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River sharing and water trade

Abstract

We analyse river sharing games in which a set of agents located along a river shares

the available water. Using coalition theory, we find that the potential benefits of

water trade may not be sufficient to make all agents in the river cooperate and

acknowledge property rights as a prerequisite for trade. Specifically, a complete

market for river water may not emerge if there are four or more agents along the

river. Instead, a partial market may emerge where a subset of agents trades river

water, with the possibility that other agents take some of the river water that

passes their territory.

Keywords: river sharing; water trade; market emergence; property rights; coali-

tion stability
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1 Introduction

With complete markets and price-taking behaviour, trade leads to an efficient allocation

of resources. For some goods or resources the complete markets assumption is not satis-

fied because property rights are not defined or because some agents cannot participate

in the market. In such cases, where complete markets will not emerge, the allocation

of resources is not efficient. For instance, when property rights are not enforced, some

agents may opt for coercion and grab resources from others. Since Haavelmo (1954),

such settings have been analysed using a variety of approaches (e.g. Bush and Mayer,

1974; Buchanan, 1975; Skaperdas, 1992; Muthoo, 2004; Piccione and Rubinstein, 2007).

Here, we focus on river sharing, a setting where inefficient allocation is commonplace,

precisely because of the lack of well-defined property rights. In transboundary rivers,

water rights are usually contested and grabbing of river water occurs as a result (Ansink

and Weikard, 2009). River sharing games consist of a unidirectional water body and

a set of agents, located along the river who abstract water for beneficial use, such as

irrigation (cf. Ambec and Sprumont, 2002; Van den Brink et al., 2012). We argue that

the structure of river sharing obstructs the formation of property rights and thereby

the emergence of markets for river water (Wang, 2011). The key reason is that the

unidirectionality of water flow dictates that upstream agents have the opportunity to

take any available water from the river. In absence of well-defined property rights, they

also have the power to do so.

We will see that the potential benefits of water trade may not be sufficient to make all

agents in the river cooperate and acknowledge property rights as a prerequisite for trade.

Instead, partial markets may emerge where a subset of agents trades river water, with

the possibility that other agents take some of the river water that passes their territory.

We interpret such a subset as a ‘coalition’, whose members mutually acknowledge the

property rights to river water. Therefore we can use the tools of coalition theory to

analyse equilibria of the river sharing game. Specifically, we model the emergence of a

market for river water using a two-stage open-membership cartel game, commonly used

in the literature on International Environmental Agreements (IEAs) (cf. Carraro and

Siniscalco, 1993; Barrett, 1994). At stage 1 of this game, agents announce whether or

not they join the coalition and, given these decisions, at stage 2, the coalition members

and singletons choose their water use levels. To assess (internal and external) stability
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of the resulting coalitions (cf. D’Aspremont et al., 1983), we have to adapt the standard

IEA model for two distinct features of the river sharing setting. First, our model has

a spatial structure due to the agents being ordered along the river. Water cannot be

transported upstream and any water to be delivered to a downstream coalition member

via the territory of an intermediate singleton can be seized. We refer to this as leakage.

Second, different from the cases discussed in most of the IEA literature, water is not a

public good. Its use is rivalrous. While water is excludable within an agent’s territory,

its trade is hampered as long as property rights are not acknowledged.

Two recent papers are closely related to ours. Ambec and Ehlers (2008) analyse river

sharing as a cooperative game with externalities, focussing on distributions of river water

that result from two doctrines on international river sharing. In this paper, we do not

constrain ourselves to specific river sharing doctrines but rather assess whether trade in

river water emerges at all. A second related study is by Gengenbach et al. (2010), who

assess the formation and stability of coalitions for water pollution abatement along a

river. The abatement game they study is similar to a standard public goods game, but

has a spatial structure. Remarkably, coalition stability is not impacted by the spatial

(linear) structure when compared with standard IEA games, except for cases with corner

solutions. In this paper, we use a similar approach to analyse river sharing, focusing on

water quantity rather than quality. Differences in results arise, however, because water

use is rivalrous whereas abatement of water pollution is not.

We have three main results. In Theorem 1 we characterise the equilibria of the river

sharing game and, hence, provide insights into the formation and stability of coalitions

for river sharing and the emergence of trade in river water. In Theorem 2 we show

that there is no leakage in equilibrium. In Theorem 3 we show that large coalitions

are not necessarily stable, which implies partial rather than complete markets for river

water. Specifically, our results show that a coalition with more than three agents may

not be stable. As a result, an inefficient allocation of water may result. Note that these

results are derived for the particular setting of river sharing, but apply more broadly

to settings where both trade and coercion take place (Houba and Weikard, 2009). Our

paper contributes to explaining the small number of participants in most river sharing

agreements (Dinar, 2007). In the setting of our paper, such agreements are the contracts

that are signed by coalitions to define water rights. We will discuss this issue briefly in

the closing section.
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The paper proceeds as follows. In Section 2 we introduce the river sharing game.

