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Abstract

On average, young people underestimate whereas old people overestimate their

chances to survive into the future. We employ a subjective survival belief model

proposed by Ludwig and Zimper (2013) which can replicate these patterns. The

model is compared with hyperbolic discounting within a standard life-cycle setting

of consumption and savings. We show theoretically that the first order conditions of

the ambiguous survival belief model closely resemble the generalized Euler-equation

from the hyperbolic discounting model. In the numerical section it is shown that

the subjective survival belief model simultaneously leads to undersaving at younger

ages and high asset holdings and little dissaving of the elderly. The model can thus

replicate two important empirical facts of the life-cycle literature at once which is

not possible with the standard hyperbolic discounting model.
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1 Introduction

In standard life-cycle consumption and saving models with uncertain lifetime, intertem-

poral decision making is inter alia governed by the discounting factor and the probability

to survive into the future both of which form the so called effective discount factor. Since

the pioneering work of Samuelson (1937) it has become common in the literature to

assume time-invariant discounting, i.e. exponential discounting functions. In addition,

when testing these models it is common to assume that individual’s beliefs are given

as objective probability distributions.1 This well established modeling choice has been

criticized with the apperance of empirical and experimental studies showing first, that

people seem to exhibit time-inconsistent behavior and second, that on average people’s

subjective survival perceptions systematically deviate from objective life-table data.

In this paper we compare two different approaches that modify established models

to account for these insights. We adopt a decision theoretic model of subjective survival

belief formation proposed by Ludwig and Zimper (2013) which takes individuals’am-

biguity attitudes into account. The model is based on Choquet expected utility (CEU)

theory. We merge this subjective survival belief model into a standard stochastic life-cycle

setting. The CEU model is compared to the well-known (quasi-)hyperbolic discounting

model which modifies the functional form of the discount function but still takes survival

beliefs as objectively given.2 We compare the outcomes of two models with respect to

saving and asset accumulation behavior.

Experimental studies have detected different forms of time-inconsistency, in particular

a conflict between the long-run desire to be patient and the short-run desire for instan-

taneous gratification which is at odds with commonly used effective discount functions.3

This has led to alternative discounting rules of which the (quasi-)hyperbolic or geomet-

ric discounting model has become very popular and which was propagated by the work

of David Laibson.4 Quasi-hyperbolic discounting (referred to as the HD model) intro-

duces a short-run discount factor between the present and the first future period which is

distinct– usually lower– from that between the future period and its successor, implying

consumers as being short-run impatient. It has been shown that hyperbolic discounting

can accommodate relevant empirical findings on household saving behavior which proved

to be puzzling for rational expectations life-cycle models, in particular, time-inconsistent

1See e.g. Hurd (1989) Hubbard, Skinner, and Zeldes (1995), Imrohoroglu, Imrohoroglu, and Joines
(1995), or De Nardi (2004) among others.

2In our companion paper Groneck, Ludwig, and Zimper (2013) we highlight the importance of sub-
jective survival beliefs in a life cycle setting compared to a rational expectations model using exponential
discounting and objective survival rates from the life-tables.

3See Ainslie (1992) and Loewenstein and Thaler (1989)
4See, e.g., Laibson (1997), Laibson (1998).
Another famous alternative that has been proposed to address the conflict between actions and in-

tentions are the so called self-control preferences proposed by Gul and Pesendorfer (2001) and Gul and
Pesendorfer (2004).

2



savings behavior and undersaving for retirement.5

Much less attention has been devoted to the survival probability as the second part

of the effective discount factor, where standard quantitative studies make use of objec-

tive survival beliefs in. Only recently, researchers have focused on subjective survival

probabilities and their deviations from life tables. In the Health and Retirement Study

(HRS), respondents are explicitly asked for their belief to survive to some future age.6

The data shows a systematic bias: on average younger people strongly underestimate

their (relatively high) probability to survive to some target age. At the same time older

people strongly overestimate their lower survival probability. In the CEU-model that we

analyze, we follow Ludwig and Zimper (2013) and describe ambiguous survival beliefs as

neo-additive capacities (Chateauneuf, Eichberger, and Grant 2007). Neo-additive capaci-

ties are non-additive probability measures based on Choquet decision theory (Schmeidler

1986, 1989, Gilboa 1987).7 Biases of subjective beliefs from some additive probability

measure are induced by two parameters only. One (ambiguity) parameter measures the

degree of confidence a decision maker has in some additive probability measure. A sec-

ond (optimism) parameter measures relative over/under-estimation through which this

ambiguity is resolved. This approach is in line with empirical evidence in the decision

theoretic literature of subjective probability weighting due to likelihood insensitivity, for

example (cf. Wakker 2004, 2009). We estimate parameters of ambiguous survival be-

liefs and demonstrate that these calibrated beliefs can account for the empirical facts as

elicited in the HRS.

Our main results can be summarized as follows: we show that (i) the CEU model

can be interpreted as a microfounding of the hyperbolic discounting model and (ii) for

the young and middle aged the CEU model has similar implications for consumption and

saving behavior but (iii) due to optimism at older ages, the CEU model can account for

the important stylized fact on old-age saving, namely that the elderly hold on to their

assets and dissave less than prescribed by a standard life-cycle model (old-age-dissaving

puzzle).

In Sections 2 and 3 we present the CEU and the HD model in more detail while we

incorporate the two models into the life-cycle setting in section 4. We present results

for both the sophisticated and naive agent type where the former is aware of her dy-

namic inconsistency while the latter is not. We show that our CEU model of subjective

5See, among others, Laibson, Repetto, and Tobacman (1998), Harris and Laibson (2001)Angeletos
et al. (2001). and Krusell and Smith (2003).

6The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant
number NIA U01AG009740) and is conducted by the University of Michigan. In this survey people are
asked about their subjective probability assessment to survive from some interview age up to a specific
target age. Target age is mostly 10 to 15 years in advance, see, e.g., Ludwig and Zimper (2013) for
details.

7Thus, the agent with ambiguous survival beliefs is labeled as the Choquet Expected Utility (CEU)
maximizer.
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survival beliefs closely resembles the hyperbolic discounting model in some respects but

also differs in important aspects. Generally, both the CEU and the HD model share the

similarity to effectively discount stronger for two subsequent events in the near future

than subsequent events in the far future which are discounted less strongly. We theoret-

ically derive the Euler-equations of different types of dynamically inconsistent agents.8

The Euler-equation of the sophisticated CEU agent closely resembles the “generalized

Euler-equation” derived by Harris and Laibson (2001), but it is extended by an addi-

tional adjustment factor. An important difference between the CEU and the HD model

comes from the fact that the short term discount factor in the HD model is constant for

all ages, while the ambiguity attitude in the CEU model is age dependent.

In a simplified version of our model in Section 5 which provides guidance for our

quantitative analysis we show that we can expect naive CEU households with subjective

survival beliefs (i) to save less than originally planned at young age if they are “moderately

optimistic” about their future survival in old age, (ii) to save less than under rational

expectations if they are “suffi ciently pessimistic”at young age and (iii) to have higher

asset holdings than their rational expectations counterparts if they are optimistic in old

age for suffi ciently many periods. On the contrary, we show that HD households can only

explain time-inconsistent behavior and undersaving. For sophisticated agents theoretical

results are not clear cut.

To gather quantitative results we return to the full model and calibrate it to simu-

late household decisions in Section 6. We show that the misperception of lifespan risk

indeed simultaneously adds to existing explanations for three stylized facts in the data

on savings behavior, if we assume agents to be naive: On average, naive CEU agents

with subjective survival beliefs at working age have a saving rate of 21.5% compared to

a rational expectations model with an average saving rate of 23.0%. In addition, the

realized saving rate is 2.8 percentage points lower than what the CEU agent at age 20

actually planned to save. The results correspond to ample empirical evidence on dynami-

cally inconsistent behavior. Survey evidence indicates that people save less for retirement

than actually planned and they save less than they think they should.9 Simultaneously,

the CEU model is able to account for higher asset holdings than prescribed by a standard

life-cycle framework with rational consumers.10 The CEU model predicts average asset

holdings at age 85 (95) of 46.4% (23.5%) of the assets at age 65 while the respective

8Time inconsistency refers to decision makers who have time-dependent preferences, i.e. the prefer-
ences of the presence contradict their own preferences at a later date.

9Bernheim and Rangel (2007), and Laibson et al. (1998) quote numerous studies indicating self-
reported mistakes in terms of private saving decisions for retirement. See also Bernheim (1998) and Choi
et al. (2006) as well as Munnell et al. (2010) for studies on undersaving.

10See Hurd and Rohwedder (2010) and De Nardi, French, and Jones (2010) for evidence.
There are numerous extensions of the standard life-cycle model which aim at explaining this feature

of the data. The two main explanations for large assets holdings late in life are bequest motives (Hurd
1989, Lockwood 2012), and precautionary saving due to possibly large health expenditures (De Nardi,
French, and Jones 2010).
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values for rational agents are substantially lower. In contrast, the naive HD agent does

also exhibit undersaving with a savings rate of 19, 7%. On the contrary, the naive HD

agent exhibit much lower asset holdings at age 85 (95) of 26.2% (3.9%) of the assets at

age 65 which are even lower than those for the RE agents.

If one assumes sophisticated agents, undersaving is for CEU and HD agents is even

more pronounced. But the aforementioned difference of old-age asset holdings of the

CEU and the HD agents relative to RE agents disappears quantitatively. Still, assets of

the sophisticated agent are slightly higher than for the RE agent at very old ages. In a

concluding Section 8 we discuss further room for research.

2 Ambiguous Survival Beliefs

The model of ambiguous survival belief formation is developed in Ludwig and Zimper

(2013) to accommodate the HRS data depicted in Figure 1. The figure shows average age-

specific biases in survival beliefs– the difference between the respective average subjective

belief and the average estimated objective data– for three waves of the HRS between 2000

and 2004. We observe that relatively “young”– younger than age 65-70– respondents

underestimate whereas relatively “old”– above age 70– respondents overestimate their

chances to survive into the future. Pessimistic biases of young respondents are stronger

for women and optimistic biases for old respondents are stronger for men. For example,

a 65 year old women underestimates her objective probability to become 80 years by

about 20 percentage points. Respondents between ages 85 and 89 in the sample exhibit

an average overestimation by about 15 to 20 percentage points. In addition, optimism

further increases the older the agents get. Similar differences between subjective beliefs

and objective data can be observed in most European countries according to data from

the Survey of Health, Ageing and Retirement in Europe (SHARE), cf. Peracchi and

Perotti (2010), see also Ludwig and Zimper (2013) for a discussion.

To explain the patterns observed in the HRS we follow Ludwig and Zimper (2013) who

develop a closed-form model of Bayesian learning under ambiguity which gives rise to a

parsimonious notion of ambiguous survival beliefs. The approach constitutes conditional

neo-additive capacity in the sense of Chateauneuf et al. (2007) which is updated in

accordance with the Generalized Bayesian update rule.11 In contrast to standard additive

probability measures, the neo-additive survival probability can replicate the patterns of

Figure 1 because they do not necessarily converge through Bayesian updating to the

objective survival probabilities ψk,t.

In the parsimonious version of the model in Ludwig and Zimper (2013), ambiguous

survival beliefs are a weighted average of a standard additive probability measure and

11For the formal definitions of these decision theoretic terms see Appendix A and references therein.
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Figure 1: Relative difference of subjective survival probabilities and cohort data
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Notes: This graph shows deviations in percentage points of subjec-

tive survival probabilities from objective data. Objective survival

rates are based on cohort life table data. Future objective data is

predicted with the Lee and Carter (1992) procedure.

Source: Own calculations based on HRS, Human Mortality Data-

base and Social Security Administration data.

the degree of optimism, respectively pessimism, by which the decision maker resolves her

ambiguity towards objective information. The respective weight represents the degree

of ambiguity– or the lack of confidence– that the decision maker has in the additive

probability measure. Hence, there are two psychological biases, relative optimism and

ambiguity. The model is information driven so that ambiguity– and thus the weight on

relative optimism– increases in the amount of information. It is assumed that information

rises with age to the effect that ambiguity increases in the agent’s actual age (i.e., when

the objective survival probability decreases). For the reader’s benefit in Appendix A

we review the decision theoretic preliminaries and the parsimonious learning model of

Ludwig and Zimper (2013) as well as how the model is merged into a life-cycle setting

as shown in Groneck, Ludwig, and Zimper (2013). In what follows, we only restate the

model’s parsimonious characterization of ambiguous survival beliefs.

Fix some T ≥ h ≥ 0 with the interpretation that the agent perceives it as possible

to live until the end of period T whereas she perceives it as impossible to live longer

than T . Denote by δ ∈ [0, 1] an initial degree of ambiguity (or degree of likelihood

insensitivity). λ ∈ [0, 1] denotes a psychological bias parameter which measures whether

the agent resolves her ambiguity through over- or rather through under-estimation of the
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true probability. In this framework, Ludwig and Zimper (2013) derive the following result

which we build on:

Observation 1 (Ludwig and Zimper (2013)). The h-old agent’s age-dependent ambigu-
ous belief to survive from age k with h ≤ k < T to target age t with k < t ≤ T is given

by

νhk,t = δh · λ+ (1− δh) · ψk,t (1)

with

δh =
δ

δ + (1− δ) · 1
1+
√
h

(2)

for age-independent parameters δ, λ ∈ [0, 1].

The h-old agent’s belief to survive to some target age t is thus formally described

as an age-dependent weighted average of the objective survival probability ψh,t with

weight 1− δh and the psychological bias parameter λ with weight δh. For δ = 0 we have

for all h that νhk,t = ψk,t so that all ambiguous survival beliefs reduce to objective survival

probabilities and the standard rational expectations approach is nested as a special case.

