cannot switch from singular control to optimal stopping by the Fubini
theorem anymore.
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As suggested above, we here replaced the control sequences {uit|t ∈ [0,∞)}
by the generated capital processes.

The stationarity of the value function V ∗ motivates a dynamic program-
ming approach. Specifically, it holds for anyQi ∈ A (qi0), withQ−i ∈ A (q−i0 )
generated by φ−i and any almost surely finite (F t )t≥0-stopping time τ

V ∗(X0, q
i
0, q
−i
0 ) ≥ E

[ ∫ τ

0

e−rtΠ(Xt, Q
i
t, Q

−i
t ) dt−

∫ τ

0

e−rt dQi
t

+ V ∗(Xτ , Q
i
τ , Q

−i
τ )

]
.

(3.2)

Consequently, the argument of the expectation is a super-martingale for any
feasible Qi and the route is to identify such a process.

Suppose now that X is an Itō process, i.e. solves the stochastic differential
equation

dXt = µt dt+ σt dBt, t ∈ [0,∞) (3.3)

with X0 = x0 ∈ R, P-a.s., for a Brownian motion B on our filtered proba-
bility space and appropriate5 drift and variance processes µ, σ. Then, for all
feasible capital stock processes (Q1, Q2) ∈ A (q1) × A (q2), the state pro-
cess is a semi-martingale, because the components Q1 and Q2 are monotone,
adapted processes, i.e. of finite variation. Consequently, we may attempt
to “construct” sufficiently smooth functions V and verify by Itō’s lemma
whether they coincide with the value function V ∗ in (3.1).

However, to identify a Markov perfect equilibrium, we need to solve (3.1)
for all possible states and check whether there exists a solution (Q̃1, Q̃2) to
the combination of equilibrium strategies (φ1, φ2) as formalized in Definition
2.1, which actually attains the respective value. This procedure would be
strongly simplified if we could apply the sought verification theorem somehow
to Markovian strategies directly. To facilitate such an approach, we exploit
the properties of local investment incentives following Assumption 1. They
help to identify appropriate classes of best replies, that will eventually admit
a Markovian representation as well.

Specifically, note that player i can undertake an initial discrete invest-
ment of size ξ0 > 0. Thus, V ∗(x, qi, q−i) ≥ V ∗(x, qi + ξ0, q

−i) − ξ0, where
the player behaves optimally after the investment. The optimal investment
policy from state (x, qi + ξ0, q

−i) may require a further discrete investment,
then the estimate holds with equality, but the jump ξ0 may also have been
too large, i.e. unprofitable. Since we assumed that instantaneous marginal
revenue decreases in qi, it might be optimal for fixed x and q−i to make an

5µ and σ predictable, µ ∈ L1(P⊗ dt), σ ∈ L2(P⊗ dt)
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initial investment whenever qi is below a certain value, and otherwise not.
This critical value might further depend on x and q−i in the same direction
as marginal revenue, i.e. increase in x and decrease in q−i. Formally, this
hypothesis corresponds to a Markovian strategy with the properties φiqi = 0,

φix > 0, and φiq−i ≤ 0 in case of differentiability. Then, the inverse

X̄ i(qi, q−i) , sup{x ∈ R| qi ≥ φi(x, qi, q−i)} (3.4)

is well defined and satisfies

X̄ i
qi > 0,

X̄ i
q−i ≥ 0

(3.5)

(where the set is non-empty) and

lim
qi→∞

X̄ i(qi, q−i) =∞ (q−i ∈ R+). (3.6)

Changing perspective, we can for any C1 function X̄ i : R2
+ → R with the

properties (3.5) and (3.6) define a corresponding Markov strategy

φi(x, q−i) , sup{q ∈ R+|x ≥ X̄ i(q, q−i)} ∨ 0 (3.7)

with the argued properties. Here, we neglected the irrelevant argument of φi

and dominated the supremum of the empty set, −∞, by 0 for later use.

3.1 Reflection strategies

We will call strategies of the type (3.7) with the properties (3.5) and (3.6)
reflection strategies. They prescribe to keep the state outside the “forbidden”
region {x > X̄ i(qi, q−i)} with minimal effort, like controls in obstacle prob-
lems. Since X has almost surely continuous paths, this policy involves only
an initial discrete investment to bring the state onto the boundary of the
forbidden region if necessary. Afterwards, the mentioned continuous singular
control is exercised to reflect the state whenever X approaches the boundary
X̄ i.

Now suppose the opponent of player i uses a reflection strategy with X̄−i

satisfying (3.5) and (3.6). Our verification theorem will specify conditions
under which a particular reflection strategy X̄ i is a best reply for player i.
At this point, we face the problem that the two considered strategies might
not uniquely define the capital processes Q1 and Q2 for any initial state,
for instance if the boundaries are functions of the sum of the capital stocks.
Thus, we have to pick a particular solution Qi to be used as control in the
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verification problem (2.5), resp. (3.1). The solution we generally select is
where player i acts as the leader.

Consider first the discrete initial investments for the state (x0, q
1
0, q

2
0) ∈

R× R2
+. As the leader, player i first adjusts the capital stock to

Qi
0 = qi0 ∨ φi(x0, q

−i
0 ). (3.8)

Then, the opponent’s capital stock moves to

Q−i0 = q−i0 ∨ φ−i(x0, q
i
0 ∨ φi(x0, q

−i
0 )), (3.9)

which is well defined. Now note that with these initial investments, the state
is no longer in any of the forbidden regions, i.e.

x0 ≤ X̄ i(Qi
0, Q

−i
0 ) ∧ X̄−i(Q−i0 , Q

i
0). (3.10)

The only critical step here is when player −i does invest, i.e. when

dQ−i0 > 0⇔ X̄−i(q−i0 , Qi
0) < x0 = X̄ i(Qi

0, q
−i
0 ). (3.11)

But then the investment induces X̄−i(Q−i0 , Q
i
0) = x0 and X̄ i(Qi

0, Q
−i
0 ) ≥ x0

because of (3.5).
Outside the joint forbidden region, we still assume that player i acts as

the leader in the sense that if player i chooses to invest at the same boundary
X̄ i(qi, q−i) = X̄−i(q−i, qi) in a certain part of the state space, there usually is
a strict incentive for preemption. Such perfect preemption with zero margin
is feasible in problem (2.5) by the solution of the following Skorohod -type
problem.

Problem 3.1. Given i ∈ {1, 2}, two reflection boundaries X̄1 and X̄2 which
satisfy (3.5) and (3.6) and a starting state (x0, q

1
0, q

2
0) ∈ R × R2

+, find two
processes Q1 ∈ A (q1

0) and Q2 ∈ A (q2
0) such that

Qi
0 = qi0 ∨ φi(x0, q

−i
0 )

Q−i0 = q−i0 ∨ φ−i(x0, q
i
0 ∨ φi(x0, q

−i
0 ))

Xt ≤ X̄1(Q1
t , Q

2
t ) ∧ X̄2(Q2

t , Q
1
t ), t ∈ [0,∞)∫ ∞

0

(
1− 1{Xt≥X̄i(Qit,Q

−i
t )}
)
dQi

t = 0∫ ∞
0

(
1− 1{X̄−i(Q−i

t ,Qit)≤Xt<X̄i(Qit,Q
−i
t )}
)
dQ−it = 0


P-a.s. (3.12)
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The sought capital processes keep the state outside the joint forbidden
region over the entire time interval, almost surely. The investment needed to
do so is minimal, since it only occurs on the boundary.

Assume there exists a unique solution to this problem6, which will be
verified in the particular cases discussed below. Then, player i undertakes all
the investments to reflect the state from the joint forbidden region, except
where the boundary X̄ i strictly exceeds the minimum of the two. Where the
boundaries coincide, player −i’s investment is completely preempted by the
“leader” i.

Now we are in a position to state our verification theorem for reflection
strategies with assignment of a leader.

3.2 Verification theorem

Assume now X is a geometric Brownian motion, i.e. solves the stochastic
differential equation

dXt = µXt dt+ σXt dBt, t ∈ [0,∞)

with constant, real µ and σ. We will only consider initial values X0 = x0 ≥ 0,
so for any t ∈ [0,∞), Xt ∈ R+, P-a.s.

For the usual notation, introduce the infinitesimal generator Lx of the
process X, which applied to any C2 function f : R→ R, x 7→ f(x) yields

Lxf = µxfx +
1

2
σ2x2fxx.

In the following verification theorem, we want to identify a function V of the
state that equals the payoff from a particular solution to Problem 3.1 at the
given initial state, J(Qi, Q−i). Outside the joint forbidden region, i.e. absent
any investment, the payoff evolves like an asset whose price is a function
of X and which generates a dividend flow Π. At starting states inside the
forbidden region, player i is the leader of initial investment, bringing the
state on the boundary X̄ i, at a cost equal to the size of the jump. Only
if this still exceeds X̄−i will the opponent make an anticipated investment,
which will not affect the value of player i’s payoff.

Theorem 3.2. Let X̄1 and X̄2 satisfying (3.5) and (3.6) be given and assume
(Qi, Q−i) solve Problem 3.1 for initial state (x0, q

1
0, q

2
0).

