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Preference Intensities in Repeated
Collective Decision-Making∗

Moritz Drexl Andreas Kleiner

28th February 2013

Abstract

We study decision rules for committees that repeatedly take a binary decision.
Committee members are privately informed about their payoffs and monetary trans-
fers are not feasible. In static environments, the only strategy-proof mechanisms
are voting rules which are criticized for being inefficient as they do not condition on
preference intensities. The dynamic structure of repeated decision-making allows
for richer decision rules that overcome this inefficiency by making use of inform-
ation on preference intensities. Nonetheless, we show that often simple voting is
optimal for two-person committees. This holds for many prior type distributions
and irrespective of the agents’ patience.

JEL classification: D72; D82; C61

Keywords: Dynamic mechanism design; Voting; Collective decision making

1 Introduction

Simple voting rules are known to be inefficient when a majority with weak preferences
outvotes a minority with strong preferences. For instance, consider a group of three
owners of a firm who need to decide whether to expand into a new business area. While
one of the owners has a strong desire to take advantage of the opportunity, the other two
owners do not have a strong preference but slightly prefer the status quo and decide to
vote against the project. The project is not implemented although it might be beneficial
for the firm.

Money could be used as a tool to elicit preference intensities and thereby implement
the efficient allocation, but in many situations there are moral or other considerations
that prevent the use of monetary means. Instead, this paper examines the possibilities of
using the dynamic structure of environments where group decisions have to be made re-
peatedly in order to provide incentives for truthful preference revelation. In fact, repeated
decision problems are ubiquitous in everyday life, ranging from examples in parliament
to hiring committees. In these environments, it is sensible not to assume that agents will
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go myopically from period to period and vote sincerely. As Buchanan and Tullock (1962)
emphasize, “any rule must be analyzed in terms of the results it will produce, not on
a single issue, but on the whole set of issues.” Consequently, it is not only reasonable
to look at equilibrium behavior in a specific decision rule, but to search for rules that
maximize a given objective like, for example, the welfare of the agents.

Consider the following example, which illustrates the possibility of increasing sensitiv-
ity to preferences intensities in repeated decision making: Assume that the decision rule
prescribes to accept if at least one of two agents is in favor of the project, unless the other
agent uses one of his limited possibilities to exercise a veto. In this situation, agents are
faced with a trade-off between the current and future periods. If they exercise a veto now,
the decision rule decides in their favor, but a the cost of less possibilities to use a veto in
the future, which reduces the agent’s continuation value. Intuitively, gents will use their
veto right only if their preference against the proposed project exceeds some threshold.
This has the effect that more refined information about the agents’ preferences is elicited
and possibly a more efficient allocation can be implemented.

With these ideas in mind, the question is why we see so many decision rules that only
use simple majority voting in every period, and, more generally, which decision rule is
the best in terms of providing the highest welfare to the agents. In this paper, we tackle
this question and show that surprisingly, voting rules are optimal among many reasonable
decision rules with regard to the latter question. This provides a hint to the answer for
the former question on why voting is used so universally.

More specifically, we look at a model with two agents who are repeatedly presented
with a proposal that they need to either accept or reject. If the proposal is accepted,
each agent derives positive or negative utility from it, which is private information and
distributed according to some distribution function. A mechanism is simply a mapping
of past actions and decisions, and actions in the current period, into a probability of
accepting the current proposal. This allows for the modeling of many conceivable decision
rules. We require that decision rules be incentive compatible, in the sense that in the direct
revelation mechanism reporting preferences truthfully is a periodic ex-post equilibrium.
This means that in any period, given any history, it is a dominant strategy to report the
preference truthfully. This requirement renders incentives robust to uncontrolled changes
in the information structure as well as deviations of the other player.

