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Abstract

This paper develops a fairly general model of platform competition in media markets allowing

viewers to use multiple platforms. This leads to a new form of competition between platforms, in

which they do not steal viewers from each other, but affect the viewer composition and thereby the

resulting value of a viewer for the other platform. We label this form of competition “either or both.” A

central result is that platform ownership does not affect advertising levels, despite nontrivial strategic

interaction between platforms. This result holds for general viewer demand functions and is robust to

allowing for viewer fees. We show that the equilibrium advertising level is inefficiently high. We also

demonstrate that entry of a platform leads to an increase in the advertising level if viewers’ preferences

for the platforms are negatively correlated, which contrasts with predictions of standard models with

either/or competition. We validate this result in an empirical analysis using panel data for the U.S.

cable television industry.
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1 Introduction

This paper studies the incentives to provide advertising opportunities in markets served by competing

media platforms. Broadcasting Networks (such as ‘CNN’ and ‘Fox News’) and online advertising networks

(such as the ‘Google’ and ‘Facebook’ ad-networks) are among the most prominent examples.

The traditional frame in media economics posits that viewers have idiosyncratic tastes about media

platforms, and stick to those they like best.1 This is an appropriate assumption in some domains. For

example, a recurrent theme in the market for news is that viewers and readers hold beliefs that they like

to be confirmed (Mullainathan and Shleifer, 2005). News providers cater to these preferences by slanting

stories towards these beliefs. Competition for viewers in this market segment is likely to take place in

what we call an either/or fashion, that is, viewers watch either one or the other channel. Broadcasters

fight for an exclusive turf of viewers and for the stream of advertising dollars that comes with them.

In a lot of other domains, though, consumers may like a particular category of content, e.g., sports

events or movies, and choose to follow these programs on whichever network broadcasts them. Competi-

tion for viewers in this world is likely to take place in what we call an either/both fashion, that is, viewers

watch either one or both channels (or abstain from viewing at all). Here, broadcasters try to get viewers

who are also watching the other channel, i.e., channels compete for shared viewers.

The distinction between either/or or either/both competition arises partly from consumers’ prefer-

ences, but partly from advertising practices. For instance for short enough periods of time, it is a good

approximation that every viewer watches just one channel. So for those advertisers who only want to

broadcast commercials between say 8pm and 9pm on Fridays, for all practical purposes any viewer is an

exclusive viewer of some broadcaster, implying that channels engage in either/or competition. However,

consider advertisers that want to reach viewers of professional football games on different evenings during

the course of a week. Then it is likely that a lot of viewers will watch many of these broadcasts, implying

that TV channels broadcasting the events engage in either/both type competition.

Given that the economics literature, both on media markets and more generally, primarily focused

on pure either/or competition, in this paper we investigate the opposite end of the spectrum: pure

either/both competition. In particular, we assume that consumer demand for one channel (in jargon:

platform) does not affect the demand for another platform. So instead of assuming mutual exclusivity,

we assume mutual independence. Besides being a clear theoretical benchmark, that results from the

previous literature can be contrasted with, the assumption of viewer demand independence is also a good

approximation of reality in some contexts. An example is competition between online ad-networks such

as the Google advertising network and the Facebook advertising network, which bring together a large

number of content publishers and service providers. As long as the choice of electing Facebook as one’s

provider of social networking services does not interact with the choice of using the NewYorkTimes.com

as one’s primary news media outlet, there is mutual independence on the user side.

A question that naturally comes to mind is if there is competition at all in such a framework of

independent viewer demands. The answer is yes, because a change in the viewership of one platform

changes the composition of viewerships on the other platform, in particular the fraction of the other

1See for example Anderson and Coate (2005) and several follow-up papers. We provide a detailed literature review in
the next section.
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platform’s viewers who watch both channels. An important component of our model is that these

“multi-homing” viewers are less valuable for competing platforms than exclusive ones, as an overlapping

viewer can be reached by an advertiser through both platforms. Hence, there is a positive probability

that the viewer has become aware of an advertiser’s product on the other platform, and so platforms can

only charge the incremental value of reaching these viewers via a second platform. By contrast, platforms

are monopolists with respect to selling advertising opportunities reaching their exclusive viewers, and can

extract the full surplus for these transactions from advertisers.2 Because of this, changes in the ratio

of single-homing versus multi-homing viewers of a platform can change the trade-off that the platform

faces when marginally increasing advertising level, between gains in the extensive margin and losses in

the intensive margin. This in general changes the optimal advertising level decision of the platform.

This paper provides a conceptual framework to analyze either/both competition. The framework

allows us to analyze questions about viewer composition and its competitive effects, which is by definition

not possible in previous papers. We are then able to draw conclusions on how competition changes the

viewer composition of a channel and what are the implications for social welfare. In particular, we

address a series of questions in this new framework: Will market provision lead to excessive advertising

levels in the either/both framework? How does the ownership structure of broadcasting impact market

outcomes? How does entry affect the incentives of incumbent firms? Can viewer charges improve the

market outcome?

An additional motivation for conducting this analysis is that the traditional either/or framework

exhibits problems in answering some of the above questions in a way that matches empirical regularities.

For example, the wave of channel entry at the end of the 1990s in the cable TV industry came with an

increase of advertising levels per hour of programming in some channels but with a decrease in others.

However, in the either/or framework, competition unambiguously decreases ad levels as networks try

to woo viewers back from their rivals. Similarly, most industry observers state that there is excessive

broadcasting of commercials relative to the welfare optimal level. However, if there is fierce competition

between channels, the either/or framework predicts that there is too little advertising relative to the

socially optimal amount.

To answer the questions raised above and to resolve the puzzles posed by the traditional framework we

present a theory of market provision of broadcasting when competition is of the either/both fashion with

general viewer demands and advertising technologies. Specifically, we deploy a model with two channels,

and a continuum of viewers and advertisers. We assume that consumers can choose whether to watch

one of the channels, or both, or neither. Consumption choices are driven by preferences over channels

summarized by a bivariate joint probability distribution. In particular, and contrary to existing models on

the traditional framework, we allow viewer preferences to be correlated any way between channels. This

allows us to capture many different situations with regard to channel content. In particular, observing

2That multi-homing viewers are worth less to advertisers is consistent with the empirically well-documented fact that
the per-viewer fee of an advertisement on programmes with more viewers is larger. In the U.S., e.g., Fisher, McGowan
and Evans (1980) find this regularity. In the U.K. television market, ITV, the largest commercial network, enjoys a price
premium on its commercials, which, despite entry of several competitors, increased steadily in the 1990s. This is commonly
referred to as the ITV premium puzzle. Our model is consistent with this regularity since reaching the same number of
eyeball pairs through broadcasting a commercial to a large audience implies reaching more viewers than reaching the same
number of eyeball pairs through a series of of commercials to smaller audiences, because the latter audiences might have
some viewers in common. See Ozga (1960) for an early observation of this fact.
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that a viewer watches one channel is likely to be informative of whether the same viewer watches the

other channel.

Our framework of either/both competition yields the following results. First, competition works

differently in an either/both framework and does not affect advertising levels, i.e., the equilibrium adver-

tising level is the same if two channels compete and when they are owned by the same company. This

occurs although there is nontrivial strategic interaction between platforms. The intuition is as follows:

A monopolist can extract more rents from advertisers than competing channels can. Hence, the monop-

olist has an incentive to set a larger amount of advertising. However, the lower rent that a channel in

competition receives is due to the fact that this channel can only charge a low price for the overlapping

viewers. But this implies that a channel in competition loses less when increasing its advertising level

because some overlapping viewers switch off. Overall, these two effects balance out, leading to the same

amount of advertising in both scenarios. we show that this result carries over the any number of channels

and and ownership structure.

It is important to note that this result holds for general viewer demand displaying either/both

competition and general advertising technologies. The result is important both for theory and policy

discussion on changes in the media landscape, i.e., how to evaluate mergers of television companies. In

particular, mergers in these markets can be neutral with respect to social welfare.

Second, as long as advertisers are homogeneous enough in how much surplus they can generate by

reaching consumers, the amount of advertising in the market equilibrium is always inefficiently high.

This is because stations do not compete directly for viewers in the either/both framework. By contrast,

in the either/or framework, if competition for viewers is fierce, e.g., because channels are very alike, the

equilibrium amount of advertising is very small, leading to insufficient advertising. In the either/both

framework this effect is not present. The effect that remains and is therefore responsible for our result is

that, when choosing their advertising levels, channels do not consider viewer utility but only how viewer

behavior affects their advertising revenue. This leads to excessive advertising.

Third, due to the generality of our viewer demand function we are able to analyze how correlation of

viewer preferences affects advertising levels. This is not possible in previous models of either/or compe-

tition which either use Hotelling-style preferences implying perfectly negative correlation, or consider a

representative viewer. In our framework we obtain that the more positive the correlation between viewer

preferences, the lower the advertising level. This is because with a positive correlation the viewer com-

position consists of many overlapping viewers. By lowering the advertising level, a channel can obtain

new exclusive viewers, which are of larger value than its existing ones, implying that the channel has a

strong incentive to reduce its advertising level. Therefore, our result demonstrates that using Hotelling

preferences in the either/both competition puts an upper bound on advertising levels.

Fourth, we analyze the effect of entry on advertising. As mentioned, in the either/or framework, entry

unambiguously lowers advertising levels, which does not match empirical regularities. In the either/both

framework, we show that both an increase and a decrease in advertising levels are possible depending

on the viewer preference correlation and the advertising technology. In particular, we show that the

more negative the viewer preference correlation for the channels, the more likely it is that entry leads to

increased advertising. For example, this implies that CNN increases its advertising level after entry of

FOX News. By contrast, if the viewer preference correlation between two channels is positive, as is the

case for sports and leisure programs, entry leads to lower advertising.

Fifth, we consider the case of viewer charges. There we first show that the neutrality result carries
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over. Therefore, even if viewer pricing is possible, competition does not help change advertising levels.

Furthermore, advertising in equilibrium still tends to be inefficiently high, although channels now can

also charge viewers. The reason is that channels cannot obtain the full viewer surplus and therefore

evaluate advertising is a more important source of revenue relative to a social planner. Overall, channels

charge viewers a higher aggregate price than with only advertising. As a consequence, viewer demand

and advertiser revenue fall.

Finally, to validate our result on market entry, we use panel data for the U.S. cable television industry

from 1989-2002. As our dataset is limited, this exercise is primarily suggestive, calling attention to the

importance of a careful empirical investigation in future research.

In the above time period, a fairly large number of entries occurred, which allows us to test by a

simple empirical analysis how advertising levels of incumbent channels changed after these entry events.

In general, we find that entry is associated with an increase in the advertising level, which is compatible

with our model’s predictions but is in contrast with the predictions of either/or type models. Moreover,

when controlling for content type by looking at different categories, a more refined picture emerges. In

categories in which it is reasonable to posit a positive correlation of viewer preferences towards channels

within the category, there is no significant positive effect of entry, and point estimates of the effect tend

to be negative. These results go along the lines of the predictions of our theory.

The rest of the paper is organized as follows: Section 2 discusses the relationship with existing works.

Section 3 introduces the model and Section 4 presents the equilibrium analysis. Section 5 explores in

detail the effects of viewer preference correlation. Section 6 considers market entry. Section 7 contains

the empirical evidence and Section 8 concludes.

2 Related Literature

The traditional framework in media economics makes the assumption that viewers do not switch between

channels, but rather select the program they like most, see e.g., Spence and Owen (1977) or Wildman

and Owen (1985). These early works usually do not allow for endogenous advertising levels or two-sided

externalities between viewers and advertisers.

The seminal paper modelling the television market as a two-sided market with competition between

platforms for viewers and advertisers is Anderson and Coate (2005).3 In their model, viewers are dis-

tributed on a Hotelling line where platforms are located at the ends of the line. In line with early works,

viewers watch only one channel while advertisers can buy commercials on both channels.4 In this frame-

work, Anderson and Coate (2005) predict that the number of entering stations can either be too high

or too low compared to the socially optimal number, or that the advertising level can also be higher or

lower than the efficient one.

The basic model of Anderson and Coate has been extended and modified in several ways. For

example, Gabszewicz, Laussel and Sonnac (2004) allow viewers to mix their time between channels,

Peitz and Valletti (2008) analyze optimal locations of stations, and Reisinger (2012) considers single-

3For different applications of two-sided market models, see Rochet and Tirole (2003) or Armstrong (2006).

4In Section 5 of their paper Anderson and Coate (2005) extend the model by allowing a fraction of viewers to switch
between channels, that is, to multi-home.
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homing of advertisers. Dukes and Gal-Or (2003) explicitly consider product market competition between

advertisers and allow for price negotiations between platforms and advertisers, while Choi (2006) or

Crampes, Haritchabalet and Jullien (2009) consider the effects of free entry of platforms.

These papers do not allow viewers to watch more than one station, i.e., they assume either/or

competition, and consider a spatial framework for viewer demand. By contrast, our paper allows viewers

to watch more than one channel and analyze a much more general viewer demand system. In addition,

we allow for a general advertising technology.5

The paper that is closest to ours is Anderson, Foros and Kind (2012b).6 They also consider the case of

multi-homing viewers and, in addition, allow for endogenous platform quality. They show that with multi-

homing viewers, advertising levels increase after entry and generate different equilibrium configurations

in which either one or both sides multi-home. However, the modelling structure is very different from

ours. For example, to focus on quality choice they consider an adapted Hotelling framework developed

by Anderson, Foros and Kind (2012a), suppose that the value of overlapping viewers equals zero, and

consider linear pricing to advertisers by platforms. By contrast, we suppose that quality is fixed, but

allow for general viewer demand functions, advertising technology, and payments.

A paper that also allows for multi-homing viewers is Athey, Calvano and Gans (2011). In their model,

the effectiveness of advertising can differ for users who switch between platforms and those who stick to

one platform. This is because of imperfect tracking of users. In contrast to our model, they are mainly

concerned with different tracking technologies and do not allow for advertisements generating (negative)

externalities on viewers, which is at the core of our model.

3 The Model

The model features a mass one of heterogeneous viewers, a mass one of homogeneous advertisers, and

two platforms (or channels), indexed by i ∈ {1, 2}.

Viewer Demand

Viewers in our model are parametrized by their reservation values for channel 1 and channel 2. We

assume that a viewer of (q1, q2)-type joins channel i if and only if qi − γni ≥ 0, where ni is the amount

of ads on platform i, γ > 0 is a nuisance parameter and qi is the viewer type’s valuation for channel i

when the latter has an advertising level of 0. In the baseline case we assume q := (q1, q2) has a joint

distribution exhibiting density function h(q1, q2). Given the amount of advertising on each platform, we

can back out the demand schedules:

5A different framework to model competition in media markets is to use a representative viewer who watches more than
one program. This approach is developed by Kind, Nilssen and Sørgard (2007) and is used by Godes, Ofek and Savary
(2009) and Kind, Nilssen and Sørgard (2009). These papers analyze the efficiency of the market equilibrium with respect to
the advertising level and allow for user payments. Due to the representative viewer framework, they are not concerned with
overlapping viewers or viewer preference correlation.

6See also the survey by Anderson, Foros, Kind and Peitz (2012).
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Multi-homers: D12 ≡ Prob{q1 − γn1 ≥ 0 ; q2 − γn2 ≥ 0},
Single-homers1: D1 ≡ Prob{q1 − γn1 ≥ 0 ; q2 − γn2 ≤ 0},
Single-homers2: D2 ≡ Prob{q1 − γn1 ≤ 0 ; q2 − γn2 ≥ 0},

Zero-homers: D0 ≡ 1−D1 −D2 −D12.

To ensure uniqueness of the equilibrium and interior solutions we need to assume that the demand

functions are well-behaved. Ultimately, this boils down to assumptions on the joint distribution function

H(q1, q2). However, it is not necessary to spell out assumptions on this function, since we will later work

with and so can make the assumptions on the demand functions directly. In particular, we assume that

for each i = 1, 2 and j = 3− i,

∂2Di

∂(ni)2
≤ 0,

∂2D12

∂(ni)2
≤ 0 and

∣
∣
∣
∣

∂2Di

∂(ni)2

∣
∣
∣
∣
≥

∣
∣
∣
∣

∂2Di

∂ni∂nj

∣
∣
∣
∣
.

