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Abstract

We find new equilibria of minimum-revenue core-selecting (MRCS) auctions that, in

contrast to previously identified equilibria, involve overbidding – bidding more than one’s

true value for some packages of goods. With full information, every MRCS auction in

every possible setting has equilibria with overbidding and these equilibria have different

properties than the previously known equilibria with bid shading. Namely, they can lead

to strictly higher revenues for the seller and larger price differences among bidders. Pre-

vious studies of MRCS games with incomplete information assumed restricted strategy

spaces that prevented overbidding. In this paper, we allow bidders access to their complete

strategy sets and show that, in some settings, overbidding occurs in all Bayesian equilibria

in undominated strategies. In a simple setting with independent private values, equilib-

rium strategies of a particular set of MRCS auctions employ a mixture of bid shading and

overbidding. These new equilibria improve expected efficiency relative to equilibria with

restricted strategy spaces and lead to higher expected revenues than those from the Vick-

rey package auction. A second incomplete-information setting demonstrates that equilibria

with overbidding can be in some sense unique. In this setting, every Bayesian equilibrium

in undominated strategies of every MRCS auction has at least one bidder who overbids

and there is no bid shading on winning packages. Overbidding eliminates the threshold

problem, leading to an efficient assignment and payoffs that are in the core with respect to

the true values.

This draft: January 16, 2013
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1. Introduction

Core-selecting auctions have been used or proposed recently in a variety of settings,

from radio spectrum in the UK to airport landing slots in New York City. Part of the

appeal of these auctions is that, with respect to reported values (i.e., bids), they implement

efficient assignments while assuring competitive revenues – no group of bidders would want

to offer the seller a higher total amount. This corrects one of the weaknesses of the Vickrey

package auction (or VCG mechanism), which may result in much lower revenue than that

of core-selecting auctions, given the same set of bids.1 The most common core-selecting

auctions, both studied and implemented, are minimum-revenue core-selecting (MRCS)

auctions. They select an assignment and payments that give the seller the lowest revenue

within the core of the reported values.2 These MRCS auctions implement the VCG outcome

whenever it is in the core and minimize total incentives for bidders to misreport their values

within the class of core-selecting auctions.3 However, these auctions are not strategy proof

and so we should not expect truthful bidding.

Not much is known about the equilibria of core-selecting auctions, especially with in-

complete information, and they exhibit some peculiar outcomes in practice. The recent

Swiss spectrum auction for new mobile frequencies raised over $1 billion in revenues from

three winning telecommunications companies. However, the prices paid by the bidders

varied significantly. Sunrise Communications paid more than three times as much as Or-

ange for a similar amount of spectrum (approximately $528 million versus $169 million).

Should we assume the difference in prices reflects an underlying difference in values? Or

could strategic bidding explain these high revenues and the large difference in prices paid

by winning bidders?

This paper finds new equilibria with overbidding – bidding more than one’s true value

1See Ausubel and Milgrom (2006).
2In general, many payment rules give the seller the same revenue (with bidders paying different amounts

for the same items) and thus many possible rules fit into this category.
3See Day and Milgrom (2008) and Day and Raghavan (2007).
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– that can explain the price differences and high revenues in the Swiss auction with-

out any asymmetries in the underlying values. Previous literature in both complete- and

incomplete-information settings has found only equilibria in which bidders shade their bids

relative to their true values. Compared to these equilibria with bid shading, our newly

identified equilibria with overbidding produce higher revenues for the seller and larger

price differences among bidders. They can also lead to improved expected efficiency in

settings with incomplete information. We consider equilibria in undominated strategies

and prove that, in contrast to the VCG auction, overbidding is not a dominated strategy.

The incentives to overbid depend on the information structure, but we show that equilibria

with overbidding exist both with full information and with independent private values. We

also demonstrate that, in some examples, every undominated equilibrium of every MRCS

auction has the properties that some bidder overbids and no bidder engages in bid shading,

so the overbidding phenomenon cannot be ruled out by clever equilibrium selection.

In the identified equilibria, bidders overbid on packages that they do not want to win

in order to raise the prices paid by the other bidders and, thereby, lower their own prices.

This incentive arises from the payment rules employed by MRCS auctions. Any winning

bidder must pay at least the opportunity cost his presence places on the other bidders. By

overbidding on packages he does not win, a bidder increases the reported opportunity cost

caused by the other bidders’ presence and increases their prices. If the overbidding does

not change the minimum revenue within the reported core, then it does not affect the total

payment by bidders, so increasing his competitors’ prices means he pays a lower price. Of

course, depending on the information he has, a bidder risks overbidding by too much and

winning the package on which he overbid.

Our equilibrium analysis treats three information structures: full information, indepen-

dent private values, and a special setting with partially informed bidders. Our results from

each setting and their relation to the previous literature are as follows.

In a general full-information setting, Day and Milgrom (2008) and Day and Raghavan

(2007) showed that every MRCS auction has truncation equilibria in which all bids are
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(weakly) less than the true valuations. These equilibria lead to efficient assignments and

payoffs that are in the core with respect to the true values. We show that in addition to

these truncation equilibria, every MRCS auction has full-information equilibria in which

all bids are (weakly) higher than the true values, with at least one of these inequalities

being strict. These equilibria with overbidding also lead to an efficient assignment and

payoffs that are in the core with respect to the true values, but they can give the seller

much larger revenues and can lead to larger differences among bidder payoffs. In fact, the

seller can capture all of the gains from trade.

With incomplete information, overbidding creates the risk of winning an unwanted

package but it still occurs in equilibrium. We study the same simple setting on which the

previous literature has focused. This setting has three bidders and two items for sale. There

are two “local” bidders, each interested in only one of the two items, and a “global” bidder,

interested only in the bundle of both items. This information is common knowledge, but

the exact value each bidder has for their desired package is private knowledge. Due to the

dimensionality of even this simple setup, the literature has only considered strategies in

which bidders do not place bids for the items they do not value. So each local bidder bids

only for his desired item and the global bidder places a positive bid only for the package of

both items. With this restriction, Goeree and Lien (2009) and Ausubel and Baranov (2010)

find only equilibria in which bids are (at least weakly) below the true values and, because

of the lower bids, these equilibria may involve inefficient assignments and low revenues.4

However, we will show that local bidders prefer to place bids for unwanted items to drive

up the other local bidder’s price. To the best of our knowledge, this analysis is the first

that studies the full set of strategies available to bidders.

Even with the simplified setting described above, solving for equilibria when values are

private and bidders can place bids on all packages can be quite complex. We introduce a

4Sano (2011) also studied this setting, finding a necessary and sufficient condition for truthful reporting
to be a weakly dominant strategy and showing that this condition is rarely satisfied.
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class of payment rules (i.e., particular MRCS auctions) for which we can analytically solve

for all of the Bayesian equilibria in undominated strategies. Overbidding exists in all of

these equilibria. One of the local bidders places a bid for the bundle of both items that

exceeds the true valuation when the true valuation is high. This local bidder still shades

his bid for his desired item, but his bids imply a positive demand for his unwanted item

because, for all realized values, he bids strictly more for the bundle of both items than for his

individual desired item. Comparing expected revenues, we find that the unique equilibrium

outcome of the MRCS auctions has an advantage over both the truthful-bidding outcome

of the Vickrey auction and the equilibrium outcome of hypothetical MRCS auctions in

which bidders are restricted to bidding only on their desired packages.

Incentives for overbidding depend on the information structure, so we look at one

additional, extreme information structure to highlight how bid shading can be more costly

than overbidding. Namely, we suppose the local bidders know each others’ values but that

they do not know the global bidder’s value. We continue to assume the global bidder knows

only his own value. Under these informational assumptions, in every Bayesian equilibrium

in undominated strategies of every MRCS auction at least one bidder bids strictly above

his true value for at least one package and no winning bid from any bidder is below the

true value. The overbidding always shows an implied demand for an unwanted item (either

through a positive bid made directly on that item or through a bid for the package of both

items that is higher than the bid for the individual desired item). Overbidding in this

manner allows bidders to overcome the threshold problem – that the local bidders must

coordinate their bids to beat the threshold set by the global bidder – and so the assignment

is efficient. The equilibrium payoffs are in the core with respect to the true values and the

revenue (both expected and realized) is weakly higher than that of the Vickrey auction and

weakly higher than if bidders reported truthfully in the same MRCS auction. Moreover,

whenever the local bidders win the auctioned items, at least one of them pays his full

value. This can create a large asymmetry between the local bidders, with one paying the

maximum (his full value) and the other paying the minimum necessary to win his desired
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item.

In all of our equilibria with overbidding, the higher bids translate to higher revenues,

despite the fact that MRCS auctions can have revenues that are non-monotonic in bids.5

However, overbidding that occurs in our equilibria does increase revenues relative to previ-

ously discovered equilibria with bid shading and the higher the degree of overbidding, the

higher the revenues.6 In the special setting we consider with partially informed bidders,

this means that Bayesian equilibria in undominated strategies of any MRCS auction can

given the seller more revenue than the minimum revenue in the true core and that the

equilibrium outcome need not be bidder optimal (unlike the outcomes of the truncation

equilibria in the full information setting). In this special setting and also in the setting

with independent private values, equilibria in undominated strategies in which bidders only

shade their bids do not exist. This means the higher revenues resulting from overbidding

can be a unique outcome of MRCS auctions.

The paper proceeds as follows. Section 2 describes the model, core-selecting auctions,

and the class of payment rules we use to analyze the setting with independent values.

Section 3 explores overbidding with full information. Section 4.1 contains the Bayesian

analysis with independent private values. Section 4.2 provides the results for our third

information structure and Section 5 concludes.

2. Model

We consider a setting with one seller, whom we denoted 0, and a set of bidders N =

{1, . . . , n}. The seller owns a set of goods K = {1, . . . , k}, which may be purchased

5See Lamy (2010) and Beck and Ott (2009).
6Overbidding can increase the prices paid by competitors and such an increase can occur without a

corresponding decrease in one’s own price. If the auction is not an isolated interaction but part of an
ongoing relationship between bidders, they may prefer to punish their competitors in order to better their
own position in the future of the industry. This possibility is not unique to MRCS auctions. Our equilibria
with full and partial information are also equilibria of the Vickrey package auction (albeit in dominated
strategies).
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individually or in packages. He has zero value for all items and packages of items, so his

payoff is π0 =
∑n

i=1 pi where pi is bidder i’s payment. Bidder i’s payoff is πi = vi,xi − pi if

he wins a bundle xi of value vi,xi and pays pi and is zero if he does not win any package.

(In all core-selecting auctions, losing bidders make zero payments.) Each item can be sold

only once and a feasible assignment of packages to bidders is x = (x1, . . . , xn) ∈ X where

X = {(x1 . . . , xn)|xi ∈ 2Kand xi ∩ xj = ∅ ∀i 6= j}.

The core C(v) of a cooperative game consists of all feasible payoffs that are not blocked

by any coalition (i.e., each group receives at least as much as it could achieve on its own

so that it could not deviate and make all of its members better off). In our setting, since

the seller owns all items, any group that does not include the seller cannot generate any

value. Any coalition that contains the seller must receive at least what it could get from

trading among itself. Therefore, the core consists of all payoff vectors π = (π0, π1, . . . , πn)

that satisfy the following constraints (where the first is feasibility and the rest assure no

coalition can block the payoffs):

π0 +
∑

i∈N πi ≤ max
x∈X

∑
i∈N vi,xi

πi ≥ 0 ∀i ∈ N

π0 +
∑

i∈S πi ≥ max
x∈X

∑
i∈S vi,xi ∀S ⊆ N

A core-selecting auction is direct mechanism (inducing a non-cooperative game among

bidders) that maps bids on packages of goods to assignments and payments such that

payoffs are in the core with respect to the bids. For any package y ∈ 2K , denote by bi,y

bidder i’s bid for the bundle y and assume bi,∅ = 0. Let bi = (bi,y)y∈2K denote the vector

of bidder i’s bids and b = (b1, . . . , bn). To simplify notation, we will denote the (reported)

maximum value generated by the seller and a group of bidders S ⊆ N :

w(S) = max
x∈X

∑
i∈S bi,xi
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and w(∅) ≡ 0. A MRCS auction selects an assignment and payments that minimize the

seller’s revenue while ensuring that payoffs are in the core C(b) with respect to bids b. The

auction mechanism computes the vector of payoffs πb = (πb0, π
b
1, . . . , π

b
n) as if the bids were

the true values, so πbi = bi,y−pi if i wins package y and pays price pi and πb0 = π0 =
∑

i∈N pi.