For any δ > 0, the dynamics of the model imply that agents exhibit more pronounced

ambiguity attitudes with increasing age. This feature captures the intuitive notion that,

as the objective risk of survival becomes less likely, agents attach less and less certainty

to this objective probability. According to our estimates of {δ, λ} presented in Section 6,
objective survival probabilities ψk,t decrease with age to values lower than λ. The model’s

convergence property hence implies that survival rates are overestimated eventually even

when the initial degree of likelihood insensitivity, δ, is low.12

The model of neo-additive probabilities imply linear probability weighting functions

which can be interpreted as an approximation of the inversely S-shaped probability

weighting arising in cumulative prospect theory (CPT), cf. Tversky and Kahneman

(1992). In cumulative prospect theory, it is standard to assume a single-parameter func-

tional form for the probability weighting function. Applied to (age dependent) survival

beliefs such a functional form, as, e.g. used by Wu and Gonzalez (1996), is given by

$h

(
ψh,t, ξh

)
=

(
ψh,t
)ξh[(

ψh,t
)ξh +

(
1− ψh,t

)ξh] 1
ξh

(3)

For ξh = 1, we have $h

(
ψh,t, ξh

)
= ψh,t. Decreasing ξh means increasing curvature of the

probability weighting function so that the inverse-S becomes more pronounced. The neo-

12If we were to assume that households do not have any memory to the effect that δh = δ for
all h = 0, . . . , T , we would get qualitatively similar results. Quantitatively this would however imply
that the degree of ambiguity would be substantially higher for many ages than with increasing δh. We
will come back to this aspect in the interpretation of our main results below.
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additive capacity (cf. Appendix A.1) used as our subjective survival belief for the CEU

model can be seen as a linear approximation to the probability weighting function (3),

$̃h = β0 + β1ψk,t with β0 = λδh and β1 = (1− δh). In Groneck, Ludwig, and Zimper
(2013) we show that the estimates of our CEU model are well in line with conventional

estimates of the probability weighting function.

3 (Quasi-)Hyperbolic Discounting

The idea of hyperbolic discounting dates back to Strotz (1956) and Pollak (1968). In our

setting, the hyperbolic discounting (HD) model takes the survival rates as objectively

given and introduces a time-varying discount function. The modification of the standard

exponential discounting function aims to capture observed behavioral anomalies. More

precisely, the expected utility model cannot account for the fact that people are more

sensitive to a given time delay if it occurs closer to the present than if it occurs farther

in the future, see Loewenstein and Prelec (1992). The continuous hyperbolic discount

function introduced by Loewenstein and Prelec (1992) is defined as

ϑh (α, %) = (1 + α · h)−
%
α , (4)

where α and % are parameters and h is age.

The quasi-hyperbolic discounting model first proposed by Phelps and Pollak (1968) is

an approximation of the hyperbolic function (4) and takes values
{

1, γβ, γβ2, δβ3, ...γβT
}

where 0 < γ, β < 1, and γ is the short term discount factor. In essence, this form of

discounting puts additional weight on the actual period, implying a downward jump of the

discount function from period h to h+ 1. As will be shown, this feature is also generated

in our ambiguous survival model.

Both the CEU and the HD model modify the effective discount factor in the life-

cycle model in a similar fashion. The CEU model modifies the assumption on survival

beliefs to better match the above mentioned empirical findings while we stay in line with

the literature by using the time-invariant discount factor β. In contrast, the hyperbolic

discounting (HD) model takes the survival rates as objectively given and introduces a

time varying discount function accounting for the fact that people have an additional

present bias. The similarity between the quasi-hyperbolic discounting model and the

CEU model of subjective survival belief formation is highlighted in Figure 2.

On the right panel the hyperbolic and the quasi-hyperbolic discount function is plotted

against the exponential discount functions while on the left panel the subjective beliefs

according to the CEU and the CPT model are plotted against the estimated objective

unconditional survival probabilities. Both the subjective survival rate and the quasi-

8



Figure 2: Survival Rates and Discount Functions
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and the discount factor is 1. We use the following values: γ = 0.6 and β = 0.99 is set for

the quasi-hyperbolic, γ = 1 and β = 0.97 for exponential discounting. Both the values for

the probability function and for the hyperbolic function are chosen to minimize the squared

distance to the subjective belief function and the quasi-hyperbolic function, respectively. The

resulting parameters are α = 0.95 and % = 0.26 for the hyperbolic discounting function (4)

and ξ = 0.74 for the probability weighting function (3).

hyperbolic function exhibit an initial downward jump and they are flatter generally than

their “objective”counterpart. In a life-cycle context with expected lifetime utility, both

models put less weight on utility in the near future relative to rational expectations. But

at the same time, they put relatively more weight on future utility if the event is further

away.13 Also, both the CEU model and the quasi-hyperbolic model are approximations

of other models: The CEU is a linear approximation of the CPT model and the quasi-

hyperbolic model is a discrete time version of the continuous hyperbolic model which is

much smoother.

The close similarities of the two models with respect to their modifications to the

effective discount function is the motivation for the model comparison in this paper.

Despite the close similarities suggested by Figure 2 the two models have quite different

consumption and saving behavior, as will be shown in Section 7.

4 The Model

We incorporate two different decision makers into an otherwise standard stochastic life-

cycle framework. The basic model setup borrows from our companion paper Groneck,

Ludwig, and Zimper (2013).

13It is important to note that this result only holds if we assume a higher long-term discount factor
β for the quasi-hyperbolic model relative to exponential discounting, see further below for details.
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4.1 Demographics

We consider a large number of ex-ante identical agents (=households). Households be-

come economically active at age (or period) 0 and live at most until age T. The number

of households of age t is denoted by Nt. Population is stationary and we normalize

total population to unity, i.e.,
∑T

t=0Nt = 1. Households work full time during peri-

ods 1, . . . , tr − 1 and are retired thereafter. The working population is
∑tr−1

t=0 Nt and the

retired population is
∑T

t=tr
Nt.

We refer to age h ≤ t as the planning age of the household, i.e., the age when house-

holds make their consumption and saving plans for the future. At ages h = 1, . . . , T ,

households face objective risk to survive to some future period t. We denote correspond-

ing objective survival probabilities for all in-between periods k, h ≤ k < t, by ψk,t

where ψk,t ≤ 1 for all t ≤ T and ψk,t = 0 for t = T + 1. Population dynamics are

correspondingly given by Nt+1 = ψt,t+1Nt, for N0 given.

4.2 Endowments

There are discrete shocks to labor productivity in every period t = 0, 1, ..., , tr−1 denoted

by ηt ∈ E, E finite, which are i.i.d. across households of the same age. The reason for

stochastic labor productivity in our model is to impose discipline on calibration. For

sake of comparability, our fully rational model should feature standard elements as used

in numerous structural empirical studies, as, e.g., by Laibson et al. (1998), Gourinchas

and Parker (2002) and several others. By ηt = (η1, . . . , ηt) we denote a history of shocks

and ηt | ηh with h ≤ t is the history (η1, . . . , ηh, ..., ηt). Let E be the powerset of the

finite set E and E∞ be the σ-algebra generated by E,E, .... We assume that there is an

objective probability space (×∞t=0E,E
∞, π) such that πt(ηt | ηh) denotes the probability

of ηt conditional on ηh.

We follow Carroll (1992) and assume that one element in Ew is zero (zero income).

Accordingly, πt(ηt | ηh) reflects a (small) probability to receive zero income in period t.
This feature gives rise to a self-imposed borrowing constraint and thereby to continuous

policy functions. Continuity is convenient when we model a sophisticated agent. By

thereby avoiding technicalities as addressed in Harris and Laibson (2001) we keep our

analysis focused. As the zero income probability is small, results are not affected much

by this assumption. In addition, we consider a fixed age-specific labor productivity profile,

φt. w denotes age-independent gross wages.

After retirement at age tr households receive a lump-sum pension income, b. Retire-

ment income is modeled in order to achieve a realistic calibration. Without a pension

system, the old-age saving motive would lead to unrealistic saving behavior. For the

same technical reason mentioned above– continuity of policy functions– we assume that

household’s assume a small probability of government default on pension payments each

10



period. Again this assumption is made for sake of convenience only.14 Pension contribu-

tions are levied at contribution rate τ .

Collecting elements, income of a household of age t is given by

yt =

{
ηtφtw (1− τ) for t < tr

ηtb for t ≥ tr.

During retirement, ηt ∈ Er = [1, 0] where the default probability of the government on

its pension obligations is assumed to be low.

The interest rate is fixed at r. There are no annuity markets, an assumption which

can be justified by the observed small size of private annuity markets.15 We assume a

fixed zero borrowing constraint. We define cash-on-hand as xt ≡ at (1 + r) + yt so the

budget constraint writes as

xt+1 = (xt − ct) (1 + r) + yt+1 ≥ 0 (5)

Define total income as ytott = yt + rat, saving as st = ytott − ct and gross savings as assets
tomorrow, at+1.

4.3 Government

We assume a pure PAYG public social security system. We denote by χ the net pension

benefit level, i.e., the ratio of pensions to net wages. The government budget is assumed

to be balanced each period and is given by

τw
tr−1∑
t=0

φtNt = b
T∑
t=tr

Nt = χ (1− τ)w
T∑
t=tr

Nt. (6)

Accidental bequests– arising because of missing annuity markets– are taxed away at

a confiscatory rate of 100%.16

4.4 Preferences

Denote by u (ct) the agent’s strictly increasing utility from consumption at age t whereby

we assume that the agent is strictly risk-averse, i.e., u′ (ct) > 0 and u′′ (ct) < 0. More

specifically, given the productivity shock history ηh, denote by c ≡ (ch, ch+1, ch+2...) a

shock-contingent consumption plan such that the functions ct, for t = h, h+ 1, ..., assign

14While households assume this small probability when determining their optimal behavior, default
never happens in the forward simulation of our model.

15See Friedman and Warshawsky (1990). Observe that pessimistic survival beliefs extenuate the
annuity puzzle.

16Revenue from this source is used for government consumption which is otherwise neutral.
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to every history of shocks ηt|ηh some amount of period t consumption.
Expected utility of an h-old agent from consumption in period t > h contingent on

the observed history of productivity shocks ηh is given as

Et
[
u (ct) , π

(
ηt|ηh

)]
=
∑
ηt|ηh

u (ct) π
(
ηt|ηh

)
.

As a shortcut we denote the expectation operator with respect to the productivity shock

ηt in period t by Et [•] .
The agent’s expected utility from consumption plan c is given by

E
[
U (c) , νh

]
= u(ch) +

T∑
t=h+1

νhh,t · ϕht · Eh [u (ct)] (7)

where νhh,t is the (subjective) probability to survive from period h to period t and ϕht is

the discount function. The following sections will specify preferences for the CEU model

and the HD model.

Choquet Expected Utility (CEU)

While we model income risk in the standard objective EU way, we model uncertainty

about life-expectancy in terms of a CEU agent who holds neo-additive survival beliefs

as stated in Observation 1. In Groneck, Ludwig, and Zimper (2013) we formalize utility

maximization over life-time consumption with respect to neo-additive probability mea-

sures, here we restate the main result of Choquet expected utility.17

Observation 2 (Groneck, Ludwig, and Zimper 2013) The Choquet Expected Utility (CEU)
model with exponential discounting, i.e. ϕht = βt−h, is given by

E
[
U (c) , νh

]
= u(ch) +

T∑
t=h+1

νhh,t · βt−h · Eh [u (ct)] (8)

where c is the consumption plan and νhh,t is the subjective belief to survive from age h to

t ≥ h given by equation (1).

To analyze the behavior of CEU agents in the life-cycle framework we make the

following definition which will be used further below

Definition 1 (Moderate optimism) A CEU household is moderately optimistic if νtt,t+1 <
νhh,t+1
νhh,t

for t ≥ h, where νhh,h = 1.

17See Appendix A.3.
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Expected Utility with Quasi-Hyperbolic Discounting (HD)

In the quasi-hyperbolic model, the raw time discount factor β is replaced by the quasi-

hyperbolic discount function given by

ϕht = γβt−h, ∀ t > h (9)

Observation 3 Expected utility with Quasi-Hyperbolic Discounting (HD) with objective
probability measures, i.e. νhh,t = ψh,t is given by

E [U (c)] = u(ch) +

T∑
t=h+1

ψh,t · γ · βt−h · Eh [u (ct)] (10)

where c is the consumption plan and γ is the short-term discount factor.

In the numerical simulation in Section 7 we compare the life-cycle patterns with the

standard rational expectations (RE) model. Here, the agent discounts exponentially and

uses objective survival rates, i.e. ϕht = βt−h and νhh,t = ψh,t. In contrast to the standard

RE model, which is dynamically consistent, both the CEU and the HD might lead to

dynamically inconsistent decision making.

4.5 Naivety and Sequential Sophistication

In models with time inconsistency one has to take a stance on what information the agent

has concerning the future. The literature dealing with time inconsistency distinguishes

between naive and sophisticated agents, cf. Strotz (1955) or inter alia O’Donoghue and

Rabin (1999) for procrastination models, both inducing time inconsistency.

Naifs are not aware of their time inconsistency and have the optimistic belief that

their future “selves”will be acting in their interest. Naive agents construct consumption

and saving plans that maximize lifetime utility at age h. Self h then implements the

first action of that sequence expecting future selves to implement the remaining plan.

But coming to the next period, self h + 1 conducts her own maximization problem and

implements actions that do not necessarily coincide with the plan of self h.

In contrast, sophisticates are fully aware of their time inconsistent behavior, cf., e.g.,

Angeletos et al. (2001). Sophisticates correctly predict that their own future selves will

not be acting according to the preference of the current self. Thus, they take actions that

seek to constrain future selves behavior (commitment devices). The CEU framework dif-

fers from the aforementioned models in being information rather than preference driven.

We can still adopt the concept of naifs and sophisticates to our model.

In order to characterize optimal behavior, it is convenient to work with the recursive

representation of the planning problem. We therefore next assume that income risk is

13



first-order Markov such that π(ηt | ηt−1) = π(ηt | ηt). It is then straightforward to set up
the recursive formulation of model (8) and (10) for the naive agents.

The dynamic programming problem of an agent at planning age h is defined as follows.

For the CEU agent we have for the value function V h
t of age t ≥ h viewed from planning

age h

(CEU) V h
t (xt, ηt) = max

ct,xt+1

{
u (ct) + β

νhh,t+1

νhh,t
Et
[
V h
t+1

(
xt+1, ηt+1

)]}
(11)

s.t. eq. (5)

where the subjective survival belief νhh,t is given by equation (1) and ν
h
h,h = 1.

For the hyperbolic agent we have

(HD) V h
t (at, ηt) = max

cht ,a
h
t+1

{
u
(
cht
)

+ ϕht ψt,t+1Et
[
V h
t+1

(
xt+1, ηt+1

)]}
(12)

s.t. eq. (5),

where the discount function is given by ϕhh = γβ for t = h and ϕhh = β for t > h.