These assumptions are stricter than necessary. If instead each of the three inequalities were violated but

only slightly so, we still have interior solutions. For a detailed discussion of why the above conditions

ensure concavity of the profit function and uniqueness of the equilibrium, see e.g., Vives (2000).

Platforms and Timing

Platforms (or channels) compete for viewers and for advertisers. In the basic model, platforms receive

payments only from advertisers but not from viewers.7 The timing of the game is as follows. In the first

stage, each platform i announces its total advertising level ni. Afterwards, viewers decide which platform

to watch. Given these decisions, platforms sell the advertising levels, i.e., they post contracts consisting

of a pair (ti,mi), specifying an advertising intensity in exchange for a transfer. Specifically, ti specifies

the transfer and mi is a positive real of advertising intensity. Finally, advertisers decide which platform

to join. The overall amount of advertising on platform i can never exceed the total capacity announced,

that is, the overall advertising is level is max
[

ni,
∫ 1
0 mi1di

]

, where 1 is an indicator variable, which equals

1 if an advertiser accepts the contract and 0 if he rejects. We do not specify a particular rationing rule

for the case
∫ 1
0 mi1di > ni. As will become evident when solving the model, it can never be optimal for

a platform to offer a contract with mi > ni, which implies that ni ≥
∫ 1
0 midi.

In case of monopoly, where one firm owns both platforms, we consider the same timing. First, the

monopolist announces the total advertising levels on both platforms, then viewers decide which channel

to watch and afterwards the monopolist sells the advertising levels to advertisers, by announcing a

contract specifying a transfer and a pair of advertising intensities (t,m).8 Finally, advertisers decide

which platform to join.

The solution concept we use throughout the paper is subgame perfect Nash equilibrium. We suppose

that an advertiser who is indifferent between accepting and rejecting a contract accepts.

Advertising technology

7We allow for viewer pricing in Section 7.

8We will show that in the case of homogeneous advertisers the monopolist never wants to offer a nontrivial menu of
contracts, for example to induce different advertisers to single-home on its platforms. This holds also for the duopolists.
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Advertising in our model is informative. Let ω ≥ 0 denote the expected return of informing a

viewer about a product. In line with the literature, see e.g., Anderson and Coate (2005) or Crampes,

Haritchabalet and Jullien (2009), we assume that viewers are fully expropriated of the value of being

informed.9 So advertising is only a nuisance for them.

The mass of informed viewers is determined by the number of ads of a particular advertiser that

is broadcasted on channels. We denote the probability with which a single-homing viewer on channel i

becomes informed of a firm’s good by φi(mi). We assume that φi is smooth, nondecreasing, concave and

equal to zero at mi = 0. That is, an additional ad is always valuable but less so with the number of

messages already sent. Likewise, the probability that a multi-homing viewer becomes informed depends

on the number of ads he is exposed to. We assume φ12(m1,m2) is smooth with ∂φ12/∂mi ≥ 0 and

φ12(mi,mj) = φi(mi) whenever mj = 0. We also impose that φ12 is strictly concave in each argument,

and that ∂2φ12/∂m1∂m2 ≤ 0.10

Payoffs

A platform’s payoff is equal to the total amount of transfers it receives (for simplicity we assume

that the cost of programming is 0). An advertiser’s payoff, in case he is active on both platforms, is

u(n1, n2,m1,m2)− t1 − t2, where

u(n1, n2,m1,m2) := ωD1(n1, n2)φ1(m1) + ωD2(n1, n2)φ2(m2) + ωD12(n1, n2)φ12(m1,m2) (1)

and t1 and t2 are the payments to platforms 1 and 2, respectively. If he only joins platform i, the payoff

is u(ni, 0,mi, 0)− ti = ωφi(mi) (Di(ni, nj) +D12(ni, nj))− ti. Reservation utilities are set to zero for all

players.

Discussion of Modeling Assumptions

The φ1, φ2 and φ12 functions capture, in a very parsimonious way, several relevant aspects of viewer

behavior, platform asymmetry, and advertising technology. For example, if one platform is more effective

at reaching viewers for all nonzero levels, or if viewers spend more time on one platform than on the

other one, this could be captured by the following restriction: φi(m) > φj(m) for all m > 0.

Individual preferences are not necessarily independent across platforms. The model thus nests those

specifications which add structure to preferences by positing a positive or negative relationship between

valuations of different platforms. One extreme class in the framework we consider are Hotelling-type

spatial models with the two platforms at the opposite ends of a unit interval and viewers distributed

along the interval. Specifically Hotelling is captured by the above setup via the following restriction:

q1 = 1− q2.
11

9The motivation for this simplifying assumption, adopted from the above-referenced papers, is that each advertiser is the
monopolist seller of a unique good. Then if the reservation price of all consumers who have a strictly positive evaluation of
the good is ω, the monopolist sells the good at price ω, appropriating all surplus from consumers who became informed of
the good.

10A natural class of functions fulfilling these conditions is φ12(m1,m2) = φ12(m1 +m2), with φ′
12 ≤ 0.

11Transportation costs and intercepts should be encoded in the distribution function. That is, if k − τλ and k − τ(1− λ)
are the utility (gross of nuisance) of watching channel one and channel two, respectively, with λ uniformly distributed on
[0, 1], then one can compute the implied distribution on q1 = k − τλ (and similarly for q2) which will depend on τ .
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An important property of the demand schedules, following directly from the way we defined them,

is that if ni changes but nj is unchanged, the choice of whether to watch j remains unaffected. This

restriction is in stark contrast with either/or formulations where individuals choose one channel over

the other. For example, if ni increases then channel i loses some of its single-homing and some of its

multi-homing viewers. The former single-homing viewers now become zero homers while the former

multi-homers become single-homers on channel j. The latter implies that ∂D12/∂ni = −∂Dj/∂ni.

Our assumptions on the timing are meant to capture in a simple way contracting in the US and

Canadian broadcast markets. On a seasonal basis, broadcasters and advertisers meet at an “upfront”

event to sell commercials for the prime-time programs of the networks. There, many series and movies are

already produced and so the total number of commercials that networks are able to air is mainly fixed.

Due to the Nielsen rating system, which measures the audience viewership for the different programs,

channels (and advertisers) have a very precise estimate about viewerships when signing the contracts. At

the upfront event, contracts that specify the number of the aired ads (so called “avails”) in exchange for

a payment are then signed between broadcasters and advertisers.

4 Equilibrium Advertising Levels

4.1 Market Provision

We start with the case of two competing platforms. In the last stage each advertiser either joins both,

one, or no platforms, depending on the utilities it can obtain in the different scenarios.

First note that due to the advertising technology, i.e., the concavity of the functions φi(ni) and

φ12(n1, n2), a platform i always optimally spreads its advertising intensity ni equally among advertisers.

This implies that if a platform wishes to attract all advertisers, it optimally offers a contract with an

advertising intensity of mi = ni, since there is a mass 1 of advertisers. If the platform offers a contract

with a higher advertising intensity and attracts just a subset of the advertisers, it can always increase

its profit by lowering the offered intensity and attracting more advertisers. This also implies that our

restriction on the contract space is without loss of generality. Even if platforms could offer more general

contracts, they have no incentive to do so because they cannot obtain higher profits.

In what follows, for m1 = n1 and m2 = n2, we abbreviate u(n1, n2,m1,m2) by u(n1, n2) and

u(ni, 0,mi, 0) by u(ni, 0).

We first demonstrate that in each subgame after viewerships got determined, that is, for any

(D1(n1, n2), D2(n1, n2), D12(n1, n2)), there is no continuation equilibrium in which some of the adver-

tisers single-home. To see this, first note that t1 ≤ u(n1, n2)−u(0, n2) and t2 ≤ u(n1, n2)−u(n1, 0) imply

that all advertisers join both platforms because each platform charges a (weakly) lower transfer than the

advertisers incremental utility from being active on this platform. If instead t1 > u(n1, n2) − u(0, n2),

then platform 2’s best response is to induce all advertisers single-home on platform 2 by offering t2 that

makes advertisers indifferent between single-homing on platform 1 versus 2. This is due to the argument

laid out above that the platform optimally contracts with all advertisers instead of a strict subset. But

this yields a profit of 0 for platform 1, while t1 = u(n1, n2)− u(0, n2) would guarantee a strictly positive

payoff. Hence, there cannot be an equilibrium with t1 > u(n1, n2) − u(0, n2). A symmetric argument

establishes that there cannot be an equilibrium with t2 > u(n1, n2) − u(n1, 0). Finally, note that for

any t1 ≤ u(n1, n2) − u(0, n2), the best response of platform 2 can only be t2 = u(n1, n2) − u(n1, 0),
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since all advertisers multi-home for any t2 < u(n1, n2) − u(n1, 0) and for t2 > u(n1, n2) − u(n1, 0) all

advertisers prefer to single-home on platform 1, implying that platform 2 gets no participation and

therefore zero profits. Similarly, for any t2 ≤ u(n1, n2) − u(n1, 0), the best response of platform 1

can only be t1 = u(n1, n2) − u(0, n2). This concludes that the unique continuation equilibrium of the

subgame starting with viewerships (D1(n1, n2), D2(n1, n2), D12(n1, n2)) is t1 = u(n1, n2) − u(0, n2) and

t2 = u(n1, n2)− u(n1, 0), and all advertisers multi-homing.

This is anticipated by the viewers in their decision which channel to watch. Hence, if channels in the

first stage announce advertising levels of (nd
1, n

d
2), the resulting viewers demands are Di(n

d
1, n

d
2), i = 1, 2,

and D12(n
d
1, n

d
2).

Now we turn to the first stage, in which total advertising levels are chosen. First observe that, given

a candidate equilibrium allocation (n1, n2), each platform extracts the incremental value it brings over

its competitor’s offer. That is

td1 = u(n1, n2)− u(0, n2) and td2 = u(n1, n2)− u(n1, 0). (2)

Since advertisers are multi-homing in equilibrium, higher transfers would make it a dominant strategy

for advertisers to reject the offer. Lower transfers would simply leave money on the table.

Note that competing platforms cannot extract the full rent of the advertisers, i.e., advertisers receive

positive profits u(n1, n2)− td1− td2 ≥ 0.12 Platform i’s incremental value is given by the value of delivering

ads to single-homing viewers (who exclusively watch platform i) plus the incremental value for the multi-

homing viewers: ω(φ12(n1, n2)− φj(nj)). The profit of platform i is therefore

Πd
i = ω [Di(ni, nj)φi(ni) +D12(ni, nj)(φ12(ni, nj)− φj(nj))] . (3)

The candidate equilibrium allocation is characterized by the following system of first-order conditions

(arguments omitted for ease of exposition):

∂Πd

∂ni
= ω

(
∂Di

∂ni
φi +Diφ

′
i +

∂D12

∂ni
(φ12 − φj) +D12

∂φ12

∂ni

)

= 0. (4)

Our assumptions on the demand and advertising technology functions guarantee that the second-

order conditions are satisfied and that there is a unique solution to the system given by (4). The argument

laid out above establishes that there can be at most one equilibrium in which all advertisers multi-home,

characterized by the above first-order conditions. In particular, in any other candidate profile in which

advertisers multi-home, at least one of the platforms can profitably deviate to another total advertising

level that also leads to all advertisers multi-homing.

We note here that if we consider a model in which platforms first offer contracts of the form (ti, ni) to

advertisers, and afterwards viewers and advertisers simultaneously decide which platform to join, under

some technical conditions, there exists an outcome-equivalent subgame perfect Nash equilibrium. In

Proposition 0 in the Appendix we provide these conditions and a sketch of the proof.13 The game with

12To see this note that our assumptions on φ12 ensure φ12(n1, n2) ≤ φ1(n1) + φ2(n2), which implies td1 + td2 ≤ u(n1, n2).

13The conditions are rather technical, e.g., that viewer demands and advertising technologies for the two platforms are not
too asymmetric, and that aggregate viewership of a channel is sensitive enough to increasing advertising intensity, relative
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posted contract offers is much more difficult to analyze since a deviation by one platform leads to a

change in the viewership and in the advertiser acceptance decision at the same time, and these decisions

are influenced by each other. For that reason and due to the outcome-equivalence, we stick to the easier

formulation.

We now switch to the problem of a monopolist that owns both platforms and announces advertising

intensities (n1, n2) and offers a contract (t,m1,m1) after viewers’ decisions are made. By a similar

argument as in the duopoly case, it is optimal for the monopolist to set mi = ni, i = 1, 2, i.e., the

monopolist can never do better by inducing only partial participation of advertisers. In particular, if

some advertisers single-home, then strict concavity of φ1, φ2 and φ12 imply that the monopolist can

strictly do better by inducing full participation and charging a unique fee to each advertiser that makes

him indifferent between accepting or rejecting. For that reason, the monopolist can also not do better by

charging different payments. Since advertisers are homogeneous, their surplus is fully extracted through

the fixed transfer. Therefore, the profit of the monopolist is larger than the sum of the profits in duopoly.

The profit function of a monopolist is therefore given by

Πm(n) = ωD1φ1 + ωD2φ2 + ωD12φ12. (5)

Taking the first-order condition of (5) and using ∂D12/∂ni = −∂Dj/∂ni in (4) we obtain

∂Di

∂ni
φi +Diφ

′
i +

∂D12

∂ni
(φ12 − φj) +D12

∂φ12

∂ni
= 0. (6)

Equation (6) is equivalent to equation (4) which implies nm = nd. We therefore obtain the following

simple yet powerful result.

Proposition 1 (Neutrality). Equilibrium advertising levels do not depend on the competitive structure,

that is, nm = nd.

The following reformulation of Πd
i aids intuition.

Πd
i = Πm − ωφj(Dj +D12). (7)

The above profit is reminiscent of the payoff induced by Clarke-type mechanisms. Each agent’s payoff

equals the entire surplus minus a constant term equal to what the other agents would jointly get in his

absence. Clarke mechanisms implement socially efficient choices, here represented by the joint monopoly

solution. An alternate way to build intuition is to inspect the first-order conditions for an optimum. When

marginally increasing nm
i , a monopolistic platform trades off that it loses some multi-homing viewers but

increases the single-homing viewers on platform j. With the first kind of viewers the monopolist loses

φ12 while with second he gains φ2. Now in duopoly, when a platform increases nd
i it loses multi-homing

viewers and the gain that it receives from these viewers is φ12 − φ2. But this implies the trade-offs in

both market structures are the same.

Let us note here that if we change the model such that the platforms cannot offer posted contracts but

to the sensitivity of the probability that a viewer gets informed.
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can only charge per-unit price plus an entrance fee, then the unique equilibrium advertising levels are also

characterized by (4). This strips the monopolist from the ability to bundle, as was the case in the (general)

payment case, where the monopolist can announce a payment t, that every advertiser who is active on one

or both platforms must pay. Such a payment is sometimes impossible e.g., because payments charged by a

platform are not allowed to be conditioned on the ones offered by the other platform. However, in our case

non-bundling payments are sufficient because the monopolist can extract the incremental surpluses via

the marginal prices, while the rest surplus can be extracted by the participation fee. To see this consider

first the monopoly case. For the monopolist this fee will be F12 = ω(D1φ1+D2φ2+D12φ12)−p1n1−p2n2.

So the profit of the monopolist is Π12 = F12 + p1n1 + p2n2 = ω(D1φ1 +D2φ2 +D12φ12). Therefore, the

optimal n1-n2-combination is the same as in our solution. For a duopolist a similar argument applies.

The optimal fee for platform i is Fi = ω(Diφi+D12(φ12−φj))−pini, implying that the profit of platform

i is Πi = Fi + pini = ω(Diφi +D12(φ12 − φj)). This is the same maximization problem as in our original

set-up.14

An important question is if the neutrality depends on the number of channels. The next proposition

shows that this is not the case.

Proposition 2. The neutrality result nm = nd holds for N platforms and any ownership structure.

The result is of particular importance because it allows for a reinterpretation of the model with

regard to channels and programs. In the case with two channels, each channel was associated with a

particular program, implying that a viewer watching a channel watches the full program of this channel.