Therefore, any MRCS auction chooses payoffs that solve:

min π0

s.t. π0 +
∑

i∈N πbi ≤ w(N)

πbi ≥ 0 ∀i ∈ N

π0 +
∑

i∈S π
b
i ≥ w(S) ∀S ⊆ N

Additionally, we assume that a bidder’s payment pi(b) must be continuous in bi,K for all

bi,K ≤ maxy 6=K bi,y.7

To translate these restrictions on the payoffs into restrictions on the assignment and

payments, notice that the first and last inequalities necessitate that the assignment x∗(b) =

(x∗1(b), . . . , x
∗
n(b)) be optimal with respect to the bids: x∗(b) ∈ arg maxx∈X

∑
i∈N bi,xi . This

optimal assignment may not be unique, in which case any such assignment can be chosen.

If this optimal assignment is value-maximizing (i.e., x∗(b) = x∗(v)) we call it efficient

because in our game such an assignment comes with efficient payoffs. We can rewrite the

7This guarantees the existence of equilibria. Low bids for K (those that are below bids for smaller
packages y 6= K), do not affect the assignment nor any of the core constraints, so a MRCS auction could
use this extra degree of freedom to determine prices in such a way that a best response does not exist.
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linear program in terms of payments instead of payoffs:

min
(p1,...,pn)

∑
i∈N pi (1)

s.t. bi,x∗
i (b)
≥ pi ∀i ∈ N∑

i∈N pi ≥ 0∑
j /∈S pj ≥ w(S)−

∑
i∈S bi,x∗

i (b)
∀S ⊂ N

Note that losing bidders pay zero: x∗i (b) = ∅ =⇒ pi = 0.

The Vickrey auction results in the same assignment, that which is optimal with respect

to the reported values. However, payments in any MRCS auction are bounded below by

those in the Vickrey auction with the same reported values (Vickrey payments): pVi (b) =

w(N \ {i}) −
∑

j∈N\{i} bj,x∗
j (b)

for all i ∈ N . We say that bidder i’s Vickrey constraint

pi ≥ pVi (b) is binding if his payment in a MRCS auction equals pVi (b). Notice that bidder

i’s bids influence his Vickrey constraint through their impact on the optimal assignment.

The minimum revenue problem in (1) always has a continuum of solutions when the

Vickrey payoffs are not in the core, so an additional payment rule is necessary to select

an outcome of the auction. Among these rules are the Vickrey-nearest rule (Cramton and

Day, 2008), reference rules (Erdil and Klemperer, 2010), and the nearest bids rule (Ausubel

and Baranov, 2010). The complexity of solving for equilibria when bidders can place bids

on all packages has previously prevented analysis of equilibria in incomplete information

environments. In Section 4.1, we will use a favored-bidder payment rule that allows us to

explicitly derive equilibria and isolate bidding incentives.

Definition 1 (Favored-Bidder Payment Rule). A payment rule is a favored-bidder

payment rule if there exists a bidder i that pays his Vickrey payment pVi for every real-

ization of bids.8

8Note that Day and Milgrom (2010, forthcoming) use this term differently, calling a bidder who wins an
item the in case of a tie “favored.”
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It is always possible to favor a particular bidder while solving the minimum core revenue

problem in a setting with two goods.9 In general, this is not a complete specification of

a payment rule because it does not pin down the payments of the other bidders. We will

show that all payment rules that favor our chosen bidder will lead to the same equilibrium

outcome, so our results apply to all such rules. Note that a favored-bidder payment rule

is asymmetric and non-anonymous. It must favor the same bidder for every realization

of bids.10 We call this bidder favored because the Vickrey payment is the lowest possible

payment a bidder can obtain in any MRCS auction for a given b.

Due to the possible multiplicity of optimal assignments, we must also define a tie-

breaking rule for our MRCS auctions. Equilibria in MRCS auctions will in general depend

on the tie-breaking rule because strategic bidding can provoke ties (even with independent

private values). Moreover, the correct tie-breaking rule may be necessary for best responses

to exist in continuous games and hence, necessary to sustain any equilibrium. We assume

a tie-breaking rule that randomizes among the optimal assignments with the maximal

number of winning bidders. The equilibria we discuss throughout the paper will rely on

our choice of tie-breaking rule and we will assume throughout the rest of the paper that

this tie-breaking rule holds (even when we do not explicitly reference it).

In Section 4, we will look at incomplete information in a simple setting with three

bidders, 1, 2, and 3, and one seller. The seller owns two goods, labeled A and B, which

may be purchased individually or as a bundle.

Bidders 1 and 2 are “local” bidders, interested in only one item. Bidder 1 wants good

A, has no value for good B, and values the bundle AB the same as the good A. Bidder 2

wants good B, has no value for good A, and values the bundle AB the same as the good

B. Bidder 3 is a “global” bidder, interested only in the bundle AB, and has no value for

9Even with more than two goods, it is always possible to favor a particular bidder in a core-selecting
auction, but the revenue might not be minimal.

10Alternatively, we would get the same results from a bidder-symmetric and anonymous favored-bundle
rule: the bidder who wins bundle B pays his Vickrey payment. Bidder 2, who wants to win item B in our
simple setting, would then also have a weakly dominant strategy to tell the truth.
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either item alone. Table 1 illustrates these preferences. The seller has zero value for all

packages and thus we ignore him in the table.

Table 1: Bidder Values

A B AB

Bidder 1 v1 0 v1
Bidder 2 0 v2 v2
Bidder 3 0 0 v3

v1,v2 ∼ U(0, 1) v3 ∼ U(0, 2)

The structure of their preferences is common knowledge among the bidders. The values

are independently drawn from uniform distributions: the distributions of v1 and v2 have

support [0,1] and that of v3 has support [0,2]. We consider two informational settings. In

Section 4.1, all three bidders’ values are private information whereas in Section 4.2, both

bidders 1 and 2 are informed about v1 and v2.
11 Our results would be the same if the values

v1 and v2 were private information but perfectly correlated, so that each local bidder could

deduce the other’s value upon learning his own.

In our formulation, the results of the Vickrey auction are in the core C(v) if and only

if the global bidder wins both items (i.e., if v3 > v1 + v2), which occurs with probability

1/2.12 So the setting is balanced in the sense that the cases in which the Vickrey auction

generates competitive revenue (bidder 3 wins and revenues equal the sum of bidder 1 and

2’s bids) and where it performs poorly (if bidders 1 and 2 win then revenue is less than

bidder 3’s bid) occur with equal probability. Furthermore, this is the setting analyzed by

Goeree and Lien (2009) and Ausubel and Baranov (2010), so we can compare our results

11In Section 4.2, we actually assume v1 and v2 are drawn from uniform distributions on (0,1). The solution
if they are drawn from uniform distributions on [0,1] is the same except that additional equilibrium bids
arise when v1 = v2 = 1 and when one (and only one) of the two bidders has a zero valuation. In the first
case, the local bidders know their combined value must be at least as large as that of the global bidder.
This leads to equilibria in the which they bid far above their true values. However, these extra equilibria
lead to exactly the same outcomes as we discuss in Section 4.2. In the second case, when one local bidder
has a zero valuation and the other doesn’t, there are extra equilibria because a multiplicity of bids made by
the non-zero bidder all lead to the same outcome (again, the same outcome as we discuss in Section 4.2).

12In Appendix A.5, we vary this probability to show how our results change in a less balanced setting.
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to theirs.

Thus, the game we analyze is as follows. First, bidders simultaneously submit non-

negative bids for all packages of items in K. This differs from Goeree and Lien (2009)

and Ausubel and Baranov (2010) who, in the setting with three bidders, allow only one-

dimensional bids (i.e., they imposed the following restrictions: b1 = b1A, b2 = b2B, b3 =

b3AB).13 After the bidders submit their bids, a MRCS auction is run with the tie-breaking

rule described above.

3. Full Information

We begin by considering full-information equilibria of MRCS auctions. In this section,

we consider a general setting with any number of bidders, any number of goods, and any

possible valuations for those goods. For every MRCS auction, there exist equilibria with

overbidding. To prove this, we will make use of the following lemma.

Lemma 1. Given other players’ bids, the highest possible payoff for bidder i in the core

C(b) is vi,x∗
i (b)
− pVi (b). This expression is maximized when bidder i bids truthfully.14

Proof: Ausubel and Milgrom (2002) prove this fact when the other players bid their true

values (Theorem 5). The same argument works for any arbitrary profile of other players’

bids: vi ∈ arg maxbi vi,x∗
i (bi,b−i)

−pVi (bi, b−i) by the well-known fact that bidder i maximizes

his Vickrey payoff vi,x∗
i (bi,b−i)

− pVi (bi, b−i) by bidding truthfully. �

Thus, a bidder who receives his Vickrey payoff given the others’ bids has no profitable

deviation. Now we are ready to state the theorem about the existence of equilibria with

overbidding.

13Technically, to make this assumption comparable to our setting in which package auctions take bids of
full dimensionality as input, you must make some assumption about the bids for other packages (e.g., that
they are all zero).

14This means that a truthful bid maximizes the highest available payoff in the core for any particular
bidder, but in general this will not be the payoff received in a MRCS auction because the core constraints
may prevent all bidders from simultaneously receiving their highest payoffs.
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Theorem 1. Take any set of bidders N = {1, . . . , n}, any set of goods K, and any values

for those goods vi : 2K → R+ for all i ∈ N . Then, for any m ∈ [1, n], the following bids

form a Nash equilibrium of all MRCS auctions.

bi,y = vi,y ∀i ∈ N, ∀y ∈ 2K \ {K}

bi,K = max
x∈X

∑
i∈N vi,xi ∀i ≤ m

bi,K = vi,K ∀i > m

The equilibrium payoffs are in the core C(v) with respect to the true values and the revenues

are at least as large as those from the Vickrey auction with truthful bidding.

Proof: By Lemma 1, given any b−i, the highest possible payoff for bidder i in any core-

selecting auction is vi,x∗
i (vi,b−i)

− pVi (vi, b−i). We will show that all bidders are necessarily

achieving this payoff in any MRCS auction. Given the equilibrium bids, any bidder i > m

has a Vickrey payment of pVi (b) = pVi (vi, b−i) = w(N \ {i}) −
∑

j∈N\{i} bj,x∗
j (vi,b−i)

=

vi,x∗
i (vi,b−i)

. Thus, given the other players’ bids, his maximum payoff in any core-selecting

auction is 0. But a core-selecting auction must choose an individually rational payoff given

the reported bids. So a bidder i > m can never pay more than vi,x∗
i (vi,b−i)

. Thus he must

pay exactly vi,x∗
i (vi,b−i)

and receive his highest potential payoff of zero.

If m > 1, then all bidders i ≤ m also have a Vickrey payoff of zero by the same

argument. They cannot receive a payoff less than zero, so they must receive their Vickrey

payoff and have no profitable deviations.

If m = 1 and given that every other bidder receives an imputed payoff of zero, the only

relevant core constraint is π1 ≤ w(N)− w(N \ {1}) = πV1 . Therefore, any MRCS auction

must, in order to minimize revenue, give bidder 1 exactly his Vickrey payoff given bids:

v1,x∗
1(b1,v−1) − pV1 (b1, v−1) = v1,x∗

1(v)
− pV1 (v) because bidder 1’s altered bid for the global

package does not change the optimal assignment or his Vickrey payment.
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The payoffs in these Nash equilibria are in the core with respect to the true values C(v).

If m > 1, every bidder has a payoff of zero and the seller receives the total surplus. This

satisfies all of the core constraints. If m = 1, we use the facts that x∗i (b) = x∗i (v) ≡ x∗i ,

π1 = πV1 , πi = 0, and pi = vi,x∗
i

for all i ∈ N \ {1} to see that π0 + π1 +
∑

i∈S πi =

(
∑

i∈N\{1} vi,x∗
i

+ pV1 (v)) + (v1,x∗
1
− pV1 (v)) + 0 = w(N) ≥ w(S ∪ {1}) for all S ⊆ N \ {1}.

Similarly, for all S ⊆ N \{1}, π0+
∑

i∈S πi =
∑

i∈N\{1} vi,x∗
i
+w(N \{1})−

∑
i∈N\{1} vi,x∗

i
=

w(N \ {1}) ≥ w(S).