6For the classical Skorohod problem, see El Karoui and Karatzas (1991); Karatzas and
Shreve (1988); Skorohod (1961).
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Suppose there exists a function V : R3
+ → R, (x, qi, q−i) 7→ V (x, qi, q−i)

that is of class C1,1,1 and satisfies

lim
T→∞

E
[
e−rTV (XT , Q

i
T , Q

−i
T )
]

= 0. (3.13)

If

· on {x ≤ X̄ i(qi, q−i) ∧ X̄−i(q−i, qi)} : V is class C2,1,1,−rV + Π + LxV = 0

· on {x > X̄ i(qi, q−i)} : V (x, qi, q−i) = V (x, φi(x, q−i), q−i)− φi(x, q−i) + qi

· on {X̄−i(q−i, qi) < x ≤ X̄ i(qi, q−i)} : V (x, qi, q−i) = V (x, qi, φ−i(x, qi))

then V (x0, q
1
0, q

2
0) = J(Qi, Q−i).

If furthermore

· V is class C2,1,1 on {x ≤ X̄−i(q−i, qi)}

· Vqi ≤ 1 on {x ≤ X̄ i(qi, q−i) ∧ X̄−i(q−i, qi)}

· Vq−i(X̄ i(qi, q−i), qi, q−i) ≤ 0 on {X̄ i(qi, q−i) ≤ X̄−i(q−i, qi)}

· −rV + Π + LxV ≤ 0 on {X̄ i(qi, q−i) < x ≤ X̄−i(q−i, qi)}

then V (x0, q
1
0, q

2
0) ≥ J(Qi, Q−i) for any feasible (Qi, Q−i) ∈ A (qi0)×A (q−i0 )

in (2.5) for which (3.13) holds.

V (x0, q
1
0, q

2
0) = V ∗(x0, q

1
0, q

2
0) only if

· Vqi ≤ 1 on {x ≤ X̄ i(qi, q−i)}

· −rV + Π + LxV ≤ 0 on {x ≤ X̄−i(q−i, qi)}

The proof is in the Appendix. The sufficient conditions given in the
verification theorem are quite constructive. For a given pair of reflection
strategies, resp. boundaries X̄1 and X̄2, we can try to construct the associated
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V , by solving the partial differential equation, subject to the constraint that
the extension to the other regions happens in a differentiable way. If the
optimality conditions are satisfied, the verification problems (2.5) are solved
for all initial states for which the Skorohod Problem 3.1 with X̄1 and X̄2 has
a unique solution. This comes very close to our equilibrium definition and
enables us to determine Markov perfect equilibria quite systematically in the
following.

4 Bertrand equilibrium

The example that we discuss from now on is the revenue specification of
Grenadier (2002). Suppose, the firms produce a homogeneous good at full
capacity and sell it on a common market, facing inverse demand with constant
elasticity. The price is multiplicatively affected by the exogenous shock X,
our geometric Brownian motion defined above. With zero variable cost, the
revenue function for firm i is then

Π(x, qi, q−i) = xP (qi + q−i)qi = x(qi + q−i)−
1
α qi. (4.1)

Assume α > 1 to conform to Assumption 1. Regarding the integrability
requirement, we anticipate a result of the subsequent section, where we will
see that the monopolist’s optimal payoff is finite iff α < β. The latter is a
function of the remaining parameters and will be presented soon. The ex-
pected revenue of any player in the game is now nonnegative and dominated
by that of the monopolist, since competitive output can only decrease the
price.

In this section, we begin with a simple type of reflection strategies, where
a firm invests whenever the price XtP (Qi

t+Q
−i
t ) rises above a certain constant

threshold. Such policies will lead to the most commonly conjectured closed
loop equilibrium, Bertrand quantities. Its elaboration is useful to illustrate
some concepts and to derive some general results employed in the following,
more involved cases.

Consequently, assume player i’s opponent uses such a fixed price level to
trigger investment, i.e.

X̄−i(q−i, qi) =
p−i

P (qi + q−i)
(4.2)

with p−i ∈ R+. From player i’s point of view this means that independently
of Qi ∈ A (qi0), the price XtP (Qi

t +Q−it ) will never exceed p−i for any t > 0.
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If i does not invest, the price will be reflected at this barrier. The problem
is now how to preempt the opponent optimally, if at all.

Whenever player i invests, the additional net revenue is of course coun-
tered by the externality of lowering the price for existing output, as al-
ways in Cournot competition. This becomes obvious in marginal revenue
x
(
P (qi + q−i) + qiP ′(qi + q−i)

)
, where the derivative is negative.

In the cases of monopoly, oligopoly with open loop strategies, and perfect
competition, the optimal investment strategies can be determined by deciding
when to install marginal capital units in order to start the associated marginal
revenue flow. For each unit, there is an option to delay investment and the
optimal exercise time can be determined independently by optimal stopping.
In particular we showed in Steg (2012) that the value of the option to delay
marginal investment is closely related to the opportunity cost.

In the present case, player i’s investment also influences the capital stock
of the opponent and due to the running suprema in (2.5), resp. (3.1), some
path-dependence arises and we cannot treat the marginal capital units inde-
pendently, anymore. The opportunity cost principle is now only applicable
subject to full preemption (when Q−i ≡ q−i0 ), respectively over intervals
in which the opponent’s investment boundary is not reached. This will be
illustrated below.

We begin the study of our present example with the question when it is
profitable for player i to cause the price reflection by own investment. In fact,
since the price barrier here is constant, the decision will always be the same
whenever the boundary is reached. Thus, we aim to determine the values of
always preempting, as well as never investing, with the help of Theorem 3.2.

First, we can solve the partial differential equation which V has to satisfy
off the forbidden region. The general solution is polynomial.

V (x, qi, q−i) = A(qi, q−i)x+B(qi, q−i)xβ (4.3)

Here, β is the positive root of the typical quadratic equation7 and given by

β =
−(µ− 1

2
σ2) +

√
(µ− 1

2
σ2)2 + 2rσ2

σ2
. (4.4)

Note that β > 1 ⇔ r > µ, which is necessary for our assumption β > α to
hold.

7We neglected the corresponding negative root as further exponent in V , which would
otherwise diverge to positive or negative infinity when x approaches zero.
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Furthermore must the first coefficient satisfy

A(qi, q−i) =
1

r − µ
P (qi + q−i)qi. (4.5)

As a consequence, the first term of V is necessarily equal to the net present
value of the revenue flow, were the current capacities fixed forever. This
observation holds independently of the considered boundaries X̄1 and X̄2.

The latter come into play by the boundary conditions for the partial
derivatives of V in Theorem 3.2. We have to match the coefficient function
B to X̄1 and X̄2 by these boundary conditions.

Begin in the current example with the case of never investing, i.e. X̄ i ≡ ∞.
So, since X̄ i(qi, q−i) > X̄−i(q−i, qi), V must satisfy (cf. (A.2))

Vq−i(
p−i

P (qi + q−i)
, qi, q−i) = 0

⇔ Bq−i =− Aq−i(p−i)1−βP (qi + q−i)β−1

=
(p−i)1−β

α(r − µ)
qi(qi + q−i)−

β
α
−1.

(4.6)

The last expression can be integrated to obtain

B(qi, q−i) = − (p−i)1−β

β(r − µ)
qi(qi + q−i)−

β
α + C(qi)

= − p−i

β(r − µ)
qi
(
P (qi + q−i)

p−i

)β
+ C(qi).

(4.7)

Using this coefficient B, we can define by

V ∞(x, qi, q−i) ,
p−i

r − µ
qi
xP (qi + q−i ∨ φ−i(x, qi))

p−i

− p−i

β(r − µ)
qi
(
xP (qi + q−i ∨ φ−i(x, qi))

p−i

)β (4.8)

a function satisfying the first set of sufficient conditions and hypothesis of
Theorem 3.2. The latter is true because the prices xP here are bounded
above by p−i and xVx is of the same order as V . The corresponding solutions
to Problem 3.1 are

Qi ≡ qi0 and Q−i = q−i0 ∨
(

sup
0≤s≤t

(Xs/p
−i)α − qi0

)
t≥0
.

The integration constant C(qi) has been set to zero, since V ∞ represents
the net present value of selling the constant output flow qi at a diffusion price,
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reflected at the barrier p−i, which cannot indefinitely increase nor decrease
in the initial shock value x. Also note that generally any constant coefficient
component

C · xβ

of V will drop out when we apply Itō’s lemma in (A.3).

Now consider the other case and let

X̄ i =
p−i

P (qi + q−i)
,

i.e. player i preempts the investment of −i at the identical boundary by
implementing the capital stock process

Qi = qi0 ∨
(

sup
0≤s≤t

(Xs/p
−i)α − q−i0

)
t≥0

so that Q−i ≡ q−i0 , which together again solve Problem 3.1.
Then, since X̄ i(qi, q−i) ≤ X̄−i(q−i, qi), the relevant boundary condition

for V is (cf. (A.1))

Vqi(
p−i

P (qi + q−i)
, qi, q−i) = 1

⇔ Bqi = −(p−i)−β
(
qi
(
p−i(α−1)
(r−µ)α

− 1
)

+ q−i
(
p−i

r−µ − 1
))

(qi + q−i)−
β
α
−1.

This is again one of the rare cases in which one can explicitly integrate for B.
Neglecting the integration constant for the same reason as before, we arrive
at

Bp−i(qi, q−i)(
P (qi + q−i)

)β = α
β−α(p−i)−β

(
qi
(
p−i(α−1)
(r−µ)α

− 1
)

+ q−i
(
p−i(β−1)
(r−µ)β

− 1
))
.

With this particular coefficient function, the value of preempting at p−i from
a given initial state is completely determined by8

V p−i(x, qi, q−i) ,

{
A(qi, q−i)x+Bp−i(qi, q−i)xβ if x ≤ p−i/P (qi + q−i)

V p−i(x, φi(x, q−i), q−i)− φi(x, q−i) + qi else.