Allowing for N platforms and any ownership structure, it is possible to reinterpret the model in the sense

that each platform is a particular program, i.e., a movie, a show, etc., and these programs are owned

(and broadcasted) by the different channels. That is, the number of channels is a strict subset of the

number of programs. A viewer then watches several programs and thereby connects several times to one

channel, a lower (or smaller) times to other channels and probably zero times to some channels. By that,

any particular viewer preference can be represented by our model, regardless of the viewer preferring one

channel over the others, or watching multiple channels with the same intensity. In addition, by varying

the valuation distributions of a viewer, we can also represent a time dimension on the viewer side, e.g.,

a viewer who has valuable outside options and is therefore very time constrained is characterized by

generally low values of qi, while a viewer who has a lot of spare time is characterized by several high

values of qi.

We conclude this subsection by discussing how the neutrality result extends to advertisers with

heterogeneous product values, as in Anderson and Coate (2005). First, it is evident that the result also

holds if platforms can offer a menu of advertising intensities and payments and can perfectly discriminate

between advertisers. In that case, the result is similar to the one for the case of homogeneous advertisers.

Matters are more nuanced if advertisers are heterogeneous and platforms cannot perfectly discrim-

inate, in particular when ω is private information to each advertiser. The main additional difficulty of

the analysis is that one needs to consider a menu of contracts offered by platforms, instead of a single

contract. In the Appendix we show that the neutrality result prevails if one restricts attention to the

14The same result obtains if the monopolist can only set payments for each platform plus an entrance fee, that is, before
advertisers decide which platform to join, it can set only payments ti, i = 1, 2, plus a fixed fee for each advertiser who
accepts at least one offer.
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simple class of contracts discussed above, that is, when each platform owner can charge an participation

fee plus marginal prices for the platform(s) owned. We note that the neutrality result does not necessarily

hold when a joint monopolist has the possibility to offer bundling contracts specifying a single transfer

in exchange for an advertising intensity on each platform. The reason is that in this case an advertiser

cannot report different types to the two platforms. This may change the advertiser’s outside option and

affects the optimal allocation induced by the monopolist. From this argument it follows that it is not

competition per se that changes the allocation but rather the limited possibility of advertisers to report

their types, which is responsible for the different outcomes in monopoly and duopoly. If this possibility

is the same in monopoly and duopoly—as is the case when each platform owner can offer a contract

depending only on the advertising intensities on this platform—the neutrality result obtains again, i.e.,

competition has no bite in reducing advertising levels.

4.2 Socially optimal provision

A common opinion of most industry observers is that advertising levels are inefficiently high. To validate

this concern we proceed to characterize the socially optimal allocation. As mentioned, qi − γni is the

utility of a single-homing viewer of platform i and by q1 − γn1 + q2 − γn2 the utility of a multi-homing

viewer. Social welfare equals:

W =

∫ ∞

γn1

∫ γn2

0
q1 − γn1h(q1, q2)dq2dq1 +

∫ γn1

0

∫ ∞

γn2

q2 − γn2h(q1, q2)dq2dq1

+

∫ ∞

γn1

∫ ∞

γn2

q1 − γn1 + q2 − γn2h(q1, q2)dq2dq1 + ωD1φ1 + ωD2φ2 + ωD12φ12.

Comparing the equilibrium advertising level denoted by nd
i with the socially efficient advertising level we

obtain the following:

Proposition 3. The equilibrium advertising levels are inefficiently high.

Proof: See the Appendix.

To see why this is the case, it is useful to go back considering the incentives of a joint monopoly plat-

form. Note that under our assumptions such a platform fully internalizes the advertisers’ welfare. On the

contrary, it does not internalize the viewers’ welfare. More precisely, it only cares about viewers’ utilities

inasmuch as they contribute to the advertising revenue. The nuisance costs to viewers of an increase in

advertising levels are not taken into account. This leads to over-provision. By proposition 1 competing

platforms implement the same allocation. Equilibrium advertising levels are therefore inefficiently high.

Proposition 3 should be interpreted with caution. The overprovision result hinges on the assumption

that advertisers are homogenous. Otherwise, much as in previous works, a total surplus maximizing

platform would have to trade off the social benefits of having an extra advertiser on board with the social

nuisance costs. A discussion of what lesson should be drawn from Proposition 3 is thus warranted. The

result shows that platform competition does not alleviate the upward distortion in advertising levels.

Such result is important insofar as it cannot be obtained when competition for viewers is not of the

either/both type. For instance, in Anderson and Coate (2005) competition for (exclusive) viewers can

lead to under-provision even with homogeneous advertisers. The assumption of homogeneous advertisers

simply allows to focus on the viewers’ side of the market by shutting off screening considerations. As we
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indicated, the neutrality result—in a qualified form—extends to the case of heterogeneous advertisers.

Hence, competition fails to reduce ad levels in this case as well. However, the extent of this failure depends

on whether there is overprovision to begin with. Competition authorities sometimes use consumer surplus

as the basis for regulation. Clearly, welfare measures that underplay the loss of surplus on the advertisers

side of the market would add to the case of inefficient overprovision. Nevertheless, the mere existence of

regulatory “caps” or ceilings on the number of commercials per hour in many countries is suggestive of

concerns of over provision and hence make the above failure particularly relevant.

5 Viewer Preference Correlation

Due to the generality of the demand specification, our framework allows us to draw conclusions on how

the correlation between viewers’ preferences of the two platforms affects the equilibrium advertising levels.

This question is at the heart of our model since we seek to determine how the composition of viewers

affects advertising levels. We also note that such an analysis cannot be conducted in previous models

of platform competition. These models draw either on Hotelling competition or assume a representative

viewer. In the first case the correlation between viewer preferences is perfectly negative, in particular the

viewer who likes station i most likes station j least, while in the second case viewers are all the same per

assumption.

To simplify the analysis, in what follows in this section, we suppose that the second derivatives of the

viewer demand functions Di and D12 with respect ni are relatively small compared to the first derivatives

and the advertising technology, that is, ∂2Di/∂n
2
i and ∂2D12/∂n

2
i are small compared to ∂Di/∂ni and

∂D12/∂ni, and ∂φi/∂ni and ∂φ12/∂ni. As we will demonstrate later, these assumption are only sufficient

but not necessary conditions for our result to hold. We note that we still keep the advertising technology

general and allow for asymmetric platforms.

The understand how correlation of viewer preferences affects the equilibrium advertising level, con-

sider the case in which correlation increases but advertising levels of both platforms are unchanged. This

implies that the overall viewer demand of the channels is not affected but only the composition. In

particular, an increase in correlation leads to an increase in D12 but to a decrease in Di. This is because

for given advertising levels now a larger mass of viewers has a high (or low) preference for both platforms

but a smaller mass has a high qi but a low qj .

How does this change in the viewer preference correlation affect the first-order condition (4), which

determines the equilibrium advertising level? It is obvious that the second term falls since Di decreases

but the fourth term rises since D12 increases. Since the overall demand di = Di+D12 stays the same, the

absolute change inDi andD12 is the same. However, since the advertising technology is concave, implying

that ∂φi/∂ni > ∂φ12/∂ni, in sum the change in the second and the fourth term diminish the left-hand

side of (4). By our working assumption that the change in the second derivatives of the viewer demand

functions are relatively small, the changes in the first and third term are small compared to changes in

the second and the fourth term. This implies that the first-order condition at the old advertising level

is negative. Since there is a unique solution to (4), the new solution for ni must be below the old one.

Hence, we obtain the following result:

Proposition 4. Suppose that the second derivatives of the viewer demand functions Di and D12 with

respect ni are relatively small. Then the equilibrium advertising levels are decreasing in the correlation of

viewers’ preferences.
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To build intuition, consider the case in which viewer correlation is very positive. This implies that

there are only few single-homing viewers but most are overlapping. As a consequence of this, the addi-

tional value of an ad is relatively small, because a large mass of viewers watches this ad already on the

other platform. In addition, by lowering its advertising level, a platform changes its viewer composition

such that most of its new viewers are single-homers, that is, they all exclusively watch this platform. As

pointed out before, these exclusive viewers are relatively valuable. These two effects in combination lead

to high incentive for a platform to lower its advertising level.

By contrast, if viewer preference correlation is negative, most viewers are single-homing viewers. By

reducing its advertising level, a large mass of new viewers that a platform gets are already watching the

other platform and are therefore not very valuable. Thus, the incentive to reduce the advertising level is

small. As a consequence, the equilibrium amount of advertising is relatively large and, as the correlation

becomes more negative, advertising levels increase even further.

We note that the assumption that second derivatives of the viewer demand function are relatively

small, is a sufficient but by no means a necessary condition. Due to the generality of our framework, we

put some structure to show the results in the simplest possible way. However, the main forces are also

at work with more general demand functions. For example, we conducted numerical examples using a

joint normal distribution and obtained the same result. This shows that the main insight that positive

correlation of viewer preferences leads to smaller advertising levels does not hinge on the shape of the

demand function.

In sum, our framework allows for an analysis of viewer preference correlation, and demonstrates

how the decomposition of viewers, which is the characterizing feature of our competition framework,

determines advertising levels. It shows that advertising levels are lowest if this correlation is highly

positive. Hence, the analysis also shows that in a Hotelling world in which correlation is perfectly

negative, advertising levels are particularly high.

Finally, our analysis also allows to draw conclusions on content choice of the platforms. It is evident

from the profit function of a platform Πd
i = ω[Diφi +D12/(φ12 − φj)], that for given advertising levels,

the platform prefers exclusive as compared to overlapping viewers. Since we know that increasing the

correlation the correlation of viewer preferences implies a shift in the mass of viewers from Di to D12, this

increase is likely to be detrimental for platform’s profit. Hence, platforms prefer viewers preferences to

be negatively correlated. Although we keep content and content correlation exogenous in our analysis, a

prediction emanating from our analysis is that if platforms have some freedom in choosing the correlation,

they prefer the content to be negatively correlated to the ones of their rivals. We note that, although

this conclusion is similar to standard model of differentiation, the intuition for the result is different

from standard product differentiation models. In the latter, firms differentiate their content to reduce

competition. In our case, there is no competition for viewers but platforms choose negative correlation

to reduce overlapping viewerships because these are of low value.

6 Entry

In this section we consider the effect that the entry of an additional platform has on the amount of adver-

tising supplied by an incumbent monopoly platform. Intuitively, an unchallenged monopoly incumbent

is able to fully extract the advertisers’ surplus through the fixed transfer. In contrast, entry will limit its
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payoff to the incremental value, as discussed. So formally we ought compare the solution of the problem

ns.m.
i := argmax

ni

di(ni)φi(ni), (8)

to the dupoly solution characterized in section 4.1.15 Recall that di(ni) := Prob{qi − γni ≥ 0}. From

the incumbent’s perspective, entry implies sharing of its business. This because when an additional

platform enters the market, then the total demand faced by platform i does not change, given ni stays

constant. However, some of its previously exclusive viewers will now be served by both platforms, that

is di(ni) = Di(ni, nj) +D12(n1, n2). So we seek to assess the impact of sharing with an entrant some of

the (previously exclusive) business on the basic tradeoff underlying the solution of problem (8). For this

purpose it is useful to rewrite the duopolist’s payoff as if all consumers were exclusive plus a (negative)

correction term that accounts for the fact that i can only extract the incremental value from those viewers

who are shared after entry occurs,:

max
ni

di(ni)φi(ni) +D12(n1, n2) (φ12(n1, n2)− φj(nj)− φi(ni)) . (9)

Consider first problem (8). Its solution is characterized by the first-order condition:

∂φi

∂ni
di +

∂di
∂ni

φi = 0 (10)

When increasing its quantity ni, firm i trades-off gains on inframarginal viewers due to increased reach

with the losses on marginal viewers due to the fact that some viewers switch off as a result of the increased

ad levels. If we introduce the elasticities of the total demand di and of the function φi with respect to ni,

ηφi :=
∂φi

∂ni

ni

φi
and ηdi := −∂di

∂ni

ni

di
,

then the incumbent’s pre-entry optimal quantity can be characterized by the simple and intuitive condi-

tion

ηφi = ηdi .

Consider now problem (9). Once entry occurred condition (10) should be augmented to account for the

fact that some of the previously exclusive business is shared:

∂φi

∂ni
di +

∂di
∂ni

φi +
∂D12

∂ni
(φ12 − φi − φj) +D12

∂(φ12 − φi − φj)

∂ni
= 0. (11)

The third term of (11) is positive and captures the fact that due to incremental pricing, shared consumers

are less valuable. The foregone benefit from losing such viewers is small relative to that of exclusive

viewers. Ceteris paribus, this gives the platform an incentive to increase ni. By contrast, the incremental

reach due to an additional ad on shared consumers is also small relative to that of exclusive ones. This

is captured by the last term of (11). Ceteris paribus, this gives the platform an incentive to decrease ni.

15We adopt here the convention that i denotes the incumbent platform. The superscript s.m. reads ‘single platform
monopolist,’ and is meant to avoid confusion with the joint multi-platform monopolist solution considered so far.
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The overall effect is ambiguous and, as the next proposition shows, which effect dominates depends on

the relative elasticity of multi-homing viewers versus single-homing ones normalized by the elasticity of

the relative reach. Defining

ηD12 := −∂D12

∂ni

ni

D12

as the elasticity of overlapping viewers with respect to ni and

ηφi+φj−φ12 :=

(
∂(φi + φj − φ12)

∂ni

)
ni

φi + φj − φ12

as the elasticity of φi + φj − φ12 with respect to ni, we get the following proposition:

Proposition 5. nd
i ≥ ns.m.

i if and only if

ηD12

ηDi

≥
ηφi+φj−φ12

ηφi

, (12)

where all functions are evaluated at ni = ns.m.
i and nj = nd

j .

To understand the intuition behind these result, we will focus to the simplest case in which the

two platforms are symmetric: di(n) = dj(n) for all n, D12(n,m) = D12(m,n) for all n,m ≥ 0 and

φi(n) = φj(n) for all n. Observe that the solution of the incumbent’s problem (8) is equivalent to

the solution of the joint monopolist considered in Section 4 under the additional constraint nj = 0.

So assessing the impact of entry is equivalent to assessing the impact on the optimal ni of lifting the

nj = 0 constraint. This allows to think about entry as the impact of giving advertisers the option of

sending messages through an additional platform. When nj is allowed to exceed zero, we distinguish two

effects. The first one is what we label duplication effect. Consider, for instance a symmetric solution

to the monopolist’s problem of the form nj = ni = ns.m.
i . Clearly at these advertising levels the amount

of advertising received by shared customers duplicates. Ceteris paribus, decreasing marginal returns

give the monopolist an incentive to scale back the amount of advertising on platform i whose marginal

contribution to profits drops as a result of such duplication. Note that as such duplication effect is a

straightforward consequence of the fact that consumers multi-home.

The second and arguably more subtle effect that we distinguish is labeled the business sharing

effect. Again we shall contrast the monopolists’ incentives towards changing ni when nj = 0 and nj > 0

respectively. Recall that di(ni) = Di(ni) + D12(n1, n2) so that it is possible to decompose the total

variation in demand due to a small increase in ni as ∂Di/∂ni+∂D12/∂ni. When nj = 0 the monopolist is

wary of the total variation of di regardless of how it is spelled out. However if nj > 0 then the monopolist

distinguishes between the two sources of variation, i.e, ∂Di/∂ni and ∂D12/∂ni. The important insight is

that the opportunity cost of losing shared business is lower than the one of losing exclusive viewers, as

the former viewers will still be informed with positive probability on platform j. Therefore, the negative

effect of losing demand is relatively small. Ceteris paribus, this leads to a higher advertising level is

optimal in equilibrium.

These effects can now be well related to the Proposition. If shared viewers are relatively responsive

to increases in advertising levels as compared to exclusive viewers, that is, |∂D12/∂ni| is relatively large

compared to |∂Di/∂ni|, then the elasticity ηD12,ni is also large compared to ηDi,ni . Hence, the left-

hand side of (12) is large. In this case the business sharing effect is large, implying that advertising

levels in duopoly go up. Also, if φ12 is low relative to φ1 + φ2, overlapping viewers are of low value.
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Hence, the foregone profit of losing an overlapping viewer is small—business-sharing effect—implying

that advertising levels should rise with entry. In fact, in this case the denominator of ηφi+φj−φ12,ni is

large, implying that the right-hand side of (12), ηφi+φj−φ12,ni/ηφi,ni , is small.

