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Abstract 

This paper makes use of Hierarchical Bayes Models to model and estimate spatial health effects. We focus 

on Germany, combining rich individual-level household panel data with administrative county–level 

information to estimate spatial county-level health dependencies. As dependent variable, we use the 

generic, continuous, and quasi-objective SF12 health measure. Our findings reveal strong and highly 

significant spatial dependencies and clusters. The strong and systematic county-level impact is comparable 

to an age effect on health of up to 31 years. Even 20 years after the peaceful German reunification, we 

detect a clear spatial East-West health pattern that equals an age impact on health of up to 9 life years. 
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1 Introduction 

It is long recognized by applied empirical researchers that regional and neighborhood effects may play 

a crucial role in the analysis of a wide array of relevant outcomes. For example, in the economics literature, 

Burchardi and Hassan (2011) exploit the natural experiment of the German reunification to demonstrate 

that social ties have a long-lasting impact on individual economic prosperity. Studies in other fields, e.g. 

sociology, analyze the relevance of relative deprivation theories by looking at a respondents’ relative 

income position in the neighborhood (cf. Knies et al., 2008; Durlauf, 2003).  

When it comes to regional or neighborhood impacts on individuals’ health, the literature is 

fragmented, both within and across fields. A relatively large set of studies in the epidemiological and 

public health literature focuses on geographical variation in health or health care (Riva et al., 2007; 

Vogtländer et al., 2010; Sundmacher et al., 2012). This rich strand of the literature basically emerged from 

the seminal “Small area variations in health care delivery” article by Wennberg und Gittelsohn (1973). The 

Small Area Variation Literature is extremely influential, particularly in the US. The DARTMOUTH ATLAS 

OF HEALTH CARE provides detailed descriptive information on how the health care infrastructure, as well 

as health care utilization, vary on a disaggregated geographical level, e.g., on the US county level 

(Dartmouth Atlas of Health Care, 2012). The high policy relevance comes from the fact that utilization 

and spending measures are not systematically correlated with better health outcomes. Understanding the 

driving forces of regional differences might, therefore, offer opportunities to limit health care spending 

while improving health outcomes (Wennberg et al., 2002). 

A new subfield in the health economics literature is emerging. This subfield acknowledges the 

importance of regional factors in the analysis of health and health care. More precisely, this subfield 

econometrically models spatial interdependencies explicitly. In their synthesis of multilevel studies, Riva et 

al. (2007) point out that the vast majority of studies account only for within-area correlation and disregard 

between-area dependency. Not taking spatial patterns in the empirical models into account means that one 

implicitly assumes that the geographical units are statistically independent. This might be a strong and 

misleading assumption, since administrative or statistical boundaries might not reflect appropriately 

underlying ecological, social, and economic processes. Spillover effects are likely to occur.  

Within the field of health economics, the statistical and econometric spatial modeling approaches, as 

well as the field of inquiry, may differ. For example, Baltagi and Moscone (2010) and Moscone and Tosetti 

(2010) analyze the relationship between income and health expenditures using the Common Correlated 

Effects (CCE) Approach and impose a spatial autoregressive (SAR) structure on the error terms (cf. 

Pesaran, 2006).  Moscone et al. (2007) use a similar approach, but analyze cross-municipality variation in 

mental health expenditures. Felder and Tauchmann (2012) combine a nonparametric efficiency analysis 

with parametric regressions and model spatial dependence in healthcare provision at the county level in 

Germany.  
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This paper models and estimates spatial patterns of health in Germany. In terms of our empirical 

modeling techniques, we apply Hierarchical Bayes Models and advance the literature by combining three 

methodological approaches: First, hierarchical models are used to account for intragroup correlation and 

to estimate the effect of predictors from different hierarchical levels on individual level endpoints (cf. 

Hox, 2002; Bryk and Raudenbush, 1992). We use a three-stage hierarchical model that also accounts for 

the temporal dimension of the data. Second, we employ methods for spatial data analysis to analyze spatial 

effects, such as MORAN’S I or Conditional Autoregressive (CAR) models (Arbia, 2006; Cressie, 1993). We 

are aware of very few studies that use such methods in a health-related context (Costa-Font and Pons-

Novell, 2007; Ocaña-Ricola and Mayoral-Cortés, 2010). In addition, spatial models are almost exclusively 

used with aggregated time-series data. Moreover, most studies investigate regional differences in health 

care utilization and health care spending, but not in health outcomes (Fuchs et al., 2004). We are not 

aware of any study in the field of health economics that models individual-level health using spatial 

econometrics and panel data.3 Third, we carry out our analysis using Bayesian methods (Banerjee et al., 

2004; Cressie and Wikle, 2011).  

In terms of content, we focus on a continuous and generic health measure, the SF12. The SF12 was 

developed by public health scientists and has advantages over the conventional categorical subjective 

health measures (Frick and Ziebarth, 2012). It can be interpreted as a quasi-objective single measure of an 

individual’s health status (RAND, 1995). This paper intentionally focuses on a single continuous measure 

of individual quasi-objective health rather than measures of the health care infrastructure, which do not 

vary at the individual level. By taking into account a rich set of socio-demographic individual-level 

information, we net out important impact factors on health such as age, gender, employment, and marital 

status. Importantly, we incorporate health behavior measures such as smoking, alcohol consumption, and 

BMI. In addition, we net out individual variation in health that can be explained by differences in health 

care utilization. Moreover, we incorporate ten county-level indicators that vary across the 401 German 

counties, such as the unemployment rate and population density. Hence, in our three level hierarchical 

models, we strive to unravel the conditional spatial structure of population health after having corrected 

for the rich set of individual and county-level factors just listed.  

Our results show that spatial interdependences and health clusters are of great importance. The 

systematic county-level impact on individual health is the most important driving force in our variable list 

above. County of residence may have an impact on individual health that equals the impact of up to 31 life 

years. Particularly stunning is the clear East-West health pattern that seems to be persistent even 20 years 

after the fall of the Berlin Wall. It reflects the four decade long impact of Communism versus Capitalism 

on health and results in an age impact of up to 9 life years. 

                                                             
3 Notable exceptions in the fields of  Biology and Sociology include Mueller et al. (2001), who examine spatial 
patterns of  child growth in Papua New Guinea, and Browning et al. (2003), who analyze variation in health status 
across Chicago neighborhoods during the 1990s. 
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The rest of the paper is organized as follows: In Section 2 we provide a short description of our 

underlying dataset, the German Socio-Economic Panel Study (SOEP). Sections 3.1 and 3.2 explain the 

econometric models and review the basics of Bayesian inference. Section 4 presents and discusses the 

results. Section 5 concludes. 

2 Data 

2.1 Dataset 

For the empirical analysis we make use of individual health data and further socioeconomic 

characteristics provided by the German Socio-Economic Panel Study (SOEP). The SOEP is a 

representative panel study of private households. Starting in 1984, SOEP interviews subjects annually, and 

expanded to include residents in former East German lands, starting in 1992. All respondents answer one 

main individual questionnaire covering about 150 questions covering a range of topics, such as the labor 

market and family situation, attitudes and perceptions, as well as health. Additionally, a household 

questionnaire is completed by the head of the household. Since 2000 the survey has reached more than 

20,000 individuals across 10,000 households. For further details, see Wagner, Frick and Schupp (2007).  

The SOEP provides a variety of health measures. Both the standard 5-categorical Self-Assessed Health 

(SAH) measure and the 11-categorical health satisfaction measure are included every survey wave. In 

addition, since 2002, in every second year, the continuous quasi-objective SF12 measure and the objective 

grip strength measure are included in the survey. Furthermore, information on health-related behavior 

(e.g. alcohol or tobacco consumption) is available since wave W in 2006. Therefore, we restrict our 

analysis to the three waves: W (2006), Y (2008), and BA (2010). We use only observations without item-

non-response. In total we obtain 54,683 person-year observations from 23,410 different individuals.  