In Section 3 we present our main results. In Section 4 we provide an example of an

unstable grand coalition which proves our main result and illustrates that markets for

river water may fail to emerge. In Section 5 we conclude.

2 The river sharing game

2.1 Preliminaries

Consider a set N of n ≥ 2 agents ordered along a river. Agent 1 is the most upstream

and n the most downstream; agent i is upstream of j whenever i < j. Ui ≡ {1, 2, . . . , i−
1} denotes the set of i’s upstream predecessors, while Di ≡ {i+ 1, i+ 2, . . . , n} denotes

the set of i’s downstream followers. On the territory of each agent, the total amount

of water in the river increases by inflow ei ≥ 0, which originates from e.g. rainfall and

tributaries. Each agent i abstracts xi ≥ 0 units of water from the river. We assume

that all abstracted water is used. The amount of water available to an agent depends on

water use by upstream agents. Let the total available water on the territory of agent i

be denoted by

Ei ≡ ei +
∑
j∈Ui

(ej − xj). (1)

Water use cannot exceed availability:

xi ≤ Ei, ∀i ∈ N, (2)

but some amount ui ≥ 0 of available water may be left in the river and so is unused:

ui ≡ Ei − xi, (3)

Benefits bi(xi) of water use—benefits net of abstraction costs—are strictly concave.

We assume that bi(xi) is differentiable for all xi ≥ 0. Denote by x̂i the satiation point

of water use for agent i such that b′i(x̂i) = 0. Without loss of generality (Ambec and

Ehlers, 2008, Remark 2) we assume water scarcity by taking satiation points as weakly

larger than inflow for all agents:
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Assumption 1. x̂i ≥ ei ∀i ∈ N .

Agents maximize their benefits of water use and may increase these benefits by

trading water with others. Water trade implies that water is shared such that the total

benefits of water use of the trading agents is maximized (Wang, 2011), given that other

agents may take some of the river water that passes their territory. This type of trade

is often institutionalized in a river sharing agreement that defines the property rights to

water as well as compensation for water sharing.

We model the emergence of such agreements as a two-stage open-membership cartel

game as is common in the literature on IEAs. In stage 1, each agent decides whether

or not to sign the agreement. We denote this choice by σi ∈ {0, 1}, where σi = 0 and

σi = 1 mean that i is a non-signatory or a signatory, respectively. The choices of all

agents result in a coalition structure σ = (σ1, σ2, . . . , σn) which corresponds to a set of

signatories S = {i|σi = 1}. We refer to this set as the ‘coalition’ and to signatories as

‘members’. In stage 2 of the game, both members and singletons choose their water use

levels xi. Coalition members choose their water use level in order to maximise coalition

payoff and do so by distributing their available water to the downstream members with

the highest marginal benefits, provided this is possible and profitable. Singletons choose

their water use levels in order to maximise individual payoffs by using all available water

up to their satiation point.

We will say that a coalition S with coalition structure σ is ‘connected’ if for all

i, k ∈ S (that is, σi = σk = 1) there does not exist j /∈ S (that is, σj = 0) with

i < j < k. Furthermore, it is useful to refer to the partition of the coalition S that

consists of its largest connected subsets as the ‘components’ of S. We denote the set

of these components by C(S), whose elements T ∈ C(S) are the coalition components.

For example, a river sharing game with 6 agents and a coalition S = {1, 2, 4, 5} has two

coalition components {1, 2} and {4, 5}. If a coalition passes water from one component

to another, it may be affected by ‘leakage’. Leakage occurs when intermediate singletons

seize some or all of this passing water, if they are not satiated.

Formally, leakage li(ui) consists of member i’s unused water ui that does not reach

the next downstream member k = min(S ∩Di):

li(ui) ≡ min

(
ui,

∑
i<j<k

(x̂j − ej)

)
, i, k ∈ S, k = min(S ∩Di). (4)
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Obviously, leakage cannot occur between neighbouring members. The amount of water

received by coalition member k from his nearest upstream member i, is rk(ui) ≡ ui −
li(ui). That is, the amount of water passed from i to k equals the amount of water

unused by i minus leakage (the water used by intermediate singletons). We have

rk(ui) =

{
0 for 0 ≤ ui ≤

∑
i<j<k(x̂j − ej)

ui −
∑

i<j<k (x̂j − ej) for ui >
∑

i<j<k(x̂j − ej).
(5)

Equation (5) shows that received water rk(ui) is a piecewise function of unused upstream

water, with positive amounts only if all intermediate singletons are satiated. Note that

for i, k ∈ S with k = min(S ∩Di), we have Ek = ek + rk(ui) = xk + uk.