Payoffs in the core C(v) always imply a revenue that is weakly higher than the revenue

from the Vickrey auction with truthful bidding. If the Vickrey payoffs are in the core, they

correspond to the minimum revenue point. �

This theorem is actually true of every bidder-optimal core-selecting auction, not only of

MRCS auctions. Furthermore, these are not the only equilibria with overbidding. Bidders

can overbid on losing packages other than K and bidders can also combine bid shading with

overbidding. In the equilibria in Theorem 1, any number of bidders can overbid. Thus,

we can have anything from a very asymmetric outcome in which a single bidder (bidder 1)

pays the minimum possible payment while the rest pay the maximum possible (their full

values for the packages they win) to a more symmetric outcome in which all bidders pay

their full value and the seller captures the entire gain from trade.

The intuition for these equilibria with overbidding is as follows. A bidder has two ways

to decrease the price he pays. One is to reduce his bids so that his individual rationality

constraint holds – he cannot be forced to pay more than his winning bid. This corresponds

to the truncation equilibria discovered by Day and Milgrom (2008). The other way to

decrease his price is to increase the price paid by the other bidders. Any minimum-revenue

auction fixes the sum of the payments made by the bidders, but does not specify the

proportion paid by each individual. Increasing the price paid by the other bidders can

thereby decrease a bidder’s own price. Overbidding on the right packages, namely those

which imply a demand for the items won by the other bidders, does exactly that. By

overbidding on the package containing all of the items, a bidder creates an implied demand
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for the packages won by the other bidders, which in turn forces those bidders to pay higher

prices. In the equilibria in Theorem 1, the truthful bidders must pay their full value for

their winning packages because every bidder i ≤ m reports that he would be willing to pay

that much and they must outbid him to win.

These equilibria with overbidding lead to some of the same conclusions as the truncation

equilibria, namely that the assignment maximizes the true total value and the payoffs are in

the core with respect to the true values. However, they can differ markedly in the revenues

generated for the seller and the asymmetry of bidder outcomes. Truncation equilibria

lead to outcomes in the bidder optimal part of the core C(v) whereas our equilibria with

overbidding can give the seller the entire gains from trade. Our equilibria can also result

in one bidder receiving his Vickrey payoff while all of the others receive payoffs of zero.

Whenever these payoffs are not in the bidder optimal part of the core, the difference in

prices paid between bidder 1 and the other bidders is strictly larger than in any truncation

equilibrium.

4. Incomplete Information

We next explore Bayesian equilibria in two settings with incomplete information, one

with completely private values and the other in which the local bidders know each other’s

values. We will show that the incentives for overbidding do not disappear when there is

uncertainty about the other bidders’ values. In fact, the right kind of uncertainty can help

to eliminate equilibria in which bidders shade their bids, as we will see in Section 4.2.

We begin by looking at the most standard incomplete information setting, that in which

bidders have independent private values.

4.1. Independent Private Values

A Bayesian equilibrium is a profile of strategies bi(vi) = (biA(vi), biB(vi), biAB(vi)) for

all i and vi such that each bidder is maximizing his expected payoff at every possible

value vi, given the other bidders’ strategies. In this section, we study MRCS auctions with

16



favored-bidder-2 payment rules. These rules simplify the analysis of Bayesian equilibria

because they make truth-telling a weakly dominant strategy for bidder 2.

Theorem 2. A favored bidder in a core-selecting auction with private values has a weakly

dominant strategy to bid truthfully.15

Proof: A favored bidder always pays his Vickrey payment and wins the total-value max-

imizing package (given the bids), so he faces exactly the same payoff as a function of his

bid as he would in the Vickrey auction. The result follows directly from this fact. �

Bidder 2 is favored in our MRCS auctions, so in any equilibrium in undominated

strategies he bids truthfully: b∗2(v2) = (0, v2, v2). Whenever he wins B, he pays p2 =

max{b1A(v1) + b3B(v3), b1B(v1) + b3A(v3), b1AB(v1), b3AB(v3)} − b1,x∗
1(b)

(v1)− b3,x∗
3(b)

(v3).

Global bidders, who value only the bundle of all items (the global package), will also

bid truthfully, but for a different reason.

Theorem 3. A global bidder in a MRCS auction with private values has a weakly dominant

strategy to bid truthfully.

Proof: By definition, a global bidder g has a positive value only for the global package.

He doesn’t want to win any smaller bundle because his payment is weakly positive in any

core-selecting auction. Therefore, the only reason to bid a positive amount on a smaller

bundle is to decrease his payment when he wins the global package. If he wins the global

package, all other bidders lose and pay nothing. Thus, the only relevant constraint on his

payment in (1) is pg ≥ w(N \ {g}) and is binding. But then his payment pg = w(N \ {g})

does not depend on his own bids, so he has no reason to bid a positive amount on any

smaller package. Therefore, he can only win the global package. His assignment and

payment are the same as in the Vickrey auction, so it is a weakly dominant strategy to tell

the truth. �

15Note that this is true for all core-selecting auctions with a favored bidder, not only for MRCS auctions.
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Thus, in any equilibrium in undominated strategies of our MRCS auctions, the global

bidder 3 also bids truthfully: b∗3(v3) = (0, 0, v3). Whenever he wins AB, he pays p3 =

max{b1A(v1)+ b2B(v2), b1B(v1)+ b2A(v2), b1AB(v1), b2AB(v2)}. Otherwise, he pays nothing.

We will denote bidder 1’s bids by bA(v1), bB(v1), and bAB(v1) in what follows. Table 2

summarizes the results so far.

Table 2: Equilibrium Bids

A B AB

b1(v1) bA(v1) bB(v1) bAB(v1)
b2(v2) 0 v2 v2
b3(v3) 0 0 v3

Given that bidders 2 and 3 report their values truthfully, bidder 1 strictly prefers bids

with bB(v1) < bAB(v1) for all v1 (see Appendix A.1). When bB(v1) < bAB(v1) for all v1,

bB(v1) does not affect any assignment or price. It remains to determine bA(v1) and bAB(v1).

We modify our tie-breaking rule slightly for this section only to ensure bidder 1 has a

best response to the other bidders reporting truthfully. In the case of a tie, we still favor

the assignment with the maximal number of bidders but, when that does not resolve the

tie, we next choose assignments in which bidder 1 wins package A. If this still does not

resolve the tie, it is broken randomly.16

With our tie-breaking rule, three possible assignments occur with positive probability

in the auction: (a) bidder 3 wins AB (if v3 > max{bAB(v1), bA(v1)+v2}), (b) bidder 1 wins

AB (if bAB(v1) > max{v3, bA(v1) + v2}), or (c) bidders 1 and 2 win A and B, respectively

(if bA(v1) + v2 ≥ max{bAB(v1), v3}). The corresponding MRCS optimization problems in

16Note that most ties are zero probability events. This tie-breaking rule prevents a discontinuity in bidder
1’s expected payoff function when he bids zero for A.
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these three cases are:

(a) min
p

p3

s.t. p1 = 0, p2 = 0, p3 ≥ max{bAB(v1), bA(v1) + v2}

(b) min
p

p1

s.t. p1 ≥ max{v2, v3}, p2 = 0, p3 = 0

(c) min
p

(p1 + p2)

s.t. p1 + p2 ≥ v3

p1 ≥ max{v2, v3} − v2

p2 = max{bA(v1), bAB(v1), v3} − bA(v1)

p3 = 0

If bidder 3 wins, he pays p3 = max{bAB(v1), bA(v1) + v2} and the other bidders pay

nothing. If bidder 1 wins AB, he pays p1 = max{v2, v3} and the other bidders pay

nothing. Whenever bidder 2 wins, he wins B and bidder 1 wins A. The payments are

p3 = 0, p2 = max{bA(v1), bAB(v1), v3} − bA(v1), and

p1 = max{v3−p2,max{v3−v2, 0}} = max{min{v3, v3− bAB(v1) + bA(v1), bA(v1)}, 0}. (2)

Note that bidder 1 can decrease his payment when he wins A by bidding low for A and

high for AB, as long as his bids still satisfy bA(v1) + v2 ≥ max{bAB(v1), v3}.
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The unique bidding functions for packages A and AB that maximize bidder 1’s expected

payoff (see Appendix A.1) are

b∗A(v1) =

 0 if 0 ≤ v1 ≤ 2− 2
√

6/3

z − (2−
√

1− 6z + 6v1)/3 if 2− 2
√

6/3 < v1 ≤ 1

b∗AB(v1) =

 v1/2 if 0 ≤ v1 ≤ 2− 2
√

6/3

z if 2− 2
√

6/3 < v1 ≤ 1

where z is the unique solution to

0 = 12v1 − 15z − 1 + (9z − 1− 3v1)
√

1− 6z + 6v1

z ≥ max
{

(1−
√

6v1 − 2)/3, v1 − 1/2
}

The bidding functions are also given explicitly in Appendix A.1.

Figure 1 illustrates the bidding functions b∗A(v1) and b∗AB(v1). We summarize the re-

sulting equilibria in the following theorem.
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bAB
* Hv1L

bA
* Hv1L

Figure 1: Equilibrium Bidding Functions b∗A(v1) and b∗AB(v1)

Theorem 4. Consider any favored-bidder-2 MRCS auction with three bidders who have
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values for two items as given in Table 1 and a tie-breaking rule that favors bidder 1 winning

A. The following are all of the Bayesian equilibria in pure strategies in which bidders 2

and 3 play undominated strategies:

• b∗1(v1) = (b∗A(v1), b
∗
B(v1), b

∗
AB(v1)) for any b∗B(v1) ∈ [0, b∗AB(v1))

• b∗2(v2) = (0, v2, v2)

• b∗3(v3) = (0, 0, v3)

Since bidder 1 has unique bidding functions for A and AB that maximize his expected

payoff, the only such equilibria in mixed strategies involve a randomized choice of b∗B(v1)

with maximum support [0, b∗AB(v1)).

Corollary 1. For every realization of values, there is a unique outcome (assignment and

payments) of Bayesian equilibria in undominated strategies.17

Proof: Consider the equilibria in Theorem 4. Bidders 2 and 3 have unique undominated

strategies. Given those strategies, all of bidder 1’s equilibrium strategies lead to the same

assignment and payments as b1(v1) = (b∗A(v1), 0, b
∗
AB(v1)). The strategies b∗1(v1) and mix-

tures thereof are his set of best response bids to b∗2(v2) and b∗3(v3). At least one strategy

in this set must be undominated. Namely, b∗1(v1) = (b∗A(v1), 0, b
∗
AB(v1)) is undominated.

First, it cannot be dominated by any bid (or mixture of bids) that is not a best response

to the truthful bidding by bidders 2 and 3. So it will be undominated as long as no bid

(or mixture of bids) b′1(v1) = (b∗A(v1), x, b
∗
AB(v1)) with x ∈ (0, b∗AB(v1))) dominates it.

17The outcomes are as follows:

• If b∗A(v1) + v2 ≥ max{b∗AB(v1), v3}, then bidder 1 wins A, bidder 2 wins B, p1 = max{min{v3 −
b∗AB(v1) + b∗A(v1), b∗A(v1)}, 0}, p2 = max{b∗AB(v1), v3}+ b∗A(v1) and p3 = 0.

• If b∗AB(v1) > max{b∗A(v1) + v2, v3}, then bidder 1 wins AB, p1 = max{v2, v3} and p2 = p3 = 0.

• If v3 > max{b∗A(v1) + v2, b
∗
AB(v1)}, then bidder 3 wins AB, p1 = p2 = 0, and p3 = v3 −

max{b∗AB(v1), b∗A(v1) + v2}.
• If v3 = b∗AB(v1) > b∗A(v1) + v2, then one of the two proceeding outcomes is chosen randomly.
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However, b∗1 cannot be dominated by b′1 because for every v1 and every x ∈ (0, b∗AB(v1))),

there are strategies for bidders 2 and 3 such that, for every realization of values v2 and v3,

bidder 1 wins B and pays at least p1 = ε > 0. This results in a negative expected payoff

while he would have received a payoff of zero if he had bid b∗1. An example of such bids is

b2(v2) = (β, 0, β + ε) and b3(v3) = (0, 0, 0), where β ≥ b∗1AB(v1) and 0 < ε < x. �

Corollary 2. Equilibrium bids may be above true values.

The bid b∗AB(v1) exceeds v1 when v1 > 2/3. To profit from lower prices when he wins A,

bidder 1 bids above his value for AB, thereby risking a negative payoff from winning AB

at a price p1 > v1.