It is also possible to consider specific forms of the advertising technology to obtain further result. In

particular, suppose the functional form is either a polynomial,

(i) φi(ni) = n
1/a
i and φ12(n1, n2) = (n1 + n2)

1/a ,

or negative exponential,

(ii) φi(ni) = 1− e−bni and φ12(n1, n2) = 1− e−b(n1+n2).

Since φ is increasing in the advertising level but is concave, the parameter restriction for a and b is

that a ∈ (1,∞) and b ∈ (0,∞). For a → ∞ and b → ∞, the advertising technology resembles one in

which overlapping viewers are of zero value. This is the case because then φi(ni) = 1, i = 1, 2, while

φ12(n1, n2) = 1 as well.

Now consider the polynomial advertising technology given by (i), and use it in ηφi+φj−φ12 . It is

easy to check that for a → ∞, ηφi+φj−φ12 → 0, implying that for a large enough (12) is always satisfied

and the advertising levels rise with entry. By contrast, for a close to 1, ηφi+φj−φ12/ηφi = 1, that is,

whether advertising increases with entry depends on the difference between ηD12/ηDi and 1. We obtain

the same result for the exponential advertising technology form (ii). The next proposition summarizes

this analysis:

Proposition 6. Suppose that the advertising technology is given by either (i) or (ii). Then for a or b

large enough, the advertising level increases with entry while for a close to 1 or b close to 0, the advertising

level increases with entry if and only if ηD12/ηDi > 1.

Entry and preference correlation

Our framework allows to consider how viewers’ preferences influence the entry effects. This is an

important question to deepen the understanding of the functioning of the model, i.e., how competition

is affected by viewer preferences as compared to monopoly. In addition, differences in the correlation of

viewers’ preferences between platforms are much more clear-cut than differences in advertising technolo-

gies, which allows us to test our results in a simple empirical analysis.

As in the last section, to state our result in a simple way, we proceed by supposing that the second

derivatives of the viewer demand functions Di and D12 with respect ni are relatively small. From the

last section, we know that for given advertising levels, an increase in the viewer preference correlation

leads to an increase in D12 and a fall in Di by the same value. We can use this fact in (12) of Proposition

5. An increase in D12 leads to a fall in ηD12 while a decrease in Di leads to a rise of ηDi . This implies

that the left-hand side of (12) falls, while the right-hand side of (12) stays constant. Hence, for positive

viewer preference correlation it is less ’likely’ that advertising levels rise after entry.16

16With less ’likely’ we mean for a smaller set of parameters.
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In particular, we can compare the following two situations with each other. Suppose platform 1 is a

monopolist in the market and now either platform 2 or platform 2̂ enters the market. The correlation of

platform 1’s content is higher with the content of platform 2 than with the content of platform 2′. The

result of our model case then be summarized as follows:

Proposition 7. Suppose that the second derivatives of the viewer demand functions Di and D12 with

respect ni are relatively small. Then advertising levels are more likely to increase with entry if the content

of the entering station is negatively correlated with the incumbent’s content.

The intuition behind the result can be easily grasped from our previous explanations: if correlation

between platforms is positive, the composition of viewers consists of many multi-homing viewers. In this

case the duplication effect is the dominating one. Since the incumbent platform does not get as large a

revenue from these viewers as in the monopoly case, it has an incentive to reduce its advertising levels.

As a consequence, equilibrium advertising levels are lower with competition. So if correlation is highly

positive, we obtain the same result as derived in previous literature with single-homing viewers, i.e.,

competition leads to a fall in the advertising level. However, the intuition for these results is different in

the two cases. In the case of single-homing viewers, viewers switch to the competitor if advertising levels

on a platform rise, thereby confining these advertising levels. In our case, if correlation becomes more

positive, advertising is of lower value and so platforms have an incentive broadcast less of it. By contrast,

if correlation between platforms is highly negative, entry leads to an increase in advertising levels. In this

case the business sharing effect dominates since there is not much duplication after entry and a platform

foremost loses less when increasing its advertising level.

An important implication of this analysis is that the entry of FOX News should have led to an increase

in the advertising level of other stations like e.g., CNN, for which it is likely that viewer preferences are

negatively correlated. However, for platforms with positive correlation, e.g., sports programs or movies,

our model predicts the opposite. As we will demonstrate later, this prediction is validated by the empirical

analysis.

As in the last section we point out that our assumption that the second derivative of the viewer

demand being small is just a sufficient but not a necessary condition. Again, we performed numerical

simulations with a joint normal distribution and obtained exactly the same result. Hence, the assumption

only allowed us to simplify the exposition but it is not a crucial one.

We conclude this section by looking at the simple specific example, which allows to capture correlation

in easy way. Let us suppose that viewer types are distributed on a unit square, that is q1 and q2 are

distributed between 0 and 1. A fraction 1 − λ of viewers is uniformly distributed on this square. The

remaining fraction λ is uniformly located on the 45-degree line from (0, 0) to (1, 1). This is illustrated

in the left-hand side of Figure 1. By varying λ we can express different degrees of correlation ranging

from independent preferences if λ = 0 to perfect positive correlation if λ = 1. For simplicity, assume

γ = 1, implying that a viewer watches station i if qi − ni ≥ 0. Finally assume φi(ni) = 1 − e−ni and

φ12(n1, n2) = 1− e−(n1+n2), which implies that φ(·) is strictly concave.

As can be seen from the right-hand side of Figure 1, the demand functions for the types that

are uniformly distributed on the unit square are given by D1 = (1 − n1)n2, D2 = (1 − n2)n1 and

D12 = (1 − n1)(1 − n2). For the types located on the 45-degree line the demands, are given by D1 =

max{n2 − n1, 0}, D2 = max{n1 − n2, 0} and D12 = 1−max{n1, n2}.
Likewise, we can express negative correlation by distributing a mass λ on the line from (0, 1) to (1, 0)
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Figure 1: Positive Correlation

(rather than on the line from (0, 0) to (1, 1)). The larger is λ, the more negative is the correlation of

preferences. Analyzing the effect of viewer preference correlation on the advertising levels we obtain the

following result:

Proposition 8. The equilibrium advertising level with entry is lower than without entry if the correlation

of viewers’ preferences is positive but it is higher with entry than without if the correlation is negative.

For independent distribution of viewers’ preferences the advertising volumes in both cases coincide.

Proof: See the Appendix

Therefore, in this simple example, we obtain that advertising levels rise with entry if correlation

positive but fall if correlation is negative.

7 Viewer Pricing

In this section we consider the possibility of platforms to charge viewers who watch their program. In

particular, we are interested if the neutrality result carries over the the case of viewer pricing and if the

result on excessive provision of advertising continues to hold. The analysis is also relevant for policy

implications, because additional pricing instrument can possibly revert the results obtained earlier. As

we will show, this is not the case.

Let pi denote the viewer price at platform i. Platforms set the prices in the first stage before viewers

decide which channel to watch. Otherwise, the model is the same as described in Section 3. In line with

the literature, we restrict the viewer charge to be non-negative, since viewer subsidies seem to be difficult

to implement.17 The utility of a viewer of type qi from watching platform i is then given by qi−γni− pi.

The demand schedules of Section 2 are then given by

Multi-homers : D12 ≡ Prob{q1 − γn1 − p1 ≥ 0 ; q2 − γn2 − p2 ≥ 0},
Single-homers1 : D1 ≡ Prob{q1 − γn1 − p1 ≥ 0 ; q2 − γn2 − p2 ≤ 0},
Single-homers2 : D2 ≡ Prob{q1 − γn1 − p1 ≤ 0 ; q2 − γn2 − p2 ≥ 0},
Zero-Homers : D0 ≡ 1−D1 −D2 −D12.

17For example, as Anderson and Coate (2005) point out, even if monitoring viewer behavior is possible, it is impossible
to know whether the viewer is paying attention.
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We first turn to the comparison of advertising levels in duopoly and in monopoly. The profit function

of platform i in duopoly is

Πd
i = ω (Diφi +D12(φ12 − φj)) + pi(Di +D12).

Differentiating with respect to ni and pi, we obtain first-order conditions of

∂Πd
i

∂ni
= ω

[
∂Di

∂ni
φi +Diφ

′
i +

∂D12

∂ni
(φ12 − φj) +D12

∂φ12

∂ni

]

+ pi

(
∂Di

∂ni
+

∂D12

∂ni

)

= 0 (13)

and
∂Πd

i

∂pi
= ω

[
∂Di

∂pi
φi +

∂D12

∂pi
(φ12 − φj)

]

+Di +D12 + pi

(
∂Di

∂pi
+

∂D12

∂pi

)

= 0. (14)

Since by our assumptions on viewer demand and advertising technology, the second-order conditions

are satisfied, equations (13) and (14) determine the equilibrium advertising level and viewer charge in

duopoly.

The profit function of a monopolist is

Πm = ω (D1φ1 +D2φ2 +D12φ12) + p1D1 + p2D2 + (p1 + p2)D12.

Differentiating this function with respect to ni and pi, and using that ∂Dj/∂ni = −∂D12/∂ni and

∂Dj/∂pi = −∂D12/∂pi, it is easy to check that we obtain the same first-order conditions as in (13) and

(14). Therefore, advertising levels in monopoly and duopoly are again the same. Thus, we obtain the

following proposition:

Proposition 9. The neutrality result that nd
i = nm

i carries over to the case of viewer pricing.

The result shows that viewer pricing does not change the similarity in the trade-off for a monopolist

and a duopolist. So, the neutrality between the two scenarios does not depend on the number of pricing

instruments but is inherent in the either/both structure of competition.

However, the advertising level is affected by the possibility of viewer charges. Since viewer charges

provide platforms with an additional revenue source, channels substitute some advertising revenues for

viewer revenues, thereby reducing the advertising level. The next result shows, however, that this can

never result in an under-provision of advertising.

Proposition 10. Suppose that the equilibrium advertising level is positive. Then, even with viewer

pricing, the equilibrium advertising levels are inefficiently high.

Proof: See the Appendix

The intuition for this result is that by viewer charges platforms can only extract a part of the viewer

surplus but not the full surplus. This implies that platforms have an incentive to increase the advertising

levels beyond the socially efficient one to obtain higher profits. The exception is the case in which it is

optimal to use only viewer prices as a revenue source. In that case the socially optimal level coincides

with the equilibrium level because viewer disutility from advertising is so large, that platforms prefer

to set advertising to zero, thereby having a larger viewer base and being able to charge higher prices.

However, in all other cases the equilibrium advertising level exceeds to welfare optimal one.

This result contrasts with the one of Anderson and Coate (2005), who find that, if two platforms are

active, advertising levels with viewer pricing are below the socially optimal one. This is due to the fact

21



that they consider an inelastic viewer demand, i.e., the market is covered, and allow for heterogeneous

advertisers. This combined with direct competition for viewers, as is the case in the either/or framework,

results in under-provision. In our case of either/both competition, only indirect competition takes place.

As we show in the proof of Proposition 10, if in this case only the first part of Anderson and Coate (2005)

is present, i.e., viewer demand is inelastic but advertisers are homogeneous, then viewer pricing leads to

the socially efficient advertising level. So in line with our remarks in Subsection 4.2, if advertisers are

heterogeneous, it is no longer necessarily the case, that there is over-provision of advertising. However, as

Proposition 10 demonstrates, the tendency that the market provides too much advertising is not reverted,

even if viewer pricing is allowed for.

When comparing welfare in case of viewer pricing with the case of no viewer pricing, our results are

similar to those of Anderson and Coate (2005). As they, we find that viewer pricing can lead to a rise or

fall of social welfare. Welfare can rise because advertising levels get lower and if viewers strongly dislike

advertising, this leads to a welfare improvement. However, the full price for viewers is larger in case

of viewer charges, implying that more viewers switch off, leading to a reduction in welfare. As shown

in the appendix, the distributional consequences of viewer prices are that viewer utility falls and also

advertising revenues fall. Hence, the possibility to charge viewers redistributes revenue from viewers and

advertisers to stations. Again, these results are in line with the ones of previous models.

From a policy perspective, our analysis casts doubt on arguments that viewer pricing corrects in-

efficiencies in the TV market. If viewers can watch multiple channels, competition between channels

does not lead to a change in advertising level—the neutrality result—and so channels use the pricing

instrument mainly to extract more viewer rent, thereby reducing demand. In fact, this can be observed

in several countries in which pay-tv channels have a small number of subscribers although they provide

high-quality content.

8 Empirical Evidence

The data are provided by Kagan-SNL a highly regarded proprietary source for information on broadcast-

ing markets. It consists of an unbalanced panel data set for the period from 1989 to 2002 and for 68 basic

cable channels which cover almost all of the cable industry advertising revenues (75% of all industry’s

revenue is generated by the biggest 20 networks in our data set). We know the date for each new network

launch within our sample period (a total of 43 launches), and for each network active in each year we

have information on the average number of 30-second advertising slots per hour of programming (in

jargon ‘avails’). We also have a good coverage for other network variables, such as data on subscribers,

advertising revenues, programming expenses and ratings.

We first exploit our panel data set to study the relationship between the avails broadcasted by

each channel and the number of incumbents. As our model is about the effects of varying competition,

we need to consider each channel within its own competitive environment. That is, we need to define

a relevant market (or market segment) for each of the 68 channels. The hypothesis is that channels

whose content is tailored for the same demographics ‘compete’ among themeselves for viewership and

the related ad-dollars. For this purpose we divide the channels in three broad segments: one for sports

channels (henceforth Sport), one for channels broadcasting mainly movies and TV series (henceforth

Movies&Series) and the last one for all the remaining ones. We call this segment ‘info-tainment’ and

we use it as a reference group throughout the analysis. For example ‘The Discovery Channel’ and ‘The
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Weather Channel’ fall in this category. The exact partition in supplied in the appendix. To test whether

viewer preferences can explain the relationship between entry and advertising provision, we estimate

separate parameters for the segments Sports and for the segment Movies&Series. We work under the

hypothesis that the idiosyncratic viewers’ preferences for channels that broadcast mostly sports or mostly

movies and fiction are positively correlated. That means positing, for example, that there is a great deal

of overlap between ‘ESPN,’ ‘ESPN2’ and ‘Fox Sports’ viewers.

We employ two different empirical strategies. The panel analysis pools all channel-year observations

in the 1989-2002 period so it relies on within and accross channel variation. In contrast the event-study

approach relies on within channel variation around entry events.

We estimate the following linear regression model:

log(Availsit) =β ∗ Incumbentsit + βM ∗ Incumbentsit ∗MoviesSeries dummy

+ βS ∗ Incumbentsit ∗ Sport dummy + γ ∗ xit + αi + δt + ǫit,

where log(Availsit) is the average number at year t of 30-second advertising slots per hour of programming

by channel i, Incumbentsit is the number of incumbents in the segment of channel i by the end of year

t, Sport dummy and MoviesSeries dummy are dummy variables equal to 1 when channel i belongs to

the Sport and Movies&Series segment respectively, xit ia a vector of channel’s controls, αi is a channel

fixed effect and δt is a time fixed effect. Given that the dependent variable is transformed in logs, while

the main explanatory variable is measured in units of incumbents, the β coefficients have the following

interpretation: when the number of incumbents in a given segment increases by 1, the channels in that

segment increase their 30-second advertising slots by 100*β%. The coefficients βM and βS measure the

additional effect that the number of incumbents has on the avails in the segments Movies&Series and

Sports respectively, compared to the effect on the infotainment channels captured by β.

Table 1 reports the estimation results when we restrict the coefficient on the number of incumbents to

be homogeneous across segments. We find evidence that entry is associated to an increase in the amount

of advertaising provided by the incumbent channels. The coefficient is positive and significant across

almost all specifications. Starting from the single variable model in column (1), we progressively add

controls and fixed effects: column (2) controls for the real GDP to capture the effect of the business cycle

on the advertising market, starting from column (3) we report the estimations for a fixed effect model

where the units of observations are the single channels. From column (4) we introduce time dummies, to

control for any time-specific variables, while in the last two columns we also add channel-time controls:

the channel share of its segment revenues and its rating. Note that as we only have US data, the ‘real

GDP’ control is dropped whenever time dummies effects are included in the specification. All regressions

are estimated with robust standard errors. The average effect estimated is on the order of 1%. Note that

the coarse categorization of channels, which considers the ‘Disney Channel’ to be in the same comeptitive

segment as the ‘Hystory Channel’ works against the finding of an effect. Indeed we expect our estimates

to be biased downwards as a result of this.