Now we can compare the values of both policies. Preempting is more
profitable than never investing iff V p−i ≥ V ∞. On {qi ≥ φi(x, q−i)} this is
equivalent to

α
β−α

(
qi
(
p−i(α−1)
(r−µ)α

− 1
)

+ q−i
(
p−i(β−1)
(r−µ)β

− 1
))

+ qi p−i

β(r−µ)
≥ 0

8At the price boundary, V p
−i

is linear in qi. We clarify below that the boundedness
condition is satisfied.
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⇔
(
p−i(β−1)
(r−µ)β

− 1
)(

α
β−αq

i + q−i
)
≥ 0

⇔ p−i ≥ β(r − µ)

(β − 1)
, p∗.

Then, V p−i ≥ V ∞ also on {qi < φi(x, q−i)}, since in this region, V p−i

qi
= 1 ≤

V ∞qi = p−i/p∗.
p∗ is a quite important quantity, it is precisely the Bertrand price, which

we know from the case of perfect competition. If the price is reflected at this
barrier, the net present value of a marginal capital unit equals one at the
boundary, its cost. Consequently, the option to delay investment is valueless.

In principle, we already know now that in the only Markov perfect equi-
librium with a constant reflection price both players invest at the Bertrand
price, where each is just indifferent. However, we want to formally prove this
finding by completing the consistent application of Theorem 3.2 and checking
our equilibrium definition.

Specifically, we have only determined when preemption at p−i is superior
to remaining passive. For optimality, we need to verify the further sufficient
conditions.

In particular, for concluding that our candidate function V is really the
value function defined in (3.1), we need to verify that it satisfies the bound-
edness condition for all relevant controls. This first problem can be easily
tackled because the expected revenue from any capital process is finite by
assumption and we only need to consider processes with finite investment
cost. In this case integration by parts yields

E
[∫ ∞

0

e−rt dQt

]
<∞⇒ lim

T→∞
E
[
e−rTQT

]
= 0 (4.9)

and it suffices to establish a linear bound on V for arbitrary capital processes.
Then,

Lemma 4.1. For any Qi ∈ A (qi) with finite investment cost and q−i ∈ R+,

lim
T→∞

E
[
e−rTV p−i(XT , Q

i
T , q

−i)
]

= 0.

The investment cost of reflecting the price at any constant barrier is finite.

The proof is given in the Appendix.
By Lemma 4.1, we may now check the second set of sufficient conditions

in Theorem 3.2 to verify when either strategy is optimal9 in (2.5).

9One could also restrict the search to the class of processes never exceeding the Bertrand
quantity. Lemma A.1 in the Appendix states that such a cap is profitable and is proven
by the optimal stopping approach of Steg (2012).
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Let us again begin with X̄ i ≡ ∞. All but the second sufficient condition
hold by construction. Since V ∞qi is increasing in x, the condition is satisfied
iff

V ∞qi (
p−i

P (qi + q−i)
, qi, q−i) ≤ 1

⇔ p−i

(r − µ)

(β − 1)

β
≤ 1

⇔ p−i ≤ p∗.

(4.10)

We may as expected conclude that at any constant reflection barrier lower
than Bertrand it is optimal for player i to abstain from investment.

The corresponding condition for X̄ i = p−i/P (qi + q−i) can be verified by
an important general result. For this, note that whenever X̄ i ≤ X̄−i, the
coefficient function B needs to satisfy the boundary condition

Vqi(X̄
i(qi, q−i), qi, q−i) = 1

⇔ Bqi =
(
1− AqiX̄ i(qi, q−i)

)
X̄ i(qi, q−i)−β.

(4.11)

We want to answer the question in which cases the necessary optimality
condition for Vqi is compatible with (4.11).

Vqi ≤ 1, ∀x ∈ [0, X̄ i(qi, q−i)]

⇔Bqi ≤ (1− Aqix)x−β, ∀x ∈ [0, X̄ i(qi, q−i)]
(4.12)

The last condition can only hold if the right hand side is not increasing in
x (in the given interval), since equality is attained at the upper bound by
(4.11). It is nonincreasing iff

x ≤ β

β − 1

(
Aqi
)−1

= p∗
qi + q−i

α−1
α
qi + q−i

(
P (qi + q−i)

)−1
,

p̄(qi, q−i)

P (qi + q−i)
. (4.13)

Thus, when X̄ i ≤ X̄−i, it satisfies the optimality condition if and only if
X̄ i ≤ p̄(qi, q−i)/P (qi+q−i). The latter function is not only important because
of this property, it also happens to be the myopic price trigger discussed in
detail below. For future reference note also

X̄ i ≤ p̄(qi, q−i)

P (qi + q−i)
⇔ Vqix(X̄

i, qi, q−i) ≥ 0. (4.14)

Concerning the present example, we thus only have to verify whether
p−i ≤ p̄(qi, q−i), which is satisfied iff

qi ≥ q−i
p−i − p∗

p∗ − α−1
α
p−i
≥ 0. (4.15)
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Both inequalities must hold, so if p−i ≥ p∗ ·α/(α−1), it cannot be the optimal
boundary (which will be lower). Furthermore, we also consider subgames off
the equilibrium path — at least with capital stocks not strictly below the
initial levels —, so (4.15) has to be satisfied by all qi ≥ qi0 and q−i ≥ q−i0 , and
does so only if p−i ≤ p∗.

It remains to check under which conditions V p−i

q−i ≤ 0 at the investment
boundary. A short calculation shows

V p−i

q−i (x, φi(x, q−i), q−i) =
x

p−i

(
1− p−i

p∗

)
P (qi + q−i) ≤ 0⇔ p−i ≥ p∗.

Consequently, preempting at the fixed price level is optimal in all subgames
iff10 p−i = p∗, i.e. when both players are just indifferent to invest at the
boundary.

In fact, if both players use X̄ i = p∗/P (qi + q−i), we can select any pair of
processes (Q1, Q2) ∈ A (q1

0) × A (q2
0) that jointly reflect the price at p∗ to

comply with our equilibrium Definition 2.1. Let us summarize this result.

Proposition 4.2. For all initial capital levels (q1
0, q

2
0) ∈ R2

+, the pair of
Markovian strategies (φB, φB), where

φB(x, q) ,

(
x

p∗

)α
− q,

is a Markov perfect equilibrium for the game with revenue function (4.1). The
equilibrium value of firm i at state (x, qi, q−i) ∈ R3

+ is given by the function

V B(x, qi, q−i) ,

q
i if xP (qi + q−i) ≥ p∗,

β
β−1

qi xP (qi+q−i)
p∗

− 1
β−1

qi
(
xP (qi+q−i)

p∗

)β
else.

We observe that the value of each firm equals its current capital stock
in the forbidden region. The additional revenue flow from any investment
in this region has present value one, identical to its cost, and thus does
not affect firm value. Consequently, the option value of waiting completely
disappears. Any profitable investment is immediately exploited, like under
perfect competition.

5 Myopic investment

We saw in the previous section that it might not be an optimal reply to wait
until the price reaches the opponent’s investment boundary. In this section

10We did not prove that V p
−i

q−i ≤ 0 is necessary, but we showed V∞ > V p
−i ⇔ p−i < p∗.
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we will take a look at earlier investment and elaborate on the associated
optimality conditions. The results will have important implications for the
existence of further equilibria.

5.1 The myopic investor

For concreteness, begin with the assumption that player i’s opponent uses
the “reflection” strategy X−i ≡ ∞, which was shown to be optimal when
the price never exceeds p∗. In this case, player i can act like a monopolist,
taking the fixed competitive output as given, so the optimal strategy is not
very difficult to determine. Nevertheless, the situation is of intrinsic interest,
since we showed in Steg (2012) that the best reply to the current, fixed capital
levels is the optimal investment policy in any open loop equilibrium under
very general conditions. Such investment behaviour is called myopic and
was already discussed by Leahy in his derivation of a perfectly competitive
equilibrium Leahy (1993). The principle is widely known since then and we
would like to know which role it is playing in our setting.

Let us try to identify an optimal myopic reflection boundary Xm(qi, q−i)
with the help of Theorem 3.2, by constructing the myopic value function V m.
From the previous section, we know that necessarily on {x ≤ Xm(qi, q−i)}

V m(x, qi, q−i) =
1

r − µ
qixP (qi + q−i) +Bm(qi, q−i)xβ,

where we have to determine Bm by the boundary conditions. Furthermore,
we know from (4.14) that the necessary optimality conditions can only hold
if X̄m ≤ p̄(qi, q−i)/P (qi + q−i).

Now consider the second necessary condition of the theorem for optimal-
ity, which we only need to check for {X̄ i(qi, q−i) < x ≤ X̄−i(q−i, qi)}, since it
will hold by construction at smaller x. The notation is kept general for the
moment since the intended result is, too.

In the given region, V (x, qi, q−i) = V (x, φi(x, q−i), q−i) − φi(x, q−i) + qi.
This implies for the first partial derivative required to evaluate LxV :

Vx(x, q
i, q−i) =∂x

(
V (x, φi(x, q−i), q−i)− φi(x, q−i)

)
=Vx(x, φ

i(x, q−i), q−i),
(5.1)

where the last line follows from (A.1). Differentiating once more yields

Vxx(x, q
i, q−i) =∂x

(
Vx(x, φ

i(x, q−i), q−i)
)

=Vxx(x, φ
i(x, q−i), q−i) + Vxqi(x, φ

i(x, q−i), q−i)φix(x, q
−i).