The kinks in bidder 1’s bidding functions occur because of the binding nonnegativity

constraint on bids when v1 ≤ 2 − 2
3

√
6. He would prefer to bid less than zero for package

A. He is willing to bid zero because our tie-breaking rule ensures he will still win package

A when v2 ≥ v3. The two general characteristics of his bids are bA(v1) < v1 and bAB(v1) >

bA(v1). He bids below his true value for package A because it reduces his payment when

he wins that package. However, it also reduces his chance of winning package A. Bidding

bAB(v1) > bA(v1) mitigates this effect, giving him a second chance to get his desired item

as part of package AB. Bidding bAB(v1) > bA(v1) has another beneficial effect – it reduces

bidder 1’s payment when he wins package A. The separation between his bids for A and

AB could also be considered overbidding because it implies a demand for item B, which

raises the price for B and thereby lowers the price bidder 1 pays for A. This effect only

matters when bA(v1) > 0 because otherwise he pays nothing for A regardless of bAB(v1).

Bidding too much for AB also has a downside because packages AB and A provide the

same value but the payment for AB is higher with probability one.

Table 3 compares equilibrium revenues, payoffs, and efficiency (expected total value of

the items traded) for the Vickrey and favored-bidder-2 MRCS auctions. The values for the

MRCS auctions are approximated (weighted averages of 1001 equidistant values of v1).
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Table 3: Comparing Revenue, Payoffs, and Efficiency in the Vickrey and Favored-Bidder-2 MRCS Auctions

Vickrey MRCS MRCS/Vickrey

E[π0] 0.583 0.596] 102.2 %
E[π1] 0.208 0.154] 74.1 %
E[π2] 0.208 0.093] 44.5 %
E[π3] 0.292 0.418] 143.2 %

E
[∑3

i=0 πi
]

1.292 1.261] 97.6 %
Prob{π ∈ Core} 0.50 0.308] 61.6 %

] Approximated

Expected revenues in any favored-bidder-2 MRCS auction are higher than those in

the Vickrey auction. The revenue advantage of these MRCS auctions stems mainly from

the realizations where bidders 1 and 2 win packages A and B, respectively. The Vickrey

auction is usually better for the seller if bidder 3 wins because b∗A(v1) < v1.
18 However,

the probability of zero revenue in the Vickrey auction is 1/6 whereas it is approximately

zero in the MRCS auction. The maximum revenue in the Vickrey auction is 2 while that

in the MRCS auction is b∗A(1) + 1 = 1.66 (both are zero probability events).

Figure 2 displays the expected revenue in the Vickrey and favored-bidder-2 MRCS

auctions in equilibrium for different values of v1. The MRCS auctions outperform the

Vickrey auction in expectation for high values of v1 and vice versa for low v1. For higher

v1, the probability that bidder 3 wins decreases and the zero revenue outcomes of the

Vickrey auction, which occur when v1 ≥ v3 and v2 ≥ v3, become more likely.

The revenue ranking between the Vickrey and favored-bidder-2 MRCS auctions clearly

depends on the distributions of values.19 However, the key here is that the overbidding

created by allowing bidders to place bids on all packages increases the revenue relative to

the restricted setting.20

18This does not hold if b∗AB(v1) > v1 + v2.
19Ausubel and Baranov (2010) showed that varying the distributional assumptions changes the revenue

ranking in their setting with restricted bids. We show the same for our setting in Appendix A.5.
20See Appendix A.4.
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Figure 2: Expected Revenue in the Vickrey and Favored-Bidder-2 MRCS Auctions as a Function of v1

Both bidders 1 and 2 receive lower expected payoffs in our MRCS auction than in

the Vickrey auction, while bidder 3 gets a higher expected payoff. He profits from the

competition for low prices between bidders 1 and 2.

In equilibrium, bidder 2 has a lower expected payoff than bidder 1 even though the

payment rule favors bidder 2. If all bidders reported their values truthfully, the expected

payoffs of the seller and bidders 1, 2, and 3 would be 0.708, 0.083, 0.208, and 0.292,

respectively. Bidder 3 profits from the distortion in bidder 1’s bid both by winning with

higher probability and paying lower prices on average. The strategic bids increase bidder

1’s payoff by more than 60 % compared to his payoff from truthful bidding in the MRCS

auction.21 However, bidder 2 suffers. As a consequence of bidder 1’s strategic bids, his

expected payoff decreases by 45 %. Not surprisingly, the strategic bids also reduce the

efficiency of the allocation compared to that in the Vickrey auction.

The probability that the payoff vector from the Vickrey auction is in the core with

respect to the true values C(v) is higher than this probability for the favored-bidder-2

MRCS auction (0.5 and 0.308, respectively).22 The values for which the Vickrey payoffs

21Note that his maximum payoff in the MRCS auction is bounded above by his equilibrium payoff in the
Vickrey auction because bidders 2 and 3 bid truthfully.

22See Appendix A.2 for an analysis.
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are in C(v) are almost the opposite of those for which our MRCS payoffs are in C(v). The

Vickrey payoffs are in the core if and only if bidder 3 wins AB.23 The MRCS payoffs are

in the core if bidders 1 and 2 win their desired items and in a small subset of cases where

bidder 3 wins. The MRCS payoffs are never in the core when bidder 1 wins AB because

the assignment is not optimal. When bidder 3 wins AB, the assignment is not always

optimal and the price is often below v1 + v2. Thus, if the MRCS payoffs are not in C(v),

then the blocking coalition usually consists of the seller and bidders 1 and 2, even though

bidder 1’s low bid caused the outcome not to be in the core. Note the difference: if the

Vickrey payoffs are not in the core, the blocking coalition consists of the seller and bidder

3, who reported a higher value than the sum of the winners’ prices.

4.2. Partially Informed Bidders

So far we have only analyzed one set of MRCS auctions under incomplete information.

What happens in auctions with different payment rules? Incentives for overbidding may

depend on the information structure, so we now choose an extreme one to highlight how

shading bids can be costly compared to overbidding and to show that overbidding can not

only occur under all payment rules but also in every Bayesian equilibria in undominated

strategies for all of these payment rules.

Suppose bidders 1 and 2 know each other’s values (and their own values), but they do

not know bidder 3’s value. Bidder 3 knows only his own value. Then, for bidders 1 and 2,

shading bids is risky because the sum of their bids may not meet the unknown threshold

(v3) necessary to win their preferred items. Overbidding comes with no such risk. They

can always force each other to pay their full values without worrying about winning the

wrong package. The freedom to place arbitrary bids on all packages allows bidders 1 and

2 to overcome the threshold problem through overbidding.24

23See Goeree and Lien (2009, Lemma 1) and Appendix A.2.
24This is in sharp contrast to the results in Ausubel and Baranov (2010). They study a case in which the

local bidders have perfectly correlated values, so they essentially know each other’s values. However, for
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Theorem 5. Consider a setting with three bidders who have values for two items as given

in Table 1. For every MRCS auction that breaks ties by randomizing over optimal assign-

ments that maximize the number of bidders, there always exists at least one Bayesian equi-

librium in undominated strategies and every Bayesian equilibrium in undominated strategies

satisfies the following properties:

(1) every winning bid is truthful

(2) at least one bidder places a bid strictly above his true value

(3) no bidder places a bid strictly below his value for any package, unless that bid cannot

affect the assignment

(4) the assignment is efficient

(5) the revenue is at least as large as that from the Vickrey auction for every realization

of values

(6) the payoffs are in the core with respect to the true values C(v)

(7) the equilibrium is an ex-post equilibrium

The proof follows from a series of lemmas in Appendix B. First, we narrow down the

set of equilibria by applying Theorem 3 and restricting the global bidder to his dominant

strategy of bidding truthfully. We also prove that for either local bidder, it is weakly

dominated to bid zero on his desired item. Then we characterize the possible Bayesian

equilibria under these restrictions. The resulting strategy profiles are Bayesian equilibria

for every MRCS auction, but not necessarily in undominated strategies. Whether any

particular strategy is undominated depends on the exact MRCS auction rules, so the exact

set of Bayesian equilibria in undominated strategies will too. Therefore, we prove that,

for every MRCS auction, there exists at least one equilibrium in the following set that

is an equilibrium in undominated strategies. Moreover, all of the Bayesian equilibria in

many of the MRCS auctions they study, the equilibria with their restricted bids involve bid shading and
inefficient outcomes.

26



undominated strategies for every MRCS auction belongs to the following set:

b1(v1, v2) = (v1, b1B(v1, v2), b1AB(v1, v2))

b2(v1, v2) = (b2A(v1, v2), v2, b2AB(v1, v2))

b3(v3) = (0, 0, v3)

where

max{b1AB(v1, v2), b2AB(v1, v2)} = v1 + v2

b1B(v1, v2) + b2A(v1, v2) < v1 + v2.

In each of these equilibria, bids for desired packages are truthful and there is almost no bid

shading.25,26 At least one of the local bidders overbids for some package. He does this to

force the other bidder to pay his full value whenever he wins, regardless of the bid placed

by bidder 3. This means the local bidder doing the overbidding will only need to pay the

residual necessary to beat bidder 3: max{v3 − vi, 0} where vi is the other local bidder’s

value.

A common problem in combinatorial auctions is the threshold problem, in which bidders

have trouble coordinating their bids because they want to free ride off of each others’

payments. In our MRCS auctions without any bidding restrictions, the local bidders can

free ride by overbidding on losing items, thereby driving up each other’s prices. The

25For some payment rules, there may be a equilibrium in undominated strategies in which the local bids
are b1(v1, v2) = (v1, 0, v1 + v2) and b2(v1, v2) = (0, v2, x) such that x < v2. However, the reduced bid for
AB leads to the same assignment as bid (0, v2, v2). For familiar payment rules, such as the Vickrey-nearest
rule, it leads to the same prices as well, so the two bids are equivalent.

26Among all tie-breaking rules that maximize the number of winners, there is one in which alternative
Bayesian equilibria in undominated strategies arise for some payment rules. If we had instead chosen the
tie-breaking rule that gives item A to bidder 1 and item B to bidder 2 whenever possible, it would be
undominated under some payment rules for the local bidders to bid zero for their desired items. This relies
critically on the fact that local bidders could win their desired item with probability one when bidding zero
and necessarily pay a higher price if they raised their bid. Then there could be inefficient equilibria that
reduce to a single item auction for the global package.
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overbidding on AB represents an implied demand for the other bidder’s desired item,

forcing him to pay a higher price. The ability to drive up a competitor’s price without

distorting the bids for the optimal winning packages eliminates the coordination problem

and restores efficiency.

If bidders 1 and 2 win, at least one and, depending on the equilibrium, maybe both

of them pay their full value. This can lead to very high revenues or to an extremely

asymmetric outcome among bidders. The revenues are strictly greater than those from

truthful bidding in the Vickrey auction with probability one when the local bidders win.

When the global bidder wins, the revenues are the same as those from the Vickrey auction

with truthful bidding. So the equilibria in undominated strategies in the MRCS auctions

lead to strictly higher expected revenues and weakly higher realized revenues than those

in the Vickrey auction. However, all of the equilibria list above are also equilibria of the

Vickrey auction, just in dominated strategies.

These results do not depend on the exact distribution of the bidders’ values, but only on

their support. The derivation of these equilibria and the proof of Theorem 5 hold whenever

the local bidders have values drawn from the open interval (0,1) and the global bidder’s

value is drawn from [0,2]. The equilibria we listed above remain equilibria when we expand

the support of the local bidder values to the closed interval [0,1], however, some additional

equilibria arise at the end points. The additional equilibria lead to the same outcomes

as the ones we list, so they still have an efficient assignment, revenue at least as large as

that from the Vickrey auction, and payoffs in the core with respect to the true values,

and they are ex-post equilibria. However, the actual bids can be slightly different. When

v1 = v2 = 1, the bidders know v3 cannot be strictly higher than the sum of their values,

so they can bid more than their true values for their desired items. When either v1 = 0 or

v2 = 0, there will not be any overbidding because the bidder with a zero valuation cannot

pay more than zero (his full value) regardless of the other bids.

Theorem 5 would also hold if we increased the number of bidders while holding the

number of goods constant. We could also increase the number of items and, as long as the
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number of local bidders grew with the number of items, the theorem would still apply.

A special feature of this information structure – that price can be manipulated without

affecting the assignment – makes overbidding particularly advantageous compared to bid

shading. This structure might be of particular interest in spectrum auctions, in which the

MRCS auction usually follows an ascending price round. Ausubel and Cramton (2011)

showed that particular revealed-preference eligibility rules, which restrict bids in the core-

selecting round, can actually prevent the bidders from being able to change the assignment

that was provisionally winning at the end of the clock stage. In this case, bidders could

place higher losing bids without the risk of actually winning those packages. So incentives

might be similar to those in the equilibria in this section.