Table 2 reports the estimation results for the specification that allows for heterogeneous effect of

the number incumbents across segments. The coefficients of interest are βM and βS . Given our theory

and our presumptions on preferences’ correlation in these segments we expect the sign to be negative.

That is the effect of entry within the sports and movies market segment is diminished compared to the

average industry effect. Indeed the coefficients have the expected sign in all regressions: the effect of the
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Table 1: Number of Incumbents and Avails - Average Effect

(1) (2) (3) (4) (5) (6)

Incumbents 0.00268** 0.00104 0.00974*** 0.0105*** 0.0103*** 0.00857**
(0.00123) (0.00140) (0.00339) (0.00364) (0.00362) (0.00407)

Real GDP 0.00185*** -0.000294
(0.000602) (0.00134)

rev mkt share 0.178
(0.255)

rating -0.0828
(0.0769)

Constant 3.017*** 2.825*** 2.913*** 2.434*** 2.403*** 2.969***
(0.0209) (0.0642) (0.112) (0.143) (0.160) (0.106)

Observations 416 416 416 416 415 279
R2 0.016 0.027 0.275 0.303 0.307 0.276
Channel FE NO NO YES YES YES YES
Time FE NO NO NO YES YES YES
Number of pltf 56 56 56 33

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

number of incumbents is positive for infotainment channels (β is again positive and significant), while it

is significantly lower for the channels in the other 2 segments. In particular this additional negative effect

seems to be stronger for Movies&Series where |βM | > |β| in almost all specifications. Standard errors are

clustered at the segment level.

The basic regressions above have the advantage of pooling data on different channels without taking

a stance on the time it takes for entry to impact the incumbent choches. However this strategy does not

allow to account for within channel omitted variables that vary over time. These may also operate at

the segment level. To account for this, we also estimate a model for entry episodes, where our sample

is reduced to those time observations where a given market segment experiences the entry of a new

channel. So unlike the panel analysis the sample is reduced to those observations around an entry event.

The model we estimate is the following:

∆log(Availsit) =β + βM ∗MoviesSeries dummy + βS ∗ Sport dummy

+γ ∗ xit + δt + ǫit

This model can be obtained by first differencing the previous one around those years where there are

entry episodes. In fact ∆log(Availsit) = log(Availsit+1)−log(Availsit−1) and the effect of entry (changed

number of incumbents) is captured by the constant terms. Channel fixed effects are now excluded (as

they cancel out in taking first differences), but we keep time fixed effect to control for any specificity of

the years in which we observe entry and we also add some channel controls. The constant of this model

is given by β that measures the effect of entry on the reference group (infotainment), while βM and βS
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Table 2: Number of Incumbents and Avails - Effect by Segment

(1) (2) (3) (4) (5) (6)

Incumbents 0.00615*** 0.00139 0.00648** 0.00672** 0.00676*** 0.00160*
(0.00164) (0.00496) (0.00104) (0.000878) (0.000517) (0.000459)

Incumbents*Movies&Series -0.00613 -0.0137* -0.00902** -0.00811** -0.00788** -0.0137***
(0.00379) (0.00705) (0.00164) (0.00161) (0.00177) (0.000325)

Incumbents*Sport -0.00261 -0.00692 -0.00687** -0.00619*** -0.00547 -0.0154***
(0.00600) (0.00700) (0.000913) (0.000377) (0.00200) (0.000117)

Real GDP 0.00283 0.00188*
(0.00247) (0.000620)

MoviesSeries dummy 0.191*** 0.257***
(0.0595) (0.0766)

Sport dummy 0.106 0.0493
(0.0690) (0.0866)

rev mkt share 0.156
(0.398)

rating -0.0904
(0.0542)

Constant 2.908*** 2.685*** 2.760*** 3.242*** 3.226*** 3.273***
(0.0351) (0.190) (0.0469) (0.0372) (0.0621) (0.0258)

Observations 416 416 416 416 415 279
R2 0.048 0.050 0.284 0.307 0.311 0.299
Channell FE NO NO YES YES YES YES
Time FE NO NO NO YES YES YES
Number of pltf 56 56 56 33

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

measure the additional effect for the segments Movies&Series and Sports respectively. The estimates

reported in table 3 confirms our previous results: entry episodes are associated with an increase in the

quantity of avails in the infotainment segment, while the effect is lower in Sports and Movies&Series.

As expected, because the number of observations is halved in this relatively more demanding empirical

set-up, the point estimates are less precisely estimated. Furthermore because here we are looking the

effect one year after the entry occurs (t+1), the magnitude of the parameters is notably bigger. The

point estimate of the % variation in avails due to an additional channel is on the order of 5% in (4).

Notably, the interaction term that captures the differential impact of entry in sports is 11% less than the

industry average. The difference is higly statistically and economically significant.

To summarize we obtain evidence of a positive relationship between entry and the average number

of advertisng slots per hour using two different empirical strategies. We also find a systematic reduced

impact of entry on the provision of advertising in market segments charatcerized by channels which

broadcast mainly movies and sports events. Using our theory, we speculate that this difference derives
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Table 3: Entry Episodes - Average Effect and Effect by Segment

(1) (2) (3) (4) (5)

MoviesSeries dummy -0.0327*** -0.0398** -0.0494** -0.0314
(0.000919) (0.00881) (0.00841) (0.0124)

Sport dummy -0.0563*** -0.0645** -0.110*** -0.0172
(0.000457) (0.00869) (0.00460) (0.0222)

Delta GDP[t-1,t+1] 0.00380 0.00328*
(0.00133) (0.00103)

rating -0.0392***
(0.00128)

rev mkt share -0.171
(0.0987)

Constant 0.00393 0.0178 0.262 0.0615** 0.263***
(0.0213) (0.00901) () (0.00875) (0.000141)

Observations 219 219 219 158 219
R2 0.009 0.028 0.076 0.121 0.091
Time FE NO NO YES YES YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

from consumers’ tastes for content which induce a good deal of overlap among viewers of the channels

belonging to each of these segments.

9 Conclusion

This paper presented a media market model with either/both competition on the viewer side. The model

allows for general viewer demand and advertising technologies. In this framework, a neutrality result

between competition and joint ownership emerges, that is, the advertising level is the same in the case of

duopoly and in the case in which both stations are under the control of a single owner. Moreover, for both

market structures, there is a tendency of excessive provision of advertising as compared to the socially

optimal level. Market entry (if it leads to an increase in the number of channels) leads to an increase

in the advertising level if preference correlation across channels is negative but lowers advertising levels

for positive correlation. This result is validated by a simple empirical analysis. Finally, the possibility to

charge viewers does not alter the neutrality result and does only partly correct the excessive provision of

advertising.

A fundamental question for which our theory might serve as a useful building block is how these

considerations would change the incentives towards programming. Supposing one could affect the com-

petition mode and the degree of overlap in viewership, through an appropriate choice of programming,

our model would allow to draw implications for the emerging TV landscape.
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10 Appendix

Proposition 0

Consider the following three assumptions:

A1 Platforms are not too asymmetric.

A2 The expression α
{

di(αn
d)φ(nd)−di((1−α)n⋆)φ(n⋆)+ t⋆i

}

, where nd = argmaxni di(αni)φ(ni)

is maximized at α = 1.

A3 For all n ≥ n⋆
i , as ni changes, the change in aggregate demand of a platform is large relative

to the change in φi, that |∂di(ni)/∂ni| >> ∂φi(ni)/∂ni.

Suppose that A1, A2, and A3 hold. Then, there is a equilibrium in the game with posted contracts,

that is outcome-equivalent to the equilibrium of the game in the main text.

Proof:

Suppose that in the game with posted contracts each platform offers a contract with ni = nstar
i ,

where n⋆
i is implicitly determined by (4) and a transfer

ti = Di(n
⋆
i , n

⋆
j )φi(n

⋆
i ) +D12(n

⋆
i , n

⋆
j )
(
φ12(n

⋆
i , n

⋆
j )− φj(n

⋆
j )
)
. (15)

These contracts will be accepted by all advertisers. Since advertising levels are the same as in the

equilibrium of the model in the main text, viewerships are also the same. Therefore, this candidate

equilibrium is outcome-equivalent to the equilibrium of the model in teh main text.

Let us now consider if there exists a profitable deviation from this candidate equilibrium. We first

show that there can be no profitable deviation contract of platform i that still induces full advertiser

participation on platform j but a smaller participation on platform i. Let xi denote the fraction of

advertisers who accept the offer of platform i.

Given (ti, ni) and advertisers’ choices xi, the equilibrium payoff of platform i is equal to xiti. Note

that u(ni,∞)− u(0,∞) > 0 is a lower bound of the incremental value of accepting i’s offer. It follows all

contracts characterized by ni > 0 and 0 < ti < u(ni,∞) − u(0,∞) are accepted by all advertisers and

guarantee a strictly positive payoff. Therefore if (ti, ni) is a best reply then ti, ni > 0 and xi > 0.

Next consider a candidate contract (ni, ti). Suppose that xi < 1 so that platform i’s equilibrium

payoff is tixi. Now consider the following alternative contract: (xini, xiti). Note that total advertising

on channel i is equal to xini. So platform i is at least as attractive even if xi = 1. Note moreover that by

independence the advertisers’ payoff, rejecting i’s offer does not change with i’s offer. Finally, note that

because φi and φ12 are strictly concave in ni, the incremental value of accepting offer (xini, xiti) must

exceed xiti for all levels of advertiser participation. So all advertisers would accept (xini, xiti) regardless.

It follows that platform i can marginally increase xiti while still getting full participation and therefore

profits are strictly higher than xiti. It follows that no offer inducing a level of participation xi < 1 can

be part of a best reply.

Now suppose platform i deviates from the candidate equilibrium in such a way that it induces a

fraction α of the advertisers to single-home on its platform while the remaining fraction 1 − α single-

homes on platform j.
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Then the largest possible transfer that platform i can ask is bounded above by

tdi =
(

Di(αn
d
i , (1− α)n⋆

j ) +D12(αn
d
i , (1− α)n⋆

j )
)

φi(n
d
i )− ushj ,

where nd
i denotes the optimal deviation advertising level and ushj denotes the payoff of an advertiser who

chooses to reject the contract of platform i and instead single-homes on platform j. To determine ushj we

determine the payoff, that an advertiser obtains, when accepting only the contract of platform j, which

offers the equilibrium contract, after platform i has deviated to induce all advertisers to single-home. We

obtain that

ushj =
(

Dj((1− α)n⋆
j , αn

d
i ) +D12((1− α)n⋆

j , αn
d
i )
)

φj(n
⋆
j )− t⋆j =

(

Dj((1− α)n⋆
j , αn

d
i ) +D12((1− α)n⋆

j , αn
d
i )
)

φj(n
⋆
j )−Dj(n

⋆
j , n

⋆
i )φj(n

⋆
j−D12(n

⋆
i , n

⋆
j )
(
φ12(n

⋆
i , n

⋆
j )− φi(n

⋆
i )
)
.

The associated profit of platform i is then αtdi . Hence, deviating is not profitable if

α
{(

Di(αn
d
i , (1− α)n⋆

j ) +D12(αn
d
i , (1− α)n⋆

j )
)

φi(n
d
i )−

(

Dj((1− α)n⋆
j , αn

d
i ) +D12((1− α)n⋆

j , αn
d
i )
)

φj(n
⋆
j )

+Dj(n
⋆
j , n

⋆
i )φj(n

⋆
j +D12(n

⋆
i , n

⋆
j )
(
φ12(n

⋆
i , n

⋆
j )− φi(n

⋆
i )
)}

< Di(n
⋆
i , n

⋆
j )φi(n

⋆
i ) +D12(n

⋆
i , n

⋆
j )
(
φ12(n

⋆
i , n

⋆
j )− φj(n

⋆
j )
)
.

Defining di(ni) ≡ Di(ni, nj) +D12(ni, nj), we can rewrite the first two terms of the left-hand side of this

inequality to get

α
{

di(αn
d
i )φi(n

d
i )− dj((1− α)n⋆

j )φj(n
⋆
j ) +Dj(n

⋆
j , n

⋆
i )φj(n

⋆
j +D12(n

⋆
i , n

⋆
j )
(
φ12(n

⋆
i , n

⋆
j )− φi(n

⋆
i )
)}

< Di(n
⋆
i , n

⋆
j )φi(n

⋆
i ) +D12(n

⋆
i , n

⋆
j )
(
φ12(n

⋆
i , n

⋆
j )− φj(n

⋆
j )
)
.

Now suppose that the two platforms are symmetric. Then the condition boils down to

α
{

di(αn
d)φ(nd)−di((1−α)n⋆)φ(n⋆)

}

−(1−α) (Di(n
⋆, n⋆)φ(n⋆) +D12(n

⋆, n⋆) (φ12(n
⋆, n⋆)− φ(n⋆))) < 0,

(16)

with the abbreviation that n⋆
i = n⋆

j = n⋆, nd
i = nd, φi(·) = φj(·) = φ(·).

By A2, the left-hand side is maximized if the number single-homing advertisers on platform i is the

largest possible, which is the case when α = 1.

Rewriting the condition gives

di(n
d)φ(nd)− di(0)φ(n

⋆) < 0. (17)

If nd were below n⋆, then di(n
d) < di(0) and φ(nd) < φ(n⋆), implying that the inequality is for sure

fulfilled. If nd is above n⋆, then A3 ensures that it is fulfilled as well.

As a consequence, if platforms are symmetric, a deviation is not profitable. Hence, this is also the

case if platforms are not too asymmetric.

Proof of Proposition 2:

Before showing the result, we start with an example of three platforms, that conveys the arguments.

The viewer demand structure in the case with three platforms is
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Multi-homers123: D123 ≡ Prob{q1 − γn1 ≥ 0; q2 − γn2 ≥ 0; q3 − γn3 ≥ 0},
Multi-homers12: D12 ≡ Prob{q1 − γn1 ≥ 0 ; q2 − γn2 ≥ 0 ; q3 − γn3 < 0},
Multi-homers13: D13 ≡ Prob{q1 − γn1 ≥ 0 ; q2 − γn2 < 0 ; q3 − γn3 ≥ 0},
Multi-homers23: D23 ≡ Prob{q1 − γn1 < 0 ; q2 − γn2 ≥ 0 ; q3 − γn3 ≥ 0},
Single-homers1: D1 ≡ Prob{q1 − γn1 ≥ 0 ; q2 − γn2 < 0 ; q3 − γn3 < 0},
Single-homers2: D2 ≡ Prob{q1 − γn1 < 0 ; q2 − γn2 ≥ 0 ; q3 − γn3 < 0},
Single-homers3: D3 ≡ Prob{q1 − γn1 < 0 ; q2 − γn2 < 0 ; q3 − γn3 ≥ 0},

Zero-homers: D0 ≡ 1−D1 −D2 −D12 −D13 −D23 −D123.

Because of our independence assumption we have

∂Dij

∂nj
= −∂Di

∂nj
and

∂Dijk

∂nk
= −∂Dij

∂nk
.

We start with the situation in which all three platforms are controlled by different owners (full

oligopoly). The maximization problem of platform i is then (normalizing ω to unity)

Πo
i = Di(n1, n2, n3)φi(ni) +Dij(n1, n2, n3) (φij(ni, nj)− φj(nj))

+Dik(n1, n2, n3) (φik(ni, nk)− φk(nk)) +D123(n1, n2, n3) (φ123(ni, nj , nk)− φjk(nj , nk)) .

Differentiating this with respect to ni yields (dropping arguments for simplicity)

∂Di

∂ni
φi +Di

∂φi

∂ni
+

∂Dij

∂ni
(φij − φj) +Dij

∂φij

∂ni
(18)

+
∂Dik

∂ni
(φik − φk) +Dik

∂φik

∂ni
+

∂D123

∂ni
(φ123 − φjk) +D123

∂φ123

∂ni
= 0.