Water sharing is severely constrained by leakage. In Section 3 we will see that leakage

may obstruct the emergence of water trade when gains from trade are insufficient to

satisfy intermediate players’ demands.

2.2 Optimal river sharing

At stage 2 of the game, given a coalition S, water use decisions are taken. The solution

of this subgame is a Partial Agreement Nash Equilibrium (Chander and Tulkens, 1995,

1997). In the river setting, this equilibrium can be found using a backward induction

algorithm, analogous to Ambec and Ehlers (2008).

We interpret the river sharing game as an extensive form game in which the players

are the coalition and the |N | − |S| singletons. The nodes of play in this extensive game

are given by the coalition components and singletons. Formally, let {T ∈ C(S)∪N \S}
be the ordered set of nodes in the extensive game, where each element Ti of this set is

either a coalition component or a singleton and Ti is upstream of Ti+1. Each sub-game

starts at an initial node and consists of any available water and subsequent downstream

nodes. For singletons, optimal water use is given by maximisation of their individual

payoff. For coalition components, optimal water use is given by maximisation of the

coalition payoff, which implies that optimal water use of each coalition component takes

into account its effect on the benefits of all coalition members in downstream coalition

components. The solution to this game is found by calculating the optimal water use

in the (sub)game starting with the first node of the extensive game, and subsequent

optimal decisions in downstream nodes. Uniqueness of the resulting equilibrium follows
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from the strict concavity of bi(xi).

As we consider river sharing games with one coalition only, the algorithm can be

simplified for both singletons and coalition members. It is straightforward to verify that

optimal water use x∗i (S,Ei) of singletons i /∈ S solves

max
xi(S,Ei)

bi
(
xi(S,Ei)

)
. (6)

That is, each singleton maximises his individual benefits of water use, subject to water

availability. Note that, by Assumption 1, programme 6 is equivalent to x∗i (S,Ei) =

min {x̂i, Ei}. Optimal water use by coalition members is slightly more involved because

decisions by the coalition are made by components, not by individual members. This is

just a technical difference (i.e. consecutive nodes in an extensive game require decisions

by different players in the game), and can be resolved by re-interpreting each coalition

member as a separate component. Doing so, given that coalitions may consist of more

than one component, each with one or more members, optimal water use x∗i (S,Ei) of

coalition members i ∈ S solves

max
xi(S,Ei)

bi
(
xi(S,Ei)

)
+
∑

j∈Di∩S

bj

[
x∗j

(
S,Ej

(
xi(S,Ei)

))]
. (7)

Solving programme 6 and programme 7 for respectively all singletons and coalition

members yields the equilibrium levels of water use for all agents, denoted x∗ = (x∗1, .., x
∗
n).

Using (e1, .., en) we obtain the equilibrium available water, E∗i ≡ ei +
∑

j∈Ui
(ej − x∗j),

and the equilibrium unused water, u∗i = E∗i − x∗i , for each agent.

2.3 Stability

In Section 2.2 we established for every coalition structure a unique vector of water use

levels x∗. Each x∗ induces a partition function v(S) that establishes the coalition payoff

and individual payoffs to singletons. Singletons’ payoffs equal the benefits of water

use and are denoted by vj(S) = bj(xj(S,Ej)), j /∈ S. Coalition payoffs are vS(S) =∑
i∈S bi(xi(S,Ei)) and may be redistributed among coalition members. The partition

function in combination with a sharing rule induces a valuation function that gives a

payoff vector (vi(S))i∈N for all S ⊆ N . We assume that the coalition uses a sharing rule

7



for distributing the coalition payoff that satisfies the Claim Rights Condition (Weikard,

2009), if this is possible:

Condition 1 (Claim Rights Condition). We have vi(S) ≥ vi(S−i) if and only if vS(S) ≥∑
i∈S vi(S−i) for all i ∈ S and all S ⊆ N .

Condition 1 says that a coalition member receives at least his outside option payoff

(his ‘claim’) if and only if the coalition payoff is large enough to satisfy all claims.

At stage 1 of the coalition formation game, we are interested in analysing Nash

equilibria. A Nash equilibrium at the coalition formation stage is found by applying

the concepts of internal and external stability (D’Aspremont et al., 1983). A coalition

is internally stable when no coalition member i ∈ S wants to leave the coalition; it is

externally stable when no singleton j /∈ S wants to join the coalition:

Condition 2 (Internal stability). vi(S) ≥ vi(S−i) ∀i ∈ S.