5. Conclusion

We have found new equilibria of MRCS auctions with overbidding in a variety of infor-

mational settings. These equilibria stem from a common incentive to raise other bidders’

payments so that one’s own payment may decrease. In certain settings, every equilibrium

in undominated strategies of every MRCS auction has the properties that some bidder

overbids and no bidder engages in bid shading for winning packages. Therefore, the over-

bidding phenomenon cannot be ruled out by clever equilibrium selection. Since bidders

want to overbid on losing packages to drive up their competitor’s prices, the overbidding

does not cause a non-monotonic decrease in revenue. Instead, overbidding leads to higher

revenues and possibly asymmetric payoffs among bidders. Also, because overbidding helps

bidders overcome the threshold problem when there is incomplete information, it improves

expected efficiency and can result in the efficient assignment. Therefore, it increases the

total surplus to be split between buyers and the seller.

Though we use favored-bidder-2 MRCS auctions in the independent private values

setting for tractability, the incentives for overbidding do not disappear under other payment

rules. We have shown that overbidding occurs with full and partial information under all
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payment rules, including Vickrey-nearest, reference rules, and the nearest bid rule. With

more uncertainty, a bidder must balance incentives for both shading and overbidding. We

cannot say whether an equilibrium of the Vickrey-nearest rule in the independent-private-

values setting would have bids above the true values, but the incentives to create false

demand for an unwanted item – by separating the bids for the desired item and global

bundle – do not disappear.

Strategic overbidding requires less sophistication than strategic shading. To overbid

optimally, a bidder needs only know the total value of the winning assignment. To trun-

cate optimally, a bidder needs to not only know the value of the winning assignment but

also what the value of the winning assignment would be if he were not present. Also,

a (full information) equilibrium with overbidding can be reached with just one strategic

bidder. A truncation equilibrium may require multiple strategic bidders coordinating their

truncations. Therefore, the equilibria with overbidding may actually be easier to find in

practice. This might be of special concern in the design of spectrum auctions, which usu-

ally involve an ascending auction, followed by a minimum-revenue core-selecting sealed-bid

round. If the bidders can use the ascending piece to learn about the value of the winning

bids, they enter the supplementary MRCS auction equipped with the knowledge needed to

strategically overbid.
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Appendix A. Independent Private Values

Appendix A.1. Bidder 1’s Expected Payoff and Equilibrium Bids

First we show that 2 ≥ bA(v1) + 1 ≥ bAB(v1) ≥ bA(v1) ≥ 0 and bAB(v1) > bB(v1) for

all v1 in any Bayesian equilibrium in undominated strategies. Then we maximize bidder

1’s expected payoff subject to those constraints to find his equilibrium bids.

All bids bAB(v1) ≤ bA(v1) give bidder 1 the same payoff, so we can concentrate on

bAB(v1) ≥ bA(v1).

Given that bidders 2 and 3 report their values truthfully, bidder 1 strictly prefers bids

with bB(v1) < bAB(v1) for all v1. As long as bB(v1) < bAB(v1), bB(v1) does not affect

bidder 1’s expected payoff. To rule out bB(v1) ≥ bAB(v1), note that any bid b1(v1) =

(bA(v1), bB(v1), bAB(v1)) with bB(v1) ≥ bAB(v1) yields a strictly lower expected payoff

than the bid b′1(v1) with b′A(v1) = bA(v1), b
′
B(v1) = 0, and b′AB(v1) = bB(v1). With these

two bids b1(v1) and b′1(v1), bidder 1 wins package A against the same realizations of v2 and

v3 and pays the same price for it. When bidder 1 does not win package A, he wins package

B with bid b1(v1) (or he wins B and AB with equal probability if bB(v1) = bAB(v1))

and package AB with b′1(v1), but pays the same price regardless of which he wins. Thus,

winning B yields a strictly lower payoff because it has no value. This occurs with positive

probability when bidders 2 and 3 bid truthfully, and so b′1(v1) is strictly better for bidder

1.

Given that bidders 2 and 3 report their true values, that bAB(v1) ≥ bA(v1) and that

bAB(v1) > bB(v1), any bid b1(v1) = (bA(v1), bB(v1), bAB(v1)) with bA(v1) > 1 yields a

lower expected payoff than the bid b′1(v1) = (1,max{bB(v1) − (bA(v1) − 1), 0}, bAB(v1) −

(bA(v1)−1)). We will show that for every realization of v2 and v3, bidder 1’s ex-post payoff

is weakly higher with b′1(v1) and that it is strictly higher for some realizations that occur

with positive probability. Therefore, equilibrium bids have b1(v1) ≤ 1 for all v1. Bidder 1

cannot win package B because bidders 2 and 3 bid zero for A, so the remaining possibilities

are as follows.
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Case 1: Bidder 1 wins nothing with b1(v1) (i.e., v3 > max{bAB(v1), bA(v1) + v2}). Then

he also wins nothing with b′1(v1) and his payoff is the same.

Case 2: Bidder 1 wins AB with b1(v1) (i.e., bAB(v1) > max{v3, bA(v1)+v2}). If bAB(v1)−

bA(v1) + 1 > v3, then he also wins AB with b′1(v1) and pays p′1 = max{v2, v3} = p1,

so his payoff is the same. If v3 > bAB(v1) − bA(v1) + 1, then he loses and receives

a payoff of zero. His payoff with b1(v1) is v1 − max{v2, v3} ≤ v1 − v3 < 0 because

v3 > bAB(v1)− bA(v1) + 1 ≥ 1.

Case 3: Bidder 1 wins A with b1(v1) (i.e., bA(v1)+v2 ≥ max{v3, bAB(v1)}). If 1+v2 > v3,

then he also wins A with b′1(v1) and pays p′1 = max{min{v3 + 1− bAB(v1) + bA(v1)−

1, 1}, 0} ≤ p1 = max {min{v3 − bAB(v1) + bA(v1), bA(v1)}, 0} (see Equation 2 and

note that bA(v1) ≤ bAB(v1)). If v3 > 1 + v2, then he loses and receives a payoff of

zero. With bid b1(v1), his payoff π1 = v1 − p1 = v1 −max{min{bA(v1), v3 + bA(v1)−

bAB(v1)}, 0} ≤ v1 − (v3 − v2) < v1 − 1 ≤ 0.

For any bAB(v1) > 2 and bA(v1) ≤ 1, bidder 1’s expected payoff is v1 − 13/12, which is

negative. Therefore, bidding bAB(v1) ≤ 2 yields a strictly higher payoff because in doing

so bidder 1 can always choose to receive a payoff of zero.

If 2 ≥ bAB(v1) ≥ bA(v1) + 1, the probability that bidder 1 wins package A is zero. His

expected payoff is (6bAB(v1)v1 − 3bAB(v1)
2 − 1)/12, which is decreasing in bAB(v1) when

bAB(v1) ≥ bA(v1) + 1. Therefore, bidder 1 would prefer to bid bAB(v1) = bA(v1) + 1 and

we can conclude bA(v1) + 1 ≥ bAB(v1) for all v1.

Thus, 2 ≥ bA(v1) + 1 ≥ bAB(v1) ≥ bA(v1) ≥ 0 for all v1 in equilibrium and bidder 1’s

33



expected payoff is:27

EV2,V3 [π1(v1)] := E[π1(v1)|b2(v2) = (0, v2, v2), b3(v3) = (0, 0, v3)]

= v1
(
1 + bAB(v1)

2 − 2bA(v1)bAB(v1) + bA(v1)
2 + 2bA(v1)

)
/4 (A.1)

+
(
−4bAB(v1)

3 + 3bA(v1)bAB(v1)
2 + 6bA(v1)

2bAB(v1)
)
/12

+
(
6bA(v1)bAB(v1)− 5bA(v1)

3 − 9bA(v1)
2 − 3bA(v1)

)
/12.

Maximizing bidder 1’s expected payoff (A.1) with respect to bA(v1) and bAB(v1) under

the constraints 2 ≥ bA(v1) + 1 ≥ bAB(v1) ≥ bA(v1) ≥ 0 gives us the equilibrium bidding

functions.

The explicit formulas are:

b∗A(v1) =

(
−41 + 45v1 +

1540 + 1440v1 + 1296v21
24/3x1/3

+
x1/3

22/3

)
/81

b∗AB(v1) =


(

1 + 3bA(v1)−
√

2
√
−1 + 3v1 − 3bA(v1)

)
/3 if 2− 2

√
6/3 ≤ v1 < 2/3(

1 + 3bA(v1) +
√

2
√
−1 + 3v1 − 3bA(v1)

)
/3 if 2/3 ≤ v1 ≤ 1 .

x := −35600− 44820v1 − 15795v21 + 23328v31

+ 405
√

3
√

720 + 1280v1 − 3184v21 − 10776v31 − 11781v41 − 5184v51

We have found bidder 1’s unique best-response bidding functions for packages A and AB,

and have excluded bids for B that satisfy bB(v1) ≥ bAB(v1). Given b∗2(v2) and b∗3(v3),

all bids for B that satisfy bB(v1) < bAB(v1) combined with b∗A(v1) and b∗AB(v1) are best

responses and yield the same assignment and payments.

27We denote the random variable of bidder i’s value by Vi.
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Appendix A.2. Payoff Vectors in the Core C(v)

When is the payoff vector selected by the MRCS auctions or the Vickrey auction in the

core with respect to the true values C(v)?

Assume that v3 is drawn from the uniform distribution on [0, k] with k ≥ 2. For k = 2

we get the case analyzed in Section 4.1. The equilibrium analysis for k > 2 and independent

values is given in Appendix A.5.

For the MRCS auctions, we have to consider three cases: (i) bidder 1 wins AB, (ii)

bidder 3 wins AB, and (iii) bidders 1 and 2 win A and B, respectively.

Case (i): If bidder 1 wins AB, the assignment is not optimal because v1 + v2 ≥ v1 and,

therefore, the allocation is not in the core.

Case (ii): If bidder 3 wins AB, his payment is p3 = max{bA(v1) + v2, bAB(v1)}. The core

constraint requires that p3 ≥ v1 + v2. Since v1 > bA(v1), p3 satisfies the constraint only if

v3 ≥ bAB(v1) ≥ v1+v2. This occurs with probability
∫ k
bAB(v1)

∫ max{bAB(v1)−v1,0}
0 1/k dv2 dv3 =

max{bAB(v1) − v1, 0} − bAB(v1) max{bAB(v1) − v1, 0}/k for given a v1, or approximately

0.008− 0.007/k in expectation.

Case (iii): If bidder 1 wins A and bidder 2 wins B, the constraints in the auction and in

the true core are, respectively:

p1 + p2 ≥ v3 (A.2)

p1 ≥ max{v2, v3} − v2 (A.3)

p2 ≥ max{bAB(v1), v3} − bA(v1) (A.4)

p1 + p2 ≥ v3 (A.5)

p1 ≥ max{v2, v3} − v2 (A.6)

p2 ≥ max{v1, v3} − v1 (A.7)

Indeed, the auction payments determined by constraints (A.2), (A.3), and (A.4) satisfy

the core constraints (A.5), (A.6), and (A.7), so the payoff vector is in the core with respect

to the true values. The fulfillment of (A.5) and (A.6) is trivial. Comparing (A.4) and

(A.7), we find that

p2 ≥ max{bAB(v1), v3} − bA(v1) ≥ max{v1, v3} − v1
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because max{bAB(v1), v3}−bA(v1)+v1 = max{v1+(bAB(v1)−bA(v1)), v3+(v1−bA(v1))} ≥

max{v1, v3} since bA(v1) < v1 and bA(v1) ≤ bAB(v1). Given v1, the probability of this

case is Prob{bA(v1) + v2 ≥ max{bAB(v1), v3}} =
∫ 1
bAB(v1)−bA(v1)

∫ v2+bA(v1)
0 1/k dv3 dv2 =

(bA(v1)
2 + 2bA(v1)− bAB(v1)

2 + 1)/(2k), which is approximately 0.607/k in expectation.

So, combining the three cases, the total probability that a payoff vector from a favored-

bidder-2 MRCS auction is in the true core is approximately 0.008+0.600/k, which is 0.308

for k = 2.