(5.2)

21



By these formulae, V ,Vx, and Vxx in the given region are — apart from
some correction terms — all evaluated at (x, φi(x, q−i), q−i), i.e. at an argu-
ment for which the partial differential equation is satisfied by construction.
This observation admits the following simplification on {X̄ i(qi, q−i) < x ≤
X̄−i(q−i, qi)}:

−rV + Π + LxV =rφi(x, q−i)− rqi

+Π(x, qi, q−i)− Π(x, φi(x, q−i), q−i)

+
1

2
σ2x2Vxqi(x, φ

i(x, q−i), q−i)φix(x, q
−i).

(5.3)

Then, if qi approaches φi(x, q−i), the only term on the right hand side that
remains is the last. Since φix > 0 (corresponding to X̄ i

qi > 0 and necessary for
a well defined reflection strategy), we conclude that the necessary optimality
condition can only be satisfied if

Vxqi(x, φ
i(x, q−i), q−i) ≤ 0. (5.4)

Combined with the first necessary condition (4.14), we must have equality.
Equivalently, the optimal myopic investment boundary11 is completely de-
termined by

X̄m(qi, q−i) =
p̄(qi, q−i)

P (qi + q−i)
, (5.5)

as claimed in the previous section. Requiring Vxqi = 0 at the investment
boundary is actually the “smooth pasting condition” which is often treated
like an abstract, universal optimality condition.

As the general conclusion, whenever player i considers to invest strictly
before the opponent, at a boundary admitting a sufficiently smooth and
bounded V , it must happen at the myopic boundary, and this is the only
boundary at which we will encounter smooth pasting.

Continuing with the particular case X̄−i ≡ ∞ and X̄ i = X̄m, we still need
to verify for optimality that (5.3) is nonpositive in the entire given region,
not only near the boundary. But this follows in fact from the equivalence

∂qi
(
Π(x, qi, q−i)− rqi

)
≥ 0 (5.6)

⇔ x ≥ r
(
P (qi + q−i) + qiP ′(qi + q−i)

)−1
=

r

p∗
X̄m,

which holds on {x ≥ X̄m} since our assumption r > µ implies r < p∗. The
only sufficient condition for optimality left unanswered is the third item,
which is however irrelevant since dQ−i ≡ 0.

11It is indeed a proper reflection boundary with X̄m
qi > 0 and limqi→∞ X̄m =∞.
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While the necessary conditions have already fixed Xm and simultaneously
ensure that the associated value function will satisfy all sufficient conditions,
we need of course the coefficient Bm to see that such V m indeed exists, and
to check the boundedness condition for V m in the theorem’s hypothesis.

Unfortunately, though the present case seems even simpler because i acts
like a monopolist, it is not possible to integrate explicitly for Bm as in the
previous section. As in later instances, we have to cope with its definition
via an integral.

The determining boundary condition (A.1) simplifies in this case to

Bm
qi (q

i, q−i) = − 1
β−1

(
X̄m(qi, q−i)

)−β
= − 1

β−1
(p∗)−β

(
P (qi + q−i) + qiP ′(qi + q−i)

)β
= − 1

β−1
(p∗)−β

(
α−1
α
qi + q−i

)β(
qi + q−i

)− β
α
−β
.

(5.7)

Based on this partial derivative, we obtain the following result.

Proposition 5.1. Let X̄ i = X̄m given by (5.5), X̄−i = ∞, and define
φm(x, q−i) , sup{q ∈ R+|x ≥ X̄m(q, q−i)} ∨ 0. Then, for any (x, qi, q−i) ∈
R3

+,

V m(x, qi, q−i) ,

{
β
β−1

qi xP (qi+q−i)
p∗

+Bm(qi, q−i)xβ if x ≤ X̄m(qi, q−i)

V m(x, φm(x, q−i), q−i)− φm(x, q−i) + qi else,

with

Bm(qi, q−i) , −
∫ ∞
qi

Bm
qi (q, q

−i) dq

satisfies the hypothesis of Theorem 3.2.

Qi
t = qi ∨ sup0≤s≤t φ

m(Xs, q
−i) is optimal for any (x, qi, q−i) ∈ R3

+ in
problem (2.5) with φ−i ≡ 0.

Proof. Concerning the boundedness condition for arbitrary Qi ∈ A (qi) with
finite cost, one can repeat the proof of Lemma 4.1 with the following esti-
mates:

xP (qi ∨ φm + q−i)

p∗
≤ p̄(qi ∨ φm, q−i)

p∗
≤ α

α− 1

and

−Bm
qi ≤

1

β − 1
(p∗)−β

(
P (qi + q−i)

)β
⇒ 0 ≤ Bm(qi ∨ φm, q−i)xβ ≤ α

β − α
1

β − 1

(
qi ∨ φm + q−i

)( α

α− 1

)β
.
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Bm actually can be calculated explicitly in the special case q−i = 0, true
monopoly. Then,

V m(x, qi, 0) =

q
i + β

(α−1)(β−α)

(
α−1
α

x
p∗

)α
if x > X̄m(qi, 0)

β
β−1

qi xP (qi)
p∗

+ 1
β−1

α
β−αq

i
(
α−1
α

)β(
xP (qi)
p∗

)β
else,

which is well defined and finite for α < β as claimed before.

5.2 Playing against a myopic investor

In the preceding, we identified the central importance of the myopic invest-
ment boundary in any potential equilibrium with two differing reflection
strategies, so the natural next step to take is the complementary point of
view. Which reflection strategies can be best replies to a myopically invest-
ing firm? Thus, suppose the opponent of player i uses the myopic boundary
in part of the state space, X̄−i = X̄m, and this is indeed strictly smaller than
X̄ i.

Then, the relevant boundary condition to construct player i’s value func-
tion V is

Vq−i(
p̄(q−i, qi)

P (qi + q−i)
, qi, q−i) = 0

⇔ Bq−i(q
i, q−i) = β

α(β−1)
(p∗)−βqi

(
qi + q−i

)− β
α
−β(

qi + α−1
α
q−i
)β−1

, Btm
q−i(q

i, q−i).
(5.8)

We denote the right hand side by Btm
q−i , since player i tolerates myopic in-

vestment at these points.
If we are able to determine the coefficient B from the preceding equation,

the necessary optimality condition is

Vqi(
p̄(q−i, qi)

P (qi + q−i)
, qi, q−i) ≤ 1

⇔ Bqi(q
i, q−i) ≤ 1

α(β−1)
(p∗)−β

(
qi + q−i

)− β
α
−β(

qi + α−1
α
q−i
)β−1·

·
(
(β − α)qi − (β + α− 1)q−i

)
,Bpm

qi
(qi, q−i).

(5.9)

If equality holds, this is the relevant boundary condition if player i preempts
the opponent’s myopic investment.

In fact, if player i considered that it might only be optimal in part of the
state space not to intervene when the opponent invests at X̄−i, the transition

24



to the preemption regime has to occur continuously for a proper reflection
strategy. At those points, equality must hold in (5.9).

Since the myopic boundary is strictly increasing in the first argument, the
preempting decision for player i with qi fixed is likely to be monotone in q−i.
The smaller the latter, the smaller is the expected return from a preemption
investment. On the other hand, we saw that player i optimally has to invest
no later than at the own myopic boundary. From p̄(qi, q−i) ≤ p̄(q−i, qi) ⇔
qi ≤ q−i it is clear that player i can only await and tolerate the opponent’s
investment when having a higher capital stock. Consequently, suppose there
exists

q̄(qi) , inf{q ∈ R+|X̄ i(qi, q) ≤ p̄(q, qi)/P (q + qi)} ≤ qi.

The corresponding V can only be continuously differentiable at the transition
if Bqi(q

i, q̄(qi)) = Bpm
qi

(qi, q̄(qi)). This enables us to consider the optimality

condition (5.9), although we only know the partial derivative Btm
q−i for q−i <

q̄(qi).
With

Bqi(q
i, q−i) = Bpm

qi
(qi, q̄(qi))−

∫ q̄(qi)

q−i
Btm
qiq−i(q

i, q) dq,

and

Bpm
qi

(qi, q−i) = Bpm
qi

(qi, q̄(qi))−
∫ q̄(qi)

q−i
Bpm
qiq−i(q

i, q) dq,

(5.9) is on {q−i < q̄(qi)} equivalent to∫ q̄(qi)

q−i
Bpm
qiq−i(q

i, q) dq ≤
∫ q̄(qi)

q−i
Btm
qiq−i(q

i, q) dq.

One can show12 that the relation between the two integrands is very clear

12

Btm
q−iqi =

β

α2(β − 1)
(p∗)−β

(
qi + q−i

)− βα−β−1(qi +
α− 1

α
q−i
)β−2

·
(
−β(qi)2 +

(
β/α+ α− 1

)
qiq−i + (α− 1)(q−i)2

)
Bpm
qiq−i =

β

α2(β − 1)
(p∗)−β

(
qi + q−i

)− βα−β−1(qi +
α− 1

α
q−i
)β−2

·
(
−(2β − 1)(qi)2 +

(
β/α+ α+ β − 2

)
qiq−i + (α− 1)

(β + α− 1)

α
(q−i)2

)
Btm
q−iqi ≥B

pm
qiq−i ⇔ (qi)2 − qiq−i − α− 1

α
(q−i)2 ≥ 0
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cut,

Bpm
qiq−i(q

i, q−i) ≤ Btm
qiq−i(q

i, q−i)⇔ qi

q−i
≥
(

1

2
+

√
1

4
+
α− 1

α

)
, D > 1.

This implies that if q̄(qi) really is the upper boundary of an interval for q−i, in
which X̄ i(qi, q−i) > X̄m(q−i, qi), this can only be optimal if q̄(qi) ≤ D−1 · qi.
Put differently, not preempting the myopic investor can only be optimal for
player i on {qi ≥ D · q−i}, when having sufficiently more capital than the
opponent.