We provide a characterization of incentive compatible decision rules in terms of the
allocation in a given period and the continuation values a rule promises. Viewing the
continuation values as a substitute for money then enables us to treat any given decision
rule as a static mechanism which can then be improved upon while preserving incentives.
The new continuations of the improved static mechanism can then be implemented by
specifying a new dynamic decision rule. As a result, we can show that if the preference
distributions satisfy an increasing hazard rate condition, then voting rules are optimal
within two classes of mechanisms. First, they are optimal among decision rules that satisfy
unanimity, i. e. rules that never prescribe a decision that contradicts the decision that both
agents would unanimously agree on. This is a reasonable robustness requirement since
one could expect the agents not adhering to the decision rule if they unanimously agree
to do something else. Second, if the type distributions are neutral across alternatives,
i. e. the density is symmetric around zero, then voting rules are also optimal among all
deterministic decision rules.
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Therefore, if the type distributions are neutral across alternatives, we get the summar-
izing result that any decision rule yielding higher welfare than every voting rule has both
the weaknesses of not satisfying unanimity and not being deterministic. This provides a
strong rationale for the use of voting rules in the setting we consider and also provides
hints on why rules other than voting are not considered in settings with more agents
either.

Relation to the Literature

Our paper builds upon literature studying decision rules for dynamic settings. (Buchanan
and Tullock 1962, page 125) note that

much of the traditional discussion about the operation of voting rules seems
to have been based on the implicit assumption that the positive and negative
preferences of voters for and against alternatives of collective choice are of
approximately equal intensities. Only on an assumption such as this can the
failure to introduce a more careful analysis of vote-trading through logrolling
be explained.

Buchanan and Tullock (1962) proceed to analyze vote trading. They argue that agents
can benefit if they trade their vote on a decision for which they have a weak preference
intensity, and in turn get a vote for a future decision. However, it has early been noted
that a trade in votes, while being beneficial for the agents involved, might actually reduce
aggregate welfare of the whole committee, a fact sometimes called “the paradox of vote
trading” (Riker and Brams 1973). A formal analysis of vote trading has been missing until
recently, when Casella, Llorente-Saguer and Palfrey (2012) examined in a competitive
equilibrium spirit a model of vote trading. They show that vote trading can actually
increase welfare in small committees, but is certain to reduce welfare for committees that
are large enough.

Instead of relying on agents playing an equilibrium with non-sincere voting so that
they can express there preference intensities, one can design specific decision rules that
explicitly take intensities into account. Casella (2005) is the first to take this approach in
a dynamic setting, in which agents repeatedly decide on a binary choice. He proposes the
concept of storable votes: in each period, each agent receives an additional vote and can
use some of his votes for the current decision or, alternatively, he can store his additional
vote for future usage. By shifting their votes inter-temporally, agents can concentrate
their votes on decisions for which they have a strong preference intensity. Casella (2005)
shows that this procedure increases welfare of the committee if there are two members
and conjectures that this holds true for larger committees in many circumstances.1

In contrast to this pragmatic approach that aims at finding superior decision rules
for practical applications, one can systematically look for the “best” decision rule. In
a seminal paper, Jackson and Sonnenschein (2007) take a mechanism design approach
to find decision rules for repeated collective decision making. For a static setting, they
show that, by linking a large number of independent copies of a decision problem, one

1Hortala-Vallve (2012) analyzes a similar proposal for a static setting (meaning that agents are com-
pletely informed about their preferences in all decision problems when making the first decision), in which
agents face a number of binary decisions.
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can approximate the efficient outcome even in the absence of money. This result extends
to dynamic settings, where in each period one decision is taken, as long as individuals
are arbitrarily patient. This surprising result hinges critically on a number of strong
assumptions: each decision problem has to be an identical copy, the designer is required
to have the correct prior belief, agents need to be arbitrarily patient and their beliefs
about other agents have to be identical to the common prior. In an attempt to find more
robust decision rules, Hortala-Vallve (2010) characterizes the set of decision rules that are
dominant-strategy implementable in a static problem. Given that strategy-proofness is
a severe requirement in a multi-dimensional setting, it is not too surprising that voting
rules are the only decision rules that satisfy this restriction.

In contrast to the work by Hortala-Vallve (2010), we use a weaker equilibrium concept,
so that on the one hand, the set of implementable decision rules is very rich, but on the
other hand our results are robust and the optimal mechanism is bounded away from
attaining the first-best.