The problem of a monopolist controlling all platforms is

Πm
i = D1(n1, n2, n3)φ1(n1) +D2(n1, n2, n3)φ2(n2) +D3(n1, n2, n3)φ3(n3) +D12(n1, n2, n3)φ12(n1, n2)

+D13(n1, n2, n3)φ13(n1, n3) +D23(n1, n2, n3)φ23(n2, n3) +D123(n1, n2, n3)φ123(n1, n2, n3)

leading to a first-order condition of

∂Di

∂ni
φi +Di

∂φi

∂ni
+

∂Dj

∂ni
φj +

∂Dk

∂ni
φk +

∂Dij

∂ni
φij +Dij

∂φij

∂ni
(19)

+
∂Dik

∂ni
φik +Dik

∂φik

∂ni
+

∂Djk

∂ni
φjk +

∂D123

∂ni
φ123 +D123

∂φ123

∂ni
= 0.

Now subtracting (18) from (19), assuming that nj and nk are the same in monopoly and oligopoly

gives
∂Dj

∂ni
φj +

∂Dk

∂ni
φk +

∂Djk

∂ni
φjk +

∂Dij

∂ni
φj +

∂Dik

∂ni
φk +

∂Dijk

∂ni
φjk. (20)

But due to the independence of the demand system we know that

∂Dj

∂ni
+

∂Dij

∂ni
= 0,

∂Dk

∂ni
+

∂Dik

∂ni
= 0, and

∂Djk

∂ni
+

∂Dijk

∂ni
= 0,

which implies that (20) equals zero. As a consequence, ni in monopoly and oligopoly are the same, given
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that nj and nk are the same. Since the same analysis applies to nj and nk and since there is a unique

solution, we have established the neutrality result.

We can now also establish neutrality for the case in which an owner controls more than one station

but not all of them. Suppose in our case that an owner controls stations i and j. The profit function is

Πd
ij = Di(n1, n2, n3)φi(ni) +Dj(n1, n2, n3)φj(nj) +Dij(n1, n2, n3)φij(ni, nj)

+Dik(n1, n2, n3) (φik(ni, nk)− φk(nk)) +Djk(n1, n2, n3) (φjk(ni, nk)− φk(nk))

+D123(n1, n2, n3) (φ123(ni, nj , nk)− φk(nk)) .

The first-order condition for ni is then

∂Di

∂ni
φi +Di

∂φi

∂ni
+

∂Dj

∂ni
φj +

∂Dij

∂ni
φij +Dij

∂φij

∂ni
(21)

+
∂Dik

∂ni
(φik − φk) +Dik

∂φik

∂ni
+

∂Djk

∂ni
(φjk − φk) +

∂D123

∂ni
(φ123 − φk) +D123

∂φ123

∂ni
= 0.

Subtracting (21) from (18) (assuming that nj and nk are the same in both problems) gives

−∂D123

∂ni
φjk −

∂Djk

∂ni
φjk +

∂Djk

∂ni
φk +

∂D123

∂ni
φk.

But due to independence, ∂D123
∂ni

+
∂Djk

∂ni
= 0, and we again have neutrality.

We now turn to N firms. With N firms the assumption of mutual independence of the viewer

behavior can be written as
∂
(
DJ +DJ/j

)

∂ni
= 0,

with

J =
{

1, 2, 3, ..., N, 12, 13, ..., 1N, 23, 24, ..., 2N, 34, ..., (N − 1)N,

123, 124, ..., 12N, 234, ..., (N − 2)(N − 1)N, ..., 123...(N − 1)N
}

and

j = {1, 2, 3, ..., N} , j 6= i.

That, is J is the set of all subsets of N platforms and J/j is the same subset with one platform excluded

where this platform is not platform i. So in the example with three platforms J = {1, 2, 3, 12, 13, 23, 123}.
Let us first look at the case in which all N platforms are controlled by different owners. The profit

function of a platform i is then

Πo
i = Diφi +

N∑

k = 1

k 6= i

Dki(φki − φk) +
N∑

k1, k2 = 1

k1, k2 6= i

k2 > k1

Dk1k2i(φk1k2i − φk1k2)
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+
N∑

k1, k2, k3 = 1

k1, k2, k3 6= i

k3 > k2 > k1

Dk1k2k3i(φk1k2k3i − φk1k2k3) + ...+D12...i...N (φ12...i...N − φ12...i−1i+1,...N ).

Here the argument of any viewer demand function is n1, n2, ..., ni, ..., nN , that is Dk =

Dk(n1, n2, ..., ni, ..., nN ) and the argument of the φk-functions consists of the respective advertising levels,

that is, e.g., φk1k2i = φk1k2i(nk1 , nk2 , ni).

Deriving the first-order condition with respect to ni yields

∂Di

∂ni
φi +Di

∂φi

∂ni
+

N∑

k = 1

k 6= i

[
∂Dki

∂ni
(φki − φk) +Dki

∂φki

∂ni

]

+

+
N∑

k1, k2 = 1

k1, k2 6= i

k2 > k1

[
∂Dk1k2i

∂ni
(φk1k2i − φk1k2) +Dk1k2i

∂φk1k2i

∂ni

]

(22)

+
N∑

k1, k2, k3 = 1

k1, k2, k3 6= i

k3 > k2 > k1

[
∂Dk1k2k3i

∂ni
(φk1k2k3i − φk1k2k3) +Dk1k2k3i

∂φk1k2k3i

∂ni

]

+...+
∂D12...i...N

∂ni
(φ12...i...N − φ12...i−1i+1...N ) +D12...i...N

∂φ12...i...N

∂ni
= 0.

Now we turn to the problem of a monopolist who controls all platforms. The profit function of the

monopolist is given by

ΠM =

N∑

j=1

{

Djφj +

N∑

k = 1

k < j

Dkjφkj +

N∑

k1, k2 = 1

k1, k2 < j

k2 > k1

Dk1k2jφk1k2j +

N∑

k1, k2, k3 = 1

k1, k2, k3 < j

k3 > k2 > k1

Dk1k2k3jφk1k2k3j + ...

}

+D12...Nφ12...N .

Differentiating with respect to ni gives

∂Di

∂ni
φi +Di

∂φi

∂ni
+

N∑

j = 1

j 6= i

∂Dj

∂ni
φj +

N∑

k = 1

k 6= i

[
∂Dki

∂ni
φki +Dki

∂φki

∂ni

]

+

N∑

j = 1

j 6= i

N∑

k = 1

k < j

k 6= i

∂Dkj

∂ni
φkj

+
N∑

k1, k2 = 1

k1, k2 6= i

k2 > k1

[
∂Dk1k2i

∂ni
φk1k2i +Dk1k2i

∂φk1k2i

∂ni

]

+
N∑

j = 1

j 6= i

N∑

k1, k2 = 1

k1, k2 < j

k1, k2 6= i

k2 > k1

∂Dk1k2j

∂ni
φk1k2j (23)
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+
N∑

k1, k2, k3 = 1

k1, k2, k3 6= i

k3 > k2 > k1

[
∂Dk1k2k3i

∂ni
φk1k2k3i +Dk1k2k3i

∂φk1k2k3i

∂ni

]

+

N∑

j = 1

j 6= i

N∑

k1, k2, k3 = 1

k1, k2, k3 < j

k1, k2, k3 6= i

k3 > k2 > k1

∂Dk1k2k3j

∂ni
φk1k2k3j + ...+

∂D12...i...N

∂ni
φ12...i...N +D12...i...N

∂φ12...i...N

∂ni
= 0.

Now we can take the difference between the left-hand sides of(23) and (22), given that all nj , j =

1, ..., N , j 6= i are equal in monopoly and oligopoly. Subtracting the left-hand side of (22) from the one

of (23) we get
N∑

k = 1

k 6= i

φk

(
∂Dk

∂ni
+

∂Dki

∂ni

)

+
N∑

j = 1

j 6= i

N∑

k = 1

k < j

k 6= i

∂Dkj

∂ni
φkj +

N∑

k1, k2 = 1

k1, k2 6= i

k2 > k1

∂Dk1k2i

∂ni
φk1k2 (24)

N∑

j = 1

j 6= i

N∑

k1, k2 = 1

k1, k2 < j

k1, k2 6= i

k2 > k1

∂Dk1k2j

∂ni
φk1k2j +

N∑

k1, k2, k3 = 1,

k1, k2, k3 6= i

k2 > k1

k3 > k2

∂Dk1k2k3i

∂ni
φk1k2k3 + ...+

+
∂D12...i−1i+1...N

∂ni
φ12...i−1i+1...N +

∂D12...i...N

∂ni
φ12...i−1i+1...N .

Rewriting the third and the fifth term to

N∑

j = 1

j 6= i

N∑

k = 1

k < j

k 6= i

∂Dkj

∂ni
φkj =

N∑

k1, k2 = 1,

k1, k2 6= i

k2 > k1

∂Dk1k2

∂ni
φk1k2

and
N∑

j = 1

j 6= i

N∑

k1, k2 = 1

k1, k2 < j

k1, k2 6= i

k2 > k1

∂Dk1k2j

∂ni
φk1k2j =

N∑

k1, k2, k3 = 1,

k1, k2, k3 6= i

k2 > k1

k3 > k2

∂Dk1k2k3

∂ni
φk1k2k3
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allows to write (24) as

N∑

k = 1

k 6= i

φk

(
∂Dk

∂ni
+

∂Dki

∂ni

)

+
N∑

k1, k2 = 1

k1, k2 6= i

k2 > k1

φk1k2

(
∂Dk1k2i

∂ni
+

∂Dk1k2

∂ni

)

+

N∑

k1, k2, k3 = 1,

k1, k2, k3 6= i

k2 > k1

k3 > k2

φk1k2k3

(
∂Dk1k2k3

∂ni
+

∂Dk1k2k3i

∂ni

)

+ ...+ φ12...i−1i+1...N

(
∂D12...i−1i+1...N

∂ni
+

∂D12...i...N

∂ni

)

.

But due to the independence assumption
∂(DJ+DJ/j)

∂ni
= 0 all terms equal zero. Since the same arguments

holds for all nk, k = 1, ..., N , and there is a unique solution, we obtain neutrality also for the N firms

case.

The proof for the case in which only a subset of platforms is controlled by the same owner follows

the same lines as the arguments above and is therefore omitted. �

Proof of Proposition 3:

We first look at the last three terms in W , i.e., ωD2φ2 + ωD12φ12. Taking the derivative of these

terms gives18

∂Di

∂ni
φi +Diφ

′
i +

∂Dj

∂ni
φj +

∂D12

∂ni
φ12 +D12

∂φ12

∂ni
. (25)

It is easy to check that the first principal minors of the Hessian, i.e., ∂2Πm/∂(ni)
2 are both negative if

the assumptions on the demand schedule and the probabilities φk, k = 1, 2, 12, are fulfilled. Checking

that the determinant of Hessian is positive, i.e.,
(
∂2Πm/∂(n1)

2
) (

∂2Πm/∂(n2)
2
)
−
(
∂2Πm/(∂n1∂n2

)2
> 0,

we obtain that this is indeed the case if |∂Di/∂ni| ≥ |∂Di/∂n−i|,
∣
∣∂2Di/∂(ni)

2
∣
∣ ≥

∣
∣∂2Di/∂ni∂n−i

∣
∣ and

∣
∣∂2φi/∂(ni)

2
∣
∣ ≥

∣
∣∂2φi/∂ni∂n−i

∣
∣. Therefore, the last three terms are concave in ni.

We can now use ∂D12/∂ni = −∂Dj/∂ni in (25) to obtain after rearranging

∂Di

∂ni
φi +Diφ

′
i +

∂D12

∂ni
(φ12 − φj) +D12

∂φ12

∂ni
.

From (4) we know that at ni = nd the last expression equals zero.

However, the first terms in W are the utilities of the viewers which are strictly decreasing in ni. As

a consequence, the first-order condition with respect to ni of W evaluated at ni = nd
i is strictly negative,

which implies that there is too much advertising. �

Proof of Proposition 5:

18For simplicity we omit the arguments of the functions in the following.
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We know that the advertising level in case of duopoly is given by (9), while the one of a single

platform monopolist is given by (10) To check if advertising levels go up with entry, let us evaluate (9)

at ns.m.
i and nd

j . Since the first terms disappear in both equations are the same, we get that nduo
i > ns.m.

i

if and only if
∂D12

∂ni
(φ12 − φi − φj) +D12

(
∂φ12

∂ni
− ∂φi

∂ni

)

> 0.

This is because, due to the fact that the objective functions are single-peaked, it follows that if marginal

revenue evaluated at the pre-entry advertising level is positive, given that platform j sets nd
j , then the

incumbents equilibrium advertising level in duopoly must be larger. Rearranging this inequality gives

(acknowledging the fact that φ12 − φi − φj < 0)

−∂D12

∂ni

ni

D12
>

(
∂φ12

∂ni
− ∂φi

∂ni

)
ni

φ12 − φi − φj
.

Since ∂φj/∂ni = 0, we can write the right-hand side of the last inequality as

−∂D12

∂ni

ni

D12
>

(
∂(φi + φj − φ12)

∂ni

)
ni

φi + φj − φ12
. (26)

Using our definitions

ηD12 := −∂D12

∂ni

ni

D12

and

ηφi+φj−φ12 :=

(
∂(φi + φj − φ12)

∂ni

)
ni

φi + φj − φ12
,

we can rewrite (26) as ηD12 > ηφi+φj−φ12 . Dividing this expression by ηD12 > 0, we obtain

ηD12/ηDi > ηφi+φj−φ12/ηDi . Finally, note that from (10) we have ηDi = ηφi . Inserting this into

ηD12/ηDi > ηφi+φj−φ12/ηDi yields
ηD12

ηDi

>
ηφi+φj−φ12

ηφi

.

�

Proof of Proposition 8:

We start with the case of duopoly, i.e., in which both platforms are in the market. First, look at the

case of positive correlation. As is evident from Figure 1, at n1 = n2 the demand function of the λ-types

exhibits a kink. This is the case because D1 = D2 = 0 for the λ-types at n1 = n2 but Di becomes positive

if channel i reduces ni slightly. Since there is a positive mass of λ-types, demand is kinked at this point.

To avoid this problem and be able to use differentiation techniques, we perturb the model by assuming

that the λ-types are not just distributed on the 45-degree line but on the area that includes the space

in ǫ-distance around the 45-degree line and we will later let ǫ go to zero. This preference configuration

with the ǫ-area is displayed in Figure 2 on the left-hand side. The advantage of this formulation is that,

as shown in the right-hand side of Figure 2, both D1 and D2 for the λ-types are strictly positive at

n1 = n2. Therefore, when slightly changing ni around a symmetric equilibrium, the profit function Πi

changes continuously, allowing us to apply differentiation techniques. After letting ǫ → 0, we obtain the

equilibrium that arises when approaching the framework with viewers distributed just on the 45-degree
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line.
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Figure 2: An Area with Positive Correlation

We can now derive the demand functions for the viewers located on different points on the unit

square. In the following we denote the demands for viewers in the ǫ-area by De
1, D

e
2 and De

12 and the

demands by the viewers outside this area by Ds
1, D

s
2 and Ds

12. This is illustrated in Figure 3.19

✲

✻
✲

✻
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n1

n2

Ds
1

Ds
2

Ds
12

Ds
12 De

12

De
1

De
2

❅❅■

❅❅❘

Figure 3: Demands

We first determine the ǫ-area. Doing so yields that its area is of size 2ǫ(
√
2 − ǫ). Then calculating

the demands De
1 and De

2, we obtain from Figure 5 that they are given by the triangulars starting at the

intersection point between the lines representing n1 and n2 and the lines confining the ǫ-area. We can

19Ds
12 shows up twice just to express that both areas belong to Ds

12.
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calculate the normalized demands, i.e., the demands such that the mass of viewers within and outside

the ǫ area equals 1, so that λ expresses the overall mass on the ǫ-area and the rest. Calculating the

respective demands gives

De
1 =

(
√
2ǫ+ n2 − n1)

2

4ǫ(
√
2− ǫ)

and De
2 =

(
√
2ǫ− n2 + n1)

2

4ǫ(
√
2− ǫ)

.

From that we can easily deduce Ds
1 and Ds

2 to get

Ds
1 =

2(1− n1)n2 − (
√
2ǫ+ n2 − n1)

2

2(1− 2ǫ(
√
2− ǫ))

and Ds
2 =

2(1− n2)n1 − (
√
2ǫ− n2 + n1)

2

2(1− 2ǫ(
√
2− ǫ))

.