2.2 Dependent Variable: SF12 

 Our dependent variable is the generic health measure SF12. A specific algorithm generates the 

continuous SF12 measure on the basis of 12 different health-related questions. More precisely, the 

algorithm generates eight subscales and two superordinate dimensions, namely physical (pcs) and mental 

health (mcs). We then average over both components to obtain our dependent variable SF12. In the 

standard SOEP version, the SF12 takes on continuous values between 0 and 100, has mean 50, and a 

standard deviation of 7 (see Table 1).4 

2.3 Individual Covariates 

                                                             
4 A detailed description of the algorithm and an overview over the differences between the original “SF12v2™ 
Health Survey” and the SOEP version can be found in Andersen et al. (2007).  
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By controlling for demographic factors, educational characteristics, labor market participation, health-

related behavior as well as health care utilization, we net out all differences in health as measured by the 

SF12 that can be traced back to these factors. 

The demographic factors are age, age squared, sex, marital status, and the number of children under 

14 in the household. Table 1 shows that average age is 49.3 and that about half of our sample is female. 

The majority of respondents are married and live in the same household as their spouse. On average, 0.36 

children live in a SOEP household. 

In terms of education and labor market participation, we control for whether an individual 

completed a vocational training or holds a university degree, the working status of the respondent, and the 

monthly equivalent household income.5 Less than a quarter holds a university degree, but about 60 

percent completed vocational training. Vocational training is equivalent to a college degree in the US. 

Slightly less than half of our sample works and the average equivalent gross household income per capita 

is €1,800 per month.  

  Concerning health-related behavior, we control for alcohol and tobacco consumption and Body 

Mass Index (BMI). Alcohol consumption is captured by dummy variables. In the SOEP questionnaire, the 

participants are asked to state how often they drink wine and sparkling wine, beer, spirits and mixed 

drinks. If an individual states that they do not drink any alcohol at all, no alcohol consumption is assigned the 

value “1”, otherwise it is “0”. In contrast, if an individual states to drink any kind of alcohol on a regular 

basis, regular alcohol consumption takes on the value “1”, otherwise “0” (Ziebarth and Grabka, 2009). 17 

percent drink alcohol on a regular basis and 13 percent never drink any alcohol. The dummy variable 

Smoking captures whether the respondent consumes tobacco (cigarettes, cigars or pipes). It takes on the 

value “1” for about 30 percent of the respondents in our sample. The BMI is measured as body weight in 

kilogram divided by the squared height in meters. The average BMI lies slightly below 26. 

Health care utilization is measured by the number of hospital stays during the previous calendar year 

and the number of doctor visits in the 12 months prior to the interview.6  

Summary statistics for all variables are given in Table 1. 

[Insert Table 1 about here] 

2.4 Regional Information 

                                                             
5 The monthly equivalent household income uses the OECD-modified scale and assigns households a value of 1 to 
the first adult, 0.5 to each additional adult and 0.3 to each additional child. Further details are provided in OECD 
Project on Income Distribution and Poverty (2009). 
6 It should be noted that the respondents are asked to state the number of  doctor visits during the last three months 
prior to the interview. The answer is then multiplied by four to generate the annual number of  doctor visits. This 
may overestimate the actual annual number because approximately two-thirds of  all interviews are carried out in the 
first quarter of  a year and there is a clear seasonal pattern in doctor visits. 
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The SOEP provides information on the place of residence at multiple levels, ranging from the federal 

states to specific postal codes (Knies and Spiess, 2007). The SOEP also provides frequency and 

probability weights to ensure representativeness for most federal states. The state-level is probably too 

aggregate to detect any significant regional effects – especially if these are caused by small scale 

phenomena (e.g. structural environmental and economic factors). Therefore in this paper, we focus on 

counties (“Landkreise” and “Kreisfreie Städte”). This offers several advantages: First, they are the smallest 

administrative units in Germany. Furthermore, administrative data exists at the county-level, which can be 

used as independent covariates to explain variation between counties. Lastly, the SOEP contains 

observations from almost all counties. Nevertheless there are some disadvantages. For instance, the data is 

not representative and there are no weights available to account for this. The number of observations per 

county varies between 2 (Sömmerda) and 2,025 (Berlin) with a mean of 136 observations and a standard 

deviation of 148. Thus the findings of this analysis should be interpreted carefully. For some counties the 

number of observations is too low to draw definite conclusions, especially when it comes to the health 

development of the county over time. 

The number of counties, and their respective borders, has evolved since 2006. Therefore, the SOEP 

Group constantly updates county codes. To ensure consistency of the data with the shapefiles provided by 

the FEDERAL AGENCY FOR CARTOGRAPHY AND GEODESY (“BUNDESAMT FÜR KARTOGRAPHIE UND 

GEODÄSIE”), we recoded the county codes to reflect the boundaries as of January 1, 2012. 

As of January 1, 2012, Germany consisted of 402 counties. Our dataset contains observations from 

401 counties with Memmingen, a county in Bavaria, missing. We ignore this county in our analysis and 

remove it from the neighborhood matrix for the spatial models. 

In order to explain systematic county-level differences in health, we incorporate county-level 

information into our analysis. For this purpose, we exploit information provided by the FEDERAL 

INSTITUTE FOR RESEARCH ON BUILDING, URBAN AFFAIRS, AND SPATIAL DEVELOPMENT (2012) 

(“BUNDESINISTITUT FÜR BAU-, STADT- UND RAUMFORSCHUNG”) in their  INKAR (“INDICATORS AND 

MAPS ON SPATIAL DEVELOPMENT”) database.7 As can be inferred from Table 1, we use county-level data 

on the area size, the population density, the proportion of the area used for settlement and transport, and the proportion 

of the area suitable for recreation in order to distinguish urban from rural counties. Note that there is 

significant variation in population density across counties, ranging from 40 to 4,257 inhabitants per square 

kilometer. There is also wide variation in terms of the size of the area that is used for urban purposes, i.e., 

the degree of urbanization. The values for this variable vary from 5 to 76 percent. The size of the area for 

recreational purposes varies between 0.2 and 15 percent.  Obviously, these indicators capture a great deal 

of cross-county heterogeneity that is not captured by individual-level indicators and might affect health. 

For example, in general, population density is highly correlated with the density of health care providers 

                                                             
7 As for the individual level, we recoded the county codes to the status as of  2012. To accommodate our dataset to 
the 2011 county mergers, we calculate the values for the new counties as a weighted average of  the values of  the 
merged counties. The variables are weighted either by population number or by area size. 
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and the health care infrastructure. On the other hand, low urbanization rates or large recreational facilities 

may represent low air pollution and low noise (e.g. Coneus and Spieß, 2011). 

We use average available monthly income per capita and the annual unemployment rate to characterize the 

degree of regional deprivation. The population share of immigrants represents the diversity of the 

community. Again, we observe huge variation across counties for all these indicators. Average per capita 

income varies from €1,146 to €2,544. Between 1 and 25 percent of the population of a county are 

immigrants and unemployment rates vary from 2.5 to 21.30 percent.  The ratio of overnight stays to inhabitants 

in the tourism sector may both indicate that a county is located in a landscape that is beneficial to health, 

e.g. seaside beaches or in the mountains. Alternatively, it may measure the degree of the traffic volume 

(caused by tourism) in the county. The car density may serve as an indicator of air and noise pollution. It 

varies between 316 and 881 cars per 1,000 inhabitants. 