Naive Agents

Naive agents do not correctly predict their future selves behavior. Let’s first look at the

CEU agents. Self h knows that νhh,h = 1 and thus uses βνhh,t+1 to effectively discount the

value function in t + 1. For the next period t + 2, self h assumes a discount function of

βνhh,t+2/ν
h
h,t+1 and does not anticipate that self h+1 will actually use βνh+1

h+1,t+1. According

to Definition 1 CEU households aremoderately optimistic if νhh,t+2/ν
h
h,t+1 > νh+1

h+1,t+1 which

implies that the naive CEU agent assumes a higher effective discount factor for future

selves than they actually apply.

Similarly, naive HD agents use γβ as the discount factor from period h = t to t + 1

and expect future selve h+ 1 to use the discount factor β for h+ 1 to h+ 2. In fact, self

h+ 1 is again present biased and uses γβ.

The naive agent’s first order conditions are given by the standard Euler equations.

Observation 4 The consumption plan c = (ch, ch+1, ...) of naive agents must satisfy, for

all t ≥ h

• CEU agents

(CEU)
du

dct
≥ β (1 + r) · Et

[
du

dct+1

]
·

ν
h
h,t+1, for t = h
νhh,t+1
νhh,t

, for t > h
(13)
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• HD agents

(HD)
du

dct
≥ β (1 + r)ψt,t+1 · Et

[
du

dct+1

]
·

γ, for t = h

1, for t > h
(14)

Proof 1 Relegated to Appendix B.1 and B.2.

Observe the similarities between the two models. In period t = h the CEU agent uses

the subjective survival belief which is lower than the objective probability, i.e. νhh,t+1 <

ψt,t+1. The HD agents have a lower short-term discount factor for periods h to h + 1,

i.e. they discount with γβ. For subsequent periods t > h the CEU agent planning

from age h uses the ratio of beliefs which is higher than the conditional survival belief

(νhh,t+1/ν
h
h,t > νht,t+1) under moderate optimism, cf. Definition 1. For the the HD agent

we have γ = 1 for t > h.

That this plan implies time inconsistent behavior follows from inspection of the mar-

ginal rates of substitution (MRS) between any two subsequent periods from the per-

spective of different planning periods. Under time consistency, these objects would be

identical. We have for any planning period h and periods h < k < t that

MRShck,ct =
[(
ϕht
)t−k]−1 vhh,k

vhh,t

Eh

[
du
dck

]
Eh

[
du
dct

]
Comparing the MRS of age h with the MRS of any age h + i < k we find that for the

CEU agent the decisive term is the ratio of subjective beliefs which obeys the relationship

νhh,k
νhh,t

=
δh · λ+ (1− δh) · ψh,k
δh · λ+ (1− δh) · ψh,t

6=
δh+i · λ+ (1− δh+i) · ψh,k
δh+i · λ+ (1− δh+i) · ψh,t

=
νh+i
h+i,k

νh+i
h+i,t

.

Therefore, MRShck,ct 6= MRSh+i
ck,ct

.

Similarly, the Hyperbolic agent’s discount function is time dependent. For the HD

agent the MRS between two subsequent periods t > h + i and k = t + 1 planned in

period h and in h+ i = t

is given by:

MRShct+1,ct = β−1ψt,t+1

Eh

[
du

dct+1

]
Eh

[
du
dct

] 6= (γβ)−1 ψt,t+1

Eh+i

[
du

dct+1

]
Eh+i

[
du
dct

] = MRSh+i
ct+1,ct

.
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Sophisticated Agents

As an alternative concept, we define a sophisticated agent as an agent who is fully aware

of her dynamic inconsistency. Sophisticated agents have a desire for commitment devices

that may force upon their future selves an ex ante optimal plan of actions. In absence

of viable commitment mechanisms, these agents’ optimization problems are modeled

in terms of “subgame perfect”behavior whereby the agent correctly anticipates utility

maximizing behavior of her future selves.

The maximization problems for self h of the CEU and the HD agents are the same

than for the naive agents and are given by (11) and (12) for all t = h, . . . where V h
t is

the value function of age t ≥ h viewed from planning age h. Unlike the naive agents,

sophisticated agents anticipate the correct value function for all future selves as additional

constraints, i.e. they anticipate that their future selves will not be acting in their interest.

Thus, self h evaluates present and future consumption allocations in periods t = h, . . .

using her value function V h
t but understands that future consumption allocations will be

chosen by different selves h + 1, . . .. In absence of commitment devices, the only way to

influence future selves behavior is via the savings decision of current self h.

Sophisticated CEU A way to influence future selves behavior via the choice of xt+1

is reflected in the conditions of optimality of self h which is for the CEU agent given by

du

dch
= β (1 + r) νhh,h+1Eh

[
∂V h

h+1

∂xh+1

]
∂V h

h+1

∂xh+1

=
du

dch+1

· ∂ch+1

∂xh+1

+ β (1 + r)
νhh,h+2

νhh,h+1

(
1− ∂ch+1

∂xh+1

)
Eh+1

[
∂V h

h+2

∂xh+2

]
(15)

Envelope conditions which are standard in rational expectations problems no longer apply

to the effect that the partial derivatives of the consumption policy ∂ch+1
∂xh+1

6= 0, in general.

This reflects how self h can influence future self’s h+1 choices with her choice of savings,

xh+1. Combining the above expressions with the condition of optimality for self h+ 1

du

dch+1

= β (1 + r) νh+1
h+1,h+2Eh+1

[
∂V h+1

h+2

∂xh+1
h+2

]

results in a “generalized Euler-equation with adjustment factor”.

Proposition 1 The generalized Euler-equation with adjustment factor for the sophisti-
cated CEU agent is given by

du

dch
= (1 + r) βνhh,h+1 ·Eh

[(
∂ch+1

∂xh+1

+
νhh,h+2

νhh,h+1 · νh+1
h+1,h+2

(
1− ∂ch+1

∂xh+1

))
du

dch+1

]
+Λt (16)
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where

Λt = [β (1 + r)]2 νhh,h+2Eh

((
1− ∂ch+1

∂xh+1

)
Eh+1

[
∂V h

h+2

∂xh+2

−
∂V h+1

h+2

∂xh+2

])
(17)

and where νhh,t is given by equation (1).

Proof 2 The proof is relegated to Appendix B.3.

Sophisticated HD The first order conditions and the derivative of the value function

for self h is the same than for the naive agent and given by (14). As in the CEU case,

cf. equation (15), the envelope theorem does not hold when taking the derivative of the

value function for the next period, i.e. the consumption policy function in h + 1 is not

optimal from perspective of self h. The sophisticated HD agent knows that futures selves

will also have a strong present bias and face the same problem (while the naive agent

thinks that future selves will behave rational). Thus self h knows that self h+ 1 will have

the same FOC for the subsequent periods.

Note that the sophisticated HD agent discounts any future period after the successive

period with β, i.e. all selves discount future periods identical, leading to identical deriva-

tives of the value functions for future periods, which is why the HD agent does not have

an adjustment factor as in the CEU case.

Observation 5 The generalized Euler-equation of the sophisticated HD agent derived,

e.g. by Harris and Laibson (2001) is given by

du

dch
= βγ (1 + r)ψt,t+1 · Eh

[(
∂ch+1

∂xh+1

+
1

γ

(
1− ∂ch+1

∂xh+1

))
du

dch+1

]
(18)

Compared to the generalized Euler-equation of the CEU agent (16) the agent uses the

objective probability ψt,t+1 to discount future consumption. In addition, the adjustment

factor Λt is not present due to the fact that the HD agent’s problem for future selves

h+ 1, . . . does not change.

The Euler-equations of the CEU and the HD agents both have a stchastic and endoge-

nous adjustment to the effective discount factor”given by

(CEU)

(
∂ch+1

∂xh+1

+
νhh,h+2

νhh,h+1 · νh+1
h+1,h+2

(
1− ∂ch+1

∂xh+1

))
, (19)

(HD)

(
∂ch+1

∂xh+1

+
1

γ

(
1− ∂ch+1

∂xh+1

))
. (20)
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which is a linear combination of the marginal propensity to consume and the marginal

propensity to save out of cash-on-hand,
(

1− ∂ch+1
∂xh+1

)
, where the latter is attached a certain

weight. Since ∂ch+1/∂xh+1 ≤ 1 this adjustment is larger one for the HD agent since γ < 1

and larger one for the CEU agent under moderate optimism, cf. Definition 1.

Intuitively, self h is aware of the fact that it values (marginal) savings in h+ 1 higher

than her future self. Thus, the sophisticated agent at age h attaches more weight on the

marginal utility tomorrow, if future self h + 1 has a higher marginal propensity to save.

The adjustment to the effective discount factor”hence just reflects how self h influences

self h+ 1 by scaling up self h+ 1’s valuation of savings. An important difference between

the two models is that the weight on the marginal propensity to save is 1/γ and thus

constant for the HD model while it is age dependent for the CEU model. We will show

in the quantitative Section 7 that the ratio of subjective beliefs νhh,h+2/ν
h
h,h+1 · νh+1

h+1,h+2 is

increasing with age as agents are becoming increasingly optimistic. Thus, the adjustment

factor rises with age implying higher savings for the CEU agent compared to the HD

agent.

The Euler-equation of the sophisticated CEU agent contains an adjustment fac-

tor Λt 6= 0, cf. equation (17), which is not present in the HD model. Whereas in the

latter, effective discount functions are identical for selves h and h + 1 from period h + 2

onwards, we have that the value functions of selves h and h + 1 in periods h + 2 are

age-dependent and given by

V h
h+2 = u (ch+2) + β

νhh,h+3

νhh,h+2

Eh+2

[
V h
h+3

(
xh+3, ηh+3

)]
V h+1
h+2 = u (ch+2) + β

νh+1
h+1,h+3

νh+1
h+1,h+2

Eh+2

[
V h+1
h+3

(
xh+3, ηh+3

)]
,

where in general
νhh,h+3
νhh,h+2

6= νh+1h+1,h+3

νh+1h+1,h+2

. A positive difference
∂V hh+2
∂xh+2

− ∂V h+1h+2

∂xh+2
implies that self

h values savings from h + 1 to h + 2 higher than self h + 1. The sign of Λt is again a

quantitative question studied in Section 7.

4.6 Aggregation over Households

Recall that, when aggregating the economy, we assume constant pension income, i.e.,

we consider a stationary economy in absence of aggregate risk, hence bt = b for all t.

Wealth dispersion within each age bin is only driven by productivity shocks. We denote

the cross-sectional measure of agents with characteristics (at, ηt) by Φt(at, ηt).

Denote by A = [0,∞] the set of all possible asset holdings and let E be the set of all
possible income realizations. Define by P (E) the power set of E and by B (A) the Borel

σ-algebra of A. Let Y be the Cartesian product Y = A× E and M = (B (A)) . The
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measures Φt(·) are elements of M. We denote the Markov transition function– telling

us how people with characteristics (t, at, ηt) move to period t+ 1 with characteristics t+

1, at+1, ηt+1– by Qt(at, ηt). The cross-sectional measure evolves according to

Φt+1 (A× E) =

∫
Qt ((at, ηt) ,A× E) · Φt (dat×dηt)

and for newborns

Φ1 (A× E) = N1 ·

Π(E) if 0 ∈ A

0 else.

The Markov transition function Qt(·) is given by

Qt ((at, ηt) ,A× E) =


∑

ηt+1∈E π
(
ηt+1|ηt

)
· ψt,t+1 if at+1 (at, ηt) ∈ A

0 else.

for all (at, ηt) ∈ Y and all (A× E) ∈ Y. Observe that the transition from t to t + 1 is

governed by the objective survival probabilities ψt,t+1.

Aggregation gives average (or aggregate)

consumption: c̄t =
∫
ct(at, ηt)Φt(dat × dηt),

assets: āt =
∫
at(at, ηt)Φt(dat × dηt),

income: ȳt = (1− τ)w
(∑tr−1

t=0 φtNt + χ
∑T

t=tr
Nt

)
,

total income: ȳtott = ȳt + rāt,

savings: s̄t = ȳtott − c̄t.

5 Simple Model

We now develop a simple three-period model (T = 2) without productivity risk (ηt = 1

for all t) in order to provide insights for the quantitative analysis below. We compare

the results of the CEU and the HD agent as well as naive versus sophisticated agents.

In addition, the rational expectations (RE) agent will serve as a benchmark case for all

other agent types.

The CEU agent discounts exponentially thus lifetime utility can be rewritten as

U0
CEU = u(c0) + βν0

0,1

(
u(c1) + β

ν0
0,2

ν0
0,1

u(c2)

)
(21)

In light of the data on subjective beliefs displayed in Figure 1 we interpret period 0

of the simple model as the period when survival beliefs express relative pessimism with

respect to survival, i.e., up to actual age of about 65−70. Period 1 then reflects the period

when there is relative optimism in the data. Correspondingly, we make the following

assumption:
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Assumption 1 We assume for some δ > 0 that

ψ0,1 > ν0
0,1 = δ0λ+ (1− δ0)ψ0,1 (22)

i.e., that λ < ψ0,1 (pessimistic beliefs), as well as

ψ1,2 < ν1
1,2 = δ1λ+ (1− δ1)ψ1,2 (23)

i.e., that λ > ψ1,2 (optimistic beliefs).
18

As will be shown further below for the CEU agent we need certain conditions in order

to generate the empirical facts of saving behavior we want to address. For this we make

the following definitions:

Definition 2 (Moderate optimism) A period 1 naive CEU household is moderately
optimistic if ν1

1,2 <
ν00,2
ν00,1
.

Definition 3 (Suffi cient pessimism) A period 0 naive CEU household is suffi ciently

pessimistic if
ν00,1
ψ0,1

<
(
m1,n
1

m1

)θ
< 1.

Meanwhile, the HD agent has an additional short run discount factor γ, cf. equation

(9) and uses objective survival rates ψ. Thus lifetime utility can be written as

U0
HD = u(c0) + γβψ0,1

(
u(c1) + βψ1,2u(c2)

)
(24)

We assume a CRRA per-period utility function with θ 6= 1 given by

u (ct) = Γ +
c1−θ
t

1− θ , (25)

for all t with preference shifter Γ ≥ 0 such that condition (38) holds, cf. Appendix A.3.