Condition 3 (External stability). vj(S) > vj(S+j) ∀j /∈ S.1

It is clear that no coalition member has an incentive to leave the coalition under any

sharing rule that meets Condition 1, provided the coalition payoff exceeds the sum of

claims. Internal stability is therefore guaranteed whenever it can possibly be obtained.

Note that the two stability concepts are linked (Weikard, 2009, Lemma 1):

Lemma 1. Under Condition 1, a coalition S is externally unstable if and only if there

exists j ∈ N \ {S} such that coalition S+j is internally stable.

We will invoke Lemma 1 in Section 3 as it allows to focus on internal stability only.

2.4 Two benchmark situations

Using programmes 6 and 7 and the stability conditions identified above, we first present

two extreme benchmark situations, All Singletons and the Grand Coalition.

In the All Singletons benchmark, the coalition structure is σ = (0, . . . , 0) so that

S = ∅ and programme (6) applies to all agents. Each agent only takes into account his

individual benefits in choosing his water use, constrained only by water availability. The

1Note that we use a strict inequality sign, which implies that an agent will always join the coalition
if he is indifferent between joining or not.
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equilibrium of this game is found by applying programme (6) recursively to each agent,

starting upstream with agent 1 who solves the programme subject to x1 ≤ E1 = e1.

His water use x1(∅, E1) determines E2 according to (1) and the allocation to agent 2 is

found by solving the programme subject to x2 ≤ E2 = e1 + e2 − x1(∅, E1), and so on.

We call this equilibrium the All Singletons equilibrium.

Remark 1. Because by Assumption 1 we have x̂i ≥ ei ∀i ∈ N , application of pro-

gramme (6) implies that x̂i ≥ xi(∅, Ei) = ei ∀i ∈ N and therefore Ei = ei ∀i ∈ N .

Hence, by Assumption 1, in the All Singletons equilibrium there exists no water passing,

and agents are only satiated in case Assumption 1 holds with equality.

In the Grand Coalition benchmark, the coalition structure is σ = (1, . . . , 1) so that

S = N and programme (7) applies to all agents. Each agent takes into account his

individual benefits as well as benefits to all downstream agents in choosing his water

use. Unlike in the All Singletons benchmark, the equilibrium water use of agent i

depends on downstream marginal benefits. The equilibrium of this game is found by

solving the sub-game starting with agent 1, who takes into account subsequent decisions

by downstream agents. We call this equilibrium the Grand Coalition equilibrium.

Remark 2. Marginal benefits in the Grand Coalition equilibrium decrease (weakly) when

moving downstream (Ambec and Sprumont, 2002). (Weakly) decreasing marginal bene-

fits are caused by the water availability constraint (2). The Grand Coalition is efficient

and corresponds to the efficient allocation due to downstream bilateral trading as de-

scribed by Wang (2011).

Clearly, given the difference between the two maximisation programmes (6) and (7),

water use levels in the grand coalition are different from those in the All Singletons

benchmark. In general, water is efficiently allocated in the Grand Coalition because

water is passed from agents with low marginal benefits to agents with higher marginal

benefits subject only to the water availability constraint (2). Only for agents 1 and n we

can generally establish differences in water use between the All Singletons and Grand

Coalition equilibria. Irrespective of marginal benefits we have x1(N,E1) ≤ x1(∅, E1) and

xn(N,En) ≥ xn(∅, En). That is, water use by agent 1 in the Grand Coalition is weakly

lower than his water use in the All Singletons benchmark, while the reverse holds for

agent n.
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3 River sharing agreements

A priori there is no reason why either the All Singletons or the Grand Coalition would

result as an equilibrium of the river sharing game. Some agents in the Grand Coalition

may prefer to free-ride (internal instability) while some singletons may prefer cooperation

to the All Singletons benchmark (external instability). Hence, we now turn to the

analysis of partial markets for river water using the tools of coalition theory. We analyse

coalition stability by applying the stability concepts introduced in Section 2 and using

the equilibrium water use levels determined by programmes (6) and (7). This allows us

to derive our three main results. Theorem 1 provides the equilibrium properties of river

sharing games. Theorem 2 establishes that stable coalitions do not suffer from leakage.

Finally, Theorem 3 shows that large coalitions are not necessarily stable, which implies

partial rather than complete markets for river water.

3.1 Equilibrium properties

The following lemma presents two causal relations between water passing and the

amount of water received, which helps to prove Theorem 1, introduced below.

Lemma 2. For i, k ∈ S with k = min(S ∩Di), in equilibrium we have

ui = 0 ⇐⇒ rk(ui) = 0,

ui > 0 ⇐⇒ rk(ui) > 0.