Similarly, determining the demands for multi-homing viewers, we obtain

Ds
12 =

(
1− n2 −

√
2ǫ
)2

+ 1
2

(
1− n1 −

√
2ǫ
)2

2(1− 2ǫ(
√
2− ǫ))

,

implying that

De
12 =

2(1− n1)(1− n2)−
(
1− n2 −

√
2ǫ
)2 −

(
1− n1 −

√
2ǫ
)2

4ǫ(
√
2− ǫ)

.

The profit function of channel i in duopoly is given by

Πd
i = ω

[

(λDe
i + (1− λ)Ds

i )(1− e−ni) + (λDe
12 + (1− λDs

12)(e
−n−i − e−(n1+n2))

]

(27)

leading to a first-order condition of

∂Πd
i

∂n1
=

(

λ
∂Di

∂ni
+ (1− λ)

∂Ds
i

∂ni

)

(1− e−ni) + (λDi + (1− λ)Ds
i )e

−ni

+

(

λ
∂D12

∂ni
+ (1− λ)

∂Ds
12

∂ni

)

(e−n−i − e(n1+n2)) + (λD12 + (1− λ)Ds
12)e

−(n1+n2) = 0, (28)

where the partial derivatives of the different demand regions with respect to ni can be easily calculated

from the demands given above.

Using that at a symmetric equilibrium n1 = n2 = n⋆ and letting ǫ → 0, we obtain that n⋆ is implicitly

given by

λn⋆ − n⋆ − λ

2
+ e−n⋆

[

λ+ 3n⋆ + λ (n⋆)2 − 1− (n⋆)2 − 3λn⋆
]

(29)

+e−2n⋆

[

2 + (n⋆)2 + 2λn⋆ − λ

2
− 3n⋆ − λ (n⋆)2

]

= 0.

At λ = 0, we obtain

e−n⋆
[(

3n⋆ − (n⋆)2 − 1
)

+ e−n⋆
(

2 + (n⋆)2 − 3n⋆
)]

= n⋆.

Solving this for n⋆ we obtain that there is a unique solution given by n⋆ = 0.443. Similarly, at λ = 1,

(29) writes as

e−2n⋆

(
3

2
− n⋆

)

=
1

2
.
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Solving this yields n⋆ = 0.396.

To determine how n⋆ changes with λ we can apply the Implicit Function Theorem to the first-order

condition (28) and then evaluate it a symmetric equilibrium n⋆
1 = n⋆

2. After letting ǫ → 0 we obtain

sign

{
dn⋆

dλ

}

= sign

{

−1

2
+ n⋆ − e−n⋆

(

3n⋆ − 1− (n⋆)2
)

− e−2n⋆

(
1

2
+ (n⋆)2 − n⋆

)}

.

It is easy to verify that for all values of n⋆ ∈ [0.396, 0.443] the sign of dn⋆/dλ is strictly negative. But

this implies that for all λ ∈ [0, 1], n⋆ is strictly decreasing with λ.

We now turn to the case of negative correlation. Here the analysis is simpler. However, we need to

distinguish between two cases, namely, the one in which De
12 is positive and the one in which it is zero.

The first case is displayed on the left-hand side of Figure 4 and the second case on the right-hand side.

n1

n2

(0,0) (1,0)

(0,1) (1,1)

✲

✻
✲
✻

(0,0) (1,0)

(0,1) (1,1)

n1

n2

Figure 4: Negative Correlation

As is easy to check in the first case demand of the λ-types are given by

De
1 = n2, De

2 = n1, and De
12 = (1− n1 − n2),

while the second case demands are

De
1 = 1− n1, De

2 = 1− n2, and D12 = 0.

For the 1− λ-types we have

Ds
1 = (1− n1)n2 Ds

2 = (1− n2)n1 Ds
12 = (1− n1)(1− n2)

independent of the case under consideration.

We start with the first case. Here, we need to take into account that the demand configuration in

this case can only be an equilibrium if n1 + n2 ≤ 1 since otherwise we would have De
12 = 0. The profit

functions and the first-order conditions can be written as in (27) and (28), just with the adapted demand

function. We can then again solve the first-order conditions for the symmetric equilibrium. Here we

obtain that n⋆ is defined by

(λ− 1)n⋆ + e−n⋆
[

3n⋆ + (λ− 1) (n⋆)2 − 2λn⋆ − 1
]

(30)
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+e−2n⋆
[

2 + λn⋆ − 3n⋆ − (λ− 1) (n⋆)2
]

= 0.

Applying the Implicit Function Theorem we get

sign

{
dn⋆

dλ

}

= sign
{

n⋆ − e−n⋆
n⋆ (2− n⋆)− e−2n⋆

n⋆ (1− n⋆)
}

,

which is positive for all n⋆ ∈ [0.443, 0.5]. Inserting n⋆ = 0.5 into (30) and solving for λ, we obtain that

λ = 0.529. Therefore, a symmetric equilibrium exists with the demand configuration given by case 1 as

long as λ ≤ 0.529.

We can do the same analysis for the second case in which De
12 is equal to zero. However, building

the first-order conditions for this case and solving for the symmetric equilibrium we obtain that for all

λ ∈ [0, 1], n⋆ < 0.5 implying that this demand configuration can never be an equilibrium.

Therefore, for λ > 0.529 the only symmetric equilibrium is that both channels set n⋆
i exactly equal

to 0.5, leaving Ds
12 just equal to zero. Lowering the advertising level is not profitable since this does not

lead to increase in De
i because then the case De

i = n−i becomes relevant. However, also increasing the

advertising level is not profitable since then De
i falls by too much due to the fact that the case De

i = 1−ni

is relevant. As a consequence, we obtain that for negative correlation n⋆ is weakly increasing over the

range λ ∈ [0, 1]; n⋆ = 0.443 at λ = 0, n⋆
i strictly increases up to n⋆ = 0.5 at λ = 0.529 and stays at this

level for λ ∈ [0.529, 1].

Keeping the demand notation as it was derived using Figure 3, the profit function of a monopolist

owning a single channel can be written as

Πm
i = ω

[
(λDe

i + (1− λ)Ds
i + λDe

12 + (1− λDs
12))(1− e−ni)

]
,

which leads to first-order condition of

∂Πm
i

∂ni
=

(

λ
∂De

i

∂ni
+ (1− λ)

∂Ds
i

∂ni
+ λ

∂De
12

∂ni
+ (1− λ)

∂Ds
12

∂ni

)

(1− e−ni)

+(λDe
i + (1− λ)Ds

i + λDe
12 + (1− λ)Ds

12)e
−ni = 0.

Inserting the respective values into this first-order condition and rearranging it can be written as

e−n⋆
i (2− n⋆

i ) = 1.

Therefore, n⋆
i is independent of λ. Solving for n⋆

i yields n⋆
i = 0.443. This corresponds to the equilibrium

under duopoly for independent viewerships. Since we know that n⋆
i < 0.443 for positive correlation and

n⋆
i > 0.443 for negative correlation, the result follows. �

Proof of Proposition 10:

Rewriting the conditions (13) and (14), which determine the equilibrium advertising levels and the

viewer prices, yields

∂Di

∂ni
(ωφi(ni) + pi)

∂D12

∂ni
(ω(φ12(ni, nj)− φj(nj)) + pi) = −ω

(

Diφ
′
i +D12

∂φ12

∂ni

)

(31)
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and
∂Di

∂pi
(ωφi(ni) + pi)

∂D12

∂pi
(ω(φ12(ni, nj)− φj(nj)) + pi) = − (Di +D12) . (32)

To determine the relationship between ∂Di/∂ni and ∂Di/∂pi, we write Di =
∫∞
γni+pi∫ γnj+pj

0 h(qi, qj)dqjdqi and D12 =
∫∞
γni+pi

∫∞
γnj+pj

h(qi, qj)dqjdqi. This implies that

∂Di

∂ni
= −γ

∫ γnj+pj

0
h(γni + pi, qj)dqjdqi,

∂Di

∂pi
= −

∫ γnj+pj

0
h(γni + pi, qj)dqjdqi,

∂D12

∂ni
= −γ

∫ ∞

γnj+pj

h(γni + pi, qj)dqjdqi and
∂D12

∂pi
= −

∫ ∞

γnj+pj

h(γni + pi, qj)dqjdqi.

Therefore, ∂Di/∂ni = γ∂Di/∂pi and ∂D12/∂ni = γ∂D12/∂pi. As a consequence, if the monopolist varies

ni by ∆ni, demand changes in the same way as when the monopolist varies by pi by ∆pi = γ∆ni.

We can now determine the optimal level of advertising from (31) and (32). Inserting ∂Di/∂ni =

γ∂Di/∂pi in (31) and then dividing (31) by (32), we obtain, after rearranging,

γ =
ω
(

Diφ
′
i +D12

∂φ12

∂ni

)

Di +D12
. (33)

Now we turn to the socially optimal advertising level. From Subsection 4.2, social welfare is given by

W =

∫ ∞

γn1

∫ γn2

0
q1 − γn1h(q1, q2)dq2dq1 +

∫ γn1

0

∫ ∞

γn2

q2 − γn2h(q1, q2)dq2dq1

+

∫ ∞

γn1

∫ ∞

γn2

q1 − γn1 + q2 − γn2h(q1, q2)dq2dq1 + ωD1φ1 + ωD2φ2 + ωD12φ12. (34)

We know that viewer demand Di and D12 fall with ni. Suppose to the contrary that Di and D12 would

not change with ni. Differentiating (34) with respect to ni then gives

−γDi − γD12 + ωDiφ
′
i + ωD12

∂φ12

∂ni
= 0.

Rearranging this yields (33).

Therefore, the advertising level ni implicitly determined by (33) provides an upper bound on the

socially optimal level of advertising, which obtains when viewer demand is inelastic. But since Di and

D12 fall with ni, the socially optimal level must be lower than the one prescribed by (33). This shows that

the socially optimal level is lower than the one with viewer pricing, provided that the latter is positive.

�

Proof of the Reduction of Viewer Surplus and Advertiser Revenue with Pricing:

We start with a comparison of the equilibrium advertising levels in case of viewer pricing and in

case without. In case of viewer pricing, the equilibrium advertising level is given by the derivative of

ω (D1φ1 +D2φ2 +D12φ12)+p1D1+p2D2+(p1+p2)D12 with respect to ni. By contrast, in case without

viewer pricing the equilibrium advertising level is given by the derivative of ω (D1φ1 +D2φ2 +D12φ12)

with respect to ni. Since p1, p2 ≥ 0 and ∂Di/∂ni < 0, ∂D12/∂ni < 0 and ∂Dj/∂ni = −∂D12/∂ni, the

derivative of p1D1 + p2D2 + (p1 + p2)D12 with respect to ni is negative. This implies that the first-order
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condition with respect to ni in case of viewer pricing is negative at the equilibrium value of ni for the

case without viewer pricing. As a consequence, the equilibrium advertising level with viewer pricing is

below the one without viewer pricing. If viewer demand is also lower with viewer pricing than without,

this implies that advertising revenue is lower.

The monopoly profit function in case of viewer pricing can be written as

D1 (ωφ1 + p1) +D2 (ωφ2 + p2) +D12 (ωφ12 + p1 + p2) .

Therefore, for any demand segment, the monopolist has two revenue sources. It can either use advertising

or viewer pricing or both. This depends on the shape of the per-viewer revenues of advertising (ωφi and

ωφ12), the shape of the per-viewer revenue of pricing (pi) and how the viewer demand reacts to changes

in the advertising level and the viewer price.

Suppose that the monopolist uses both revenue sources, advertising and pricing. Since φi(ni) and

φ12(ni, nj) are concave in ni, the per-viewer revenue from advertising is also concave in ni. By contrast,

the per-viewer revenues from pricing pi is linear. Since ∂Di/∂ni = γ∂Di/∂pi and ∂D12/∂ni = γ∂D12/∂pi,

it must be that the first marginal unit of revenue comes from advertising. This is because due to the

shapes of the demand functions and the revenue functions, the marginal revenue from advertising is

decreasing more strongly than the one from pricing. If advertising were not used for the first unit of

revenue, it will be never be used.

Now if the monopolist increases its advertising further, at some point the marginal revenue from

viewer pricing equals the marginal revenue from advertising, since otherwise, the monopolist will not use

both revenue sources. At this point, the monopolist will start to use pricing as well.

Let us now consider the monopolist’s optimal advertising level when pricing is not possible, denoted

by n⋆
i . If the marginal per-viewer revenue of viewer pricing is lower than the one of advertising even

at this point, pricing will not be used. Therefore, the optimal solution with and without pricing is the

same. Hence, viewer surplus and advertising revenue are unchanged. By contrast, if viewer pricing will

be used, we have that at n⋆
i the marginal per-viewer revenue with must be (weakly) larger than without

pricing. In addition, we know that the monopolist can induce the same aggregate demand via increasing

ni by 1 unit and via increasing pi by ∆pi = γ∆ni. This implies that at the point ni = n⋆
i and pi = 0, the

monopolist obtains a larger marginal revenue when viewer pricing can be used. Therefore, the monopolist

optimally raises either pi at this point, inducing a smaller demand than without viewer pricing. As a

consequence, not only viewer surplus but also advertising revenue falls. �

10.1 Heterogeneous Advertisers

The goal of this section is to show that the basic trade-off driving the neutrality result is robust to

allowing for heterogeneous advertisers. In case of heterogeneous advertisers, the optimal individual

advertising amount and therefore also the payment is different for different advertiser types, which makes

the analysis more complicated. We therefore do not provide a direct extension of the main model but

analyze the situation with posted contracts, in which each platforms now offers a menu of contract, i.e.,

a price schedule for different intensities of advertising, and advertisers and viewers make their decisions

conditional on these menus. This allows to look at different contracts in a direct way.

The above duopoly model is extended as follows. At stage 1 each channel simultaneously posts a price
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schedule, that is a mapping from quantity of ads to prices ti : [0, n] → R, where n is arbitrarily large. At

stage 2 each advertiser observes the posted schedules and chooses its preferred intensity (possibly zero)

on each platform. We restrict ti(0) = tj(0) = 0. Note that all advertisers would rather not contract

with i than pay a positive price for ni = 0. So this restriction is without loss of generality. The value of

informing a viewer, ω, is private information and distributed according to a smooth c.d.f. F with support

[ω, ω] that satisfies the monotone hazard rate property. We assume ω ≥ 0. Given (t1(n1), t2(n2)), type

ω’s payoff from choosing quantity (n1, n2) depends on all other advertisers’ choices, as these determine

the total quantity of ads on each channel and in turn viewers’ demand. In what follows we define this

aggregate advertising level by Ni =
∫ ω
ω ni(ω

′)dF (ω′), i = 1, 2. We also define N = (N1, N2) as the total

quantities of ads on each channel. In the advertiser game, the issue of multiplicity of equilibria might

arise. To focus on the platforms’ choices, we assume away coordination issues, and suppose that realized

advertising levels are continuous, with respect to the uniform norm, in the price schedules chosen by the

platforms. We fix the continuation equilibrium for the rest of the analysis. The continuity assumption is

a very reasonable one in our game in which advertising exerts a disutility on viewers, implying that the

game between advertisers exhibits negative externalities. Therefore, the standard problem of equilibrium

multiplicity and discontinuity in games with positive network externalties does not arise in our setting.

We now characterize channel i’s best reply, that is, the price schedule ti that maximizes its payoff

given tj . With an abuse of notation we keep denoting ωu(n1, n2, N) the surplus of advertiser ω from

advertising intensities (n1, n2). Note however that this function is only well defined given the price

schedules which here are omitted as arguments. So if ni(ω, (t1, t2)) denotes the optimal quantity chosen

by type ω, then i’s problem, given the rival’s price schedule tj is well defined and equal to (arguments

omitted):

max
ti(·)

∫ ω

ω
ti(ni(ω))dF (ω).

The above can be expressed as a standard screening problem:

max
ti(·),ni(·),ω0

∫ ω

ω0

ti(ni(ω))dF (ω) subject to ni(ω) = argmax
ni

vdi (ni, ω,N)− ti(ni)

vdi (ni(ω), ω,N)− ti(ni(ω)) ≥ 0 for all ω ≥ ω0.