5.1 Rational Expectations

The reference model is the standard solution to the rational expectations model (where δ0 =

δ1 = 0):

Observation 6 Policy functions of the rational expectations solution to the simple model
are linear in total wealth, wt ≡ xt + ht (where xt ≡ atR + yt is cash on hand and ht ≡

18Notice that, despite equation (23), we may have that the household in period 0 is pessimistic with
respect to survival from period 1 to 2, hence we may have that

ψ1,2 > ν01,2 = δ0λ+ (1− δ0)ψ1,2.

This is so because δ0 < δ1 and therefore less weight is put on the optimism parameter λ.
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∑T
s=t+1

(
1

1+r

)s−t
ys is human wealth): ct = mtwt where wt+1 = (wt − ct)R and

mt =


bψ

− 1
θ

t mt+1

1+bψ
− 1
θ

t mt+1

= 1
1+ 1

bψ
− 1
θ

t mt+1

for t < T

1 for t = T

(26)

for b ≡
(
βR1−θ)− 1

θ .

Proof 3 See, e.g., Deaton (1992).

5.2 Naive Agent

To draw a distinction between the different agent types, we use superscript nh to de-

note policy functions (in terms of marginal propensities to consume) of naive hyperbolic

households while we simply use n for naive CEU households. Given that the household

consumes all outstanding wealth in the final period 2 (i.e. mn
2 = 1) in the following we

describe the solution for all other periods.

Naive HD agent

Lifetime utility in period 0 for the naive HD agent is given by equation (24).The next

self in period 1 solves

U1,nh
1 = u(c1) + βγψ1u(c2)

According to the assumption of naiveté for hyperbolic discounter, self 0 expects self 1 to

be acting rational thus

U0,nh
1 = u(c1) + βψ1u(c2)

Proposition 2 The solution for the naive HD household is as follows:

• The solution to the problem in period 1 is:

c1,nh
1 = m1,nh

1 w1 where m1,nh
1 =

1

1 + 1

ψ
− 1
θ

1 bn

where

bn ≡ γ−
1
θ

(
βR1−θ)− 1

θ (27)

• The plan in period 0 for period 1 is:

c0,nh
1 = m0,nh

1 w1 where m0,nh
1 = m1,

where m1 is given in (26).
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• The solution in period 0 is:

c0,nh
0 = m0,nh

0 w0 where m0,nh
0 =

1

1 + 1

bnψ
− 1
θ

0 m1

where m1 and bn are given by equations (26) and (27), respectively.

Proof 4 See Appendix B.5.

Naive CEU agent

For the naive HD agent we have for lifetime utility in period 0 is given by equation (21).

Again, self 1 in period 1 solves

U1 = u(c1) + βν1
1,2u(c2)

whereas self 0 expects self 1 to act according to

U0,n
1 = u(c1) + β

ν0
0,2

ν0
0,1

u(c2)

The naive CEU agent uses the ratio of beliefs ν0
0,2/ν

0
0,1 for future planning ages and does

not anticipate that self 1 will use ν1
1,2 < ν0

0,2/ν
0
0,1.

The solution of the household’s problem for the naive CEU agent are as follows:

Proposition 3 The solution for the naive CEU household is as follows:

• The solution to the problem in period 1 is:

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1

b(ν11,2)
− 1
θ

• The plan in period 0 for period 1 is:

c0,n
1 = m0,n

1 w1 where m0,n
1 =

1

1 + 1

b

(
ν00,2

ν00,1

)− 1
θ

• The solution in period 0 is:

c0,n
0 = m0,n

0 w0 where m0,n
0 =

1

1 + 1

b(ν00,1)−
1
θm0,n

1

Proof 5 See Appendix B.6.

22



Interpreting the propositions yields the following observation:

Observation 7 Realization in period 1: Comparing the CEU with the RE agent we

get m1,n
1 < m1 under Assumption 1, equation (23). Comparing the HD with the RE agent

we get m1,nh
1 > m1 since bn > b as γ ∈ [0, 1].

According to Observation 7 the naive CEU household, having optimistic survival

beliefs, saves more out of accumulated wealth in period 1 than the household with rational

expectations. On the contrary, the naive HD agent saves relatively less in period 1. The

reason is that the HD agent in period 1 uses the discount factor γβ when making her

decision between consumption in period 1 and period 2.

Accumulated wealth in turn is an endogenous object. We shall see below that in pe-

riod 0 both a suffi ciently pessimistic naive CEU household as well as a naive HD household

will save less out of initial wealth than households with rational expectations. While it

is therefore clear that accumulated wealth of the naive CEU household in period 1 is

lower than for rational expectations, relative wealth positions across the CEU household

and the RE agent in period 2 depend on the relative strength of suffi cient pessimism in

period 0 vis-a-vis optimism in period 1. For the CEU agent, it is therefore ultimately a

quantitative question whether accumulated wealth in period 2 exceeds wealth of house-

holds with rational expectations. On the contrary, wealth of the HD household in period 2

can never exceed wealth of the RE agent, as there is no analogue to the optimism present

for CEU households.

Observation 8 Plan for period 1: For the plan of the naive CEU agent we get m1 >

m1,n
1 > m0,n

1 under moderate optimism, cf. Definition 2. For the HD agent we get

m1,nh
1 > m0,nh

1 = m1, cf. Opservation 7 and Propostition 2.

Observation 8 implies that a naive CEU household with moderate optimism plans in

period 0 to save more out of accumulated wealth in period 1 than he actually does, i.e.

m1,n
1 > m0,n

1 . That is, only if optimism expressed in the data on subjective beliefs is

not too large there is hope for our quantitative analysis to match the stylized fact that

households, in the course of the life-cycle, save less than originally planned. Moreover,

the CEU household plans in period 0 to save more out of wealth in period 1 than the

rational expectations household. It implies that, to generate undersaving in our model,

pessimism in the first period must be suffi ciently large.

The HD agent unambiguously plans in period 0 to save more in period 1 than he

actually does, where the HD plan for period 1 corresponds to RE case, i.e. m0,n
1 = m1.

Observation 9 Realization for period 0: For the naive CEU agent with suffi cient pes-
simism we get that m0,n

0 > m0, and for the naive HD agent we have m0,nh
0 > m0 since

again bn > b as γ ∈ [0, 1].
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Proof 6 See Appendix B.7.

Both the CEU and the HD household consume more than the RE household in pe-

riod 0. But for the naive CEU agent the household needs to be suffi ciently pessimistic in

the sense of Definition 3 in order to generate undersaving (relative to the solution to the

rational expectations model).

Table 1 summarizes the results for the naive agents compared to the RE agent.

Table 1: Marginal propensities to consume out of current wealth
naive CEU naive HD

Realization in t = 0 m0,n
0 > m0

1) m0,nh
0 > m0

Plan in t = 1 m1,n
1 > m0,n

1
2) m1,nh

1 > m0,nh
1

Realization in t = 1 m1,n
1 < m1 m1,nh

1 > m1

m0 and m1 denotes the MPC of the RE agent
1) Under suffi cient pessimism
2) Under moderate optimism

In period t = 0 both agents exhibit undersaving compared to the RE agent. Similarly,

both agents plan to save more in period 1 than they actually do. Note, that for the

CEU agent certain conditions have to be met in order to generate these results. Most

importantly, the CEU agent having optimistic survival beliefs saves more relative to the

RE agent in period 1. In contrast, the naive HD agent exhibit undersaving in period 1

relative to the RE agent once more. A tendency for oversaving at older ages cannot be

accounted for.

5.3 Sophisticated Agents

Sophisticated HD Agent

As described in the multiperiod model, cf. Section 4.5, the sophisticated agent is aware

of future selves behavior and anticipates their present bias. Thus, the sophisticated

agents takes the (over-)consumption of future selves into account when making her current

savings plan.

In periods 2 and 1, the solution is identical to the respective solution for the naive

agent. Equivalence in period 2 is trivial because m2 = 1, for period 1 we have in the

Euler equation that m2 = 1 enters so that the Euler equation simplifies to

c−θ1 = βγRψ1c
−θ
2

which is equivalent to the first-order condition of the naive agent.
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For period 0 we get the following Euler-equation

c−θ0 = βγRψ0

(
m1,nh

1 +
1

γ
(1−m1,nh

1 )

)
c−θ1

where

d
(
m1,nh

1

)
≡
(
m1,nh

1 +
1

γ
(1−m1,nh

1 )

)
> 1 (28)

can be interpreted as an adjustment term to the discount factor. This factor is larger one

as long as m1,nh
1 < 1. The fact that m1,nh

1 enters the Euler equation makes explicit that

the sophisticated agent understands how next period’s self will behave.

Proposition 4 The solution to the sophisticated HD agent’s problem in period 0 is given
by

c0,s
0 = ms

0w0 where ms
0 =

1

1 + 1

b[d(m1,nh
1 )·γψ0]

− 1
θm1,nh

1

where d
(
m1,n

1

)
is given by equation (28).

Proof 7 Relegated to Appendix B.8.

Sophisticated CEU Household

The solution to the sophisticated agent’s problem is identical to the naive agent in peri-

ods 2 and 1. In period 0 the sophisticated agent knows that his future period 1 self will

have marginal propensity m1,n
1 . Again we use superscript sh to denote the sophisticated

hyperbolic households and s for the sophisticated CEU household. The solution to the

problem of the sophisticated CEU agent is as follows:

Proposition 5 The solution to the sophisticated CEU agent’s problem in period 0 is

given by

c0,s
0 = c0 = m0,s

0 w0 where m0,s
0 =

1

1 + 1

b[d(m1,n
1 )·ν00,1]

− 1
θm1,n

1

and

d
(
m1,n

1

)
≡
(
m1,n

1 +
ν0

0,2

ν0
0,1ν

1
1,2

(1−m1,n
1 )

)
> 1

Proof 8 Relegated to Appendix B.9.

Note, that d
(
m1,n

1

)
> 1 only under moderate optimism, cf. Definition 2, for the CEU

agent. Observe that d is the counterpart to the adjustment of the discount factor Ψt in

the multiperiod model in Proposition 16.
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The interpretation for the sophisticated agents are similar for the HD and the CEU

case. Compared to the naive agent two forces are at work.19 On the one hand, d > 1

which reflects the sophisticated agent’s high valuation of savings. On the other hand,

self 0 anticipates the high marginal propensity to consume of self 1. Since d depends

negatively on m1,n
1 , implying that when self 0 decides how much to save, she takes into

account that future self 1 will consume more, than self one would like her to.

The propositions above lead to the following observation:

Observation 10 The relationship between the marginal propensities to consume between
the sophisticated and the naive agent is as follows:

1. HD agent:

m0,sh
0 < m0,nh

0 iff d
(
m1,nh

1

)
>

(
m1,nh

1

m1

)θ

> 1

m0,sh
0 > m0,nh

0 iff

(
m1,nh

1

m1

)θ

> d
(
m1,nh

1

)
> 1.

2. CEU agent

m0,s
0 < m0,n

0 iff d
(
m1,n

1

)
>

(
m1,n

1

m0,n
1

)θ
> 1

m0,s
0 > m0,n

0 iff
(
m1,n

1

m0,n
1

)θ
> d

(
m1,n

1

)
> 1.

Proof 9 Relegated to Appendix B.10

Which out of the two effects dominates is again a quantitative question.

[TBC: Compare sophisticated agent with Rational expectations agent:

m0,nh
0 > m0

m0,n
0 > m0

Also: discuss period 1 decisions (identical to naive case here)]

19Again, for the sophisticated CEU agent those two forces are only at work under moderate optimism,
cf. Definition 2.
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6 Calibration

6.1 Household Age

Households enter the model at age 20 (model age 0). The last working year is age 64,

hence tr = 45. We set the horizon to some maximum biological human lifespan at

age 125, hence T = 105. This choice is motivated by Weon and Je (2009) who estimate

a maximum human lifespan of around 125 years using Swedish female life-table data

between 1950− 2005.

6.2 Objective Cohort Data

For objective survival rates we estimate cohort specific survival rates for US cohorts alive

in 2007. Objective cross-sectional data is taken from the Social Security Administration

(SSA) for 1890− 1933 and the Human Mortality Database (HMD) for the years 1934−
2007. To obtain complete cohort tables, future survival rates are predicted by the Lee

and Carter (1992) procedure. Details are described in Ludwig and Zimper (2013).

Since data on survival rates is unreliable for ages past 100 we estimate survival rates

assuming the Gompertz-Makeham law.20 Accordingly, the mortality rate µt at age t is

assumed to follow

µt = α1 + α2 · exp (α3 · t) + εt, εt ∼ N (0, σ2).

We estimate parameters {αi}3
i=1 to get an out of sample prediction for ages past 100.

The resulting predicted mortality rate function fits actual data very well and is used as

objective cohort data in the simulation. According to our estimates, the average mortality

rate approaches 1 at ages around age 110 (t = 90). For all ages t = 91, . . . , 105, we set

the objective survival rate to ψt,t+1 = ε = 0.01.

6.3 Estimated Subjective Survival Beliefs

We follow Ludwig and Zimper (2013) and estimate parameters δ ≡ δh=0 and λ by pooling

a sample of HRS data formed of HRS waves {2000, 2002, 2004}. Except for heterogeneity
in sex and age, we ignore all other heterogeneity across individuals. This gives δ = 0.118

and λ = 0.406.21

20See, e.g., Preston et al. (2001), p. 192.
21Estimation results are separately for men and women. We take an equally weighted average of the

estimated parameters to get an approximation for λ and δ in the population.
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6.4 Calibrated Hyperbolic Short-Term Discount Factor

The effective discount function of the CEU model at age h is νhh,tβ
t−h, for t = h, . . . , T.

In the HD model it is ψh,tγβ
t−h. We calibrate the short term discount factor γ of the

HD model by minimizing the Eucleadian distance of the two discount functions for every

plan:

min
γ

T∑
h=1

T∑
t=h

[
νhh,tβ

t−h − ψh,tγβt−h
]2

(29)

The resulting short-term preference factor is γ = 0.77

[TBC: check value].
This is just in the middle of the range cited in the literature. In numerical simulations

the short term preference parameter γ is set to values between 0.6 and 0.85, see, e.g.