In the Vickrey auction, either bidder 3 wins AB or bidders 1 and 2 win A and B,

respectively.28 The assignment is always optimal. The payoff vector is always in the core

if bidder 3 wins: p3 = v1 + v2. If bidders 1 and 2 win, the payoff vector is not in the core.

Payments are p1 = max{v2, v3} − v2 and p2 = max{v1, v3} − v1, so

p1 + p2 = max{v2, v3} − v2 + max{v1, v3} − v1

= max{v2 + v1, v2 + v3, v3 + v1, 2v3} − (v1 + v2) ≤ v3

because v1 + v2 ≥ v3 if they win. The probability that the payoff vector is in the core is

Prob(v1 + v2 < v3) =
∫ 1
0

∫ 1
0

∫ k
v1+v2

1/k dv3 dv2 dv1 = 1− 1/k, which is 0.5 for k = 2.

Appendix A.3. Lowering Payments Drives Overbidding

In the independent private values setting from Section 4.1, the higher bid for AB (in

comparison with b1AB ≤ b1A) has three effects for bidder 1: it decreases his chance of

winning A (which he prefers to winning AB because his payment is weakly lower), it

increases his chance of winning a bundle of value v1, and it weakly decreases his payment

if he wins A. We analyze the same setting but where local bidders have no value for AB:

v1AB = v2AB = 0. Overbidding occurs in all Bayesian equilibria in undominated strategies.

We conclude that decreasing the payment is the main driver behind overbidding.

28Goeree and Lien (2009) first proved when the Vickrey payoffs are in the core in their Lemma 1.
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For bidders 2 and 3, truthful bidding is a weakly dominant strategy by Theorems 2

and 3. From the arguments in Appendix A.1, we know that bidder 1’s best response

must satisfy 2 ≥ 1 + bA(v1) ≥ bAB(v1) ≥ bA(v1) ≥ 0 and bB(v1) < bAB(v1). Given these

constraints, bidder 1’s expected payoff is:

EV2,V3 [π1(v1)] :=E[π1(v1)|b2(v2) = (0, V2, V2), b3(v3) = (0, 0, V3)]

=v1
(
1− bAB(v1)

2 + bA(v1)
2 + 2bA(v1)

)
/4

+
(
−4bAB(v1)

3 + 3bA(v1)bAB(v1)
2 + 6bA(v1)

2bAB(v1)
)
/12

+
(
6bA(v1)bAB(v1)− 5bA(v1)

3 − 9bA(v1)
2 − 3bA(v1)

)
/12.

His equilibrium bidding functions for A and AB are:

b∗A(v1) =

 0 for 0 ≤ v1 < 1/2,(
−28 + 48v1 + 9v21 + (2 + 3v1)

√
−20 + 36v1 + 9v21

)
/108 for 1/2 ≤ v1 < 1

b∗AB(v1) =

 0 for 0 ≤ v1 < 1/2(
−4− 6v1 + 9v21 + (8 + 3v1)

√
−20 + 36v1 + 9v21

)
/108 for 1/2 ≤ v1 ≤ 1.

The equilibrium bid b∗1B(v1) can be anything less than the bid for AB because it will not af-

fect the auction outcome. Thus, strategy profiles with b∗1(v1) = (b∗1A(v1), b
∗
1B(v1), b

∗
1AB(v1))

(and mixtures thereof), b∗2(v2) = (0, v2, 0), and b∗3(v3) = (0, 0, v3) are all of the Bayesian

equilibria in undominated strategies.

Figure A.3 displays b∗1A(v1) and b∗1AB(v1). Obviously, bidder 1 bids much less than

when v1AB = v1A (compared to Figure 1).

Note 1. Unvalued bundles may receive positive bids in equilibrium.

Surprisingly, bidder 1 submits positive bids for AB when v1 > 1/2. The difference between

his bid for AB and its value (in this case, zero) is even larger than when v1AB = v1A = v1

for high v1.
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Figure A.3: Equilibrium Bidding Functions b∗A(v1) and b∗AB(v1) When v1AB = 0 and v2AB = 0

Revenue, payoffs, and efficiency are summarized in Table A.4. The results for the

Vickrey auction are the same when v1AB = v2AB = 0 as when v1AB = v1A and v2AB = v2A

(see Table 3).

Table A.4: Revenue, Payoffs, and Efficiency in Favored-Bidder-2 MRCS Auctions When v1AB = v2AB = 0

MRCS MRCS/Vickrey

E[π0] 0.503] 86.2 %
E[π1] 0.136 65.1 %
E[π2] 0.114] 54.6 %
E[π3] 0.497] 170.5 %

E
[∑3

i=0 πi
]

1.249 96.7 %
] Approximated (weighted averages of 1001 equidistant values of v1)

Appendix A.4. Restricting the Message Space Decreases Revenues

In Section 4.1, we calculate expected revenue and efficiency that is higher than the

results in previous literature. To better understand whether the expanded message space

or the payment rule is the main driver of these differences, we restrict the message space,

requiring bA(v1) ≥ bAB(v1) and b2AB(v2) ≤ b2B(v2), and continue to use the favored-bidder
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2 payment rule.29

Again, in the auction with favored bidder 2, bidders 2 and 3 bid truthfully. For bidder 1,

outcomes are identical for all bids bAB(v1) ≤ bA(v1) (bidder 1 never wins AB and bAB(v1)

never appears in any calculation of prices), so we concentrate on bA(v1) = bAB(v1). Bidder

1 maximizes his expected payoff EV2,V3 [π1(v1)] =
(
v1 (1 + 2bA(v1))− bA(v1)− bA(v1)

2
)
/4

with bA(v1) = bAB(v1) = max{0, v1 − 1/2}. Expected revenues, payoffs, and efficiency are

summarized in Table A.5.

Table A.5: Revenue, Payoffs, and Efficiency in the Favored-Bidder-2 MRCS Auctions if bA(v1) ≥ bAB(v1).

MRCS MRCS/Vickrey

E[π0] 0.5 85.7 %
E[π1] 0.135 65.0 %
E[π2] 0.115 55.0 %
E[π3] 0.5 171.4 %

E
[∑3

i=0 πi
]

1.25 96.8 %
Prob{π ∈ Core} 0.313 62.5 %

Compared with the results from Section 4.1, restricting the message space lowers ex-

pected revenue and efficiency. The resulting expected revenue is 85.7% of the expected

Vickrey revenue instead of 102.2% and expected efficiency drops from 97.6% to 96.8%.

This weak performance of the favored-bidder-2 MRCS auction with the restricted message

space might indicate that restricting the message space with other payment rules would

have similar negative effects.30

Second, restricting the message space allows us to compare the performance of our

payment rule with that of different payment rules studied in the literature. The expected

29This restriction on bids is one of the possible assumptions underlying the results of Ausubel and Baranov
(2010) and Goeree and Lien (2009).

30Note that efficiency increases when the message space is restricted under the somewhat extreme as-
sumption that local bidders have no value for the bundle AB (viAB = 0, see Section Appendix A.3). For
the restricted message space, the optimal bidding functions and payoffs are identical when v1AB = v1A and
v2AB = v2B and when v1AB = v2AB = 0. In both cases, expected efficiency is 96.8%, which is slightly higher
than the expected efficiency of 96.7% that results from the expanded message space and v1AB = v2AB = 0.
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revenue using the favored-bidder-2 payment rule is the same as that with the nearest bid

rule (85.7% of Vickrey revenue) but is lower than that with the Vickrey-nearest rule (91.3%)

and that with the proxy auction rule (91.9%). Expected efficiency is lower than with the

Vickrey-nearest rule (98% efficiency).31 This is due to the strong bid shading of bidder 1

(max{0, v1 − 1/2} vs. e.g. max{0, vi − (3 − 2
√

2)}, i = 1, 2 for the Vickrey-nearest rule).

Also, the probability that the allocation is in the core is lower than with the Vickrey-nearest

rule (0.313 vs. 0.343). So, although the favored-bidder-2 payment rule ensures that only

one bidder has an incentive to lie, it performs worse than other MRCS payment rules when

the message space is restricted. The consequences for expected revenue and efficiency are

stronger than when both local bidders lie about their values. However, these comparisons

hold for the restricted message space and the relative performance might be different if

bidders bid for all packages.

Appendix A.5. Distributions That Favor the Vickrey Auction

In Section 4.1, we found that favored-bidder-2 MRCS auctions have a revenue advantage

over the Vickrey auction. Now we show that, under different distributional assumptions,

the revenue ranking may be reversed.32

One way to reverse the revenue ranking is to increase the likelihood of the cases in

which the Vickrey auction generates higher revenue (the cases in which bidder 3 wins).

Let bidder 3’s value for AB be uniformly distributed on [0, k] for k ≥ 2. Assume k is

31The expected revenues are taken from Ausubel and Baranov (2010) and the expected efficiency comes
from Goeree and Lien (2009). Since Ausubel and Baranov (2010) use a different measure we cannot compare
the efficiency of nearest bid rule and the proxy auction rule with that of the favored-bidder rule.

32Ausubel and Baranov (2010) also find that, in their setting with one-dimensional bids, the revenue
ranking depends on the value distributions. They show this by varying α in the cumulative distribution
function F (vi) = vαi on [0, 1] for the local bidders’ values.
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common knowledge. Bidder 1’s expected payoff is now:33

EV2,V3 [π1(v1)] := E[π1(v1)|b2(v2) = (0, V2, V2), b3(v3) = (0, 0, V3)] (A.8)

= v1
(
1 + bAB(v1)

2 − 2bA(v1)bAB(v1) + bA(v1)
2 + 2bA(v1)

)
/(2k)

+
(
−4bAB(v1)

3 + 3bA(v1)bAB(v1)
2 + 6bA(v1)

2bAB(v1)
)
/(6k)

+
(
6bA(v1)bAB(v1)− 5bA(v1)

3 − 9bA(v1)
2 − 3bA(v1)

)
/(6k)

His optimal bid is independent of k. Since bidders 2 and 3 bid truthfully in equilibrium,

all three bidders have the same bidding functions regardless of k. However, for higher k it

is more likely that bidder 3 wins. Table A.6 summarizes the results.

Table A.6: Comparing Revenue, Payoffs, and Efficiency in the Vickrey and Favored-Bidder-2 MRCS Auc-
tions When v3 ∼ U [0, k]

Vickrey MRCS

E[π0] (12k − 10)/(12k) ≈ 1− .833/k .756− .318/k]

E[π1] 5/(12k) ≈ .417/k .309/k]

E[π2] 5/(12k) ≈ .417/k .185/k]

E[π3] (6k2 − 12k + 7)/(12k) ≈ .5k − 1 + .583/k .5k − .756 + .347/k]

E
[∑3

i=0 πi
]

(6k2 + 7)/(12k) ≈ .5k + .583/k .5k + .522/k]

Prob{π ∈ Core} 1− 1/k 0.008 + 0.600/k]

] Approximated (weighted average of 1001 equidistant values of v1)

As k increases, the revenue advantage of the favored-bidder-2 MRCS auctions disap-

pears and the expected revenue in the Vickrey auction is higher. The probability of zero

revenue in the Vickrey auction, which is 1/(3k), decreases in k. Maximum and minimum

revenues in the favored-bidder-2 MRCS auctions are b∗A(1) + 1 = 1.66 and 0, respectively,

for all k ≥ 2. Of course, the Vickrey auction has a higher expected efficiency for all k.

Also, the probability that the payoff vector in Vickrey auction is in the core with respect

to the true values is always higher than this probability for the MRCS auction (1 − 1/k

33This assumes 2 ≥ bA(v1) + 1 ≥ bAB(v1) ≥ bA(v1) ≥ 0 and bAB(v1) > bB(v1) for all v1. The other cases
can be excluded as in Appendix A.1.
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versus approximately 0.008 + 0.600/k). The difference increases in k.

As k increases, the Vickrey auction becomes more advantageous. The probability that

bidder 3 wins and, therefore, that it generates competitive revenues, increases. Bidder 1

bids identically for all k but the higher the k, the less he gains from deviating from the

truth (0.309/k − 1/(6k) = 0.142/k). So, for large k, he may not find it worthwhile to bid

strategically.

Appendix B. Proof of Theorem 5

Lemma 2. In every MRCS auction, if strategy bi is undominated for local bidder i then

bi(0, vj) = (0, 0, 0) where j denotes the other local bidder.