By a similar argument, we can derive a complementary condition for op-
timally preempting a myopic investor. In a preemption region, the boundary
condition for V is equality in (5.9), i.e.

Bqi(q
i, q−i) = Bpm

qi
(qi, q−i).

Correspondingly, (5.8) turns into the (sufficient) optimality condition

Bq−i(q
i, q−i) ≤ Btm

q−i(q
i, q−i). (5.10)

We know that player i optimally invests at the own myopic boundary if
this is below the opponent’s, i.e. whenever qi ≤ q−i. So suppose that for
given q−i, player i stops preempting the opponent at

q̂(q−i) , inf{q ∈ R+|X̄ i(q, q−i) > p̄(q−i, q)/P (q + q−i)} ≥ q−i,

and becomes passive. Analogous to the above, (5.10) is then equivalent to∫ q̂(q−i)

qi
Btm
q−iqi(q, q

−i) dq ≤
∫ q̂(q−i)

qi
Bpm
q−iqi(q, q

−i) dq

on {qi < q̂(q−i)}. It can only be satisfied if q̂(q−i) ≤ D · q−i, respectively on
{qi ≤ D · q−i}, when player i’s capital is not too much larger.

5.3 Equilibrium failure

In Steg (2012), we observed that in any open loop equilibrium the investment
behaviour is as follows. The smaller firm invests myopically until having
caught up to the other firm. If jumps occur, either only the smaller firm
jumps to a capital level not exceeding the opponent’s, or both jump to the
same level of mutual best myopic replies. We will now determine Markovian
strategies that generate exactly these capital processes in any subgame.
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In the previous section, we have already exploited the fact that the smaller
firm’s myopic investment boundary is strictly lower than the larger firm’s,
p̄(qi, q−i) ≤ p̄(q−i, qi)⇔ qi ≤ q−i. But X̄m

q−i ≥ 0 iff α · q−i ≥ qi, so we have to
adjust the strategies to ensure that the initial jumps are clearly resolved as
in Subsection 3.1. Therefore, note that the symmetric myopic capital level
is well defined by

qs(x) , sup{q ∈ R+|x ≥
p̄(q, q)

P (2q)
} ∨ 0, (5.11)

since p̄(q, q)/P (2q) is strictly increasing in q. Whenever there is a simulta-
neous jump, both firms have to settle at this value. The appropriate myopic
Markov strategies are then given by

φ̃m(x, q−i) , φm(x, q−i ∨ qs(x)) = φm(x, q−i) ∧ qs(x) (5.12)

and have the required properties φ̃mq−i ≤ 0 and φ̃mx > 0 for all (x, q−i) ∈ R2
+.

In fact, if both players use these strategies, there is a unique solution to the
state equation. For any initial state (x0, q

1
0, q

2
0) ∈ R3

+, Qi
0 = qi0∨ φ̃m(x0, q

−i
0 ) is

uniquely determined for both players, independent of assigning a leader. The
state is then outside the forbidden region, Qi

0 ≥ φ̃m(x0, Q
−i
0 ), while no player

jumped across qs(x0). However, Q1
0 ∨ Q2

0 ≥ qs(x0), and either the smaller
firm now expands using the myopic signal φm, or both are equally sized and
simultaneously track qs(x).

In order to construct a smooth function Ṽ m when both players use φ̃m,
we again have to find the coefficient B̃m which ensures that all boundary
conditions are satisfied. For this, we have to distinguish the regimes in which
player i’s capital stock is smaller or larger than the opponent’s.

Begin with qi ≤ q−i. Then, player i invests at the myopic boundary and
the related boundary condition is the same as (5.7). Thus, on {0 ≤ qi ≤ q−i},

B̃m(qi, q−i) = B̃m(q−i, q−i)−
∫ q−i

qi
Bm
qi (q, q

−i) dq. (5.13)

This implies for the partial derivatives at the regime boundary

∂−
qi
B̃m(q, q) = Bm

qi (q, q) and

∂+
q−iB̃

m(q, q) = ∂qB̃
m(q, q)−Bm

qi (q, q).
(5.14)

Now consider the other regime, when i tolerates the myopic investment by
the opponent. The related boundary condition here is the same as (5.8).
Thus, on {0 ≤ q−i < qi},

B̃m(qi, q−i) = B̃m(qi, qi)−
∫ qi

q−i
Btm
q−i(q

i, q) dq. (5.15)
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This implies similarly for the partial derivatives at the regime boundary

∂−
q−iB̃

m(q, q) = Btm
q−i(q, q) and

∂+
qi
B̃m(q, q) = ∂qB̃

m(q, q)−Btm
q−i(q, q).

(5.16)

Compare (5.14) and (5.16). For B̃m to be continuously differentiable, we
must have

∂qB̃
m(q, q) = Bm

qi (q, q) +Btm
q−i(q, q).

This equation in one variable can be integrated to find that

B̃m(q, q) = − 1

β − 1
(p∗)−βq−

β
α

+12−
β
α
−β
(β + 1− 2α

β − α

)(2α− 1

α

)β−1

, (5.17)

which together with (5.13) and (5.15) determines B̃m on all of R2
+. Now,

Ṽ m(x, qi, q−i) , (5.18)

β

β − 1
qi
xP (qi + q−i)

p∗
+ B̃m(qi, q−i)xβ if

{
qi ≥ φ̃m(x, q−i)

q−i ≥ φ̃m(x, qi)

Ṽ m(x, φ̃m(x, q−i), q−i)− φ̃m(x, q−i) + qi if

{
qi < φ̃m(x, q−i)

q−i ≥ φ̃m(x, qi)

Ṽ m(x, qi, φ̃m(x, qi)) if

{
qi ≥ φ̃m(x, q−i)

q−i < φ̃m(x, qi)

Ṽ m(x, qs(x), qs(x))− qs(x) + qi if

{
qi < φ̃m(x, q−i)

q−i < φ̃m(x, qi)

satisfies the first set of sufficient conditions in Theorem 3.2. Note that in
particular, because we have matched (5.14) and (5.16),

Ṽ m
qi (

p̄(q, q)

P (2q)
, q, q) = 1

Ṽ m
q−i(

p̄(q, q)

P (2q)
, q, q) = 0

(5.19)

when simultaneous investment occurs.

Proposition 5.2. Define X̃m(qi, q−i) , sup{x ∈ R|qi ≥ φ̃m(x, q−i)} and let
(Q1, Q2) be the solution of Problem 3.1 if X̄1 = X̄2 = X̃m, with initial state
(x0, q

1
0, q

2
0) ∈ R3

+. Then,

Ṽ m(x0, q
i
0, q
−i
0 ) = J(Qi, Q−i).

Yet, (φ̃m, φ̃m) are not a Markov perfect equilibrium.
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Ṽ m satisfies the hypothesis of Theorem 3.2 by a very similar argument as
in the proof of Proposition 5.1. However, Ṽ m does not satisfy the necessary
conditions for optimality, because the strategies allow the smaller opponent
to catch up gradually. We saw in the previous subsection that this cannot be
optimal on {qi < D · q−i}, with D strictly greater than one. Once the capital
levels are within this distance, tolerating further investment is suboptimal.
Consequently, the Markovian strategies generating the open loop equilibrium
processes are not a Markov perfect equilibrium.

6 Collusive equilibria

The previous section tells us that there exists no Markov perfect equilibrium
in which the players have different investment boundaries whenever their
capital stocks differ. In these cases, the smaller firm necessarily invests my-
opically, but the larger firm has a strict incentive to preempt before the two
have equal capital stocks. Consequently, in any equilibrium, the players must
use the same investment boundary over part of the state space, also for some
heterogeneous capital levels. An example is of course the earlier obtained
Bertrand equilibrium with a shared price trigger.

On the other hand, it is clear from the equilibrium definition that at least
one of the firms must be indifferent to invest at the common boundary. We
can express this requirement in terms of the value function V .

So, suppose the players use the same reflection boundary X̄ over part of
the state space. At the respective own reflection boundary, V always has to
satisfy the boundary condition (4.11), Vqi(X̄, q

i, q−i) = 1. Expanded, it is
equivalent to

Bqi = X̄−β − β
β−1

(p∗)−1
(
α−1
α
qi + q−i

)(
qi + q−i)−

1
α
−1X̄1−β , Bp

qi
. (6.1)

We denote the right hand side by Bp
qi

, since this is the condition associated
with investment, resp. preemption.

The intended indifference condition is then

Vq−i(X̄, q
i, q−i) = 0, (6.2)

i.e. the value of the strategy is not affected if the opponent invests at the same
boundary. In the previous case, myopic investment, these two conditions only
held simultaneously for each player when both have equal capital stocks, cf.
(5.19). We can also expand the latter condition to

Bq−i = 1
β−1

(p∗)−1qi β
α

(
qi + q−i)−

1
α
−1X̄1−β , Bt

q−i . (6.3)

29



Similarly as before, Bt
q−i stands for tolerating investment.

Now, we can turn the approach taken so far around and try to identify a
reflection boundary X̄ that is consistent with (6.1) and (6.3) simultaneously.

Specifically, since Bqiq−i = Bq−iqi must hold, we obtain13 a partial differ-
ential equation for X̄:

X̄−1p∗(qi + q−i)
1
α

+1X̄q−i −
(
α−1
α
qi + q−i

)
X̄q−i − 1

α
qiX̄qi = 0. (6.4)

If we require that both player be indifferent at the sought reflection boundary,
it is easy to see14 that the only solution of this PDE is the Bertrand price
trigger X̄(qi, q−i) = p∗(qi + q−i)

1
α .