The physician density (measured as inhabitants per physician) represents the health care infrastructure 

of the county. In counties with fewer physicians, residents may experience longer travel and waiting times 

if they want to consult a physician, i.e., a lower degree of access to and utilization of the health care 

infrastructure and, consequently, health. On the other hand, following the conclusions of Wennberg and 

Gittelssohn (1973), physician density might be uncorrelated or negatively correlated with individual health. 

3 Hierarchical Bayes Models and Methods  

3.1 Econometric Models  

The main aim of our analysis is to detect and model spatial patterns in the distribution of regional 

effects on health. With a few notable exceptions (discussed in Section 1), most studies using methods 

from spatial econometrics or spatial statistics rely on aggregate measures of morbidity (e.g. disease counts) 

as a dependent variable. In contrast, we model individual health. At the same time, we control for 

systematic differences between counties as outlined above. In addition, we control for common time 

shocks across counties. However, the main objective of the paper is to model spatial heterogeneity in 

health at the individual level. The resulting models are inherently hierarchical with observations nested 

within individuals nested within regions. The following model serves as our baseline model throughout 

the analysis: 

                
       

                                    (3.1.1) 

We assume that the SF12 indicators for individuals              in counties           and years 

                 are conditionally independent and normally distributed with mean      and 

variance   . The mean      is a linear function of an intercept   , the (1 x 15) vector of individual 
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regressors     with a (15 x 1) parameter vector  , the (1 x 10) vector of county-level covariates     with a 

(10 x 1) parameter vector  , aggregate time effects   , an individual effect    and regional effect   .  

Our interest lies mainly in the regional effects    and its spatial distribution. In the following section, 

we specify four different assumptions on the distribution of these effects and their spatial and temporal 

dependency, which will lead us to our candidate models  

3.1.1 Model 1: Unstructured Regional Effects (URE) 

In our first model, we assume that the county-level effects follow a normal distribution with mean zero 

and variance   
 : 

          
   . 

This implies that, on average, the regional effects are zero, which is reasonable since we include an 

intercept into our model. This model would be equivalent to a model with dummy variables for each 

county, i.e., county-fixed effects. We do not specify the type of spatial dependency in this model, which is 

why we refer to this model as the Unstructured Model (Model 1). In this initial stage of our analysis, we 

seek to obtain estimates of the regional effects whose spatial distribution we would like to analyze. These 

estimates are “raw” in the sense that they are not smoothed by assumptions on the spatial dependency; 

they are used to examine the spatial dependency patterns of the regional effects by maps and test statistics.   

Then, in the next stage, we impose a structure on the spatial patterns and use models that smooth the 

regional effects. This approach is proposed by Banerjee et al. (2004).  

3.1.2 Model 2: Intrinsic Conditional Autoregressive Regional Effects (ICAR) 

 In order to account for spatial dependency between counties, we model regional effects using an 

Intrinsic Conditional Autoregressive (ICAR) Model (Model 2) as proposed by Besag et al. (1991). 

This model is autoregressive in a sense that the value for each area    depends on its spatial lags        . 

It is characterized by the conditional distributions: 

               
  

 

  
 .          (3.1.2) 

The regional effect    is normally distributed around the mean, where       
         

 .    yields 

the number of neighbors of county s.    is the set of neighbors of county s (cf. Banerjee et al., 2004). The 

mean equals the average effect of the neighboring counties of county s.   
  is a variance parameter. The 

variance depends on this parameter as well as the number of neighbors. Thus isolated counties with fewer 

neighbors exhibit greater variance than counties with more neighbors.   
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The conditional distribution in eq. (3.1.2) specifies that the regional effects    are Markovian, i.e., they 

depend only on their neighbors.8 From eq. (3.1.2), the joint density            can be obtained using 

Brook’s Lemma (cf. Besag, 1974) and the Hammersley-Clifford Theorem. However, Besag (1995) notes 

that the resulting distributions would not exhibit appreciable correlations unless the parameters are close 

to the boundaries of the parameter space. Therefore, he suggests the pair-wise specification in eq. (3.1.3): 

                 
 

   
            

     ,      (3.1.3) 

i.e., the joint distribution of         is proportional to the pairwise difference density, where     are 

the non-diagonal entries of the proximity matrix W. The non-diagonal entries of the proximity matrix W 

specify which areas are considered to be associated (and therefore spatially dependent). The choice of W 

will be explained in more detail in section 4.   
  is the variance parameter. 

Equation (3.1.3) is a limiting form9 of standard conditional autoregressive normal distributions and it is 

usually referred to as an Intrinsic Autoregression (IAR) or Intrinsic Conditional Autoregression (ICAR) 

(Besag, 1995). Eq. (3.1.3) does not yield a proper distribution, since the    are not centered and need an 

additional “sum to zero” constraint (Banerjee et al., 2004). Nevertheless, if used as prior information 

about the unknown parameter (i.e., as a prior distribution, see section 3.2.1) in Bayesian Analysis, the 

resulting inference (through the posterior distribution) is proper.  

For our candidate Model 2, we assume an ICAR distribution for the regional effects and choose a 

neighborhood matrix W based on first-order adjacency (see below). 

3.1.3 Models 3 and 4: (Spatiotemporal) Convolution Prior (SCP) 

In the candidate model described above, we assume that the regional effects can be described by an 

ICAR-model, which implies that the regional effect of county s depends only on the values of all 

neighboring counties. This assumption may be too strict, since the effect might be a combination of a 

spatially dependent part and a randomly distributed part (noise).  

Therefore we decompose the effects 

        ,  

where 

          
    

and  

               
  

 

  
 ,          (3.1.4) 

                                                             
8 The model specified through eq. (3.1.2) is also called the Autonormal or Autogaussian model, i.e. a model for 
normally distributed data on a Markov Random Field (c.f. Arbia, 2006) 
9 I.e. the parameter that determines the strength of  the spatial association is fixed to the boundaries of  the parameter 
space. 
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that is, we discriminate between regional heterogeneity captured by     and regional clustering captured 

by    (Banerjee et al. 2004, p. 283f). We call this a Convolution Prior since the distribution of     is a 

convolution of  the distributions described above (Besag et al. 1991; Mollié, 1996). Using this structural 

assumption and the neighborhood matrix based on adjacency, we obtain our Model 3: the Convolution 

Prior (CP).  

Our candidate models 2 and 3 incorporate spatial dependence and aggregate time effects. However, 

the spatial effects       and    do not depend on time t, i.e., they are assumed to be time-invariant. This 

may be a plausible assumption if the main driving factors of the regional differences are time-invariant, 

e.g., structural environmental and economic factors. Nevertheless we test this assumption by extending 

the CP-Model to include space-time interaction effects. As such, we obtain our fourth and final model: the 

Spatiotemporal Convolution Prior (SCP). 

Consider the model  

                          ,       (3.1.5) 

where 

                    

and 

                     
             

           
  .  

Here, both the spatially dependent part and the random part of the regional effect depend on location s 

and time t, i.e., the model produces a separate effect for each county and each year (comparable to an 

interaction between dummy variables for county s and year t). In addition, the model includes a linear time 

trend with parameter   instead of the aggregated time effects. This model has the advantage that we can 

estimate the spatial pattern for each year. However, it requires observations for each county in each year. 

Therefore for this model, we restrict the dataset to counties with observations in each year. The adjusted 

dataset contains 54, 528 out of 54,683 observations and 397 out of 401 counties. 

3.2 Estimation 

In this section we give a brief overview of the basics of Bayesian Methods and then detail the 

specifications under which the described models above are analyzed. 