Here vdi (n, ω,N) := maxy ωu(n, y,N) − tj(y) − (maxy′ ωu(0, y
′, N) − tj(y

′)), with u(n, y,N) ≡=

Di(N1, N2)φi(n) + Dj(N1, N2)φj(nj) + D12(N1, N2)φ12(n, nj), denotes the net value of advertising in-

tensity n on channel i to type ω. This is the value of contracting with i given tj(nj). It equals the

maximum value of the allocation n minus the outside option of dealing with j exclusively. Note that in

any pure strategy equilibrium channel i behaves as a monopolist facing a mass one of advertisers with vdi
as their indirect utility function. Provided that this function satisfies standard regularity conditions in

the screening literature, it is possible to apply the canonical methodology developed by Mussa and Rosen

(1978) or Maskin and Riley (1984) to characterize i’s best reply. As in Martimort and Stole (2009), vdi
is said to be regular if it is continuous, monotone in ω and displays strict increasing differences in (n, ω).

Our assumptions on the viewer demands Di(n1, n2) and D12(n1, n2) and on the advertising technology

φi(ni) and φ12(n1, n2) ensure that vdi is continuous and monotonically increasing in ω. It also has strict

increasing differences in (n, ω) for values of n that are not very large and therefore will never constitute

an optimal solution. An equilibrium (td1, t
d
2) is said to be regular if the induced indirect utility functions
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are regular.20

We contrast platform i’s best reply with the optimal price schedule that a hypothetical multi-channel

monopolist would choose for platform i given an arbitrary price schedule tj . As our benchmark, the

monopolist is restricted to post two independent price schedules ti and tj . For a reason that will be clear

later on, we allow the monopolist to charge a participation fee t0 to all advertisers choosing ad intensities

other than (0, 0). The monopolist profits are (arguments omitted)

max
ti(·),tj(·),t0

∫ ω

ω
t(n1(ω), n2(ω))dF (ω),

with

t(n1(ω), n2(ω)) =
{ t0 + t1(n1(ω)) + t2(n2(ω)) if (n1(ω), n2(ω)) 6= (0, 0)

0 otherwise.

Once more, it is possible to derive the induced indirect utility function vmi (n, ω,N) =

maxy ωu(n, y,N)−tj(y)−t0−sup
{
maxy′ ωu(0, y

′, N)− tj(y
′)− t0, 0

}
and express the above as a standard

screening problem as follows:

max
{ti(·)}2i=1,{ni(·)}2i=1,ω0,t0

∫ ω

ω0

t(n1(ω), n2(ω))dF (ω)

subject to ni(ω) = argmax
ni

vmi (ni, ω,N)− ti(ni)

vmi (ni(ω), ω,N)− ti(ni(ω)) ≥ 0 for all ω ≥ ω0.

A solution to the monopoly problem (tm1 ), tm2 )) is said to be regular if the induced indirect utility functions

are regular. Let ni(ω) denote the optimal allocation given ω0 and Λm(ni(ω), ω,N) = vdi (n(ω), ω,N) −
(1− F (ω))/f(ω)(∂vdi (n(ω), ω,N))/(∂ω) the associated virtual surplus function. Finally we assume that

the profit function
∫ ω
ω0

Λm(ni(ω), ω,N)dF (ω) is quasi-concave with respect to ω0.

Proposition 11. Suppose that (tm1 , tm2 ) is a regular solution of the multi-channel monopoly problem.

Let n1(ω) and n2(ω) be the induced allocation of ads. Then there is a regular equilibrium (td1, t
d
2) of the

corresponding duopoly game that induces the same allocation of ads.

Proof:

Given (ti, tj), type ω’s payoff from choosing quantity (n1, n2) depends on all other advertisers’ choices,

as these affect viewers’ behavior. Given the optimal choice of all other types ω′, denoted n(ω′), the

problem of type ω is given by

(n1(ω), n2(ω)) := arg max
(n1,n2)

ωD1 (N1, N2)φ1(n1) + ωD2 (N1, N2)φ2(n2)

+ωD12 (N1, N2)φ12(n1, n2)− t1(n1)− t2(n2).

The above operator maps the space of n1(·), n2(·) schedules into itself. As mentioned previously,

20As we shall see, the corresponding virtual surplus is given by vdi (n, ω,N) − (1 − F (ω))/f(ω)∂vdi (n, ω,N)/∂ω. Again,
our assumptions on viewer demand and on the advertising technology ensure strict quasi-concavity in n and the monotone
hazard rate property ensures increasing differences in (n, ω) for values of n that are not too large.
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we assume that for each pair of price schedules the realized aggregate advertising levels Ni(ti, tj) and

Nj(tj , ti) are continuous in the price schedules. Define: ν := (Ni(ti, tj), Nj(tj , ti)) as the total quantities

of ads on each platform in equilibrium as a function of the schedules posted. We can then write

u(ni, nj , ν) =Di (ν)φi(ni) +Dj (ν)φj(nj) +Dij (ν)φij(ni, nj).

Now consider the problem of a duopolist i who chooses a price schedule to maximize profits
∫ ω
ω ti(ni(ω))dF (ω), given its rival’s choice tj(nj). This problem can be rewritten as a standard screening

problem where the maximization is over the set of all monotone allocations ni(ω), provided the associated

transfer is such that the allocation is incentive compatible and individually rational:

max
ω0,ni(ω)

∫ ω

ω0

ti(ni(ω))dF (ω)

subject to ni(ω) = argmax
ni

vdi (ni, ω,N)− ti(ni)

vdi (ni(ω), ω,N)− ti(ni(ω)) ≥ 0 for all ω ≥ ω0.

Denote by n⋆
j (n, ω) the quantity that type ω optimally buys from platform j when buying quantity n

from platform i. Then, the net contracting surplus for type ω is

vdi (n, ω, ν) =max
y

ωu(n, y, ν)− tj(y)− (max
y′

ωu(0, y′, ν)− tj(y
′)) (35)

= ωu(n, n⋆
j (n, ω), ν)− tj(n

⋆
j (n, ω))−

(
ωu(0, n⋆

j (0, ω, ν))− tj(n
⋆
j (0, ω))

)
(36)

Incentive compatibility requires ni(ω) = argmaxn v
d
i (n, ω, ν)− ti(n). So by definition we have:

vdi (ni(ω), ω, ν)− ti(ni(ω)) = max
y,y′,n

{
ωu(n, y, ν)− tj(y)− (ωu(0, y′, ν)− tj(y

′))− ti(n)
}

By the envelope theorem the derivative of the above with respect to ω is

u(n, n⋆
j (ni(ω), ω), ν)− u(0, n⋆

j (0, ω), ν)

Since the above pins down the growth rate of the agent’s payoff, we have that maxω0,ni(·)

∫ ω
ω0

ti(ω) subject

to the two constraints above equals

max
ni(·),ω0

∫ ω

ω0

{

ωu(ni(ω), n
⋆
j (ni(ω), ω))− ωu(0, n⋆

j (0, ω))− tj(n
⋆
j (ni(ω), (ω))) + tj(n

⋆
j (0, (ω)))

−
∫ ω

ω0

[
ωu(n, n⋆

j (ni(z), z), ν)− ωu(0, n⋆
j (0, z), ν)

]
dz

}

dF (ω)

= max
ω0,ni(·)

∫ ω

ω0

{

vdi (ni, ω, ν)−
∫ ω

ω0

[
ωu(n, n⋆

j (ni(z), z), ν)− ωu(0, n⋆
j (0, z), ν)

]
dz

︸ ︷︷ ︸

information rent

}

dF (ω),
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Integrating the double integral by parts gives:

max
ni(·),ω0

∫ ω

ω0

ωu(ni(ω), n
⋆
j (ni(ω), ω))− ωu(0, n⋆

j (0, ω))− tj(n
⋆
j (ni(ω), (ω))) + tj(n

⋆
j (0, (ω)))+

− 1− F (ω)

f(ω)
(u(n, n⋆

j (ni(ω), ω), ν)− u(0, n⋆
j (0, ω), ν)) dF (ω)

The duopolist’s best reply allocation nd
i (ω) solves

max
ni(·),ω0

∫ ω

ω0

(

ω − 1− F (ω)

f(ω)

)

(u(ni(ω), n
⋆
j (ni(ω), ω))− u(0, n⋆

j (0, ω))) (37)

−
(
tj(n

⋆
j (ni(ω), ω))− tj(n

⋆
j (0, ω))

)
dF (ω)

From now on we will refer to the integrand function as Λd(ni(ω), ω, ν). Recall that solving a canonical

screening problem usually involves maximizing the integral over all types served of the “full utility” of

type ω minus its informational rent, expressed as a function of the allocation itself. The “full utility”

here is the incremental value u(ni(ω), n
⋆
j (ni(ω), ω))− u(0, n⋆

j (0, ω)), minus the difference in transfers.

Now consider the monopolist’s problem, which is to choose a pair of price schedules and a participation

fee t0 ≤ t < +∞, where t is arbitrarily large. Without loss of generality, we restrict tj(0), ti(0) ≤ 0.

Analogous to the duopoly case, this is due to the fact that conditional on paying the participation fee,

all advertisers can guarantee a zero allocation at zero price at either platform. In the following, we define

t̃i(ni(ω)) ≡ ti(ni(ω)) + ti, where ti is a constant to be determined by the monopolist. Given tj(·) the

monopolist’s problem is

max
ti(·),t0,ti,tj

∫ ω

ω
(t̃i(ni(ω)) + t̃j(nj(ω)) + t0)I(ni(ω) + nj(ω) > 0)dF (ω), (38)

where I is an indicator function equal to 1 whenever the argument is true and zero otherwise. The net

contracting surplus corresponding to type ω as a function of the allocation is

vmi (n, ω, ν) = maxy ωu(n, y, ν)− tj(y)− tj − t0 − sup

{

max
y′

ωu(0, y′, ν)− tj(y
′)− tj − t0, 0

}

. (39)

As in the previous case, the problem given by (38) can be rewritten as a standard incentive problem

of the form

max
ti(·),ni(·),t0,ti,tj

∫ ω

ω0

(t̃i(ni(ω)) + t̃j(nj(ω)) + t0)I(ni(ω) + nj(ω) > 0)dF (ω),

subject to ni(ω) = arg maxnv
m
i (n, ω, ν) (incentive compatibility) and vmi (n, ω, ν) − ti(ni(ω)) − ti ≥ 0

(individual rationality) for all ω ≥ ω0. By the envelope theorem the derivative of vmi (ni(ω), ω, ν) with

respect to ω is

u(ni(ω), n
⋆
j (n, ω), ν)− I(ω, t0)u(0, n

⋆
j (0, ω), ν),

where I(ω, t0) is an indicator function equal to 1 if maxy′ωu(0, y
′, ν)− tj(y

′)− t0 > 0 and zero otherwise.

This coupled with individual rationality implies

ti(ni(ω)) = vmi (n, ω, ν)−
∫ ω

ω0

(
u(ni(z), n

⋆
j (ni(z), z), ν)− sup{u(0, n⋆

j (0, z), ν)}
)
dz.
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Plugging this into the objective function we obtain

max
ni(·),ω0,t0,tj ,ti

∫ ω

ω0

{

max
y

ωu(ni(ω), y, ν)− sup

{
′

max
y

ωu(0, y′, ν)− tj(y
′)− tj − t0, 0

}

(40)

−
∫ ω

ω0

(
u(ni(z), n

⋆
j (ni(z), z), ν)− I(ω, t0)u(0, n

⋆
j (0, z), ν)

)
dz

}

dF (ω).

Since t is arbitrarily large and t0 can be as large as t, there exists a t0 such that t0 > |tj |. This implies

that for t0 large enough, sup
{

max′y ωu(0, y
′, ν) − tj(y

′) − tj − t0, 0
}

= 0 and I(ω, t0) = 0. In addition,

(40) is increasing in t0. Hence, t0 = t and the monopolist’s problem boils down to

max
ni(·),ω0

∫ ω

ω0

{

max
y

ωu(ni(ω), y, ν)−
∫ ω

ω0

u(ni(z), n
⋆
j (ni(z), z), ν)dz

}

dF (ω).

Using the same technique as in the duopoly case, this gives

max
ni(·),ω0

∫ ω

ω0

(

ω − 1− F (ω)

f(ω)

)

u(ni(ω), n
⋆
j (ni(ω), ω))dF (ω) (41)

The above integrand, labeled Λm(ni(ω), ω, ν), reflects the “full surplus” internalization feature of our

monopolist, similar to the homogeneous case. Here transfers do not show up because advertisers do not

have the option to buy only one contract.

By our regularity assumptions, a solution exists to both problems: (nm
i (ω), ωm

0 ), (nd
i (ω), ω

d
0). To show

that the allocation in both problems is the same, we need to establish that the optimal ni(ω) equals the

argmaxq of Λd(q, ω, ν) and of Λm(q, ω, ν) and that the indifferent advertiser ω0 is also the same.

Let us first consider the schedule keeping the marginal advertiser, ωm
0 and ωd

0 , respectively, fixed in

both problems, and assume that the marginal advertiser is the same, i.e., ωm
0 = ωd

0 . The only difference

between monopoly and duopoly is that in duopoly there is an additional term t∗j (n
∗
j (ni(ω), ω), that

depends on ni. However, applying the envelope theorem, it is evident from the definition of vdi (n, ω, ν)

given in (35) and (36) that when differentiating the integrand of the duopolist’s problem given by (37)

with respect to ni, we can ignore the (indirect) effect of ni on n⋆
j . The same argument applies to the

monopolist’s problem given by (41), as can be seen from vmi (n, ω, ν) in (39). Therefore, the optimal

solution for a duopolist and a monopolist coincide.

Under the assumption that ωm
0 = ωd

0 , we thus have established the following result:

nm
i (ω) =

{

nd
i (ω) ω ≥ ωm

0

0 otherwise

The result basically says that neutrality carries over on the “intensive” margin. That is, conditional on

ω getting some positive allocation both a monopolist and a duopolist best respond to some tj by offering

the same allocation. This is true because the maximizations problems with respect to ni(·) are equivalent
for a monopolist and duopolist, if wm

0 = wd
0 .

We now turn to the extensive margin and will establish that ωm
0 = ωd

0 . First, note that Λd = 0

at ni = 0 for all ω. The increasing differences property Λd
ni,ω ≥ 0 implies that the optimal allocation
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is weakly monotone.21 As a consequence, the marginal type is defined as the highest type for which

ni(ω) = 0. Therefore, we have nd
i (ω) = 0 for all ω ≤ ωd

0 .

Further note Λd(nd
i (ω), ω, ν) ≥ 0 because Λd(0, ω, ν) = 0 for all ω is a lower bound on Λd(x, ω), x ≥ 0.

By definition of ωd
0 , in a right neighborhood nd

i (ω) > 0; therefore, u(ni(ω), n
∗
j (ni(ω), ω))−u(0, n∗

j (0, ω)) >

0 and tj(n
∗
j (ni(ω), ω)) − tj(n

∗
j (0, ω)) ≥ 0. Hence, Λd(ni(ω), ω, ν) ≥ 0 only if ω − (1 − F (ω))/f(ω) ≥ 0

in a right neighborhood of ωd
0 . By continuity and the monotone hazard rate property we have ω − (1−

F (ω))/f(ω) ≥ 0 for all ω ≥ ωd
0 . It follows that Λ

m(nm
i (ω), ω, ν) ≥ 0 for all ω ≥ ωd

0 .

Now suppose that the monopolist would exclude the marginal type ω for which Λm(nm
i (ω), ω, ν) ≥ 0.

This would obtain a first-order loss but only a second-order gain. This is because the type pays a (weakly)

positive transfer (recall nj(ω) ≥ 0 and therefore tj(nj(ω)) ≥ 0) but ni(ω) is arbitrarily close to zero, so

the gain for all other advertisers when excluding the marginal type becomes negligible. Therefore, it

is a local maximum to serve the marginal type for whom Λm(nm
i (ω), ω, ν) ≥ 0. But since the profit

function is quasi-concave in ω0, this is also a global maximum. Hence, ωm
0 ≤ ωd

0 . This coupled with the

fact that nm
i (ω) = nd

i (ω) implies that the marginal price schedules must coincide: tmi (n) = tdi (n). As a

consequence, ωm
0 = ωd

0 . �

The proposition establishes that if an allocation is implemented by a monopoly owner of both plat-

forms, then the corresponding allocation is also an equilibrium of the duopoly game.

21Even without increasing differences, incentive compatibility would restrict us to optimize with respect to monotone
ni(ω) only.
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