Laibson, Repetto, and Tobacman (1998).

6.5 Preferences

As in the simple model of the previous section, per period utility is assumed to be CRRA,

u (ct) = Γ +
c1−θt −1

1−θ , at all ages t. As a benchmark, we choose θ = 3.0– corresponding to

an inter-temporal elasticity of substitution (IES) of one third– and consider as range for

sensitivity analysis θ ∈ {2, 4}.
Given θ > 1, per period utility is negative. For the CEU model it is necessary that

the discounted sum of utilities in case the agent survives until T is positive, cf. condition

(38) in Appendix A.3. Therefore a preference shifter Γ must be calibrated such that

condition (38) holds for all t, ηt. We set Γ = 76.7 for the naive CEU agent which turns

out to be suffi ciently high.22 We further set the discount rate ρ to 5%.

6.6 Prices and Endowments

Wages are normalized to w = 1. We consider a three-state first-order Markov chain

process for the income process in periods t = 0, . . . , tr with state vectorEw = [1+ε, 1−ε, 0]

whereby the last entry reflects the state with zero income. Let ζ = 0.01 be the small

probability of receiving zero income. Then the transition matrix during the working

period writes as

Πw =

 (1− ζ)κ (1− ζ)(1− κ) ζ

(1− ζ)(1− κ) (1− ζ)κ ζ

0.5 · (1− ζ) 0.5 · (1− ζ) ζ


22This relates to Hall and Jones (2007) who calibrate– in a different model setup– a preference shifter

in the range of [22.1; 131.9]. Notice that this is just an arbitrary monotone transformation. Any choice
of Γ > 76.7 ensures that the value of life is always higher than the value of death.
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for t = 0, . . . , tr. We take as initial probability vector of the Markov chain π0 =

[0.5, 0.5, 0]′, i.e., households do not draw zero income in their first period of life.

Values of persistence and conditional variance of the income shock process are based

on the estimates of Storesletten, Telmer, and Yaron (2004)yield κ = 0.97 and ε = 0.68.

Age specific productivity of wages is estimated based on PSID data applying the

method developed in Huggett, Ventura, and Yaron (2007).

In retirement, for t = tr + 1, . . . , T̄ , we take as state vector Er = [1, 0]. We assume

an even smaller probability to receive zero retirement income of ζr = 0.001 which reflects

default of the government on its pension obligations. We accordingly have

Πr =

[
1− ζr ζr

1− ζr ζr

]

for t = tr + 1, . . . , T̄ and we take as initial probability vector πtr+1 = [1− ζr, ζr]′.
The interest rate is taken to be r = 0.042 which is the average real rate of return of

stocks and long-run bonds for the US between 1946 and 2001, estimated by Siegel (2002).

For the social security contribution rate we take the US average of τ = 0.124. The pension

benefit level then follows from the social security budget constraint, cf. equation (6).

All parameters are summarized in table 2.

7 Results

7.1 Subjective Survival Beliefs and Effective Discounting

Predicted and Actual Subjective Survival Beliefs

Figure 3 compares predicted subjective survival rates resulting from the decision theoretic

model with their empirical counterparts and corresponding objective survival rates. Pre-

dicted subjective beliefs fit data on subjective survival probabilities well. In particular,

the model replicates underestimation of survival rates at younger ages and overestimation

at older ages.23

Survival Belief Functions and Probability Weighting

Figure 4 compares subjective survival belief functions of a CEU agent to the subjective

beliefs implied by CPT as well as to objective cohort data. The panels in the figure show

unconditional survival rates viewed from different planning ages where target age t is

23The different line segments are due to changes in target ages. Ludwig and Zimper (2013) perform
an extensive sensitivity analysis with regard to focal point answers, the choice of initial age, and the
specific form of the experience function. They show that results do not hinge on these aspects.
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Table 2: Calibrated parameters
Technology and Prices
w = 1 Gross wage
r = 0.042 Interest rate
τ = 0.124 Social security contribution rate
χ = 0.322 Net pension benefit level
Income Process
κ = 0.97 Persistence of income
ε = 0.68 Variance of income
ζ = 0.01 Probability of receiving zero labor income
ζr = 0.001 Probability of receiving zero pension benefits
{φt} Age specific productivity estimated from PSID
Preferences
θ ∈ {2, 3, 4} Coeffi cient of relative risk aversion
ρ = 0.05 Subjective discount rate (CEU and HD)
γ = 0.77 Short-term discount factor (HD)
ΓCEU = 76.65 Preference shifter (naive CEU)
ΓHD = XXX Preference Shifter (naive HD)
Subjective Survival Beliefs
δ = 0.118 Initial degree of ambiguity (CEU)
λ = 0.406 Degree of optimism (CEU)
Age Limits and Survival Data
0 Initial model age (age 20)
tr = 45 retirement (age 65)
T = 105 Maximum human lifespan (age 125){
ψk,t
}

Objective survival rates from SSA and HMD
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Figure 3: Objective, subjective and predicted survival rates
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Notes: In the HRS interviewees are asked about their survival belief to a specific target age

depending on the age at interview: Respondents between ages 50-69 are asked their proba-

bility to survive to 80, while agents between 70-74 (and 75-79, 80-84, 85-89) are asked about

their belief to survive until 85 (and 90, 95, 100). The figure shows these subjective survival

beliefs for different target ages (solid blue line), the corresponding objective survival rates

(dashed-dotted red line) and the simulated subjective survival beliefs from the estimated

CEU model (dashed green line).

depicted on the abscissa. In each of the panels experience and thus likelihood insensitivity

does not change.

First note that both the CEU and the CPT model imply survival belief functions

which are flatter than the objective counterpart, confirming previous findings from Ham-

mermesh (1985) and several others. Thus, both models exhibit an underestimation of

high survival rates ans an overestimation of low survival probabilities.

The main difference is present at the endpoints. The subjective survival belief function

implied by the CPT model is close to the objective data at the endpoints where the

survival rate is close to one or zero, respectively. On the other hand, the survival beliefs

of the CEU model are characterized by an immediate downward jump from the first to

the second period while at the same time the overestimation for old-age survival rates

becomes more pronounced for higher target ages.

While we do not have data on the one-year-ahead survival beliefs of agents in the

HRS we can only judge by anecdotal evidence, that the subjective belief to survive the

current year is pretty close to the objective data on average implying the CPT model to

be more in line with reality than the CEU model.

On the other hand, according to the HRS the overestimation of survival rates at older

ages becomes even larger for higher ages. This can be well accounted for by the CEU

model where the overestimation becomes more pronounced at older ages For example,

our model predicts that a 85 year old agent overestimates her probability to become 100

but she overestimates the probability to become 110 by even more. For the probability
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Figure 4: Unconditional probabilities
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Notes: Unconditional objective and subjective survival probabilities viewed

from different planning ages h.

The parameters ξh for the CPT model, cf. equation (), are calibrated by
minimizing the Euclidean distance of$h

(
ψh,t, ξh

)
with a non-linear root

finder that best matches the neo-additive capacity νhh,t of that age.

weighting model, the subjective belief of a 85 year old agent to become 100 is overesti-

mated while the belief to become 110 is correctly anticipated and coincides almost with

the objective probability. The increasing optimism observed in the data can thus only

partially be accounted for by the CPT model.

Subjective CEU Beliefs and Quasi-Hyperbolic Discounting

Both the survival probability and the discount function form the effective discount factor

which is depicted in Figure 5. The figure shows effective discount functions of the CEU,

the HD and RE agent. Here we are using the parameter calibrated for the numerical

version for our model, cf. Table 2. In particular, we assume the long-term discount

factor β as a deep structural parameter and thus the same for all agent types throughout

the quantitative analysis of our paper.

At a first glance, the effective discount functions of the CEU and the HD agent are

quite similar. Since the functions for both models are generally lower than their objective

counterpart at younger ages, this also translates into the effective discount function. Note,

that at younger ages, the CEU function is closer to the RE agent than the HD function

32



Figure 5: Effective discount functions
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Notes: Effective discount functions of the RE, CEU and HD agent, 1st period is set to one.

The parameter γ for the HD discount function is calculated by minimizing the Eucledian

distance to the CEU discount function.

while this is reverse at older ages. The main difference between the models occur at

later target ages. Here, the CEU function is higher than for the RE agent, and this is

becoming more pronounced the older the agent is when making her plan. In contrast,

the effective discount function of the HD agent always converges to the discount function

of the RE agent from below. This is due to the fact that we use the same long-term

discount factor β for all agents. The specific feature of relatively higher discount factors

at old ages from our subjective survival belief model accounts for the empirical fact that

older agents become even more optimistic concerning their survival prospects the older

they get. This generates important life-cycle consequences namely high asset holdings of

the elderly.

To see whether this result rests on the assumption of holding the discount factor

constant, we plot the discount functions for different β in Figure 6. In particular we

exogenously set different long-term discount factors of βCEU = βRE = 0.95 and βHD =

0.97 and calibrated γ = 0.6 in order to minimize the Eucledian distance of the effective

discount function, cf. equation (29) [TBC: recalibrate].
As a new feature compared to the results shown in Figure 5, the HD effective dis-

count function is now also higher than the RE counterpart for high target ages. This

33



Figure 6: Effective discount functions for different β
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Notes: Effective discount functions of the RE, CEU and HD agent, 1st period is set to one.

We use the following values: γ = 0.6 and βHD = 0.97 for the quasi-hyperbolic, γ = 1 and

βCEU = 0.95.

holds especially true for younger planning ages. But although the difference of the pure

discount factor of the HD agent relative to the RE agent becomes larger for higher target

ages, cf. the illustration in the right panel of Figure 2, the effective quasi-hyperbolic dis-

count factor– consisting of the product of the pure time discount factor and the survival

probability– approaches zero at old ages. The reason for this outcome is that the HD

agent uses objective (unconditional) survival rates that reach values below 2% for agents

past 100.

This is in stark contrast to our model where the CEU agent uses subjective beliefs (and

exponential discounting) rendering the effective discount function persistently higher at

older target ages than for the RE agent. Moreover, this higher effective discount function

becomes more pronounced for higher target ages, in line with the data on subjective

survival beliefs that shows higher deviations from the objective data the older the agent

gets. As mentioned above, it is precisely this feature of our CEU model that generates

high asset holdings at older ages compared to the RE agent, which will be shown in the

next sections.
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7.2 Life-Cycle Profiles

Naive vs. Sophisticated Agents

Figure 7 compares the sophisticated and the naive agent for the CEU and the HD model,

respectively. Average life-cycle profiles of sophisticated and naive CEU agents are de-

picted panel (a) of the figure. On average, the two agents types’behave quite similar

at the first half of the working life. At the age of around 40 sophisticated agents start

to consume more and build up less assets on average than naives. The overconsumption

continues during retirement, where sophisticates run down their assets more strongly

than naifs. Finally, naive agents end up with more assets at older ages than sophisticated

agents. Intuitively, it seems that sophisticates anticipate that later selves will spend a lot

of the retirement savings of the current self. Thus, sophisticates tend to consume more

than naifs right away.

Figure 7: Life-cycle profiles of the naive and sophisticated CEU agent
(a) CEU Agent (b) HD Agent
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Notes: Profile of sophisticated CEU and HD agents and profile of the naive couterpart
using ex-post realization for all planning ages.

In light of the simple model presented in Section 5 there are two opposing effects on

the marginal propensity to consume of sophisticated agents. According to Observation 10

it seems that the marginal propensity to consume is higher for the sophisticated agent, if

the deviation of the planned and the realized future marginal propensity of the naive agent

is large. This is certainly more pronounced the case for the CEU agent. Recall that the

agent plans with the ratio of subjective belief νhh,t+1/ν
h
h,t while the next period’s self uses

νh+1
t,t+1. This ratio of beliefs is close to one while the subjective belief ν

h+1
t,t+1 is rather low at

older ages. Thus the different between the naive plan and the actual realization is large.

In the simple model this would imply
(
m1,nh
1

m1

)θ
> d

(
m1,nh

1

)
and thus m0,sh

0 > m0,nh
0 , cf.

Observation 10. On the contrary, the naive and sophisticated agent in the HD model– as
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already shown in the simple model– become more alike, the older the agent gets. Finally,

in period T they are solving the same problem. In line with the predictions of the theory,

the profiles for the HD agents, depicted in panel (b) of Figure 7 behave almost identical

with given parameters, an outcome confirming earlier studies, cf. Angeletos et al. (2001).

[TBC: Give intuition]
Comparing the sophisticated agents observe the very similar profiles for the CEU and

the HD agents. As for the naive agent, the sophisticated CEU agents exhibit higher asset

holdings at old ages, see also Figure 14. To see why, observe in the lower right panel of

Figure 7 that also the marginal propensity to consume is lower for the CEU agents at

older ages. To explain this outcome recall the main differences of the generalized Euler-

equation of the CEU and the HD agents, cf. equations (16) and (18) which are restated

again for convenience:

(CEU)
∂u

∂ch
= (1 + r) βνhh,h+1

·Eh

[(
∂ch+1

∂xh+1

+
νhh,h+2

νhh,h+1 · νh+1
h+1,h+2

(
1− ∂ch+1

∂xh+1

))
∂u

∂ch+1

]
+ Λt,

(HD) uc(c
h
h) = (1 + r) βγψt,t+1

·Eh
[(

∂ch+1

∂xh+1

+
1

γ

(
1− ∂ch+1

∂xh+1

))
du

dch+1

]
,

where Λt is given by equation (17).

First, the effective discount factor from period h to h + 1 are, of course, different, as

shown in Figure 8. While for the HD agent the factor ist just γβψh,h+1, i.e. a scaled-

Figure 8: Effective Discount Factors from age h to age h+1
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Notes: The figure shows the effective discount factors

βνhh,h+1 for CEU agents and γβψh,h+1 for HD agents.

down objective survival rate function, for the CEU agent the discount factor is βνhh,h+1,

i.e. depending on the subjective survival belief. Observe from the figure that the discount
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factor of the CEU agent is higher early in life, then lower most of the lifetime but turns

higher again at very old ages.

Second, the effective discount factor is scaled up by an adjustment factor depending

on the marginal propensity to consume. Note that for the CEU agent the adjustment is

age-dependent through the weight of the marginal propensity to save. The weights to the

marginal propensity to save are given by νhh,h+2/ν
h
h,h+1 · νh+1

h+1,h+2 for CEU agents and 1/γ

for HD agents. Observe that the latter is constant while the former is age-dependent.