3.2.1 Bayesian Inference 

In Bayesian Analysis, given the data, the main interest lies in learning about the distribution of the 

unknown parameters. In contrast to frequentist methods, such as Maximum Likelihood Estimation, the 
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parameters are treated as stochastic quantities that follow a probability distribution.10 The fundamental 

principle of Bayesian methods is summarized by Bayes formula: 

       
          

    
,          (3.2.1) 

where y is a random variable and   is the unknown parameter.        is the likelihood function of the 

data.      is called a prior distribution, which expresses prior belief or knowledge (e.g., from similar or 

older studies) about the distribution of the unknown parameter.      is the unconditional distribution of 

the data and serves as a normalizing constant to ensure that        integrates to one.        is called the 

posterior distribution and summarizes all knowledge of the unknown parameters given the data. Bayes 

formula may be regarded as a method to update prior knowledge about the parameters    using the data y 

(cf. Congdon, 2010).  

Bayesian inference is carried out by summarizing the posterior distribution. The point estimates 

depend on the appropriate “loss function”, e.g., if we want to minimize         
 
 , the estimator is 

given by the posterior mean. For multimodal or non-normal distributions, the posterior median may be 

more appropriate (cf. Banerjee et al., 2004). 

Bayesian confidence intervals (usually called credible intervals) are Equal Tail (ET) Intervals or 

Highest Posterior Density (HPD) intervals. For symmetric and unimodal posterior distributions, both 

intervals are identical. Otherwise the HPD interval will have shorter length, but it is more difficult to 

compute. 

The ET interval is given as the interval         where: 

           
 

 

  

  
   

and 

              
 

 

 

  
. 

As usual,   denotes the confidence level. An attractive feature of the credible interval is that the often 

erroneous interpretation of confidence intervals in frequentist models does actually hold for them, namely 

the probability that   lies in           is      .  

A crucial point in Bayesian Analysis is the choice of the prior distribution. The posterior distribution 

depends on both the prior distribution and the likelihood. Likewise, the parameters of the posterior 

                                                             
10 It is worth noting that the parameters are not regarded as random quantities-they are fixed but unknown. The incomplete 
knowledge about these parameters is assumed to be random (cf. Gelman and Robert, 2012). 



 12 

distribution (e.g. the mean) are a weighted average of the prior values and the likelihood-based values (for 

an example, see Banerjee et al., 2004).  

This offers a way to formally include subjective beliefs or existing knowledge. However, often 

researchers prefer to not introduce any subjective elements, either since no additional information on the 

problem is available, or since the researcher prefers to remain as “objective” as possible. In this case, 

improper or uninformative priors may be chosen (e.g., a flat distribution over the entire real line). This 

leads to another problem: the determination of the posterior distribution.  

3.2.2 The Gibbs sampler 

An analytic derivation of the posterior through equation (3.2.1) is only possible for specific, 

“conjugate” prior distributions, i.e., when prior and posterior belong to the same distributional family. For 

non-conjugate, and especially for improper priors (i.e. distributions that do not integrate to anything 

finite), the required integrations - namely for      - are intractable. In this case, Markov Chain Monte 

Carlo (MCMC) methods may be used to obtain samples from the posterior distribution without knowing 

its exact analytical form.  

The general idea of MCMC methods is to sample from a transition distribution 

                                     , 

which has the posterior distribution        as its stationary distribution.      is a set of initial values for 

the parameters             . After a “burn-in phase” of B samples,          may be seen as a 

random sample from the posterior        (cf. Congdon, 2010). 

The Gibbs sampler described below generates samples from the joint posterior distribution by 

sampling from the full set of conditional distributions. Assume we are interested in k parameters  

            . Then, for arbitrary initial values     , for t=1,…T ; repeat: 

Step 1: Draw   
    from     

      
        

            
        . 

Step 2: Draw   
    from     

      
      

            
        . 

… 

Step k: Draw   
    from       

      
      

            
      . 

It can be shown that the k draws      converge in distribution to a draw from the joint posterior  

        (c.f., Banerjee et al., 2004). 
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Samples from the conditional distributions may be obtained through other methods, such as the 

Metropolis-Hastings Algorithm. For an extensive treatment of MCMC methods, see Congdon (2010) or 

Robert and Casella (2005). 

3.2.3 Specifications 

Bayesian methods offer some important benefits. First, they offer a way to formally incorporate prior 

knowledge or beliefs into the analysis. Probably most important for our analysis, hierarchical and 

spatiotemporal models can be adapted quite naturally in a Bayesian framework (Congdon, 2010). 

Furthermore, Hierarchical Bayes Models “borrow” strength across units through the common 

“hyperdensity”11 and therefore estimate the regional and individual effects more efficiently. Bayesian 

Analysis itself is especially suited for small samples – since all estimates are conditional upon the data 

given, we do not have to rely on asymptotic theory. Thus, we formulate our models as Hierarchical Bayes 

Models and estimate them using Gibbs sampling. 

The prior distributions for our analysis are mostly uninformative. They allocate equal probability mass 

to all plausible values. In detail, we choose a flat prior         for the intercept   and a normal prior 

distribution with an inflated variance            for the slopes          and           and the time 

fixed effects   .  

For our first model, the Unstructured Regional Effects (URE) Model , we use a normal prior 

distribution for the regional effects with a hyperparameter for the variance. For the second model, the 

Intrinsic Conditional Autoregressive Regional Effects (ICAR) Model, we use the ICAR prior as 

described in section 3.1.2. For the third and fourth model, the Convolution Prior (CP) and the 

Spatiotemporal Convolution Prior (SCP) models, we use an inflated normal distribution for    and 

    as well as an ICAR prior for    and    . All standard deviation parameters (including hyper-

parameters) were assigned a          prior distribution, which covers all plausible values (since the SF12 

indicators lies in [0,100]) and assigns them equal probabilities.  

In order to speed up convergence, we standardized all non-dummy variables, i.e., we subtracted the 

overall mean and divided them by their standard deviation. 

We run three parallel chains with dispersed initial values and monitored the values for the intercept, 

the slope parameters, the regional effects, and the variance parameters using Trace Plots and Gelman-

Rubin statistics (cf. Gelman and Rubin, 1992; Brooks and Gelman, 1998). The length of the burn-in 

period was determined for each model separately.  

                                                             
11 It is possible to specify a prior distribution in terms of  unknown parameters, so-called “hyperparameters”. The 
prior distribution assigned to these hyperparameters is called “hyperprior” or “hyperdensity”. 
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For models 1 and 2, we could not detect any departure from convergence after the 5,000th iteration. 

For models 3 and 4, the burn-in period took 15,000 iterations, after which the sampler seemed to have 

stabilized. After the burn-in period, we sampled 15,000 draws from the posterior distribution. In order to 

decrease autocorrelation and speed up mixing, we thinned the chain by storing only every 10 th draw.  

4 Results 

4.1   Model 1: Unstructured Regional Effects (URE) 

Table 2 yields the results for our first model, the Unstructured Regional Effects (URE) Model (see 

Section 3.1.1). Please note that the coefficients are standardized for the non-dummy variables.  

Almost all variables are statistically significant at conventional levels. A notable exception is number of 

children.  

[Insert Table2 about here] 

Looking at the sign of the coefficients, we note that, in general, males are healthier than females. This is in 

line with the stylized fact that women have greater health care expenditures, not only in childbearing years 

(cf. Owens, 2008). Also, individuals who abstain from alcohol have a lower health status. This group is 

likely to contain respondents with current or past serious diseases. On the other hand, regular alcohol 

consumption is positively correlated with health; this might seem surprising, but is consistent with the 

literature (cf. Ziebarth and Grabka, 2009). The number of hospital stays as well as the number of doctor 

visits in the last year, in other words, health care utilization, is negatively correlated with respondents’ 

health.  