However, it is sufficient for an equilibrium that only one player is in-
different, say who has more capital installed. One can narrow down further
solutions of (6.4) by reflecting that a firm might only care about the observed
price in the investment decision, and that the price of indifference depends
only on the own installed capital. Correspondingly, we look for solutions of
the functional form

X̄(qi, q−i) = f(qi)(qi + q−i)
1
α . (6.5)

In this case, we calculate

X̄qi = (qi + q−i)
1
α
−1
(
(qi + q−i)f ′ + 1

α
f
)

and

X̄q−i = (qi + q−i)
1
α
−1 1

α
f.

(6.4) now dramatically simplifies to

f + qif ′ = p∗,

the general solution of which is

f(qi) = p∗ + c · (qi)−1. (6.6)

Since investment below the Bertrand price cannot be optimal, we only admit
constants c ∈ [0,∞).

13

∂qiB
t
q−i = 1

β−1 (p∗)−1 βαX̄
−β(qi + q−i)−

1
α−2

((
− 1
αq

i + q−i
)
X̄ − (β − 1)qi(qi + q−i)X̄qi

)
∂q−iB

p
qi =− βX̄−β−1X̄q−i − β

β−1 (p∗)−1X̄−β
(
qi + q−i

)− 1
α−2·

·
(
− 1
α

(
− 1
αq

i + q−i
)
X̄ − (β − 1)

(
α−1
α qi + q−i

)(
qi + q−i

)
X̄q−i

)
14Switch roles by swapping i,−i and take the difference of the two equations.
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With all candidates other than the Bertrand equilibrium, i.e. whenever
c > 0, indeed only player i can be indifferent. The question which player to
make indifferent is easily answered, if we check whether (6.5) defines proper
reflection strategies. In fact, X̄q−i is nonnegative since f is, but X̄qi > 0 iff

(qi + q−i)f ′ + 1
α
f > 0

⇔ p∗(qi)2 − (α− 1)cqi − αcq−i > 0.

This only holds for a wide range of capital levels if qi ≥ q−i and is then
implied by

qi > c
2α− 1

p∗
. (6.7)

Consequently, if we define the symmetric investment boundary

X̄c(qi, q−i) ,
(
p∗ + c · (qi ∨ q−i)−1

)
(qi + q−i)

1
α , (6.8)

it is a proper reflection boundary on
(
c2α−1

p∗
,∞
)2

with X̄c
qi > 0 and X̄c

q−i > 0.

Furthermore, we can apply Theorem 3.2 to show that X̄c is a mutual best
reply.

Proposition 6.1. Let X̄1 = X̄2 = X̄c given by (6.8) with fixed c ∈ R+, and
define φc(x, q−i) , sup{q ∈ R+|x ≥ X̄c(q, q−i)} ∨ 0. Further fix (x0, q

1
0, q

2
0) ∈

R+×
(
c2α−1

p∗
,∞
)2

and set Qi =
(
qi0∨ sup0≤s≤t φ

c(Xs, q
−i
0 )
)
t≥0

and Q−i ≡ q−i0 .

Define for any (x, q1, q2) ∈ R+ ×
(
c2α−1

p∗
,∞
)2

V c(x, qi, q−i) ,

{
β
β−1

qi xP (qi+q−i)
p∗

+Bc(qi, q−i)xβ if x ≤ X̄c(qi, q−i)

V c(x, φc(x, q−i), q−i)− φc(x, q−i) + qi else,

where

Bc(qi, q−i) , −
∫ ∞
qi

Bc
qi(q, q

−i) dq, (6.9)

and

Bc
qi(q

i, q−i) ,
(

1− β
β−1

(p∗)−1
(
α−1
α
qi+q−i

)(
qi+q−i

)− 1
α
−1
X̄c
)(
X̄c
)−β

. (6.10)

Then, V c(x0, q
i
0, q
−i
0 ) = J(Qi, Q−i) = V ∗(x0, q

i
0, q
−i
0 ).

The proof is in the Appendix. In the proposition, we selected the pro-
cesses Qi and Q−i by solving Problem 3.1 and determined the solution to
the verification problems (2.5). The outcome depends on which player is the
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leader, because there is full preemption. As the involved investment occurs
at higher prices than Bertrand, the payoffs to the players also differ. Nev-
ertheless, (φc, φc) are a Markov perfect equilibrium, because we can select
feasible capital stock processes that are a Pareto improvement compared to
full preemption as in the proposition. We exploit the indifference of the
respective larger firm.

Theorem 6.2. For any c ∈ R+, (φc, φc) as defined in Proposition 6.1 is a

Markov perfect equilibrium for initial capital levels (q1
0, q

2
0) ∈

(
c2α−1

p∗
,∞
)2

.

The proof is in the Appendix. Theorem 6.2 answers the “open question”
posed in Back and Paulsen (2009) whether there exist any other subgame
perfect equilibria of the game with reflection strategies besides the Bertrand
equilibrium.

Our additional class of equilibria is driven by the fact that preemptive in-
vestment of the larger firm lowers the price at which the smaller firm invests.
The smaller firm does not face this externality and it also has the greater
local investment incentive, based on marginal revenue. Thus, it is able to
set a dynamic investment price boundary above Bertrand which leaves the
opponent indifferent. Note that the investment price boundary has to de-
cline gradually in equilibrium, since we saw in Section 4 that preemption is
otherwise the dominant strategy.

With the present example we falsified the frequent conjecture that pre-
emption concerns completely eliminate option values under arbitrarily divisi-
ble investment. The friction implied by uncertain returns and the decreasing
marginal revenue effect do enable more collusive outcomes with quantities
less than those enforcing the Bertrand price. We consequently opt for calling
these collusive equilibria.

7 Conclusion

In this work we focused on the strategic effect of capital commitment with
arbitrarily divisible, irreversible investment under dynamic uncertainty. In
order to be able to verify formally whether ideal circumstances for preemption
necessarily eliminate all option values, we proposed a duopoly model with
closed loop strategies. Using a state space representation, we enabled the
players to make investment decisions by choosing desired capital levels, which
are relevant only when exceeding installed capital.

This approach is inspired by the signal processes arising in the open loop
case and allowed to avoid artificial bounds on the speed of capital adjust-
ment — so singular control was admissible —, while ensuring consistency
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across subgames. Since one encounters the typical difficulty of continuous-
time games, that a priori natural strategies do not uniquely determine the
course of the state, particular attention has to be paid to an appropriate
equilibrium concept. We introduced a strong optimality notion by requiring
that there exists a solution in capital processes, such that no player has an
incentive to choose any other control process at any state, even if unilateral
perfect preemption was made feasible by hypothesis.

Our equilibrium definition has been complemented by establishing a ver-
ification theorem. It serves to solve the optimal control problems arising in
equilibrium verification in the presence of Markovian strategies and geometric
Brownian motion as exogenous shock process. We subsequently applied the
theorem to the example in which firms face an inverse demand with constant
elasticity, in order to derive Markov perfect equilibria.

The simplest instance has been the arguably expected equilibrium, show-
ing perfectly competitive investment. It results when firms use a constant
price to trigger investment. Then, implied by stationarity, the decision
whether to preempt at the threshold is always the same. By repeated in-
vestment opportunities and rent equalization, firms are always indifferent
when investing and make zero expected profits.

The observation that firms invest (or threaten to) at an identical threshold
is an important aspect of any equilibrium. Whenever the thresholds differ, we
could show that one firm necessarily invests myopically to behave optimally.
Then, it can only be optimal for the opponent to refrain from preemption
when having sufficiently more capital already installed. On the other hand,
when having too much capital, preemption is definitely unprofitable.

Consequently, there is potential for equilibria without full preemption.
While those Markovian strategies generating the open loop equilibrium pro-
cesses for any starting state are not eligible, we identified a particular class
of Markov perfect equilibria with positive option values.

As the crucial component, a dynamic output good price to trigger in-
vestment allows for collusive behaviour. The respective larger firm is kept
indifferent in these equilibria when the opponent invests. By refraining from
preemption, the larger firm allows both players to obtain the highest possible
returns, given the equilibrium Markovian strategies, since any investment by
the larger firm reduces the (common) investment boundary. Neither player
has an incentive to deviate from the Pareto optimal solution in capital pro-
cesses. When they have equal capital stocks, simultaneous investment occurs.
One observes collusion similar to the simultaneous investment equilibria in
the real option exercise games.

Since the well-known technical problem of choosing an outcome has been
approached only exogenously, continuing research concentrates on endoge-
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nous solutions.

A Appendix

Proof of Theorem 3.2

Suppose there exists V satisfying the first set of sufficient conditions.
Note the frequently used equivalence

x = X̄ i(qi, q−i)⇔ qi = φi(x, q−i).

Note also that φi and φ−i are continuously differentiable in x and q−i and
qi, respectively, since X̄ i and X̄−i are. We calculate the following partial
derivatives.

On {x > X̄ i(qi, q−i)}:

Vqi = 1 = Vqi(x, φ
i(x, q−i), q−i) (Vqi continuous)

Vq−i = ∂q−i
(
V (x, φi(x, q−i), q−i)− φi(x, q−i)

)
= Vq−i(x, φ

i(x, q−i), q−i)

(A.1)

To obtain the last line, we already used the first result.

On {X̄−i(q−i, qi) < x ≤ X̄ i(qi, q−i)}:

Vq−i = 0 = Vq−i(x, q
i, φ−i(x, qi)) (Vq−i continuous)

Vqi = ∂qi
(
V (x, qi, φ−i(x, qi))

)
= Vqi(x, q

i, φ−i(x, qi))

(A.2)

Again the first line implies the last.