Figure 9 plots both weights.

Figure 9: Weights in the Generalized Euler-Equation of Sophisticated Agents
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Notes: The figure shows the weights of the marginal

propensity to save out of total wealth in the adjustment of

the effective discount factors for the CEU agent, cf. equa-

tion (19) given by νhh,h+2/ν
h
h,h+1 · ν

h+1
h+1,h+2 > 1 and for

the HD agent, cf. equation (20), given by 1
γ
> 1.

First, note that for the CEU agents the weight is larger one, implying that the agents

are moderately optimistic in the sense of Definition 1 throughout their lifetime. In addi-

tion, the weight increases with age implying that the sophisticated agent becomes more

optimistic at older ages putting more weight on next periods marginal utility in the gen-

eralized Euler-equation. In contrast, for HD agents the weight is constant throughout.

Third, the generalized Euler-equation for the CEU agent contains an adjustment

factor Λt, cf. equation (17). The average factor is plotted in Figure 10.

Generally, the adjustment factor is slightly negative for young agents and turns pos-

itive for older agents. Again, there is a third reason for the sophisticated CEU agent to

have higher asset holdings at older ages than the sophisticated HD agent.

Time Inconsistency of Naive Agents

This section compares the plan and the realized action of naive agents who behave time-

inconsistent. Naive agents update their plan in each period. As a way to compare any
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Figure 10: Adjustment Factor for the Sophisticated CEU Agents
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phisticated CEU agents given by equation (17).

gap between a plan made at age h and future plans for CEU agents we denote planned

average consumption with superscripts and compute

c̃ht =

∫
cht (at, ηt)Φ

h
t (dat × dηt) (30)

for all t. This gives us hypothetical average consumption profiles in the population

if households would stick to their respective period-h plans in all periods t = h, . . . , T .

Observe that Φh
t (·) is an artificial distribution generated by respective plans of households.

We refer to (30) as (average) “planned”consumption (asset, ...) profile in the figures that

follow.

Figure 11 compares the planned and the realized marginal propensity to consume

out of cash-on-hand (MPC) of naive agents for the CEU and the HD model at two

different planning ages. The notable difference between the two models is that within the

CEU model the MPC for the naive agent is moving further away from the sophisticated

counterpart the higher the target age. As mentioned above this is due to the fact, that

the naive agents plan with the ratio of subjective belief νhh,t+1/ν
h
h,t instead of using simply

νht,t+1. On the contrary, the MPC for the HD agent are much more alike between the

sophisticated and the naive agents. In addition, they end up being the same in the last

period.

Figure 12 compares the CEU and the HD agent by showing average planned con-

sumption, c̃ht , and ex-post realizations, c̄t, for the planning age 40. The figure confirms

the similarity of the two models: both agents exhibit initial downward jumps in their

plans. The main difference stand out at very old target ages, where the CEU plan keeps

to be off the realized values.

To understand the nature of the initial blip in both models rewrite the Euler equation
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Figure 11: Planned and realized MPC for CEU and HD agents
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Notes: Marginal propensity to consume out of cash-on-hand (MPC)

of CEU and HD agent at different planning ages h = 20 and h =
45 compared to life-cycle profile of the ex-post realization for all

planning ages.

MPC is approximated by computing averages of ∆c/∆x from the

associated policy functions.

of the CEU agent from (13) in absence of binding borrowing constraints as

(CEU)
du

dcht
= β (1 + r) · Et

[
du

dcht+1

]
·


(
δhλ+ (1− δh)ψh,h+1

)
for t = h

δhλ+(1−δh)ψh,t+1
δhλ+(1−δh)ψh,t

for t > h.

Hence, initially (planned) consumption growth is inter alia determined by the subjective

probability to survive to the next period. In later periods, it is the ratio of subjective

probabilities between successive periods. The limit of the Euler equation for h → ∞,
hence δh → 1, is

(CEU) lim
h→∞

du

dcht
= β (1 + r) · Et

[
du

dcht+1

]
·

λ for t = h

1 for t > h.

Because ψh,h+1 also monotonically decreases with increasing h, the initial drop in con-

sumption plans increases in h.

In the limit this equation closely resembles the HD Euler-equation (14) which was
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Figure 12: Planned and Realized Consumption at Planning Age 40
(a) Naive CEU (b) Naive HD
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Notes: Planned and realized consumption profiles at planning age h = 40 for

CEU and HD agent.

given by

(HD)
du

dct
≥ β (1 + r)ψt,t+1 · Et

[
du

dct+1

]
·

γ, for t = h

1, for t > h
.

Comparison with Rational Expectations Benchmark Model

In this section we compare the CEU and the HD model with the rational expectations

(RE) agent as a benchmark model. The RE agent uses objective survival probabilities

and an exponential discount function with a time independent discount factor β. Figure

13 concentrates on the life-cycle profiles of the naive CEU and HD agents compared to

the RE agent.

Both the naive CEU and naive HD agents value current consumption higher than RE

agents. Thus, the naive agents save less during working ages which is in line with the

empirical facts of undersaving outlined in the introduction. As a consequence, less assets

are accumulated. For HD agents asset holdings are lower throughout their life which is in

contrast to empirical findings indicating that elderly hold on to their assets. In contrast,

our CEU model can account for both empirical facts at once. Naive CEU agents consume

more and correspondingly undersave at working ages compared to RE agents. At the

same time, assets are decumulated much slower. The naive CEU agents finally have

higher asset holdings at ages 76+ compared to agents with rational expectations. This

result stems from the overestimation of survival beliefs at older ages. The naive CEU

model can thus simultaneously account for undersaving and high old-age asset holdings

while the naive HD model can only account for the former.

Figure 14 show life-cycle profiles for the sophisticated agent types. Quantitatively, the

sophisticated CEU and HD agents behave much more alike than the naive agents. Now,
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Figure 13: Life-Cycle Profiles of Naive CEU and HD Agents compared to RE
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Notes: Realized life-cycle profiles of the CEU, the HD and the RE agent. MPC denotes the

marginal propensity to consume out of cash-on-hand which is approximated by

computing averages of ∆c/∆x from the associated policy functions.

both still exhibit undersaving but as a main difference, the distinct higher asset holdings

of the elderly CEU relative to the RE agent is not present for sophisticates. Nevertheless,

qualitatively the results still hold: the CEU agent has slightly higher assets at the very

last years of life. This is reflected by a lower marginal propensity to consume (MPC) at

older ages, cf. lower right panel of Figure 14.

Table 3 comprises these results by reporting summary statistics. The average saving

rate of naive CEU agents, defined as the ratio of average savings to average income,

during her working life is 1.5 percentage points lower than the average saving rate of RE

agents. Generally, the saving rate is lower for HD agents under the current calibration.

The saving rate of the naive HD agent is 3.3 percentage points lower than for the RE

agent. On the other hand, the asset holdings of the elderly are even lower for the HD

model than for the RE model, thus, the hyperbolic discounting model can not replicate

the empirical fact of high asset holdings at older ages, reported by Hurd and Rohwedder

(2010), and others. Assets of a naive HD agent at age 85 (95) relative to her assets at

retirement entry are only 26.2% (0.76%) while these values are much higher for the CEU

agent with 46.4 (23.5). This difference is especially strong for the very old agents of 90+ .

Note, that assets of the sophisticated agents are generally lower compared to the RE
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Figure 14: Life-Cycle Profiles of Sophisticated CEU and HD Agents compared to RE
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counterpart. Only at very old ages, assets are (still) higher for the sophisticated CEU

agent: Assets at 95+ relative to assets at age 65 are 8.43% relative to 8.39% for the RE

agent. Thus, quantitatively, the high asset holdings are only present for the naive CEU

agents.

8 Conclusion

We compare a decision-theoretic model of subjective survival belief formation (CEU) pro-

posed by Ludwig and Zimper (2013) with the well-known (quasi-)hyperbolic discounting

model (HD) in a life-cycle model. We derive the Euler-equations for naive and sophis-

ticated agents and calibrate the model to compare the quantitative implications of both

models for consumption and saving behavior. As our main result, the two models differ

with regard to old-age asset holdings. Due to an increasing optimism at older ages–

which is in line with the data in subjective survival beliefs– CEU agents hold on to their

assets late in life which accommodates an important empirical puzzle in the life-cycle

literature. This stylized fact cannot be addressed by the hyperbolic discounting model.

The decision theoretic nature of the model of subjective survival beliefs entails im-

portant distinctions from the hyperbolic discounting model. First, (quasi-)hyperbolic

discounting result from– rather ad hoc– assumptions on functional forms. In contrast,
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Table 3: Summary Statistics
RE CEU HD

Naive Soph. Naive Soph.
Ratio of max. consumption1) 2.12 1.95 2.00 1.98 1.98
Age at max. consumption 60 58 58 58 58
Saving rate2) 23.0% 21.5% 20.5% 19.7% 19.3%
Assets at 85 to 653) Avg 35.5% 46.4% 33.0% 26.2% 29.9%

Med 31.8% 36.2% 26.5% 17.6% 22.8%
Assets at 95 to 653) Avg 8.39% 23.5% 8.43% 3.9% 5.5%

Med 5.9% 11.2% 2.3% 0.76% 0.72%
Assets at 85+ to lifetime avg4) 52.2% 106.9%
1) Maximal consumption relative to consumption at age 25
2) We define the “average”saving rate as the ratio of averages during working life.

We hence compute
∑
st/
∑
yt

3) Assets of age 85 (95) relative to assets at retirement entry.
4) Percentage difference of average assets during ages 85-110 relative to average

assets through whole life.

our model is based on an axiomatic decision theoretic model. Second, the effective hy-

perbolic discounting functions in our model are not stationary but evolve as the agent

receives new information. Third, a key problem of calibrating quasi-hyperbolic discount-

ing models is that additional preference parameters reflecting the degree of present-bias

are not observable. There is not much consensus concerning their value. In contrast, our

information based model exploits the information on subjective survival beliefs in the

data.

Further differences of the model of subjective survival beliefs compared to the hyper-

bolic discounting model arise once we add an altruistic bequest motive in the standardly

used warm-glow fashion as suggested by Andreoni (1989). In addition to receiving utility

from consumption parents derive utility from leaving bequest to their children in case

they die. Since potential bequests are weighed with the death rate we have a different

weighting of the warm-glow of giving between the agent using subjective survival belief

and a hyperbolic discounter. We leave this extension for future research.
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A Appendix: The CEU model with Subjective Sur-

vival Beliefs

The following Appendix (i) provides decision theoretic preliminaries, (ii) presents the

Bayesian Learning of ambiguous survival beliefs as introduced by Ludwig and Zimper

(2013), and finally (iii) presents how to merge this model into a life-cycle, cf. Groneck,

Ludwig, and Zimper (2013).

A.1 Decision Theoretic Preliminaries

A.1.1 Choquet Integration and Neo-additive Capacities

Consider a measurable space (Ω,F) with F denoting a σ-algebra on the state space Ω

and a non-additive probability measure (=capacity) κ : F → [0, 1] satisfying

(i) κ (∅) = 0, κ (Ω) = 1

(ii) A ⊂ B ⇒ κ (A) ≤ κ (B) for all A,B ∈ F .
The Choquet integral of a bounded F-measurable function f : Ω→ R with respect to

capacity κ is defined as the following Riemann integral extended to domain Ω (Schmeidler

1986):

E [f, κ] =

∫ 0

−∞
(κ ({ω ∈ Ω | f (ω) ≥ z})− 1) dz +

∫ +∞

0

κ ({ω ∈ Ω | f (ω) ≥ z}) dz. (31)

For example, assume that f takes on m different values such that A1, ..., Am is the unique

partition of Ω with f (ω1) > ... > f (ωm) for ωi ∈ Ai. Then the Choquet expectation (31)
becomes

E [f, κ] =
m∑
i=1

f (ωi) · [κ (A1 ∪ ... ∪ Ai)− κ (A1 ∪ ... ∪ Ai−1)] .

This paper focuses on non-additive probability measures that are defined as neo-

additive capacities in the sense of Chateauneuf et al. (2007). Recall that the set of null

events, denoted N , collects all events that the decision maker deems impossible.

Definition 4 Fix some set of null-events N ⊂ F for the measurable space (Ω,F). The

neo-additive capacity, ν, is defined, for some δ, λ ∈ [0, 1] by

ν (A) = δ · νλ (A) + (1− δ) · µ (A) (32)

for all A ∈ F such that µ is some additive probability measure satisfying

µ (A) =

{
0 if A ∈ N
1 if Ω\A ∈ N
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and the non-additive probability measure νλ is defined as follows

νλ (A) =


0 iff A ∈ N
λ else

1 iff Ω\A ∈ N .

In this paper, we are exclusively concerned with the empty set as the only null event,

i.e., N = {∅}. In this case, the neo-additive capacity ν in (32) simplifies to

ν (A) = δ · λ+ (1− δ) · µ (A)

for all A 6= ∅,Ω. The following observation extends a result (Lemma 3.1) of Chateauneuf
et al. (2007) for finite random variables to the more general case of random variables

with a bounded range (see Zimper 2012 for a formal proof).

Observation 11 Let f : Ω → R be an F-measurable function with bounded range. The
Choquet expected value (31) of f with respect to a neo-additive capacity (32) is then given

by

E [f, ν] = δ (λ sup f + (1− λ) inf f) + (1− δ)E [f, µ] . (33)

According to Observation 11, the Choquet expected value of a random variable f

with respect to a neo-additive capacity is a convex combination of the expected value of

f with respect to some additive probability measure µ and an ambiguity part. If there is

no ambiguity, i.e., δ = 0, then the Choquet expected value (33) reduces to the standard

expected value of a random variable with respect to an additive probability measure.

In case there is some ambiguity, however, the second parameter λ measures how much

weight the decision maker puts on the least upper bound of the range of f. Conversely,

(1− λ) is the weight he puts on the greatest lower bound.