Proof: For vi = 0 and any possible vj ∈ [0, 1], bi(0, vj) = (0, 0, 0) yields the maximum

possible payoff of zero against every profile of others’ bids b−i. If bi(0, vj) 6= (0, 0, 0) then

there exists some profile of the others’ bids such that bidder i wins an item at a positive

price. Thus, against said profile, his expected payoff conditional on having value vi = 0 is

negative. Since this is strictly worse than bidding (0, 0, 0), it contradicts the strategy being

undominated. �

Lemma 3. In every MRCS auction, every strategy b1(v1, v2) = (v1, 0, v1 + k1(v1, v2)) with

k1(v1, v2) ∈ (0, v2] for all v1 ∈ (0, 1] and all v2 ∈ (0, 1] can be dominated only by a mixture

of strategies bm1 (v1, v2) = (v1, 0, y
m
1 (v1, v2)) such that ym1 (v1, v2) < v1 + k1(v1, v2) for all m,

all v1 ∈ (0, 1], and all v2 ∈ (0, 1].

Similarly, in every MRCS auction, every strategy b2(v1, v2) = (0, v2, v2+k2(v1, v2)) with

k2(v1, v2) ∈ (0, v1] for all v1 ∈ (0, 1] and all v2 ∈ (0, 1] can be dominated only by a mixture

of strategies bm2 (v1, v2) = (0, v2, y
m
2 (v1, v2)) such that ym2 (v1, v2) < v2 + k2(v1, v2) for all m,

all v1 ∈ (0, 1], and all v2 ∈ (0, 1].

Proof: We will prove this only for bidder 1. The proof for bidder 2 is analogous.

42



For the remainder of the proof, fix (v̂1, v̂2) ∈ (0, 1] × (0, 1] and k ∈ (0, v̂2]. Then

b1(v̂1, v̂2) = (v̂1, 0, v̂1 + k) is a best response (for every payment rule) to the strategies

b′2(v1, v2) = (0, k, 0), b′3(v3) = (0, 0, k + α) for α ∈ (0, v̂1). With this bid, bidder 1 gets his

highest possible payoff π1 = v̂1 − α = πV1 because he wins A (v̂1 + k > k + α) and p1 = α

is the unique solution to minimizing p1 + p2 such that p1 + p2 ≥ k + α, v̂1 ≥ p1 ≥ α, and

k ≥ p2 ≥ k.

Every pure strategy that is chosen with strictly positive probability in a strategy that

weakly dominates b1(v1, v2) = (v1, 0, v1 + k) must also be a best response to all these

strategies b′2(v1, v2) = (0, k, 0), b′3(v3) = (0, 0, k + α). (Any mixture that puts positive

probability on a bid that is not a best response to one of these strategies cannot dominate

b1(v1, v2) = (v1, 0, v1 + k) because its expected payoff against the respective profile must

be strictly lower than the best-response payoff.)

Consider potential other best responses to the strategies b′2(v1, v2) = (0, k, 0), b′3(v3) =

(0, 0, k + α). A bid with which bidder 1 wins AB results in π1 = v̂1 − (k + α) < v̂1 − α. If

bidder 1 wins nothing or B, his maximum payoff is 0 < v̂1−α. Thus, it remains to consider

alternative bids for bidder 1 that win A at price p1 = α. To win A, his bid must be such

that b1A + k ≥ max{k + α, b1B, b1AB}, or equivalently, b1A ≥ max{α, b1B − k, b1AB − k}.

So potential alternate best responses are of the form (b1A, x, y) with b1A ≥ α, x ≤ k+ b1A,

y ≤ k + b1A. These inequalities must hold for every α ∈ (0, v̂1), so we must have b1A ≥ v̂1.

(If b1A < v̂1, then there exists some α such that b1A < α < v̂1, a contradiction.)

(v̂1, 0, v̂1+k) is a best response (for every payment rule) to b′′2(v1, v2) = (0, k, k), b′′3(v3) =

(0, 0, k + β) for β > v̂1. Bidder 1 gets a payoff of zero. Consider one of the remaining

candidates with b1A > v̂1. For this bid, there exists β such that bidder 1 wins A and pays

p1 ≥ β > v̂1 so that π1 < 0. Thus, only bids b1 = (v̂1, x, y) with x ≤ k+ v̂1 and y ≤ k+ v̂1

remain to be considered.

(v̂1, 0, v̂1 + k) is a best response (for every payment rule) to b′′′2 (v1, v2) = (k, k, k),

b′′′3 (v3) = (0, 0, k+α), α ∈ (0, v̂) but bids (v̂, x, y), x > v̂ are not. The best response results

in winning A at p1 = α and payoff π1 = v̂ − α > 0. The other bids result in winning B at
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p1 ≥ α and π1 < 0.

(v̂1, 0, v̂1+k) is a best response (for every payment rule) to b′′′′2 (v1, v2) = (v̂1+k, 0, v̂1+k),

b′′′′3 (v3) = (0, 0, v̂1 + k + ε) for all x ∈ (0, v̂1] but (v̂1, x, y) is not for ε such that 0 < ε < x

(and such an ε exists for every x ∈ (0, v̂1]). The best response results in a payoff of zero.

Each of the second set of bids results in winning B for p1 ≥ ε > 0 and payoff π1 < 0.

Thus, the only possible candidates remaining for being part of a mixture that dominates

b1A(v̂1, v̂2) = (v̂1, 0, v̂1+k) are bids (v̂1, 0, y) with y < v̂1+k. The argument can be repeated

for each (v̂1, v̂2) ∈ (0, 1]× (0, 1] and for each k ∈ (0, v̂2]. �

Lemma 4. In every MRCS auction, there exists an undominated strategy for bidder 1 of

the form b1(v1, v2) = (v1, 0, y(v1, v2)) such that y(v1, v2) ∈ [0, v1] for all v1 ∈ [0, 1] and all

v2 ∈ [0, 1].

Similarly, in every MRCS auction, there exists an undominated strategy for bidder 2 of

the form b2(v1, v2) = (0, v2, y(v1, v2)) such that y(v1, v2) ∈ [0, v2] for all v1 ∈ [0, 1] and all

v2 ∈ [0, 1].

Proof: First we will prove that for bidder 1, bids in the set T1(v1, v2) ≡ {b1(v1, v2) =

(v1, 0, y(v1, v2)) | y(v1, v2) ∈ [0, v1]} cannot be dominated by any mixture of bids outside of

this set. The proof for bidder 2 is analogous.

The bid b1(0, v2) = (0, 0, 0) is undominated by Lemma 2.

For the remainder of the proof, consider any fixed (v̂1, v̂2) ∈ (0, 1] × [0, 1]. Any bid

b1 ∈ T1(v̂1, v̂2) is a best response to the strategies b2(v1, v2) = (0, α, α), b3(v3) = (0, α, α+β)

for all α > 0 and all β ∈ [0, v̂1). Suppose there is some mixture of strategies that dominates

b1. Let b′1 be a strategy that is played with positive probability in that mixture. Then

b′1(v̂1, v̂2) must also be a best response to these strategies for all α > 0 and all β ∈ [0, v̂1).

This means that b′1(v̂1, v̂2) must win A at price β. (Winning B leads to a payoff of at most

zero, which is less than v̂1 − β and winning AB leads to a payoff of v̂1 − α − β, which is

also less than v̂1 − β.)
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Against b2(v1, v2) = (0, α, α), b3(v3) = (0, α, α+β), any bid b′1(v̂1, v̂2) that wins A does

so at a price of β. So any bid such that b′1A(v̂1, v̂2)+α ≥ max{b′1B(v̂1, v̂2), b
′
1AB(v̂1, v̂2), α+β}

is a best response. This inequality must hold for all α > 0 and all β ∈ [0, v̂1), which implies

b′1A(v̂1, v̂2) ≥ max{b′1B(v̂1, v̂2), b
′
1AB(v̂1, v̂2), v̂1}.

Any bid b1 ∈ T1(v̂1, v̂2) is also a best response to the bids b2(v1, v2) = (0, 0, 0), b3(v3) =

(0, 0, v̂1 +ε) for all ε > 0 because it loses and any bid that won A or AB would have to pay

more than v̂1 for it. However, any bid b′1(v̂1, v̂2) with b′1A(v̂1, v̂2) > v̂1 does strictly worse

when ε ∈ (0, b′1A(v̂1, v̂2)− v̂1) because it wins A at a price of v̂1 + ε. So no such bid can be

part of a mixture that dominates any b1 ∈ T1(v̂1, v̂2).

Thus, the remaining candidates are b′1(v̂1, v̂2) = (v̂1, b
′
1B(v̂1), b

′
1AB(v̂1)) such that v̂1 ≥

max{b′1B(v̂1, v̂2), b
′
1AB(v̂1, v̂2)}. Any bid b1 ∈ T1(v̂1, v̂2) is a best response to the bids

b2(v2) = (v̂1, 0, v̂1), b3(v3) = (0, 0, v̂1 + ε) for all ε > 0 because it loses and any bid that

won A or AB would have to pay more than v̂1 for it. However, any bid b′1(v̂1, v̂2) with

b′1B(v̂1, v̂2) > 0 does strictly worse when b′1B(v̂1, v̂2) > ε > 0 because it wins B at the price

ε. So no such bid can be part of a mixture that dominates b1.

Thus, we have eliminated all bids not in T1(v̂1, v̂2), so any bid in T1(v̂1, v̂2) cannot be

dominated by any mixture that includes bids from outside of this set.

Next, consider the modified game where the strategy of player one is restricted to bids

b1(v1, v2) = (v1, 0, y) such that y ∈ [0, v1]. If player one has an undominated strategy in

this game then that strategy will be undominated in the larger game. This game has a

compact strategy set and a payoff function for player 1 that is upper-hemicontinuous in

his choice variable y. (The payment function is upper-hemicontinuous in y by assumption

and the assignment function is not affected by any y ∈ [0, 1].) Thus, by Proposition 0 in

Salonen (1996), player 1 has an undominated strategy. �

Lemma 5. In every MRCS auction, for every (v1, v2) ∈ (0, 1] × (0, 1], either bidder 1

has an undominated strategy b1 such that b1(v1, v2) = (v1, 0, v1 + v2) or bidder 2 has an

undominated strategy b2 such that b2(v1, v2) = (0, v2, v1 + v2).
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Proof: Fix some (v1, v2) ∈ (0, 1] × (0, 1]. Suppose to the contrary that every strat-

egy of bidder 1 that includes b1(v1, v2) = (v1, 0, v1 + v2) is dominated and every strat-

egy of bidder 2 that includes b2(v1, v2) = (0, v2, v1 + v2) is dominated. Consider the

mixtures of strategies that dominate these strategies. By Lemma 3, each mixture must

contain a strategy such that b′1(v1, v2) = (v1, 0, y1) and b′2(v1, v2) = (0, v2, y2), respec-

tively, for some y1 < v1 + v2 and y2 < v1 + v2. Then consider the profile of bids

((v1, 0, y1), (0, v2, y2), (0, 0,max{v1, v2, y1, y2})). Bidder 1 wins A and bidder 2 wins B.

One of them must pay more than their Vickrey price because in any core-selecting auction,

p1 + p2 ≥ b3AB > (b3AB − v2) + (b3AB − v1) = pV1 + pV2 . Assume the bidder that pays

more than his Vickrey price is bidder 1. Note that the bid b1(v1, v2) = (v1, 0, v1 + v2) is a

best response to strategies b′2(v1, v2) = (0, v2, y2), b3(v) = (0, 0,max{v1, v2, y1, y2}) because

bidder 1 pays pV1 . The bid b′1(v1, v2) = (v1, 0, y1) isn’t a best response because bidder 1

pays a strictly higher price. This contradicts b′1(v1, v2) = (v1, 0, y1) being part of a mixture

that dominates b1(v1, v2) = (v1, 0, v1 + v2). �

Lemma 6. For a local bidder in any MRCS auction, a strategy in which he bids zero for

his desired item is a dominated strategy.

Proof: We will prove this only for bidder 1. The proof for bidder 2 is analogous. Namely,

we will show that every bid b1(v1, v2) = (0, b1B(v1, v2), b1AB(v1, v2)) is dominated by

b′1(v1, v2) = (min{b1AB(v1, v2), v1/4}, 0, b1AB(v1, v2)) for all (v1, v2) ∈ (0, 1] × [0, 1]. We

will assume b1AB > 0 because a bid of (0, b1B(v1, v2), 0) when bidder 1 has a positive value

v1 > 0 is clearly dominated by a truthful bid.

Moving from b1 to b′1, the bid for A has increased, the bid for B has (weakly) decreased

and the bid for AB is the same. This means that if bidder 1 was winning B or AB with b1,

he must win either the same package or A with b′1. If he was winning A he must continue

to win A. And if he was losing he must continue to lose or win A.