Proof. By (7) and given that x̂i ≥ ei ∀i ∈ N (see Assumption 1), it is never optimal

for coalition member i to leave a positive amount of unused water ui : 0 < ui ≤∑
i<j<k (x̂j − ej) that does not meet the leakage threshold, see (5). By (6), singletons

j : i < j < k will use all this water so that rk(u′i) = 0. No water reaches the next

downstream coalition member k. It follows immediately that rk(ui) = 0 implies ui = 0

and that ui > 0 implies rk(ui) > 0. By (5) we have that ui = 0 implies rk(ui) = 0 and

that rk(ui) > 0 implies ui > 0.

Lemma 2 states that the coalition passes water if this is beneficial to the coalition and

otherwise not. One consequence of the second part of Lemma 2 is that whenever ui > 0,

we know that ui > li(ui) and that any singleton j with i < j < k must be satiated so
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that xj = x̂j. Note that leakage does not necessarily prevent formation of coalitions or

destabilise cooperation within the coalition. As long as leakage is sufficiently small there

are gains from water trade by forming a coalition. Water passing has implications for

the payoffs to both coalition members and singletons. Suppose that, given a coalition S,

there exists a singleton j /∈ S and members i, k ∈ S with k = min(S ∩ Di) such that

i < j < k. In case ui = 0, member k does not receive any water from i even though

this may have increased the coalition payoff. Hence, the components that members i

and k belong to do not increase their payoff beyond the sum of what these components

can achieve individually. In case ui > 0 and rk(ui) > 0, the components that members i

and k belong to increase the coalition payoff through the delivery of water from i to k. In

addition, the singleton j benefits from this water passing, if he was not satiated before.

Lemma 2 suffices to establish the following theorem which is inspired by Kilgour and

Dinar (2001). The theorem describes equilibrium properties of the river sharing game,

in terms of the marginal benefits of water use and water passing.

Theorem 1. Consider any coalition S ⊆ N with i, k ∈ S such that k = min(S ∩ Di).

Exactly one of the following statements is true.

(a) b′i(xi) = b′k(xk) and rk(ui) ≥ 0,

(b) b′i(xi) < b′k(xk) and rk(ui) = 0 so that xi = Ei,

(c) b′i(xi) > b′k(xk) and rk(ui) = 0 so that xi = Ei,

Proof. Consider any coalition S ⊆ N with i, k ∈ S such that k = min{l ∈ S ∩Di}. We

establish statements (a), (b) and (c) consecutively.

Assume a water allocation vector x of the river sharing game equilibrium such that

b′i(xi) = b′k(xk) and rk(ui) ≥ 0. By programmes (6) and (7), no water is wasted up-

stream so that Ei ≤ x̂i. By programme (7) and given that b′i(xi) = b′k(xk), agent i

has no incentive to change his water use level xi, independent of possible leakage. This

establishes statement (a).

Suppose that (a) does not hold. There are two possibilities, either b′i(xi) < b′k(xk) or

b′i(xi) > b′k(xk). We analyse both cases, starting with the first.

Assume a water allocation vector x of the river sharing game equilibrium such that

b′i(xi) < b′k(xk) and xi = Ei. By programmes (6) and (7), no water is wasted upstream
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so that Ei ≤ x̂i. Pick ε > 0 with ε < xi and consider a related vector x′ such that

x′i = xi − ε. This implies u′i = Ei − x′i = ε. By Lemma 2, u′i = ε implies rk(ui) > 0 and

any intermediate singletons are satiated so that by (7), agent i should pass water until

b′i(xi) = b′k(xk). This contradicts that b′i(xi) > b′k(xk). Hence, if b′i(xi) > b′k(xk) then

rk(ui) = 0 so that, by Lemma 2, xi = Ei. This establishes statement (b).

Next, assume a water allocation vector x of the river sharing game equilibrium such

that b′i(xi) > b′k(xk) and xi = Ei. By programmes (6) and (7), no water is wasted

upstream so that Ei ≤ x̂i. Again, pick ε > 0 with ε < xi and consider a related vector x′

such that x′i = xi − ε. This implies u′i = Ei − x′i = ε. By Lemma 2, u′i = ε implies

rk(ui) > 0. Even in the best possible case with rk(ui) = ε, because b′i(xi) > b′k(xk)

coalition payoff under x′i is lower than under xi, so that by (7) x′i cannot be optimal.

Hence, if b′i(xi) > b′k(xk) then rk(ui) = 0 so that, by Lemma 2, xi = Ei. This establishes

statement (c).

Theorem 1 outlines the importance of water availability, water passing, and leak-

age for the marginal benefits of neighbouring coalition members. Case (a) holds for

situations with or without water passing, in which water availability or leakage do not

constrain the optimal allocation of water over the two coalition members. Case (b) holds

whenever the downstream member has higher marginal benefits that cannot be realised

because leakage prevents agent i from passing water to j. This statement differs from

case (b) in the theorem by Kilgour and Dinar (2001). They have b′i(xi) < b′k(xk) and

xi = 0, whereas our condition is more general because we take leakage into account.