A.1.2 The Generalized Bayesian Update Rule

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg type

which show that real-life decision-makers violate Savage’s sure thing principle Savage

(1954). Abandoning of the sure thing principle has two important implications for con-

ditional CEU preferences. First, in contrast to Bayesian updating of additive probability

measures, there exist several perceivable Bayesian update rules for non-additive proba-

bility measures (Gilboa and Schmeidler 1993; Pires 2002; Eichberger, Grant, and Kelsey

2007; Siniscalchi 2011). Second, if CEU preferences are updated in accordance with an

updating rule that universally satisfies the principle of consequentialism, then these CEU

preferences violate the principle of dynamic consistency (in a universal sense) whenever

they do not reduce to EU preferences (cf. Zimper 2012 and references therein).
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In the present paper we assume that the agents form conditional capacities in accor-

dance with the Generalized Bayesian update rule such that, for all non-null A,B ∈ F ,

κ (A | B) =
κ (A ∩B)

κ (A ∩B) + 1− κ (A ∪ ¬B)
. (34)

An application of (34) to a neo-additive capacity ν gives rise to the following observation.

Observation 12 If the Generalized Bayesian update rule (34) is applied to a neo-additive
capacity (32), we obtain, for all non-null A,B ∈ F ,

ν (A | B) = δB · λ+ (1− δB) · µ (A | B)

such that

δB =
δ

δ + (1− δ) · µ (B)
.

A.2 Bayesian Learning of Ambiguous Survival Beliefs

This appendix briefly recalls the learning model of ambiguous survival beliefs as intro-

duced in Ludwig and Zimper (2013). We consider an h-old agent, with 0 ≤ h ≤ k, who

observes the random sample information Ĩn(h) which counts how many individuals out of

a sample of size n (h) have survived from age k to t. By assumption, these individuals

have the same i.i.d. objective survival probability as the agent.

The Benchmark Case of Additive Survival Beliefs

At first, consider a standard Bayesian decision maker whose additive estimator for the

chance of surviving from k to t conditional on Ĩn(h) is defined as the conditional expected

value

E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
where the random variable θ̃ stands for the agent’s survival chance with support on (0, 1).

By the i.i.d. assumption of individual survivals, Ĩn(h) is, conditional on the true survival

probability θ̃ = θ, binomially distributed with probabilities

µ
(
Ĩn(h) = j | θ

)
=

(
n (h)

j

)
θj (1− θ)n−j for j ∈ {0, ..., n (h)} .

We further assume that the agent’s prior over θ̃ is given as a Beta distribution with

parameters α, β > 0, implying E
[
θ̃, µ

(
θ̃
)]

= α
α+β

. That is, we assume that

µ
(
θ̃ = θ

)
= Kα,βθ

α−1 (1− θ)β−1
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where Kα,β = Γ(α+β)
Γ(α)Γ(β)

is a normalizing constant.24

By Bayes’rule we obtain the following conditional distribution of θ̃

µ
(
θ̃ = θ | Ĩn(h) = j

)
=

µ
(
Ĩn(h) = j | θ

)
µ (θ)∫

(0,1)
µ
(
Ĩn(h) = j | θ

)
µ (θ) dθ

= Kα+j−1
α+j,β+n(h)−kθ

α+j−1 (1− θ)β+n(h)−j−1 for θ ∈ (0, 1)

Note that µ
(
θ̃ | Ĩn(h) = j

)
is itself a Beta distribution with parameters α+j, β+n (h)−j.

The agent’s subjective survival belief conditional on information Ĩn(h) = j is thus given

as

E
[
θ̃, µ

(
θ̃ | j

)]
=

α + j

α + β + n (h)

=

(
α + β

α + β + n (h)

)
E
[
θ̃, µ

(
θ̃
)]

+

(
n (h)

α + β + n (h)

)
j

n (h)
,

for j ∈ {0, ..., n (h)} .

That is, the posterior estimator E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
is a weighted average of her prior

survival probability E
[
θ̃, µ

(
θ̃
)]
, not including any sample information, and the observed

sample mean j
n(h)
.

Ambiguous Survival Beliefs in a parsimonious model

Turn now to a Choquet decision maker with neo-additive capacity

ν
(
θ̃
)

= δ · λ+ (1− δ) · µ
(
θ̃
)

such that the conditional neo-additive capacity ν
(
θ̃ | Ĩn(h)

)
results from an application of

the Generalized Bayesian update rule. Instead of the additive estimatorE
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
we now suppose that the agent’s estimator for her survival chance is given as the condi-

tional Choquet expected value

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
=δĨn(h)

(
λ sup θ̃ + (1− λ) inf θ̃

)
+
(

1− δĨn(h)
)
E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
.

For a Beta distribution µ
(
θ̃
)
, Ludwig and Zimper (2013) prove the following result:

24The gamma function is defined as Γ (y) =
∞∫
0

xy−1e−xdx for y > 0.
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Observation 13 The Choquet decision maker’s ambiguous survival belief is given as

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
= δĨn(h) · λ+

(
1− δĨn(h)

)
· E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
, (35)

with

δĨn(h) =
δ

δ + (1− δ) · µ
(
Ĩn(h)

)
where the unconditional distribution of Ĩn(h) is given by

µ
(
Ĩn(h) = j

)
=

(
n (h)

j

)
(α + j − 1) · ... · α · (β + n (h)− j − 1) · ... · β

(α + β + n (h)− 1) · ... · (α + β)
, (36)

for j ∈ {0, ..., n (h)} .

Finally, to derive from (35) the parsimonious characterization of ambiguous survival

beliefs in Observation 1, we employ several simplifying assumptions:

Assumption 2 The additive part E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
is, for any information Ĩn(h), given

as the objective probability, denoted ψk,t, to survive from age k to t.

Assumption 3 The agent’s additive prior over the parameter space is given as a uniform
distribution, i.e., a Beta distribution with parameters α = β = 1, implying for (36)

that µ
(
Ĩn(h) = j

)
= 1

1+n(h)
.

Assumption 4 The age-dependent sample-size function is given as

n (h) =
√
h for h ≤ T

which implies, by Assumption 3, that

µ
(
Ĩn(h) = j

)
=

1

1 + n (h)
, for j ∈ {0, ..., n (h)} .

Assumption 2 is an extreme version of the rational Bayesian learning part of the

model developed in Appendix A.2. It specifies a fully informed prior and hence simplifies

upon Ludwig and Zimper (2013).25 By this assumption any difference between subjective

survival beliefs and objective survival probabilities are exclusively driven by the ambi-

guity part of the agent’s belief. Assumption 3 allows for an explicit expression of the

unconditional probability µ
(
Ĩn(h)

)
which only depends on age h, i.e., it is identical for

every observed sample information Ĩn(h) if h is fixed. By assumption 4, the agent observes

a strictly increasing sample while growing older.

25Ludwig and Zimper (2013) are more explicit about the rational Bayesian learning part of the model
and assume a proportional bias in prior additive beliefs.
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Given this assumption Ludwig and Zimper (2013) derive the subjective survival belief

given in equation (1).

A.3 CEU Preferences in the Life-Cycle Setting

It remains to translate the notion of ambiguous survival beliefs, cf. equation (1) into the

construction of the relevant conditional neo-additive probability space (Ω,F , ν (· | ·)). To
this purpose define the finite state space Ω = {0, 1, ..., T} and let the σ-algebra F be the
powerset of Ω. We interpret Dt = {t} , t ∈ Ω as the event in F that the agent dies at the
end of period t. Define age h of the agent as the following event in F : h = Dh ∪ ...∪DT .

Further, formally define Zk,t = Dt ∪ ... ∪ DT as the event in F that the agent survives

from period k to the beginning of period t.

The relevant information filtration of our model is simply given by F1 ⊂ ... ⊂
FT = F such that, for each age h, Fh is generated by the following partition of Ω:

{{0} , .., {h− 1} , {h, ..., T}}. That is, if the agent turns age h she (trivially) observes
that she has not died in any previous period but will die at the end of either period h or

h+ 1 or ... or T .

Finally, we assume that ν (· | ·) satisfies (i) ν (∅ | ·) = 0, ν (Ω | ·) = 1, (ii) ν (· | ·) is
a conditional neo-additive capacity in the sense of Chateauneuf et al. (2007) which is

updated in accordance with the Generalized Bayesian update rule where (iii) for all h,

Zk,t 6= ∅ and Zk,t 6= Ω with h ≤ k < T and k < t ≤ T , ν (Zk,t | h) ≡ νhk,t with ν
h
k,t given

by (1).

We assume additive separability and discounting at rate β. For any s ∈ {h, h+ 1, ..., T}
and survival until period s, the agent’s von Neumann Morgenstern utility (vNM) from a

consumption plan c is then defined as

U (c (s)) = u(ch) +
s∑

t=h+1

βt−hEt [u (ct)] .

Denote by νh ≡ ν (· | h) the agent’s age-conditional neo-additive capacity. In order

to formalize utility maximization over life-time consumption with respect to neo-additive

probability measures, we henceforth describe an h-old agent as a CEU decision maker

who maximizes her Choquet expected utility from life-time consumption with respect to

νh. By Observation 11 in Appendix A.1, this agent’s CEU from consumption plan c with

respect to νh is given as

E
[
U (c) , νh

]
= δh

[
λ sup
s∈{h,h+1,...}

U (c (s)) + (1− λ) inf
s∈{h,h+1,...}

U (c (s))

]
(37)

+ (1− δh) ·
T∑
s=h

[U (c (s)) , ψ (Ds)]
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where we have for any c that

sup
s∈{h,h+1,...}

U (c (s)) = u(ch) +
T∑

t=h+1

βt−hEt [u (ct)] ,

inf
s∈{h,h+1,...}

U (c (s)) = u(ch).

Observe that we require

T∑
t=h+1

βt−hEh [u (ct)] > 0, ∀ h = 0, . . . (38)

The objective probability to survive until period t is given as

ψh,t =

t−1∏
s=h

ψs,s+1

implying

ψh,t =
T∑

s=t+1

ψh(Ds)

where Dt denotes the event that the agent dies at the end of period t. Consequently, (37)
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can be equivalently written in terms of survival beliefs as

E
[
U (c) , νh

]
= δh

(
λ

(
u(ch) +

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]
)

+ (1− λ)u(ch)

)

+ (1− δh)
(
u(ch) +

T∑
t=h+1

ψh(Dt)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]
)

= u(ch) + δhλ
T∑

t=h+1

βt−hE [u (ct) , π (ηt|ηh)]

+ (1− δh)
T∑

t=h+1

ψh(Dt)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]

= u(ch) + δhλ
T∑

t=h+1

βt−hE [u (ct) , π (ηt|ηh)]

+ (1− δh)
T∑

t=h+1

ψh,t · βt−hE [u (ct) , π (ηt|ηh)]

= u(ch) +
T∑

t=h+1

(
δhλ+ (1− δh)ψh,t

)
βt−hE [u (ct) , π (ηt|ηh)]

= u(ch) +
T∑

t=h+1

νhh,tβ
t−hE [u (ct) , π (ηt|ηh)] .

which gives equation (8) in Observation 2.

B Appendix: Formal Proofs

B.1 Proof of Naive CEU Euler-equation

Maximization Problem

V h
t (xt, ηt) = max

ct,xt+1

{
u (ct) + β

νhh,t+1

νhh,t
Et
[
V h
t+1

(
xt+1, ηt+1

)]}
(39)

s.t.

xt+1 = (xt − ct) (1 + r) + yt+1 ≥ 0, (40)

Taking the first order condition with respect to the choice variable ct gives

du

dct
− β (1 + r)

νhh,t+1

νhh,t

∑
ηt+1

π
(
ηt+1 | ηt

) ∂V h
t+1

∂xt+1

= 0 (41)
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Taking the partial derivative of the value function w.r.t. xt gives:

∂V h
t

∂xt
= β (1 + r)

νhh,t+1

νhh,t

∑
ηt+1

π
(
ηt+1 | ηt

) ∂V h
t+1

∂xt+1

, (42)

where (42) follows from the enveloppe theorem ensuring that dct/dxt = 0 in optimum.

From (41) and (42) it follows that for every period t

du

dct
=
∂V h

t

∂xt

Thus, combining equations leads to

du

dct
− β(1 + r)

νhh,t+1

νhh,t

∑
ηt+1

π
(
ηt+1 | ηt

) du

dct+1

= 0

du

dct
= β(1 + r)

νhh,t+1

νhh,t
Et

[
du

dct+1

]
(43)

.�

B.2 Proof of naive HD agent

Recall the discount function given by

ϕht =

δβ, for t = h

β, for t > h
(44)

Maximization Problem

V h
t (xt, ηt) = max

ct,xt+1

u (ct) + ϕht ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

)
V h
t+1

(
xt+1, ηt+1

) (45)

s.t.

xt+1 = (xt − ct) (1 + r) + yt+1 ≥ 0, (46)

Taking the first order condition with respect to the choice variable ct gives

du

dct
− ϕht (1 + r)ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

) ∂V h
t+1

∂xt+1

= 0 (47)
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Taking the partial derivative of the value function w.r.t. xt gives:

∂V h
t

∂xt
= ϕht (1 + r)ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

) ∂V h
t+1

∂xt+1

, (48)

where (48) follows from the enveloppe theorem ensuring that dct/dxt = 0.