Now consider an initial state (x0, q
1
0, q

2
0) such that X0 = x0 ≤ X̄1(q1

0, q
2
0) ∧

X̄2(q2
0, q

1
0). Then, the paths of the semi-martingale (X,Q1, Q2), where the

capital processes are the hypothesized solution to Problem 3.1, satisfy Xt ≤
X̄1(Q1

t , Q
2
t ) ∧ X̄2(Q2

t , Q
1
t ) for all t ∈ [0,∞) P-a.s.

Since V is class C2,1,1 on {x ≤ X̄ i(qi, q−i) ∧ X̄−i(q−i, qi)}, we can apply Itō’s
lemma to obtain for arbitrary T ∈ [0,∞)
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e−rTV (XT , Q
i
T , Q

−i
T )− V (X0, Q

i
0, Q

−i
0 ) =∫ T

0

e−rt
(
−rV (Xt, Q

i
t, Q

−i
t ) + LxV (Xt, Q

i
t, Q

−i
t )
)
dt

+

∫ T

0

e−rtµXtVx(Xt, Q
i
t, Q

−i
t ) dBt

+

∫ T

0

e−rtVqi(Xt, Q
i
t, Q

−i
t ) dQic

t

+

∫ T

0

e−rtVq−i(Xt, Q
i
t, Q

−i
t ) dQ−it

+
∑
t≤T

e−rt4V (Xt, Q
i
t, Q

−i
t ), P-a.s.,

(A.3)

where Qic is the continuous part of Qi and the sum is over the jumps of Qi

up to T . Note that the presently discussed Qi and Q−i are continuous, but
we will later allow for jumps of Qi alone.

The second integral is a martingale, since for all (Qi, Q−i) ∈ A (qi)×A (q−i)
and T ∈ R+,

(
1{t≤T}e

−rtµXtVx(Xt, Q
i
t, Q

−i
t )
)
t≥0
∈ L2(P ⊗ dt) by continuity

of Vx. It disappears when we now take expectations. We also rearrange and
subtract the payoff stream including investment costs up to T on both sides.

V (X0, Q
i
0, Q

−i
0 )− E

[∫ T

0

e−rtΠ(Xt, Q
i
t, Q

−i
t ) dt−

∫ T

0

e−rt dQi
t

]
=

E

[
−
∫ T

0

e−rt
(
−rV (Xt, Q

i
t, Q

−i
t ) + Π(Xt, Q

i
t, Q

−i
t ) + LxV (Xt, Q

i
t, Q

−i
t )
)
dt

−
∫ T

0

e−rt
(
Vqi(Xt, Q

i
t, Q

−i
t )− 1

)
dQic

t

−
∑
t≤T

e−rt
(
4V (Xt, Q

i
t, Q

−i
t )−4Qi

t

)
−
∫ T

0

e−rtVq−i(Xt, Q
i
t, Q

−i
t ) dQ−it

]
+ E

[
e−rTV (XT , Q

i
T , Q

−i
T )

]
(A.4)

All integrals and the sum on the right hand side are zero by the sufficient
conditions. dQi > 0 only if Xt ≥ X̄ i(Qi

t, Q
−i
t ) and then Vqi = 1. Similarly,
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dQ−i > 0 only if X̄−i(Q−it , Q
i
t) ≤ Xt < X̄ i(Qi

t, Q
−i
t ) and then Vq−i = 0.

Finally, the last term goes to zero by hypothesis if we let T go to ∞, so

V (x0, q
i
0, q
−i
0 )− J(Qi, Q−i) = 0, (A.5)

since there was no initial jump. However, for initial states (x0, q
1
0, q

2
0) inside

the forbidden region, the equality still holds since the jumps occur while
Vqi = 1 and Vq−i = 0.

For the next claim, consider the additional set of sufficient conditions. Note
that for any Qi ∈ A (qi0), Q−i given by φ−i solves the Skorohod problem

Xt ≤ X̄−i(Q−it , Q
i
t), t ∈ [0,∞)∫ ∞

0

(
1− 1{Xt≥X̄−i(Q−i

t ,Qit)}
)
dQ−it = 0,

(A.6)

P-a.s., since no jump of Qi can move the state into −i’s forbidden region,
see (3.5). Thus, it is sufficient that V is class C2,1,1 on {x ≤ X̄−i(q−i, qi)} to
apply Itō’s lemma on that region. Equation (A.4) remains valid for arbitrary
Qi ∈ A (qi0) after the initial jumps, where X0 ≤ X̄−i(Q−i0 , Q

i
0) follows for all

dQi
0.

The second given condition implies that Vqi ≤ 1 on R3
+, since in the region

{X̄−i(q−i, qi) < x ≤ X̄ i(qi, q−i)} it is evaluated at the lower boundary, see
(A.2).

The third condition similarly implies Vq−i ≤ 0 on {x ≥ X̄−i(q−i, qi)} (the
only region where dQ−i can be strictly positive), since on {x ≥ X̄ i(qi, q−i)},
Vq−i it is evaluated at the boundary, see (A.1).

The last condition implies −rV + Π + LxV ≤ 0 on {x ≤ X̄−i(q−i, qi)}, to
which the state is constrained after initial jumps.

Together, the conditions imply that the integrals and sum on the right hand
side of (A.4) are nonnegative. Letting again T go to ∞, we obtain

V (x0, q
i
0, q
−i
0 )− J(Qi, Q−i) ≥ 0. (A.7)

A similar remark regarding initial states inside the forbidden region applies
and we conclude that there is no feasible capital stock process for player i
with a payoff dominating V .
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Now suppose the first necessary condition is violated, i.e. there exists a state
such that x < X̄ i(qi, q−i), where the strategy prescribes no investment, but
where Vqi > 1. Then, by continuity of the derivative, there exists ε > 0
such that Vqi(x, q, q

−i) > 1 for all q ∈ [qi, qi + ε]. Then, the payoff from an
ε-investment, followed by pursuing the given reflection strategy, is V (x, qi +
ε, q−i)− ε > V (x, qi, q−i).

Similarly, if the second necessary condition is violated, there exists a state
x ≤ X̄−i(q−i, qi) where −rV + Π + LxV > 0, which can only happen where
X̄−i(q−i, qi) < X̄ i(qi, q−i). Since V there is twice continuously differentiable
in x, there exists ε > 0 such that −rV + Π + LxV > 0 for all x′ ∈ [x− ε, x].
Then, for all initial states (x′, qi, q−i), the capital process (qi ∨ 1{t≥τε}Q

i),
where τε = inf{t ≥ 0|Xt 6∈ (x − ε, x)} yields a higher payoff then Qi by the
Itō-formula, since dQ−i = 0 before τε.

Proof of Lemma 4.1

We want to prove that

lim
T→∞

E
[
e−rTV (XT , Q

i
T , q

−i)
]

= 0

for arbitrary Qi ∈ A (0) with finite cost.
The value function candidate is given by

V (x, qi, q−i) =

{
β
β−1

qi xP (qi+q−i)
p∗

+B(qi, q−i)xβ if qi ≥ φi(x, q−i)

V (x, φi, q−i)− φi + qi else.

We hide the arguments of φi in the following.
First, we derive joint bounds for all terms but Bxβ. Since the reflection

price is not less than the Bertrand price,

xP (φi + q−i) ≥ p∗

⇒ β

β − 1
φi
xP (φi + q−i)

p∗
− φi ≥ 0.

For an upper bound, note that the price term is in both cases bounded by a
constant:

xP (qi ∨ φi + q−i)

p∗
≤ p−i

p∗
. (A.8)

Thus, we can estimate both cases of V simultaneously by

V (x, qi, q−i) ∈
(
0,

β

β − 1

p−i

p∗
(
qi ∨ φi

))
+B(qi ∨ φi, q−i)xβ (A.9)
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The remaining term can also be estimated by using the price bound (A.8).
In the present case:∣∣Bp−i(qi ∨ φi, q−i)xβ

∣∣ ≤ α

β − α

∣∣∣∣(qi ∨ φi)(p−i(α− 1)

(r − µ)α
− 1

)
+ q−i

(
p−i

p∗
− 1

)∣∣∣∣
Thus, V is bounded by a linear function of qi ∨ φi.

Since φi never pushes the price below the Bertrand price, the Bertrand
quantity (particularly neglecting competitive output) is an upper bound for
it:

xP (φi + q−i) ≥ p∗ ⇒ φi ≤
( x
p∗

)α
− q−i ≤

( x
p∗

)α
.

This proves the first claim, since limT→∞E
[
e−rTXα

T

]
= 0 for α < β and

limT→∞E
[
e−rTQi

T

]
= 0 by hypothesis.

For the second claim, note that the capital process resulting from the
Bertrand reflection strategy X̄ i = p∗/P (qi + q−i) is Qi

t = qi0 ∨ (X∗t /p
∗)α− q−i0

with X∗t , sup0≤s≤tXs. Consequently, the investment cost is bounded if the
following holds

E

[∫ ∞
0

e−rt(X∗t )α dt

]
=

β

β − α
∈ R+ ⇔ α < β, (A.10)

cf. Riedel and Su (2011); the left hand side equals

E
[
(X∗τ(r))

α
]

=
ΨαY (r)

ΨαY (r)− 1
,

where τ(r) is an independent, exponentially distributed time, and ΨαY (r) is
the Laplace exponent of the process αY at r. In our case, Xα

t = xα0 e
αYt , i.e.

Yt = (µ− 1
2
σ2)t+ σBt ⇒ ΨαY (r) = β

α
.