If he was winning B with b1 and continues to win B with b′1, his payoff goes from

being non-positive to being zero. If he switches to winning A with b′1, his payoff is at least
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3
4v1 > 0. Thus, he is better off with b′1.

If he was winning AB with b1 and continues to win AB with b′1, his payoff stays the

same (v1 − w(23)). If he switches to winning A with b′1, he receives the same benefit and

pays weakly less because his bid for A is no larger than his original bid for AB. Thus, he

is better off with b′1.

If he was losing with b1 and continues to lose with b′1, his payoff stays the same (zero).

If he switches to winning A with b′1, his payoff is at least 3
4v1 > 0. Thus, he is better off

with b′1.

If he was winning A with b1, he was doing so with probability at most a half because

his zero bid must be tied with at least one other bidder. His payoff is at most 1
2v1. He must

then win A with probability one with bid b′1. This gives him a payoff of at least 3
4v1 >

1
2v1.

Thus, he is better off with b′1. �

Lemma 7. Any Bayesian equilibrium in undominated strategies of any MRCS auction

must belong to the following set of strategy profiles for all (v1, v2) ∈ (0, 1)2:

b1(v1, v2) = (v1, b1B(v1, v2), b1AB(v1, v2))

b2(v1, v2) = (b2A(v1, v2), v2, b2AB(v1, v2))

b3(v3) = (0, 0, v3)

max{b1AB(v1, v2), b2AB(v1, v2)} = v1 + v2

b1B(v1, v2) + b2A(v1, v2) < v1 + v2.

Proof: By Theorem 3, the global bidder 3 has a weakly dominant strategy to bid truthfully

in any MRCS auction. By lemma 6, neither local bidder can use a strategy in which they

bid zero for their desired item when their true value is nonzero, so b1A(v1, v2) > 0 for

all v1 > 0 and b2B(v1, v2) > 0 for all v2 > 0. When vi = 0 for local bidder i, his only

undominated bid is bi(v1, v2) = (0, 0, 0) by lemma 2. Thus, we will only consider positive
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values in the rest of the proof.

Given that the global bidder bids truthfully and both local bidders bid a nonzero

amount for their desired item whenever their value is greater than zero, we will show the

following. In any Bayesian equilibrium in undominated strategies, (1) if bidders 1 and 2

win anything, then they always win A and B, respectively, (2) for v ∈ (0, 1), bidders 1

and 2 always bid truthfully for their desired individual items, and (3) either bidder 1 or 2

always pays their full bid when they win. The strategy profiles listed in the lemma follow

directly from these statements.

This amounts to proving the following steps:

(1) b1A(v1, v2)+b2B(v1, v2) ≥ max{b1AB(v1, v2), b2AB(v1, v2)} and b1A(v1, v2)+b2B(v1, v2) >

b1B(v1, v2) + b2A(v1, v2) for all (v1, v2) ∈ (0, 1)2

(2) b1A(v1, v2) = v1 and b2B(v1, v2) = v2 for all (v1, v2) ∈ (0, 1)2

(3) max{b1AB(v1, v2), b2AB(v1, v2)} = v1 + v2 for all v1, v2 ∈ (0, 1)2.

If (1), (2), or (3) are not fulfilled, a local bidder can increase his expected payoff (where

the expectation is taken over v3) by deviating unilaterally.

Step 1: b1A(v1, v2)+b2B(v1, v2) ≥ max{b1B(v1, v2)+b2A(v1, v2), b1AB(v1, v2), b2AB(v1, v2)}

for all (v1, v2) ∈ (0, 1)2

Assume this inequality did not hold. Then we must be in one of the following three

cases:

Case 1 b1AB(v1, v2) = max{b1B(v1, v2)+b2A(v1, v2), b1AB(v1, v2), b2AB(v1, v2)} > b1A(v1, v2)+

b2B(v1, v2). Since b2B(v1, v2) > 0, bidder 1 has a strictly profitable deviation to

b′1(v1, v2) = (b1AB(v1, v2)−b2B(v1, v2), b1B(v1, v2), b1AB(v1, v2)). Bidder 1 wins against

the same realizations of v3, but pays a strictly lower price because he now wins A

instead of AB: p′1 = w(23)− b2B(v1, v2) < w(23) = p1.

Case 2 b2AB(v1, v2) = max{b1B(v1, v2)+b2A(v1, v2), b1AB(v1, v2), b2AB(v1, v2)} > b1A(v1, v2)+

b2B(v1, v2). Since b1A(v1, v2) > 0, this case can be ruled out by the same arguments

as in case 1.

48



Case 3 b1B(v1, v2)+b2A(v1, v2) = max{b1B(v1, v2)+b2A(v1, v2), b1AB(v1, v2), b2AB(v1, v2)} ≥

b1A(v1, v2) + b2B(v1, v2). This implies that either b1B(v1, v2) > 0 or b2A(v1, v2) > 0.

For any realization of v3, the lower bound on p1 + p2 is v3. Thus, if b1B(v1, v2) +

b2A(v1, v2) > v3 > 0, at least one of the two local bidders has to pay a positive price

for an item that he does not value. He has a profitable deviation in bidding zero for

the item he does not value.

Step 2: b1A(v1, v2) = v1 and b2B(v1, v2) = v2 for all (v1, v2) ∈ (0, 1)2 Again assume this

were not true. Then we must be in one of the following cases.

Case 1 b1A(v1, v2) > v1, b2B(v1, v2) ≤ v2. Consider the alternate bid b′1(v1, v2) = (v1, 0, v1+

b2B(v1, v2)). This bid ensures that bidder 1 pays the lowest possible price (his Vickrey

price), given that bidder 3 bids truthfully. Thus, it gives a weakly higher payoff than

any other bid. Moreover, there is a positive probability that b1A(v1, v2)+b2B(v1, v2) >

v3 > v1 + b2B(v1, v2) because v̄3 = 2 > b2B(v1, v2) + v1. Against these realizations of

v3, and given that (1) holds, b′1(v1, v2) yields a strictly higher payoff (of zero) because

if bidder 1 wins, his price is p1 ≥ v3 − b2B(v1, v2) > v1. So b′1(v1, v2) yields a strictly

higher expected payoff and is a profitable deviation.

Case 2 b1A(v1, v2) ≤ v1, b2B(v1, v2) > v2. This case can be similarly excluded.

Case 3 b1A(v1, v2) > v1, b2B(v1, v2) > v2. In this case and given that (1) holds, the local

bidders win and at least one of them pays more than their value when the realization

of v3 is such that b1A(v1, v2) + b2B(v1, v2) ≥ v3 > v1 + v2. This occurs with positive

probability. The bidder who pays more than their value – bidder 1 for example –

can strictly improve by deviating to b′1(v1, v2) = (v1, 0, v1+b2B(v1, v2)), which always

results in the Vickrey payoff and never in a strictly negative payoff.

Case 4 b1A(v1, v2) ≤ v1, b2B(v1, v2) ≤ v2. Again, consider the alternate bid b′1(v1, v2) =

(v1, 0, v1 + b2B(v1, v2)). When b1A(v1, v2) + b2B(v1, v2) < v3 < v1 + b2B(v1, v2) and
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given that (1) holds, it yields a strictly higher payoff. This occurs with positive

probability, so b′1(v1, v2) yields strictly higher expected profits.

Step 3: max{b1AB(v1, v2), b2AB(v1, v2)} = v1 + v2 for all v1, v2 ∈ (0, 1)2

Given that b1A(v1, v2) = v1 and b2B(v1, v2) = v2, either of the above bids ensure

that either bidder 1 or bidder 2 pays the lowest price possible, given the other play-

ers’ bids. If b1AB(v1, v2) = v1 + v2, the core constraints require v2 = b2B(v1, v2) ≥

p2 ≥ w({1, 3}) − b1A(v1, v2) = v1 + v2 − v1 = v2, so p2 = v2. Then p1 = max{v3 −

v2, w({2, 3})− v2} = w({2, 3})− v2 = pV1 . A similar calculation shows that p2 = pV2 when

b2AB(v1, v2)} = v1+v2. Next, note that any higher bids would violate (1). Suppose instead

that max{b1AB(v1, v2), b2AB(v1, v2)} < v1 + v2. Then, when v3 > w({2, 3})− b2B(v1, v2) +

w({1, 3})−b1A(v1, v2) = pV1 +pV2 , either bidder 1 or bidder 2 must pay more than his Vickrey

price. Thus, either bidder 1 or bidder 2 has a profitable deviation. (Note that there exist

v3 such that b1A(v1, v2)+b2B(v1, v2) > v3 > w({2, 3})−b2B(v1, v2)+w({1, 3})−b1A(v1, v2),

so that the local bidders win and the above inequality is satisfied.)

�

Lemma 8. For every MRCS auction, there exists at least one Bayesian equilibrium in

undominated strategies.

Proof: It is straightforward to verify that every strategy profile listed in lemma 7 is

indeed a Bayesian equilibrium. It remains to show that some profile in that set contains

only undominated strategies.

For every (v1, v2) ∈ (0, 1)2, lemma 5 tells us that either bidder 1 has an undominated

strategy b1 such that b1(v1, v2) = (v1, 0, v1+v2) or bidder 2 has an undominated strategy b2

such that b2(v1, v2) = (0, v2, v1 + v2). Then by lemma 4, the other bidder (use bidder 1 for

example) has an undominated strategy b1(v1, v2) = (v1, 0, y(v1, v2)) such that y(v1, v2) ∈

[0, v1]. Together with bidder 3’s truthful bid, this strategy profile is one of those listed in

lemma 7.

�
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Theorem 5. For every MRCS auction, there always exists at least one Bayesian equilib-

rium in undominated strategies and every Bayesian equilibrium in undominated strategies

satisfies the following properties:

(1) every winning bid is truthful

(2) at least one bidder places a bid strictly above his true value

(3) no bidder places a bid strictly below his value for any package, unless that bid cannot

affect the assignment

(4) the assignment is efficient

(5) the revenue is at least as large as that from the Vickrey auction for every realization

of values

(6) the payoffs are in the core with respect to the true values C(v)

(7) the equilibrium is an ex-post equilibrium

Proof: By Lemma 8, there exists at least one Bayesian equilibrium in undominated strate-

gies of every MRCS auction. By Lemma 7: (1) every bidder bids truthfully for his desired

item and that item is the only package he can win, (2) at least one bidder places a bid

strictly above his true value (namely, the bid of v1 + v2 by one of the local bidders), and

(3) only one bid per equilibrium strategy profile could be below the true value. That bid

is (potentially) a local bidder’s bid for AB. As long as he bids his true value for his de-

sired item, a lower bid on AB does not affect the assignment. Moreover, the assignment

maximizes the total reported value because all three bidders place truthful bids for their

desired items. The bids of v1 + v2 cannot be winning due to the tie-breaking rule, which

choses an assignment that maximizes the number of winners.

The revenue is at least as large as that from the Vickrey auction because winning bids

are truthful and the core prices for each bidder are bounded below by the Vickrey price

pV (v) by Lemma 1.

The payoffs are also in the core with respect to the true values because only the optimal

assignment (with respect to the true values) can be winning and prices are sufficiently high.
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In particular, if bidder 3 wins then the only binding constraint in both C(b) and C(v) is

p3 ≥ v1 + v2. If bidders 1 and 2 win, then the relevant constraints for C(b) are:

p1 + p2 ≥ v3

p1 ≥ max{b2A, v2, b2AB, v3} − v2

p2 ≥ max{v1, b1B, b1AB, v3} − v1.

These constraints are more restrictive than the constraints for C(v), which are p1+p2 ≥ v3,

p1 ≥ max{v2, v3} − v2 and p2 ≥ max{v1, v3} − v1. Therefore, payments in our equilibria

satisfy the constraints for C(v).

The equilibria are ex-post equilibria for two reasons. First, bidder 3 has a dominant

strategy to bid truthfully, so he can never regret his bid. It is a best-response regardless of

the other players’ actions. Second, the only incomplete information from the perspective

of bidders 1 and 2 is v3, so their strategies already optimize against the other local bidder.

Regardless of the realization of bidder 3’s bid, bidders 1 and 2 are playing best responses.

The bidder that receives a payoff of zero can only lose if he lowers his bid and cannot pay

less when winning. The other local bidder pays the lowest possible price (since the other

pays his full value) for his desired item, so he has no incentive to deviate. Therefore, the

equilibria are ex-post equilibria. �
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