The paper is structured as follows: In Section 2 we present our model in detail. The
results are presented in Section 3 and discussed in Section 4. Some proofs are omitted
from the main text and relegated to the appendix.

2 Model

Time in our model is discrete and indexed by t = 0, 1, ... ∈ T = N. The type of an agent
i in a given period t is denoted by θit and drawn from the type space Θi according to
the distribution function F . Type spaces and distribution functions are the same for each
period and each agent, and types are drawn independently across time and agents. We
denote by θ̃it the random variable corresponding to the type of agent i, and by θt a type
profile which is an element of the product type space Θ.

In each period, a decision xt ∈ {0, 1} has to be implemented. We denote the sequence
of decisions up to period t by xt, and similarly for a sequence of types θti . Accordingly,
for an infinite sequence we write xT .

Mechanisms

In this model a dynamic version of the revelation principle holds (Myerson (1986), for
similar arguments see Pavan, Segal and Toikka (2008)), hence we can focus on truthfully
implementable direct revelation mechanisms.

Definition 1. A mechanism χ is a sequence of decision rules χt that map past decisions
and type profiles into a distribution over decisions in the current period:

χt : Θt × {0, 1}t−1 → [0, 1]

Preferences

The agents have von-Neumann-Morgenstern utility functions that are linear and there are
no monetary payments. The utility of an agent i with type θit in period t if the decision
in that period is xt is therefore vit(θit, xt) = θitxt. The agents discount the future with
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the common discount factor δ. Consequently, the utility of an agent i with type sequence
θi for the decision sequence x is

Vi(θ
T
i , x

T ) =
∑
t∈T

δtθitxt.

Equilibrium Concept and Incentive Compatibility

In every period t, agent i learns about his preference type θit which is private information
and only visible to that agent. After agents learn their preferences, each agent reports his
type rit ∈ Θi. The public history ht = (xt−1, rt−1) in period t consists of past decisions
and past reports.

Given a mechanism χ, we can write down the value function for an agent i:

Wi(h
t, θt) = sup

rit∈Θi

θitχt(h
t, rit, θ−it) + δEΘt+1Wi(h

t+1, θ̃t+1) (1)

Here, ht+1 is the history in the next period, consisting of χt(h
t, rit, θ−it) and (rit, θ−it)

appended to ht. The valuation function specifies, given any history of decisions xt−1 and
reports rt−1, and the current type profile θt, the highest utility the agent can possibly
obtain for some report rit, assuming that she reports optimally in the future and the
other agents report truthfully. Given a specific history ht, the mechanism χ induces an
allocation rule and continuation functions which we will denote

xt(θt) = χt(h
t, θt) and

wit(θt) = δEΘt+1Wi(h
t+1, θ̃t+1),

where ht+1 is understood as above. If the current period is clear from the context, we will
also drop the subscript t. The pair (xt, wt) is called the stage mechanism after history ht
and we say that wt is generated by the mechanism χ. A stage mechanism is admissible if
it is generated by some mechanism χ.

Definition 2. A mechanism is periodic ex-post incentive compatible (IC) if for every
period t and for all histories ht the following holds: For every θ−i and every θi we have
that

θitx(θit, θ−it) + wit(θit, θ−it) ≥ θitx(rit, θ−it) + wit(rit, θ−it) (2)

for all reports ri ∈ Θi.

See, e.g., Athey and Miller (2007), Bergemann and Välimäki (2010). The definition in
particular states that if a mechanism is incentive compatible, then every stage mechanism
for all histories is incentive compatible. The following lemma can be proved using the
Envelope Theorem (which is a standard exercise in the mechanism design literature).

Lemma 1. A mechanism is IC if and only if for each agent i the following two conditions
hold:

1. Monotonicity of x: x(θi, θ−i) ≤ x(θi, θ
′
−i) for θi ≤ θ′i.
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2. Payoff equivalence: Let θ̂i ∈ Θi be given. Then

θix(θi, θ−i) + wi(θi, θ−i) = θ̂ix(θ̂i, θ−i) + wi(θ̂i, θ−i) +

∫ θi

θ̂i

x(β, θ−i)dβ. (3)

Since the term θ̂ix(θ̂i, θ−i) +wi(θ̂, θ−i) is independent of θi, we will write hi(θ−i) for it.
Note, however, that hi(θ−i) does depend on the particular choice of θ̂i.