Of the county-level variables, only the unemployment rate and the car density show a significant effect. 

The estimates of the spatial models show that the latter effect is not consistently estimated across models. 

However, the main focus of our analysis lies on the regional effects    and its spatial distribution.  

Choropleth Map to Visualize the Unstructured Regional Effects Model 

The “posterior means”—i.e., the point estimates for the coefficients— for the URE-Model are plotted 

in the CHOROPLETH MAP in Figure 1. To produce this map, we order the values of our dependent SF12 

health variable and classify them into five categories, with the quintiles serving as cutoff-thresholds. Each 

category is assigned a shade of green, with lighter shades corresponding to smaller values (lower quintiles) 

and darker shades corresponding to greater values (higher quintiles). Naturally, the intervals covered by 

each category differ; the highest and the lowest category cover a wider range of values than the medium 
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category, since the interval covered by the medium category has higher probability mass12. However, the 

choice of categories is appropriate to give a visual impression of the spatial distribution of the random 

effects. 

[Insert Figure 1 about here] 

We see the following: First, the county level health effects differ between -2.4 and 2.7.13 This means that 

the overall SF12 mean (the intercept) varies between 46.94 and 52.04, depending on the county.14 As 

compared to the age effect, interestingly, the regional effect has an influence on health that equals up to 31 

years in both directions.15  

Second, it seems that the counties in East Germany tend do have lower values than the counties 

in West Germany. However, there are clusters of lower values in Bavaria, Lower Saxony and Rhineland-

Palatinate and some rather high values in Brandenburg and Mecklenburg-Western Pomerania. Overall, the 

map is dominated by clusters, e.g., we find clusters of high values around Hanover (Lower Saxony) and 

Hamburg, Hof (Bavaria), Cologne (North Rhine-Westphalia) and the Palatinate region. Clusters of smaller 

values can be found in Lower Bavaria, Thuringia and in the east of Mecklenburg-Western Pomerania and 

Brandenburg. 

Testing for Spatial Dependency using Moran’s I 

These clusters already suggest that the effects are not spatially randomly distributed and that there 

exists spatial dependency between neighboring counties. Therefore we calculate MORAN’S I to measure 

the strength of the spatial association and to formally test the hypothesis of no spatial autocorrelation.16 

MORAN’S I can be seen as a spatial analogue for the lagged autocorrelation coefficient statistic for time 

series and is defined by: 

  
                      

                   
         (4.1.1) 

   is the value of random variable Y at location         , i.e. in our case the regional effect.     are 

the off-diagonal entries of the neighborhood matrix W and represent the spatial connection between sites 

i and j.17 W can be defined as a binary matrix; in this case       indicates that sites i  and j are neighbors 

                                                             
12 The distribution is approximately normal, i.e. unimodal and symmetric. 
13 Of  course not all of  these effects are statistically significant. 92 of  the 401 regional effects are significant at a 5 
percent level and 156 are significant at a 10 percent level. 
14 Standard Errors and Monte Carlo Error are excluded from the calculation. 
15 Note that this does not refer to a change in life expectancy but to the marginal effects of  the age polynomial in our 
regression models.  
16 Arbia (2006) points out that MORAN’S I is not a proper statistical test since it does not consider an explicit 
alternative hypothesis. Since we use MORAN’S I as an exploratory tool before specifying our spatial models, this can 
actually be seen as an advantage (cf. Arbia, 2006). 
17     are usually set to 0, otherwise each site would be a neighbor of  itself. 



 16 

(cf. Arbia, 2006). Another possibility would be to define     as weights, e.g. proportional to the inverse 

distance.  

Moran (1950) derives the asymptotic distribution of I, however, the variance expression is very 

complex. Banerjee et al. (2004) recommend carrying out a Monte Carlo permutation test by drawing a 

random sample of permutations18 including the observed one. Then, the observed I can be positioned 

relative to the other permutations and a pseudo p-value may be derived.   

We calculate MORAN’S I using neighborhood matrices based on three different definitions of 

neighborhood (cf. Arbia, 2006) and test it using 10,000 permutations (including the observed values). 

The first definition is based on adjacency, i.e., sites are considered to be neighbors if they share a common 

border. This concept can be generalized to second- and third-order neighbors.19 Our second definition is 

based on a threshold-distance, i.e., sites i and j are neighbors if the distance between their centroids is smaller 

than the threshold distance d. We choose d to equal 50 km, 68.2, and 150 km. We include 68.2 because it 

is the smallest distance such that each county has at least one neighbor. The last definition is based on a 

Nearest-Neighbor algorithm for 3, 5 and 7 Nearest-Neighbors. Note that all matrices are binary and that the 

adjacency- and threshold-based definitions lead to symmetric matrices.  

[Insert Table 3 here] 

Table 3 reports the number of non-zero links (i.e. connections between sites), the value for MORAN’S I 

and the empirical p-value. A comparison of the number of links shows that the Nearest-Neighbor matrices 

define very small neighborhoods, whereas distance-based matrices result in larger neighborhoods. In 

general, MORAN’S I is not very high but all values are significant with the exception of the third-order 

adjacency matrix. We also observe that the value of I decreases with the size of the neighborhood. The 

highest value is obtained for the 3-Nearest-Neighbors matrix, whereas the distance-based and higher-

order adjacency matrices result in considerably smaller values.  

Thus we conclude that the spatial dependence between regional health effects occurs on a small, local 

scale. Although the 3-Nearest-Neighbors matrix delivers the highest value of I, we cannot use it to model 

spatial association in our models. The ICAR specifications require symmetric neighborhood matrices and 

with 1201 non-zero links the 3-Nearest-Neighbors matrix is clearly non-symmetric. In contrast, the first-

order adjacency matrix is symmetric and delivers a value nearly as high.20 All in all, we reject the 

hypothesis of independent regional effects and employ a first-order adjacency matrix for the spatial 

models as described in Section 3. 

                                                             
18 The observed values of  the variable are randomly assigned to the regions.  
19 Second-order neighbors are sites that share a common border with first-order neighbors of  site i, but not with site 
i itself  (“neighbors of  neighbors“). 
20 The higher value of  the 3-Nearest-Neighbors matrix is possibly due to the much smaller number of  links since it 
is neither reasonable that the number of  neighbors is the same for all counties nor is there evidence for directed 
spatial dependence (as implied by the departure from symmetry).  
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Local Indicators of Spatial Association (LISAs) 

MORAN’S I is a measure of global spatial autocorrelation. In contrast to that, LOCAL INDICATORS OF 

SPATIAL ASSOCIATION (LISAS) are calculated for each region individually and can be used to test the 

significance of the spatial association for a specific county. We calculate local I’s as proposed by Anselin 

(1995). Again we use a Monte Carlo permutation test to obtain pseudo p-values. The p-values for each 

county are depicted in Figure 2. Here, the map corresponds to an adjacency-based neighborhood matrix. 

The classes correspond to different types of clusters. Counties with insignificant spatial association are 

depicted in grey. Counties with positive regional effects and significant spatial association are shown in 

dark red if the spatial correlation is positive—i.e., the neighbors exhibit positive regional effects—and in 

pink if the spatial correlation is negative—i.e., the neighbors exhibit negative regional effects.  

Similarly, counties with negative regional effects and significant spatial association are shown in dark 

blue if the spatial correlation is positive and in light blue if the spatial correlation is negative (c.f. Anselin, 

2005). We see that for most clusters, the spatial association is significant on a local level. 