Note that it is not possible to have b′i(xi) < b′k(xk) with 0 < xi < Ei and rk(ui) > 0

as the latter implies that intermediate singletons are satiated so that an additional unit

of passed water would increase the coalition payoff vS. Case (c) holds whenever the

upstream partner has higher marginal benefits but cannot increase his water use due to

the water availability constraint (2).

Contrary to the Grand Coalition equilibrium—see Remark 2—marginal benefits do

not necessarily decrease (weakly) when moving downstream. By case (b) of Theorem 1,

marginal benefits may increase in case of a sufficiently large leakage threshold. Such

leakage blocks the passing of water that would have increased the coalition payoff vS.

This case (b) is the only case where leakage due to water seizing by singletons affects the

efficiency of water allocation, as case (a) describes the efficient equilibrium and case (c)
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describes inefficiency due to the water availability constraint.

All agents (weakly) prefer the river sharing game equilibrium over the All Singletons

benchmark. To see why, note that coalition members maximise the coalition payoff.

By (7), the coalition payoff is at least as large as the sum of payoffs if all coalition

members behave as singletons. By Condition 1, this assures that each coalition member

prefers the river sharing game equilibrium over the All Singletons benchmark. A related

observation can be made for singletons. In the All Singletons benchmark, each agent

uses xi = ei. In the river sharing game, the only difference for singletons is that there

may be water passing between coalition members so that leakage may increase their

water use to xi(S) > ei. Hence, singletons too prefer the equilibrium of the river sharing

game over the All Singletons benchmark.

3.2 Stable coalitions

We now turn to the stability analysis of coalitions and show how leakage is obstructing

the emergence of water trade since it limits the size of stable coalitions.

First, we show how the river sharing game differs from standard IEA games. A

common assumption in the IEA literature is that agents are identical, which allows

analytical solutions (Barrett, 1994). In this paper, this assumption would imply that

agents have identical benefit functions and water inflow, but they obviously differ in

their location along the river.

Remark 3. In a river sharing game with identical agents such that ei = e ∀i ∈ N and

bi(xi) = b(xi) ∀i ∈ N , there are no possible gains from water trade. Therefore, each

agent is indifferent between joining and not joining the coalition. By Condition (3) the

Grand Coalition forms, but this coalition is not welfare-improving.

Remark 3 says that no welfare-improving coalition will be established when agents

are identical in terms of benefit functions and water inflow. Apparently, differences in

location are not sufficient for effective cooperation to emerge. Note that there may exist

arbitrarily large coalitions in which maximisation of coalition payoff is attained through

maximisation of individual payoff by all members. The payoff vector resulting from any

of these coalitions, however, is equal to the All Singletons benchmark.

Our second main result is established in the following theorem.
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Theorem 2. In the river sharing game, there does not exist a stable coalition with

leakage.

Proof. The proof is by contradiction. Consider the stable coalition S ⊆ N and coalition

members i, k ∈ S such that k = min(S ∩ Di), and consider leakage. By (4) and

Lemma 2, leakage implies that there is a singleton j : i < j < k such that ui > 0

and rk(ui). This implies that agent j is satiated with payoff vj(S) = bj(x̂j). Now

consider coalition S+j. By super-additivity of the game, vS+j
(S+j) ≥ vS(S) + vj(S).

By Condition 1, coalition S+j is internally stable and by Lemma 1, this implies that

coalition S is externally unstable, a contradiction.

Theorem 2 indicates that leakage will not occur in equilibrium. One option is that

water-seizing singletons will always join the coalition since the forgone benefits due to

leakage are sufficient to compensate him. This option is proven for two-agent coalitions

in part (ii) of Lemma 4 below. Alternatively, leakage may prevent a coalition from being

stable. Therefore, absence of leakage in equilibrium does not imply that leakage is an

unimportant aspect of the river sharing game.

For the remaining results it is useful to introduce the following definition of effec-

tiveness.

Definition 1 (Effectiveness). Coalition S is effective for agent k ∈ S if and only if, for

i = max{l ∈ S ∩ Uk} we have rk(ui) > 0.

Effectiveness refers to member k receiving water from the nearest upstream coalition

member. It allows us to distinguish between two types of claims cj, see Condition 1, as

established in the following lemma.

Lemma 3. Claim cj by agent j in coalition S ⊆ N is either low, cLj , or high, cHj . We

have cLj = bj(ej) and cHj = bj(x̂j).