Objective

For a given stage mechanism we can write down the expected welfare going forward from
period t as

Uht(χ) = Uht(x,w) := EΘt

[
(θ1 + θ2)xt(θ) + w1t(θ) + w2t(θ)

]
.

This is the period-t-ex-ante discounted welfare that the agents receive after history ht.
The aim of this paper is to identify optimal mechanisms, that is, mechanisms χ that solve

max
χ

U(χ) := Uh0(χ), s. t. χ is IC.

Lemma 2 in the appendix provides a useful way to rewrite the objective function in
terms of the allocation rule x and hi(θ−i).

3 Results

The aim of this section is to identify mechanisms that are optimal in the above stated
sense. We need the following conditions on F in order to derive our results:

Condition 1 (Monotone Hazard Rate). The hazard rate f(θi)
1−F (θi)

is non-decreasing in θi.

Condition 2 (Log-Concavity). F (θi)
f(θi)

is non-decreasing in θi.

A voting rule x is a rule where x(θ) only depends on {sgn(θi)}i=1,2. A voting mech-
anism is a mechanism where the allocation rule after all histories is a voting rule.

Proofs in this section will proceed as follows: First, we show that under the appro-
priate assumptions stage mechanisms consisting of a voting rule and promising the same
continuation payoffs for all type profiles are weakly welfare-superior to all other stage
mechanisms. Then we make use of the following proposition to deduce that also the best
dynamic mechanism uses a voting rule in every period. In fact, for this step to work it is
helpful that optimal stage mechanisms are of as simple a form as voting mechanisms.

Proposition 1. Assume that for every history ht and admissible stage mechanism (xt, wt)
in period t, there exists an admissible stage mechanism (x̂t, ŵt), where x̂t is a voting rule
and ŵt is constant, and such that

Uht(xt, wt) ≤ Uht(x̂t, ŵt).

Then a voting mechanism is among the optimal mechanisms.

6



Proof. We start with any dynamic mechanism χ and transform it into a mechanism that
uses a voting rule in every period and such that U weakly increases. Start with t = 0. The
assumption states that there exists a voting stage mechanism (x̂0, ŵ0) with constant ŵ0

and such that U(x̂0, ŵ0) ≥ U(x0, w0). Since the voting stage mechanism is admissible and
promises constant continuations, these continuations can be generated by a mechanism
that is independent of h1. Denote by χ′ this new dynamic mechanism. Since x′1 and w′1
are independent of h1, we know (gain by the assumption) that there exists a voting stage
mechanism (x̂1, ŵ1) with constant ŵ1 and such that Uh1(x̂1, ŵ1) ≥ Uh1(x

′
1, w

′
1) for all h1.

Again, ŵ1 can be generated by a mechanism that does not condition on histories h2. Now
if we let χ′′ be the mechanism that arises if one exchanges the stage mechanism (x′1, w

′
1) in

χ′ for (x̂1, ŵ1), we know that χ′′ is still incentive compatible: All promised continuations
in period 0 change by the same amount, independent of the history h1 and in particular
independent of θ0. Repeating this argument inductively for t ≥ 2 completes the proof.

3.1 Unanimity

The restriction of unanimity requires the mechanism to always adhere to a decision to
which both agents agree. For example, if both types in some period are positive the
mechanism has to choose xt = 1 for sure. Formally, the condition is defined as follows:

Definition 3. A mechanism is called unanimous if, for every period and all possible
histories, x(θ) = 1 if θ > 0 and x(θ) = 0 if θ < 0.

Note that mechanisms not satisfying this requirement will probably have legitimacy
problems: Although all parties involved in the decision process opt in favor of the proposal,
the mechanism forces its rejection. Furthermore, if agents are not able to collectively com-
mit to the decision prescribed by the mechanism, then mechanisms satisfying unanimity
are the only feasible mechanisms. It is therefore no surprise that all mechanisms used
in practical committee decision making satisfy unanimity. Also note that mechanisms
proposed in the literature are not excluded by this assumption (see, e. g., Jackson and
Sonnenschein 2007, Casella 2005). In the next subsection we will see that even when
relaxing this restriction, for certain distribution functions only non-deterministic decision
rules can yield a higher expected welfare than voting rules.