[Insert Figure 2 about here] 

4.2  Model 2: Intrinsic Conditional Autoregressive Regional Effects (ICAR)  

In the next step, we estimate the ICAR-Model to obtain smoothed estimates of the regional effects 

(see section 3.1.2). Our aim is to find a model that produces a more distinct spatial pattern, i.e., smoother 

estimates, but trades off little in terms of model fit as compared to our basic Unstructured Regional 

Effects (URE) Model.  

The coefficient estimates of the individual-level variables are very robust.21 Not surprisingly, the 

county-level variables show some variation across the two models, which is due to the different 

assumptions upon the spatial structure. Therefore, in models 3 and 4, we improve upon the modeling of 

the spatial representation before interpreting these results.22 

The map in Figure 3 shows the regional effects for Model 2 (ICAR model based on adjacency).  

[Insert Figure 3 about here] 

First, it should be noted that the strength of the regional effects is even greater than in the URE-Model 

(Model 1). Here, the regional effects vary between -3.3 and 3.4 as compared to -2.4 and 2.7 in the first model.  

                                                             
21 These estimates are available upon request. 
22 A possible source of  this variation could be omitted county-level variables, which introduce spatial correlation. 
Cressie (1993) points out that modeling spatial autocorrelation can mitigate this problem. 
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Second, the spatial pattern displayed in figure 3 is very similar to the spatial pattern produced by Model 

1, but considerably smoother. Both maps show several large clusters and suggest that there exists a pattern 

in the spatial distribution:  

Thirdly, in West Germany, unobserved but systematic, county-level effects have a strong positive 

impact on its residents’ health. Contrarily, in East Germany, county-level effects have a strong negative 

impact on residents’ health. Remember that we control for a rich set of socio-economic individual 

background characteristics such as age, gender, marital, and employment status as well as health-behavior 

and the degree of health care utilization. In addition, ten county-level covariates net out persistent 

differences across counties due to unemployment, urbanization and population density. Given this 

modeling approach, it is surprising and staggering that we still find a clear East-West health pattern, 20 

years after German reunification.  

We use the Deviance Information Criterion (DIC) introduced by Spiegelhalter et al. (2002) to compare 

Model 1 and Model 2. The DIC is a criterion for model selection similar to the Akaike Information 

Criterion (AIC) or Bayesian Information Criterion (BIC), i.e., it trades off model fit23 and complexity24. As 

with AIC and BIC, the model with the lowest DIC should be preferred. In contrast to AIC and BIC, the 

DIC is valid for hierarchical models and can be easily computed as a by-product of MCMC methods. The 

results indicate that the ICAR-Model 2 performs less well, both in terms of model fit and complexity. This 

is no surprise: we impose additional structural assumptions; hence we obtain more complex models. 

4.3.  Model 3: Convolution Prior (CP)  

Now, we run Model 3 using a convolution prior as described in section 3.1.3. This model has the 

advantage that it can distinguish between unstructured (i.e., random) regional effects and spatially 

dependent regional effects. If we plot the overall regional effect, the resulting maps look very similar to 

the ICAR-Model (Model 2). However, the values of the spatially dependent random effects appear to be 

significantly smoother. 

If we compare the model fit via the DIC (see Appendix, Table 5), we find that the model fit for the 

Convolution Prior (CP) Model is almost the same as for the ICAR Model (Model 2). According to the rule 

of thumb proposed by Spiegelhalter et al. (2002), only a DIC difference of 10 should be considered as 

significant. Furthermore, the CP-Model produces smoother estimate, which is why we prefer it to the 

ICAR-Model. Figure 4 illustrates the results of Model 3. 

[Insert Figure 4 about here] 

                                                             
23 Model fit is measured through the posterior expected deviance. 
24 Complexity refers to the effective number of  parameters calculated as the difference between posterior expected 
deviance and the deviance at the posterior means. 
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Figure 4 presents a map of the spatially dependent part of the regional effect   . We observe a 

prominent cluster of high values in the northwest (Lower Saxony, Schleswig-Holstein) and clusters of 

lower values in the east (Bavaria, Thuringia and Brandenburg). This confirms our findings above and 

reinforces a clear East-West German spatial health pattern that is likely to be a legacy of the 40 year long 

division of Germany.  

[Insert Figure 5 about here] 

Figure 5 shows a LISA cluster map for Model 3. The counties with significant local I are color-coded 

with respect to the type of spatial correlation. We identify three clusters of high values, mainly in the 

northwestern part of Germany and three clusters of low values in the eastern part. This again supports the 

notion of an East-West trend in the spatially dependent component. Deviations from this trend in Eastern 

Bavaria and Western Mecklenburg-West Pomerania are likely due to spillover effects. 

The finding of low regional health patterns in regions with former communist governments during the 

Cold War is consistent with the existing literature. For example Baltagi et al. (2012) and Bonneux et al. 

(2010) report significantly lower life expectancy in Eastern Europe, specifically Hungary, Czech Republic, 

Slovak Republic and Poland, when compared to Western Europe. In addition, Baltagi, Moscone and 

Tosetti (2012) find significant spillover effects in the healthcare production process across neighboring 

countries. Treurniet et al. (2004) report higher avoidable mortality rates for Hungary and the Czech 

Republic as compared to Western Europe between 1980 and 1997. However, we are not aware of any 

paper that spatially models and compares the health effects within Germany—a country with a common 

history, language, and culture that had been divided for 40 years. 

4.4   Model 4: Spatiotemporal Convolution Prior (SCP)  

Finally we estimate the Spatiotemporal Convolution Prior (SCP) Model in order to investigate changes 

in the spatial pattern over time. The results are in Table 4. First, the parameter estimates of the individual 

covariates are robust when we compare them to the findings from our first model, the URE-Model in 

Table 2. Second, most of the county-level covariates are not significantly different from zero and are 

similar in size to the findings from our first URE-Model in Table 2.  

Third, clearly, the county-level unemployment rate shows by far the strongest association with 

individual-level health. In the SCP-Model, a 1 percentage point higher unemployment rate is associated 

with a reduction in health by 0.07 points. This equals an age effect of 1 year. This point estimate is highly 

significant at the 5 percent level. The second most important county-level correlate of individual health is 

the average household income in the county, which is significant at the 10 percent level. Inhabitants of 

counties with a €1,000 higher household income have on average 0.8 points more on their SF12 scale. 

This equals an age effect of 10 years. 

 [Insert Table 4 about here] 
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Model 4 also includes a linear time trend instead of aggregated time fixed effects. This trend is highly 

significant and negative (-0.17), implying that over the five year period from 2006 to 2010 health among 

SOEP respondents decreased by an average of -0.85 points. Remarkably, this time trend is more than 

twice as high than the effect of an additional year of age. There are several possible explanations for this 

trend, e.g. it could be due to a change in the underlying population (i.e., the panel attrition effect) or ageing 

effects, which are not captured by the age polynomial in the model. Another explanation is that the 

economic shock caused by the financial crisis led to increased levels of stress and worries. A separate 

analysis of the physical and mental health component of our dependent variable shows that the time trend 

is much stronger for mental health than for physical health, which yields some evidence for this 

explanation.25   

A comparison of the DIC of this model with the previous models shows that the SCP-Model offers a 

much better model fit than the purely spatial models (see Appendix, Table 5). This indicates that there are 

considerable space-time interactions. The gain in model fit more than compensates for the higher 

complexity of the model. Surprisingly, the model fit is even better than in the Unstructured Regional 

Effects Model. This implies that our Model 4 should be preferred among all estimated models.  