From (47) and (48) it follows that for every period t

du

dct
=
∂V h

t

∂xt

Thus, combining equations leads to

uc(c
h
h) ≥ β (1 + r)ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

)
uc(c

h
t+1) ·

γ, for t = h

1, for t > h

.�

B.3 Proof of sophisticated CEU

The first order condition of self h+ 1 derived analoguous to equation (41) is given by

du

dch+1

= β (1 + r) νh+1
h+1,h+2

∑
ηh+2

π
(
ηh+2 | ηh+1

) ∂V h+1
h+2

∂xh+2

(49)

The derivative of the value function for h+ 2 is

∂V h+1
h+2

∂xh+2

=
du

dch+2

· ∂ch+2

∂xh+2

+ β (1 + r)
νh+1
h+1,h+3

νh+1
h+1,h+2

(
1− ∂ch+2

∂xh+2

)
·
∑
ηh+3

π
(
ηh+3 | ηh+2

) ∂V h+1
h+3

∂xh+3

(50)

Note, that the enveloppe theorem does not hold so that du
dch+2

· ∂ch+2
∂xh+2

6= 0.
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Rearrange (49) such that

du

dch+1

= β (1 + r) νh+1
h+1,h+2

∑
ηh+2

π
(
ηh+2 | ηh+1

) ∂V h+1
h+2

∂xh+2

+β (1 + r) νhh+1,h+2

∑
ηh+2

π
(
ηh+2 | ηh+1

) ∂V h
h+2

∂xh+2

−β (1 + r) νhh+1,h+2

∑
ηh+2

π
(
ηh+2 | ηh+1

) ∂V h
h+2

∂xh+2

β (1 + r)
∑
ηh+2

π
(
ηh+2 | ηh+1

) ∂V h
h+2

∂xh+2

=
1

νh+1
h+1,h+2

∂u

∂ch+1

+β (1 + r)
∑
ηh+2

π
(
ηh+2 | ηh+1

) [∂V h
h+2

∂xh+2

−
∂V h+1

h+2

∂xh+2

]

Now plug derivative of the value function for self h (cf. eq. (15) in the main text) to get

∂V h
h+1

∂xh+1

=
du

dch+1

· ∂ch+1

∂xh+1

+ β (1 + r)
νhh,h+2

νhh,h+1

(
1− ∂ch+1

∂xh+1

)∑
ηh+2

π
(
ηh+2 | ηh+1

) ∂V h
h+2

∂xh+2

=
du

dch+1

· ∂ch+1

∂xh+1

+
νhh,h+2

νhh,h+1

(
1− ∂ch+1

∂xh+1

)(
1

νh+1
h+1,h+2

du

dch+1

+β (1 + r)
∑
ηh+2

π
(
ηh+2 | ηh+1

) [∂V h
h+2

∂xh+2

−
∂V h+1

h+2

∂xh+2

]

∂V h
h+1

∂xh+1

=

[
∂ch+1

∂xh+1

+
νhh,h+2

νhh,h+1ν
h+1
h+1,h+2

(
1− ∂ch+1

∂xh+1

)]
· du

dch+1

+β (1 + r)
νhh,h+2

νhh,h+1

(
1− ∂ch+1

∂xh+1

)
Eh+1

[
∂V h

h+2

∂xh+2

−
∂V h+1

h+2

∂xh+2

]

Plug this into (41) from h to h+ 1 yields

du

dch
= β (1 + r) νhh,h+1

∑
ηh+1

π
(
ηh+1 | ηh

){[ ∂ch+1

∂xh+1

+
νhh,h+2

νhh,h+1ν
h+1
h+1,h+2

(
1− ∂ch+1

∂xh+1

)]
· du

dch+1

}

+ [β (1 + r)]2 νhh,h+2

∑
ηh+1

π
(
ηh+1 | ηh

)
(

1− ∂ch+1

∂xh+1

)∑
ηh+2

π
(
ηh+2 | ηh+1

) [∂V h
h+2

∂xh+2

−
∂V h+1

h+2

∂xh+2

]
�
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B.4 Proof of Sophisticated HD

The first order conditions and the derivative of the value function for self h is given by

uc(c
h
h) = βγ (1 + r)ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

) ∂V h
t+1

∂xt+1

∂V h
h+1

∂xh+1

=
du

dch+1

· ∂ch+1

∂xh+1

+ β (1 + r)ψt+1,t+2

(
1− ∂ch+1

∂xh+1

)∑
ηt+2

π
(
ηt+2|ηt+1

) [∂V h
h+2

∂xh+2

]

The sophisticated HD agent knows that futures selves will also have a strong present

bias and face the same problem (while the naive agent thinks that future selves will

behave rational). Thus self h knows that selve h+ 1 will have the same FOC given by

du

dch+1

= βγ (1 + r)ψt+1,t+2

∑
ηh+2

π
(
ηt+2|ηt+1

) ∂V h+1
h+2

∂xh+2

(51)

Now observe that the derivative of the value function for future periods are identical

because both discount any future period after the successive period with β, i.e. they

discount future periods identical, thus for self h and h+ 1 we have:

∂V h
h+2

∂xh+2

=
du

dch+2

· ∂ch+2

∂xh+2

+ β (1 + r)ψt+2,t+3

(
1− ∂ch+2

∂xh+2

)
·
∑
ηh+3

π
(
ηt+3|ηt+2

) ∂V h
h+3

∂xh+3

∂V h+1
h+2

∂xh+2

=
du

dch+2

· ∂ch+2

∂xh+2

+ β (1 + r)ψt+2,t+3

(
1− ∂ch+2

∂xh+2

)
·
∑
ηh+3

π
(
ηt+3|ηt+2

) ∂V h+1
h+3

∂xh+3

Thus we get using
∂V hh+2
∂xh+2

=
∂V h+1h+2

∂xh+2
:

uc(c
h
h) = βγ (1 + r)ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

) [ du

dch+1

· ∂ch+1

∂xh+1

+β (1 + r)ψt+1,t+2

(
1− ∂ch+1

∂xh+1

)∑
ηt+2

π
(
ηt+2|ηt+1

) [∂V h
h+2

∂xh+2

]
= βγ (1 + r)ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

) [ du

dch+1

· ∂ch+1

∂xh+1

+
β (1 + r)ψt+1,t+2

(
1− ∂ch+1

∂xh+1

)∑
ηt+2 π (ηt+2|ηt+1) du

dch+1

βγ (1 + r)ψt+1,t+2

∑
ηh+2 π (ηt+2|ηt+1)


= βγ (1 + r)ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

) [ ∂ch+1

∂xh+1

+
1

γ

(
1− ∂ch+1

∂xh+1

)]
du

dch+1
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uc(c
h
h) = β (1 + r)ψt,t+1

∑
ηt+1

π
(
ηt+1|ηt

) [
γ
∂ch+1

∂xh+1

+

(
1− ∂ch+1

∂xh+1

)]
du

dch+1

�

B.5 Proof of Proposition 2

Naive HD agent:

1. In period 2 we have mn
2 = 1.

2. In period 1 we have that the naive agent’s first-order condition writes as

c−θ1 = βγψ1Rc
−θ
2

= βγψ1R(mn
2 (w1 − c1)R)−θ

= βγψ1R
1−θ(w1 − c1)−θ

⇔ c1 = bnψ
− 1
θ

1 (w1 − c1))

⇔ c1 = mn
1w1 =

ψ
− 1
θ

1 bn

1 + ψ
− 1
θ

1 bn
=

1

1 + 1

ψ
− 1
θ

1 bn

w1

where

bn ≡ γ−
1
θ

(
βR1−θ)− 1

θ = γ−
1
θ b > b

because γ ∈ [0, 1]. Consequently mn
1 > m1.

3. In period 0 we have that the naive agent’s first-order condition writes as

c−θ0 = βγψ0Rc
−θ
1

= βγψ0R(m1(w0 − c0)R)−θ

whereby the second line reflects that the naive agent assumes that period 1 agent

is going to have marginal propensity m1 (and not mn
1 ).

Working on this equation we get

c−θ0 = βγψ0R(m1(w0 − c0)R)−θ

= βγR1−θψ0m
−θ
1 (w0 − c0)−θ

⇔ c1 = bnψ
− 1
θ

0 m1(w0 − c0)

⇔ c0 = mn
0w1 =

bnψ
− 1
θ

0 m1

1 + bnψ
− 1
θ

0 m1

w1

60



Analyzing mn
0 further we get

mn
0 =

bnψ
− 1
θ

0 m1

1 + bnψ
− 1
θ

0 m1

=
1

1 + 1

bnψ
− 1
θ

0 m1

For the rational expectations agent we have the corresponding expression m0 =
1

1+ 1

bψ
− 1
θ

0 m1

. Because bn > b we have that mn
0 > m0, just as expected.

4. Period 0: Plan for period 1 gives first-order condition:

c−θ1 = βψ1Rc
−θ
2

because the naive HD agent in peiord 0 thinks that self 1 will be acting rational

(using the discount factor β). Thus, the solution planned for period one coincides

with the RE solution:

cn1 = m1w1 where m1 =
1

1 + 1

ψ
− 1
θ

1 b

w1 =

B.6 Proof of Proposition 3

Naive CEU agent:

1. First-order condition in period 1 is:

uc(c1) = βRν1
1,2uc(c2)

which gives

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1

b(ν11,2)
− 1
θ

.

2. Period 0: Plan for period 1 gives the first-order condition:

uc(c1) = βR
ν0

0,2

ν0
0,1

uc(c2)

which yields

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1

b

(
ν00,2

ν00,1

)− 1
θ
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3. First-order condition in period 0 is:

uc(c0) = βRν0
0,1uc(c1)

yielding

c0 = m0,n
0 w0 =

1

1 + 1

b(ν00,1)−
1
θm0,n

1

w0

B.7 Proof of Observation 9

We have already established above that

m0,n
1 < m1,

i.e., that the CEU household plans to save more in the second period than the RE

household. In order to get that

m0,n
0 > m0,

i.e., that the CEU household consumes more than the RE household in period 1 we need

that

1

1 + 1

b(ν00,1)−
1
θm0,n

1

>
1

1 + 1

b(ψ00,1)−
1
θm1

⇔ (ν0
0,1)−

1
θm0,n

1 > (ψ0
0,1)−

1
θm1

⇔
ν0

0,1

ψ0,1

<

(
m0,n

1

m1

)θ
which is suficient pessimism, cf. Definition 3.

B.8 Proof of Proposition 4

Sophisticated HD agent:

1. In period 2 we have ms
2 = 1, thus c2 = w2

2. In period 1 the sophisticated agent’s first-order condition is the same than for the

naive agent and is given by

c−θ1 = βγψ1Rc
−θ
2

Thus

c1 = mn
1w1 =

1

1 + 1

ψ
− 1
θ

1 bn

w1
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where

bn ≡ γ−
1
θ

(
βR1−θ)− 1

θ = γ−
1
θ b > b

because γ ∈ [0, 1]. Consequently mn
1 > m1.

3. In period 0 we have as a maximization problem for the sophisticated HD agent:

L0 = u(c0) + βγψ0

[
u(c1 (w1)) +

1

γ
βψ1u(c2)

]
+ λ0 [w1 − (w0 − c0)R] + λ1 [w2 − (w1 − c1)R] + λ2 [w2 − c2]

∂L

∂c0

=
du

dc0

+ λ0R = 0

∂L

∂c1

= βγψ0

du

dc1

+ λ1R = 0

∂L

∂c2

= β2ψ0ψ1

du

dc2

− λ2 = 0

∂L

∂w1

= βγψ0

du

dc1

dc1

dw1

+ λ0 + λ1

(
1− dc1

dw1

)
R = 0

∂L

∂w2

= β2ψ0ψ1

du

dc2

dc2

dw2

+ λ1 + λ2

(
1− dc2

dw2

)
R = β2ψ0ψ1

du

dc2

+ λ1

Thus

βγψ0

du

dc1

dc1

dw1

+ λ0 + λ1

(
1− dc1

dw1

)
R = 0

βγψ0

du

dc1

dc1

dw1

− du

dc0

1

R
− βγψ0

du

dc1

1

R

(
1− dc1

dw1

)
R = 0

βRγψ0

(
dc1

dw1

−
(

1− dc1

dw1

))
du

dc1

=
du

dc0

Assuming a linear policy function c1 = mn
1w1 and using w2 = (w1 − c1)R we get

dc1
dw1

= mn
1 and thus:

c−θ0 = βγψ0R

(
mn

1 +
1

γ
(1−mn

1 )

)
c−θ1

From the FOC we get the policy function which is indeed linear:

63



c−θ0 = βγψ0R

(
mn

1 +
1

γ
(1−mn

1 )

)
c−θ1

c−θ0 = βγψ0R

(
mn

1 +
1

γ
(1−mn

1 )

)
(m1,n

1 (w0 − c0)R)−θ

c−θ0 = βγψ0R
1−θ
(
mn

1 +
1

γ
(1−mn

1 )

)
(m1,n

1 (w0 − c0))−θ

c0 =
(
βR1−θ)− 1

θ (ψ0)−
1
θ (γmn

1 + (1−mn
1 ))−

1
θ (w0 − c0)m1,n

1

c0 = b · (γψ0)−
1
θ

(
mn

1 +
1

γ
(1−mn

1 )

)
︸ ︷︷ ︸

=d≥1 because γ∈[0,1]

− 1
θ

(w0 − c0)m1,n
1

⇔ c0 = ms
0w0 where ms

0 =
1

1 + 1

b[d(mn1 )·γψ0]
− 1
θm1,n

1

B.9 Proof of Proposition 5

FOC of the sophisticated agent:

uc(c0) = βRν0
0,1

(
m1,n

1 +
ν0

0,2

ν0
0,1ν

2
1,2

(1−m1,n
1 )

)
uc(c1)

⇔ c0 = b(ν0
0,1)−

1
θ

(
m1,n

1 +
ν0

0,2

ν0
0,1ν

1
1,2

(1−m1,n
1 )

)
︸ ︷︷ ︸

≡d>1 for moderate optimism (cf. Definition 2)

− 1
θ

(w0 − c0)m1,n
1

⇔ c0 =
1

1 + 1

b(d·ν00,1)−
1
θm1,n

1

w0

B.10 Proof of Observation 10

For the HD agent we get that

64



msh
0 < m0,nh

0

1

1 + 1

b[d(m1,nh
1 )·γψ0]

− 1
θm1,nh

1

<
1

1 + 1

bnψ
− 1
θ

0 m1

b
[
d
(
m1,nh

1

)
· γψ0

]− 1
θ
m1,nh

1 < bnψ
− 1
θ

0 m1

b
[
d
(
m1,nh

1

)
· γψ0

]− 1
θ
m1,nh

1 < γ−
1
θ bψ

− 1
θ

0 m1[
d
(
m1,nh

1

)]− 1
θ m

1,nh
1

m1

< 1(
m1,nh

1

m1

)θ

< d
(
m1,nh

1

)
We know that m1,nh

1 > m0,nh
1 = m1, cf. 8. For the CEU agent we have

m0,s
0 < m0,n

0

1

1 + 1

b[d(m1,n
1 )·ν00,1]

− 1
θm1,n

1

<
1

1 + 1

b(ν00,1)−
1
θm0,n

1

1

b(ν0
0,1)−

1
θm0,n

1

<
1

b
[
d
(
m1,n

1

)
· ν0

0,1

]− 1
θ m1,n

1(
m1,n

1

m0,n
1

)θ
< d

(
m1,n

1

)
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