Theorem 1. Suppose F satisfies Conditions 1 and 2. Then a voting mechanism is optimal
among all unanimous mechanisms.

Proof. The proof consists of establishing the preconditions of Proposition 1. So let (x,w)
be a stage mechanism after some history ht (since we are only concerned with unanimous
mechanisms, x satisfies unanimity). Set (θ̂1, θ̂2) = (0, 0) and let hi be the resulting
redistribution functions implied by Lemma 1. Let θ∗ ∈ arg maxθ∈Θi

h1(θ) + h2(θ). We
first show that setting h1(θ2) = h1(θ∗) and h2(θ1) = h2(θ∗) does not decrease Uht(x,w).

Since so far we have not changed x, by Lemma 2 it is enough to show that the terms
involving the redistribution functions do not decrease in this step. But this follows from∫

Θ1

h2(θ1)dF (θ1) +

∫
Θ2

h1(θ2)dF (θ2) =

∫ θ

θ

[
h2(β) + h1(β)

]
dF (β)

≤
∫ θ

θ

[
h2(θ∗) + h1(θ∗)

]
dF (θ∗).
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Next we show that changing x to a voting rule does not decrease welfare. It is enough
to consider the regions where θ1 ≤ 0, θ2 ≥ 0 and θ1 ≥ 0, θ2 ≤ 0 because the mechanism
is unanimous. But by Lemma 3 and the choice of (θ̂1, θ̂2), we know that the first term in
(4), which for the region θ1 ≤ 0, θ2 ≥ 0 amounts to∫ 0

θ

∫ θ

0

[
−F (θ1)

f(θ1)
+

1− F (θ2)

f(θ2)

]
x(θ1, θ2)dF (θ2)dF (θ1),

is maximized by setting x to either 0 or 1, as soon as Conditions 1 and 2 hold. Hence
the voting stage mechanism we constructed is weakly welfare superior to the old stage
mechanism.

Let (x′, w′) denote the new stage mechanism. The proof is complete if we can show
that w′ is constant and can be generated. Constancy of w′ holds for any stage mechanism
where x′ is a voting rule and the functions h′i are constant. More specifically, w′i is equal to
hi(θ

∗). Since the old mechanism was unanimous, wi(θ
∗, θ∗) = hi(θ

∗). Because wi(θ
∗, θ∗)

could be generated, it follows that w′ can be generated.

3.2 Neutrality of Alternatives

In this section, we show that in some situations we can dispense the focus on unanimous
mechanisms and still get optimality of voting mechanisms. This shows that the restriction
imposed in the previous section does in many cases not reduce welfare.

We assume that the distribution of types is neutral across alternatives, i. e. it is sym-
metric around 0. This is an important special case of our general model analyzed, for
example, by Carrasco and Fuchs (2011). For instance, this assumption is satisfied if a
committee has to decide among two proposals that are valued equally ex ante. Specifying
one alternative as the default, the distribution of valuations for changing from the default
to the alternative proposal is symmetric around 0.

Theorem 2. Suppose F satisfies Conditions 1 and 2 and is neutral across alternatives.
Then a voting mechanism is optimal among all deterministic mechanisms.

The proof of Theroem 2 is presented in the appendix. Similar arguments as in the last
subsection can be provided for restricting attention to deterministic mechanisms: First,
stochastic mechanisms are difficult to implement and face serious legitimacy problems in
practice. It is barely conceivable that a parliament would introduce decision protocols
that involve random elements. Second, all proposed mechanisms in the literature and
mechanisms observed in practice are usually deterministic and therefore not excluded from
our analysis. Numerical simulation also suggests that expected welfare can be improved
only slightly using stochastic mechanisms. The following corollary combines Theorem 1
and Theorem 2 and shows all properties one has to give up in order to improve upon
voting rules.