Figure 6 illustrates the spatial patterns for each year. Note that only the spatially dependent part of the 

regional effect is displayed. First of all, the size the effects varies across years, but largely overlap: in 2006, 

the values fall between -1.5 and 2, in 2008, they fall between -1.2 and 0.8 and in 2010,  they fall between - 

1.4 and 1.  

[Insert Figure 6 about here] 

Second, the spatial pattern itself varies slightly across time. However, since the majority of the regional 

effects are not significant this is probably random variation. In those counties with an especially small 

sample size, the results are highly sensitive to panel attrition. More important, the clusters with significant 

spatial dependence, e.g., the regions around Hanover, Rhineland-Palatinate, Thuringia and Bavaria, are 

stable across the years. Maps of the pseudo p-values of the regional effects (   ) show that the regional 

effect in these clusters is significant in all years, whereas most of the effects that change across the years 

are insignificant.  

Finally, to explicitly test for the East-West-German health pattern, we include an East-West dummy 

variable in Model 4. The dummy is “1” for counties in pre-1989 communist East Germany and “0” for 

counties in capitalist West Germany. The highly significant coefficient estimate equals -0.69 and represents 

one of the strongest health predictors. Its impact is comparable to an age impact of more than half a 

standard deviation or up to 9 life years. 

                                                             
25 The results are available upon request. 
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5 Conclusion 

In this paper we combine representative individual-level household panel data and register county-level 

data to model and estimate spatial health effects on individual health. Methodologically, we make use of 

hierarchical models and Bayesian methods.  

In a first step, we examine regional effects for spatial associations using adjacency-based, distance-

based and Nearest-Neighbor-based definitions of neighborhoods. In all cases, we find a highly significant 

spatial dependency of individual health. In the next step, we impose structural ICAR assumptions onto 

our models and re-estimate them, using an ICAR prior based on adjacency and a convolution prior based 

on adjacency. For both models we find a trade-off between model fit and smoother estimates. Although 

most of our ten county-level indicators—e.g., population density or unemployment rates—are not 

individually significant at conventional statistical levels, jointly they clearly improve the fit of our models. 

Interestingly, we find the model fit for our spatiotemporal model with separate regional effects for each 

year to be much better than the model fit for our basic Regional Effects Model without structural 

assumptions.  

In terms of content, we find that the regional impact on residents’ health is systematic and strong. The 

general county-level predictor has the strongest impact among all individual- and county-level predictors 

considered. The regional impact is comparable to an age effect on health of up to 30 years: this means 

that—after considering a rich set of socio-demographic background information for an average 

respondent at the age of 50—the regional impact alone may shift a respondent’s health either down to the 

health of a 20 year old or up to the health of a 80 year old.  

Interestingly and surprisingly, even 20 years after the German reunification, we still find a clear East-

West spatial health pattern. This finding could be interpreted as the long-lasting health effect of the 40 

year long division of Germany into a Communist and a Capitalist Part. The long-lasting legacy of 

Communism on health equals an age effect of up to 9 life years. 

Although most outcomes variables of interest reveal a clear spatially-dependent structure, applied 

researchers are reluctant to model these spatial dependencies explicitly. Using Germany and a quasi-

objective and continuous measure of population health as an example, this paper provides a framework 

for applied researchers on how to use Hierarchical Bayes Models and estimation techniques. A next step 

would be to establish an identification strategy in order to test whether these regional effects have a causal 

interpretation or arise due to selection processes or omitted variable bias. Clearly, more research on and 

applications of modeling techniques for spatial patterns would be fruitful. 
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Tables and Figures 

Table 1: Summary Statistics 

      

Variable  Mean Standard Deviation Min Max N 

Dependent Variables      

SF12 - generic health measure 49.73 7.12 22.33 61.62 54,683 

      

A: Individual Characteristics      

Demographics      

Age 49.31 17.58 17 100 54,683 

Number of children under 14 0.36 0.75 0 8 54,683 

Sex 0.48 0.50 0 1 54,683 

Marital status 0.60 0.49 0 1 54,683 

Education & Labor Market Participation      

Monthly household income - equivalence scale 1,776 1,259 0 66,666 54,683 

Not working 0.43 0.50 0 1 54,683 

University degree 0.21 0.41 0 1 54,683 

No vocational training 0.23 0.42 0 1 54,683 

Health-related Behavior      

No alcohol consumption 0.13 0.34 0 1 54,683 

Regular alcohol consumption 0.17 0.38 0 1 54,683 

Smoking 0.28 0.45 0 1 54,683 

Body Mass Index (BMI) 25.96 4.60 12.59 73.05 54,683 

Health Care Utilization      

Number of stays in hospital during the past year 0.16 0.62 0 42 54,683 

Number of doctor’s visits during the past year 9.80 15.19 0 396 54,683 

   …continued on next page 
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…Table 1 continued      

B: Regional Characteristics      

Area size 890.35 722.00 35.71 5,810.77 1,199 

Population density 521.64 676.29 39.94 4,257.16 1,199 

Proportion of area used for settlement and transport 20.77 15.48 4.60 76.10 1,199 

Proportion of area suitable for recreation 1.98 2.39 0.20 15.00 1,199 

Cars per 1000 inhabitants 524.85 57.09 316.10 880.60 1,199 

Inhabitants per physician 685.19 183.48 255.91 119.70 1,199 

Unemployment quota 9.22 4.13 2.49 21.30 1,199 

Percentage of immigrants 7.25 4.51 0.70 25.34 1,199 

Average available income per month 1,531.29 202.25 1,145.61 2,544.17 1,199 

Number of overnight stays per inhabitant 4.73 5.65 0.43 41.06 1,199 

Source: SOEP v27, own calculations.      
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Table 2: Coefficient estimates for the covariates in the Unstructured Regional Effects model 
       

Variable Mean Rescaled Significance S.E 2.5% Percentile 97.5% Percentile 

Individual Variables        

Age  -1.29151 -0.07346 *** 0.22244 -1.72952 -0.85609 

Squared age -0.76136 -0.00043 *** 0.21964 -1.18953 -0.33074 

Male gender 1.15740 - *** 0.07377 1.01200 1.30000 

Marital Status 0.22080 - *** 0.03735 0.14725 0.29495 

Number of children 0.03340 0.04454  0.03312 -0.03104 0.09913 

Household income 0.40193 0.00032 *** 0.03018 0.34199 0.45921 

Not working -0.22076 - *** 0.06465 -0.34846 -0.09050 

University Degree 0.92858 - *** 0.09048 0.75165 1.10853 

No vocational training -0.49347 - *** 0.08610 -0.65895 -0.32355 

No alcohol consumption -1.15268 - *** 0.07962 -1.30753 -0.99750 

Regular alcohol consumption 0.26792 - *** 0.07164 0.12904 0.40670 

Smoking -0.93175 - *** 0.06899 -1.07200 -0.79669 

Number of hospital stays -0.39349 -0.63467 *** 0.02196 -0.43610 -0.35105 

Number of doctor’s visits -1.54294 -0.10158 *** 0.02426 -1.59000 -1.49500 

BMI -0.58438 -0.12704 *** 0.03452 -0.65345 -0.51670 

Regional Variables Mean Rescaled Significance S.E 2.5% Percentile 97.5% Percentile 

Population density -0.00032 0.00000  0.00038 -0.00108 0.00043 

Area size 0.03542 0.00005  0.10527 -0.16683 0.23832 

Unemployment quota -0.14640 -0.03545 * 0.07912 -0.30145 0.00865 

Overnight stays per inhabitant 0.01856 0.00328  0.06762 -0.11220 0.15130 

Area used for settlement and transport 0.43430 0.02806  0.38702 -0.32388 1.17653 

Average household income -0.03776 -0.00019  0.10221 -0.24136 0.16183 

Percentage of migrants 0.17502 0.03881  0.15464 -0.13172 0.49045 

Area used for recreation 0.16564 0.06930  0.22082 -0.27477 0.59987 

Cars per 1,000 Inhabitants 0.26409 0.00463 * 0.13338 0.00578 0.52916 

Inhabitants per physician -0.05378 -0.00029   0.09983 -0.25253 0.13605 

    …continued on next page 
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…Table 2 continued       