Proof. A claim by agent j in coalition S ⊆ N is based on his outside option payoff which

he would receive under coalition S−j. Clearly, if agent j is either the most upstream or

most downstream member of S, then by programmes (6) and (7), no water is wasted

upstream, so that agent j has a low claim cLj = bj(ej).

Next, consider the remaining case where agent j is not the most upstream or down-

stream member of S. Consider coalition members i and k with i < j < k and such
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that i = max{l ∈ S ∩ Uj} while k = min{l ∈ S ∩ Dj}. In words, there are no other

coalition members located between i and j nor between j and k. Consider coalition S−j.

There are two options. If ui = 0, because no water is wasted upstream, Ej = ej so that

agent j has a low claim cLj = bj(ej). If ui > 0, then by Lemma 2 we have rk(ui) > 0 and

therefore Ei > x̂i, so that agent j has a high claim cHj = bj(x̂j).

Lemma 3 states that agent j has a high claim only when coalition S−j is effective

for agent k, who is the nearest downstream coalition member. Otherwise, agent j has a

low claim. The following lemma shows that coalitions of various types are all internally

stable.

Lemma 4. The following is true:

(i) Every two-agent coalition is internally stable.

(ii) For every two-agent coalition S = {i, k} with i < k and S is effective for k, it

holds that S ′{i, i+ 1, ..., k − 1, k} is internally stable.

(iii) Every three-agent coalition is internally stable.

Proof. The proof is for each part separately.

Part (i): This follows immediately from super-additivity of the game.

Part (ii): By effectiveness of S for k we have rk(ui) > 0 and all singletons j such that

i < j < k are satiated. By Part (i) we know that S is internally stable such that claims

of agents i and k are satisfied. We can now add any agent j such that i < j < k and by

super-additivity vS+j
(S+j) ≥ vS(S) + vj(S). Because claims in S do not change when j

joins, super-additivity is sufficient to guarantee internal stability of S+j. The argument

can be repeated for all j ∈ {i+ 1, ..., k − 1}.
Part (iii): Consider coalitions S = {i, j, k} and S ′ = {i, k} with i < j < k. There

are two cases. If S ′ is not effective for k, then rk(u′i) = 0, which implies that claims

are cLi , c
L
j , c

L
k . By super-additivity these claims can be met by S such that the internal

stability Condition 2 holds. If S ′ is effective for k, then rk(u′i) > 0, which implies that

claims are cLi , c
H
j , c

L
k . Since vj(S

′) = cHj and by super-additivity these claims can be met

by S such that the internal stability Condition 2 holds.

15



Combining parts (i) and (iii) of Lemma 4 with Lemma 1, we have that every one-

agent (i.e. All Singletons) and every two-agent coalition is externally unstable.

The arguments used in the proof of Lemma 4 do not generalise to larger coalitions.

The reason is that the sum of claims of the intermediate coalition members (i.e. those

coalition members that are not the most upstream or downstream member of S) may

be too high for the coalition to compensate. By Condition 1, this implies that internal

stability is not satisfied. Specifically, such a situation may arise if (i) the coalition S

consists of more than three agents, (ii) the claims of the intermediate members are high

(Lemma 3), and (iii) the coalition S ′ = {min{S},max{S}}, is not effective for max{S}
(part (ii) of Lemma 4). This result is established in the following theorem.

Theorem 3. In the river sharing game, a coalition S of at least four agents is not

necessarily internally stable.

Proof. The proof is by providing an example of a four-agent coalition that is internally

unstable even if the sharing rule satisfies the Claim Rights Condition 1. The example

is provided in Section 4.

4 Example of an unstable Grand Coalition

In this section we develop an example that proves Theorem 3. We will show that a

coalition of more than three agents may not be internally stable and, hence, that there

is no guarantee that a river sharing agreement would include all agents in the river.

In other words, water trade may fail to emerge or may not reach efficient levels such

that some gains from trade remain unexploited. We construct our example using the

three conditions identified at the end of Section 3.2. That is, we consider a river sharing

game with four agents and the Grand Coalition S = N = {1, 2, 3, 4}. We choose our

parameter values such that both the claims of the intermediate members are high and

the coalition {1, 4} is not effective. Clearly, if {1, 4} were effective, then by part (ii)

of Lemma 4, N is stable and the river sharing agreement would cover all four agents.

Given that {1, 4} is ineffective, the condition of high claims for intermediate members

assures that the overall gains from water trade are insufficient to satisfy all claims.
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We construct our example using the following quadratic benefit function:

bi(xi) =
1

s2i
·
(
2sixi − x2i

)
. (8)

The si parameter in Equation 8 is equal to the satiation level of agent i so that si = x̂i.

In addition, independent of this parameter, the satiation benefits are normalised to one

so that bi(si) = 1.