Lemma A.1

Lemma A.1. Let (qi, q−i) ∈ R2
+ and X̄−i ≥ p∗/P (qi + q−i) satisfying (3.5)

be given. Suppose Qi ∈ A (qi) and Q−i = q−i ∨
(
sup0≤s≤t φ

−i(Xs, Q
i
s)
)
t≥0
∈

A (q−i).
Define the cumulative Bertrand quantity

QB , qi ∨
(

sup
0≤s≤t

(
Xs/p

∗)α − q−i)
t≥0
,

as well as the capped capital process

Q̂i , Qi ∧QB
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and the resulting

Q̂−i , q−i ∨
(

sup
0≤s≤t

φ−i(Xs, Q̂
i
s)
)
t≥0
.

Then,
J(Qi, Q−i)− J(Q̂i, Q̂−i) ≤ 0.

Proof. Define the stopping times

τB , inf{t ≥ 0|Qi
t > QB

t } and τ̂B , inf{t ≥ τB|QB
t ≥ Qi

t}

and note that Q−it = Q̂−it = Q−i
τB

for t ∈ [τB, τ̂B].

This allows to use Fubini’s theorem as in Steg (2012) to obtain

E
[∫ τ̂B

τB
e−rtΠ(Xt, Q

i
t, Q

−i
t ) dt−

∫ τ̂B

τB
e−rt dQi

t

]
−E
[∫ τ̂B

τB
e−rtΠ(Xt, Q

B
t , Q̂

−i
t ) dt−

∫ τ̂B

τB
e−rt dQB

t

]
=

∫ ∞
0

E
[
1{Qi

τB
≤l≤Qi

τ̂B
}

∫ τQ
B

(l)

τQi (l)

e−rt
(
Πqi(Xt, l, Q

−i
τB

)− r
)
dt
]
dl,

where τQ
i
(l) , inf{t ≥ 0|Qi

t ≥ l} and τQ
B

(l) analogously.

Now note that in the random interval
[
τQ

i
(l), τQ

B
(l)
]
,

Πqi(Xt, l, Q
−i
τB

) ≤ XtP (l +Q−i
τB

) ≤ p∗Xt,

so that for any l, stopping at τQ
i
(l) immediately is optimal for maximizing

the expectation with respect to stopping times τ ≥ τQ
i
(l). Consequently, for

any l, the expectation is nonpositive and this implies the same for the payoff
difference over [τB, τ̂B].

Proof of Proposition 6.1

Since X̄1 = X̄2, it is easy to see that Qi, Q−i solve Problem 3.1 for initial
state (x0, q

1
0, q

2
0). It remains to show that V c satisfies the hypothesis and

sufficient conditions of Theorem 3.2.
Note that Bc in (6.9) is well defined, since for fixed q−i, Bc

qi goes to zero

at speed (qi)−
β
α when qi gets large. One can indeed show by repeating the
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proof of Lemma 4.1 that V c also satisfies the boundedness condition, just
using different bounds for Bc and the reflection price:

xP (qi ∨ φc(x, q−i) + q−i)

p∗
≤ 2α

2α− 1

and

− β

β − 1

(P (qi + q−i)

p∗

)β
≤ Bc

qi ≤
(P (qi + q−i)

p∗

)β
⇒
∣∣∣∣Bc(qi ∨ φc, q−i)xβ

∣∣∣∣ ≤ α

β − α
β

β − 1

(
qi ∨ φc + q−i

)( 2α

2α− 1

)β
.

Note finally that the process Q−i, which results from the Markovian strategy
φc given arbitrary Qi ∈ A (0), is dominated by the Bertrand quantity and
thus has finite investment cost.

All sufficient conditions are actually satisfied by construction, except for
the two sufficient conditions relating to the partial derivatives of V c. The
easier one, V c

qi ≤ 1 is equivalent to (4.14) as we have shown. Suppose wlog

q−i ≥ qi. Then,
p∗ + c(q−i)−1 ≤ p̄(qi, q−i)

is satisfied for all q−i ≥ qi iff qi ≥ c2α−1
p∗

, the restriction we already encoun-

tered. Note that p̄(qi, q−i) ≤ p̄(q−i, qi).

The other sufficient condition is Vq−i(X̄
c, qi, q−i) ≤ 0. It is equivalent to

Bc
q−i ≤ Bt

q−i , cf. (6.3) using X̄c. For the player with larger capital stock, it

holds with equality by construction. Still supposing q−i ≥ qi, we can thus
also write for player i

Bc
q−i(q

i, q−i) = Bt
q−i(q

−i, q−i)−
∫ q−i

qi
Bc
qiq−i(q, q

−i) dq,

and compare to

Bt
q−i(q

i, q−i) = Bt
q−i(q

−i, q−i)−
∫ q−i

qi
Bt
q−iqi(q, q

−i) dq.

For concreteness,

Bt
q−i(q

i, q−i) = 1
β−1

(p∗)−1qi β
α

(
qi + q−i

)− β
α
−1(

p∗ + c(q−i)−1
)1−β

and

Bc
qi(q

i, q−i) = 1
β−1

(p∗)−1
(
qi + q−i

)− β
α
−1(

p∗ + c(q−i)−1
)−β·

·
(
p∗(β − 1)(qi + q−i)− β

(
α−1
α
qi + q−i

)(
p∗ + c(q−i)−1

))
.
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Then, a lengthy calculation yields that

Bc
qiq−i ≥ Bt

q−iqi

⇔ q−i ≥ c
α− 1

p∗
.

This is a weaker restriction than already imposed and thus Bc
q−i ≤ Bt

q−i for

all q−i ≥ qi ≥ c2α−1
p∗

. Consequently, Vq−i(X̄
c, qi, q−i) ≤ 0.

Proof of Theorem 6.2

Introduce the symmetric capital levels which are just on the investment
boundary by

Qs(x) , sup{q ∈ R+|x ≥ X̄c(q, q)} ∨ 0, (A.11)

which is well defined for x ∈ R+ because

∂qX̄
c(q, q) = 2

1
α q

1
α
−1
(

1
α
p∗ − α−1

α
cq−1

)
(A.12)

is strictly positive for all q > cα−1
p∗

.
Qs will generate the capital processes where the firms grow jointly in

equilibrium. We have to show that this is not to the disadvantage of any
firm.

Begin with an initial state in the forbidden region, i.e. x0 > X̄c(qi, q−i),
which requires a jump.

On {x > X̄c(qi, q−i)}, player i jumps when being the leader and by our
definition,

V c(x, qi, q−i) = V c(x, φc(x, q−i), q−i)− φc(x, q−i) + qi.

Consequently, in this region, V c
qi = 1 and

V c
q−i(x, q

i, q−i) = V c
q−i(x, φ

c(x, q−i), q−i)

= 0 if φc(x, q−i) ≥ q−i,
(A.13)

where the latter holds by construction, cf. (6.2).
Now we dictate a different investment for player i in two parts of the

forbidden region.
If, on the one hand, {X̄c(qi, q−i) < x ≤ X̄c(qi, qi)}, this is equivalent to

Qs(x) ≤ qi < φc(x, q−i).
The monotonicity of X̄c then implies qi ≥ φc(x, qi). Further, by symmetry

of X̄c, we always have
qi = φc(x, φc(x, qi)).
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So, for all q ∈ [q−i, φc(x, qi)], (A.13) holds, including the second line. It
follows

V c(x, qi, q−i) = V c(x, qi, φc(x, qi)),

i.e. player i is indifferent if we let −i jump to bring the state onto the bound-
ary of the forbidden region.

If, on the other hand, {x ≥ X̄c(qi, qi) ∨ X̄c(q−i, q−i)}, this is equivalent
to qi ∨ q−i ≤ Qs(x).

This time, the monotonicity of X̄c implies that for all q−i ≤ Qs(x),
φc(x, q−i) ≥ q−i. We apply the second line of (A.13) once more to obtain

V c(x, qi, q−i) = V c(x, qi, Qs(x)) = V c(x,Qs(x), Qs(x))−Qs(x) + qi

in this region. Thus, player i is indifferent if we allow both to jump to Qs(x).

Now consider reflection investment at the boundary. Then, by definition,
V c
qi(X̄

c, qi, q−i) = 1. We also constructed X̄c such that a player is indiffer-
ent to invest at the boundary if the opponent does not have strictly more
capital installed, i.e. if qi ≥ q−i, V c

q−i(X̄
c, qi, q−i) = 0. Consequently, we

can choose capital processes such that only the smaller firm invests, or both
invest simultaneously.

Such processes are indeed feasible.
Select Qc,i ∈ A (qi0) that satisfies for all t ∈ [0,∞) P-a.s.,

Qc,i
t = qi0 ∨

(
1{qi0∨ sup0≤s≤t φ

c(Xs,q
−i
0 )<q−i0 } sup

0≤s≤t
φc(Xs, q

−i
0 )

+1{qi0∨ sup0≤s≤t φ
c(Xs,q

−i
0 )≥ q−i0 } sup

0≤s≤t
Qs(Xs)

)
.

The larger firm starts tracking Qs(Xt) from the beginning and the smaller
firm, i.e. with qi0 < q−i0 , switches when

φc(Xs, q
−i
0 ) ≥ q−i0 ⇔ Xs ≥ X̄c(q−i0 , q−i0 )

⇔ Qs(Xs) ≥ q−i0 .

This also implies that the processes solve (2.6):

Qc,i
t = qi0 ∨ sup

0≤s≤t
φc(Xs, Q

c,−i
s ).

Now we can perform the estimation in the proof of Theorem 3.2 with
equality holding, to find that

V c(x0, q
i
0, q
−i
0 ) = J(Qc,i, Qc,−i) = J(Qi, Q−i).
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