Time effects Mean Rescaled Significance S.E 2.5% Percentile 97.5% Percentile 

Dummy 2006 0.50230 - *** 0.08577 0.33470 0.66996 

Dummy 2008 0.44034 - *** 0.04879 0.34605 0.53496 

Constant 49.34192 -   0.32177 48.71000 49.98525 

σC 4.64511 -  0.03025 4.58600 4.70500 

σB 1.15781 -  0.06422 1.03647 1.28952 

σ 3.87708 -   0.01541 3.84700 3.90700 

Source: SOEP v27, own calculations. Notes: Number of Observations N=54,683. Number of draws from the Posterior Distribution D=4,500. Column 1 gives the posterior 
mean (i.e. the point estimate) for the 15 individual predictors, the ten county-level covariates, the aggregate time effects, the constant and the standard deviations of the 
dependent variable, σ, the individual effects, σC , and the regional effects, σB. Keep in mind that the non-dummy variables are standardized and therefore the measurement 
units are standard deviations. Column 2 gives a rescaled coefficient estimate, i.e. the effect size corresponding to the original measurement unit (left blank for dummy 
variables). Column 3 gives the posterior probability that the parameter has a different sign than the point estimate: ***=<0.1%, **=<1%, *<5% and .=<10%. This should 
not be confused with p-values and Null Hypothesis Significance Tests. Column 4 gives the standard errors. Columns 5-6 give the 95%-Equal Tail Credibility Interval around 
the median. 
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Table 3: Moran’s I for different definitions of neighborhood 
    

Weights Links I p-value 

first-order adjacency 2,084 0.14890 0.00020 

second-order adjacency 4,880 0.03630 0.03570 

third-order adjacency 7,580 0.01840 0.11060 

threshold distance - 50 km 3,694 0.11260 0.00010 

threshold distance - 150 km 27,092 0.03900 0.00060 

threshold distance - 68.2 km 8,410 0.08200 0.00010 

3 nearest neighbors 1,201 0.17540 0.00010 

5 nearest neighbors 2,000 0.12920 0.00010 

7 nearest neighbors 2,798 0.12480 0.00010 

Source: SOEP v27, own calculations; Moran’s I for nine different weight 
matrices. Column 1 gives the number of non-zero links, i.e., spatial connections 
between sites. Column 2 gives the estimate of Moran’s I and Column 3 the 
corresponding empirical p-value, which is derived by a Monte-Carlo 
permutation test with 10,000 permutations. 
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Table 4: Coefficient estimates for the Spatiotemporal Convolution Prior Model (Model 4) 

   

Variable Mean Rescaled Significance S.E. 2.5% Percentile 97.5% Percentile 

Individual Variables          

Age  -1.30368 -0.07416 *** 0.22380 -1.75053 -0.86091 

Squared age -0.74777 -0.00042 *** 0.22231 -1.18600 -0.31034 

Male gender 1.15677 - *** 0.07381 1.01000 1.30300 

Marital Status 0.22165 - *** 0.03755 0.14700 0.29405 

Number of children 0.04375 0.05833   0.03393 -0.02416 0.10975 

Household income 0.41487 0.00033 *** 0.03053 0.35500 0.47325 

Not working -0.21555 - *** 0.06593 -0.34586 -0.08631 

University Degree 0.94687 - *** 0.09183 0.76514 1.12452 

No vocational training -0.48296 - *** 0.08607 -0.65086 -0.31750 

No alcohol consumption -1.13895 - *** 0.07856 -1.29653 -0.98733 

Regular alcohol consumption 0.30181 - *** 0.07053 0.16500 0.44119 

Smoking -0.93499 - *** 0.06898 -1.07100 -0.80205 

Number of hospital stays -0.39249 -0.63305 *** 0.02193 -0.43665 -0.35035 

Number of doctor’s visits -1.53402 -0.10099 *** 0.02461 -1.58100 -1.48500 

BMI -0.59272 -0.12885 *** 0.03467 -0.66015 -0.52529 

Regional Variables Mean Rescaled Significance S.E. 2.5% Percentile 97.5% Percentile 

Population density -0.00018 0.00000   0.00023 -0.00063 0.00027 

Area size 0.03523 0.00005   0.07043 -0.10205 0.17160 

Unemployment quota -0.29205 -0.07071 ** 0.09392 -0.47055 -0.10545 

Overnight stays per inhabitant 0.03732 0.00661   0.04664 -0.05365 0.12990 

Area used for settlement and transport 0.40928 0.02644 . 0.26319 -0.11871 0.91966 

Average household income 0.16238 0.00080 * 0.08126 0.00475 0.32265 

Percentage of migrants -0.00957 -0.00212   0.11138 -0.23010 0.21161 

Area used for recreation 0.06262 0.02620   0.13965 -0.21401 0.34126 

Cars per 1,000 Inhabitants 0.08990 0.00157   0.09331 -0.09257 0.27530 

Inhabitants per physician -0.03766 -0.00021   0.07406 -0.18446 0.10655 

Time effects             

Linear Trend -0.17387 - *** 0.02614 -0.22490 -0.12170 

Constant 398.63844 - *** 52.47963 294.03749 501.10501 

σC 4.69938 - *** 0.03036 4.63900 4.75800 

σB /σω Results for each year available upon request 

σφ Results for each year available upon request 

σ 3.85295 - *** 0.01557 3.82300 3.88300 

Source: SOEP v27, own calculations; number of observations N=54,528. Number of draws from the posterior distribution D=4,500. Column 1 
gives the posterior mean (i.e. the point estimate) for the 15 individual predictors, the ten county-level covariates, the aggregate time effects, the 
constant and the standard deviations of the dependent variable (σ) and the individual effects (σB). Keep in mind that the non-dummy variables are 
standardized and therefore the measurement units are standard deviations. Column 2 gives a rescaled coefficient estimate, i.e., the effect size 
corresponding to the original measurement unit (left blank for dummy variables). Column 3 gives the posterior probability that the parameter has a 
different sign than the point estimate: ***=<0.1%, **=<1%, *<5% and .=<10%. This should not be confused with p-values and null hypothesis 
significance tests (see 3.2). Column 4 gives the standard errors. Columns 5 and 6 give the 95%-Equal Tail Credibility Interval around the median. 
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Figure 1: Quantile map for Model 1 (Unstructured Regional Effects) 
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Figure 2: LISA Cluster map for Model 1 (Unstructured Regional Effects) 

 

 

 

 

 

 

 

 

 

 

 

 



 33 

Figure 3: Quantile map for Model 2 (ICAR Regional Effects) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Quantile map for Model 3 (Convolution Prior) 
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Figure 5: LISA Cluster map for Model 3 (Convolution Prior) 

 

 

Figure 6: Quantile maps for Model 4 (Spatiotemporal Convolution Prior) 
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Appendix 

Table 5: Deviance Information Criterion (DIC) for 4 candidate models 

    

Model Dbar pD DIC 

Unstructured Regional Effects 303,382 17,586.4 320,969 

ICAR Regional Effects 304,383 18,563.4 322,946 

Convolution Prior model 304,378 18,557.0 322,935 

Spatiotemporal Convolution Prior model 302,170 18,355.8 320,526 

Source: SOEP v27, own calculations.    

 