The parameter values for ei and si in our example are provided in Table 1.

Table 1: An example river sharing game with four agents: levels of inflow, satiation
points, and marginal benefits for the All Singletons benchmark.

i ei si b′i(ei)

1 2.00 3 0.22
2 0.75 1 0.50
3 0.75 1 0.50
4 0.55 1 0.90

Column 4 of Table 1 indicates that there are potential gains from water trade. Water

used by agent 1 can be profitably passed to agents 2–4 in order to increase the total

benefits of water use. In the Grand Coalition, the marginal benefits of water use can

be equalised among all agents, which raises the total benefits of water use from 3.56

to 3.68.

We proceed by comparing coalition {1, 3, 4} and the Grand Coalition which suffices

to prove Theorem 3. Consider coalition {1, 3, 4}. For this coalition we obtain the

equilibrium water allocation x = (1.40, 1.00, 0.82, 0.82) with coalition payoff v{1,3,4} =

0.72 + 0.97 + 0.97 = 2.65. Singleton agent 2 benefits from leakage and is completely

satiated at x2 = s2 = 1. This coalition is effective for agent 3 (but note that part (ii)

of Lemma 4 does not apply here) since v{1} + v{3,4} = 2.64 < 2.65 = v{1,3,4}. That

is, if the coalition would not deliver water to agent 3, the coalition payoff would be

lower. Therefore, agent 2 has a high claim in the Grand Coalition, which equals cH2 =

b2(x̂2) = 1. A similar argument can be made for coalition {1, 2, 4}, which establishes

that agent 3 has a high claim in the Grand Coalition, which equals cH3 = b3(x̂3) = 1.

Agents 1 and 4 have low claims in the Grand Coalition, since no water can be wasted

by others to their use (see proof of Lemma 3). Their claims equal cL1 = b1(e1) = 0.89
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and cL4 = b4(e4) = 0.80. Hence, the sum of claims is 0.89 + 1 + 1 + 0.80 = 3.69.

Next consider the Grand Coalition. The optimal water allocation is achieved when

the cheap water from upstream agent 1 is delivered to agent 4. The resulting water

allocation is x = (1.54, 0.84, 0.84, 0.84) and the coalition payoff is vN = 0.76 + 0.97 +

0.97 + 0.97 = 3.68. The Grand Coalition payoff (3.68) is insufficient to meet the sum of

claims (3.69) and, hence, the Grand Coalition is not stable. Inflow, passed water, and

water use for coalitions {1, 3, 4} (with and without water passing and leakage) and the

Grand Coalition are illustrated in Figure 1.

S = {1, 3, 4}
r3(u1) > 0

S = {1, 3, 4}
r3(u1) = 0

S = N

vS = 2.65 v1 + v3,4 = 2.64 vS = 3.68

x1

x2

x3

x4

e1

e2

e3

e4

u1

u2

u3

1.40

1.00

0.82

0.82

2.00

0.75

0.75

0.55

0.60

0.35

0.27

2.00

0.75

0.65

0.65

2.00

0.75

0.75

0.55

0

0

0.10

1.54

0.84

0.84

0.84

2.00

0.75

0.75

0.55

0.46

0.38

0.29

Figure 1: Inflow, passed water, and water use for S = N and S = {1, 3, 4} (with and
without water passing and leakage); nodes are agents and arrows indicate water flows.
Note that the numbers for water use provided may not sum to total available water∑

i∈N ei = 4.05 due to rounding.

5 Conclusion

In this paper we have established that the potential benefits of water trade in trans-

boundary rivers may not be sufficient to make all agents in the river cooperate and
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acknowledge property rights as a prerequisite for trade. One of our main results shows

that such leakage does not occur in equilibrium. In addition, we identify the equilibrium

properties of river sharing games and we find that large coalitions are not necessarily

stable. This implies that partial markets are more likely to emerge, in which a subset

of agents trades river water, while others choose not to join such an agreement.

Given that river water is not a public good, one would expect transboundary trade in

river water to emerge spontaneously. In this paper we show that this is not necessarily

true, mainly due to the constraints imposed by unidirectional river flow. Our results

help to explain the predominance of ‘small’ river sharing agreements in transboundary

rivers and the difficulties often seen in negotiations on river sharing agreements. For

example, whereas only 66% of international river basins are shared by two countries,

more than 85% of agreements listed in the International Freshwater Treaties Database

are bilateral.2 While the failures of river sharing negotiations have often been explained

using arguments based on political feasibility (LeMarquand, 1977; Dinar, 2000), in this

paper we show that ‘large’ agreements may be unattractive from (some) individual

countries’ perspective. Our results put recent research on river sharing in a broader

perspective and demonstrate that the benefits of cooperative water use may not be

reaped easily.
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