Corollary 1. Assume F satisfies Conditions 1 and 2 and is neutral across alternatives.
Then every decision rule that is strictly welfare-superior to any voting rule is stochastic
and does not satisfy unanimity.
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4 Discussion

We have seen that despite the absence of money as a means for implementing rules
other than majority voting, the possibility to condition decision rules on the past gives
us the possibility to design dynamic decision rules that take preference intensities into
account. However, we have shown that for committees consisting of two players the
welfare maximizing dynamic decision rule nonetheless conducts simple majority voting in
every period. This holds unless desirable properties of the decision rules are given up. We
therefore provide a possible explanation on why majority voting is used almost universally
in practice.

A major open problem is the question as to what extent our results generalize to more
than two agents. We believe that a substantial difficulty towards progress in this direction
is to understand in how far continuation values can be redistributed among the agents.

A Helpful Lemmata

Lemma 2. Let χ be an incentive compatible mechanism and define

ψ(θi) =

{
−F (θi)
f(θi)

if θi ≤ θ̂i,
1−F (θi)
f(θi)

otherwise.

Then for every history ht we have

Uht(χ) =

∫
Θ

[
ψ(θ1) + ψ(θ2)

]
x(θ)dF (θ) +

∫
Θ1

h2(θ1)dF (θ1) +

∫
Θ2

h1(θ2)dF (θ2). (4)

Proof. First note that

Uht(χ) =

∫ θ

θ

∫ θ

θ

[
θ1x(θ) + θ2x(θ) + w1(θ) + w2(θ)

]
dF (θ2)dF (θ1), (5)

and by Lemma 1

wi(θ) =

∫ θi

θ̂i

x(β, θ−i)dβ − θix(θ) + hi(θ−i). (6)

Using integration by parts, we first rewrite the term∫ θ

θ

[∫ θi

θ̂i

x(β, θ−i)dβ

]
f(θi)dθi

=

∫ θ

θ̂i

x(β, θ−i)dβ F (θ)︸︷︷︸
=1

−
∫ θ

θ̂i

x(β, θ−i)dβ F (θ)︸︷︷︸
=0

− ∫ θ

θ

x(θi, θ−i)F (θi)dθi

=

∫ θ

θ̂i

1− F (θi)

f(θi)
x(θ)dF (θi) +

∫ θ̂i

θ

−F (θi)

f(θi)
x(θ)dF (θi). (7)

Now plug (6) into (5), use (7) to complete the proof.
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Lemma 3. Suppose that ψ(θ1, θ2) is decreasing in (θ1, θ2) and that
∫
ψ(θ)dF (θ) < ∞.

Then the problem

max
x

Q(x) =

∫ b

a

∫ d

c

ψ(θ) · x(θ)dF2(θ2)dF1(θ1)

s. t. x is increasing in θ

0 ≤ x(θ) ≤ 1

is solved optimally either by setting x∗(θ) = 1 or x∗(θ) = 0.

Proof. Suppose to the contrary that there exists a function x̂(θ) that achieves a strictly

higher value. Define x′(θ) := 1
F (d)−F (c)

∫ d
c
x̂(θ)dF (θ2). This function is feasible for the

above problem given that x̂ is feasible and, by Chebyshev’s inequality, for all θ1,∫ d

c

ψ(θ)x̂(θ)dF (θ2) ≤
∫ d

c

ψ(θ)dF (θ2)
1

F (d)− F (c)

∫ d

c

x̂(θ)dF (θ1)

=

∫ d

c

ψ(θ)x′(θ)dF (θ2).

Defining x′′(θ) = 1
F (b)−F (a)

∫ b
a
x′(θ)dF (θ1) and again applying Chebyshev’s inequality,

we get for all θ2,∫ b

a

ψ(θ)x′(θ)dF (θ1) ≤
∫ b

a

ψ(θ)dF (θ1)
1

F (b)− F (a)

∫ b

a

x′(θ)dF (θ1)

=

∫ b

a

ψ(θ)x′′(θ)dF (θ1).

Since the objective function is linear in x, the constant function x′′ is weakly dominated
by either x ≡ 1 or x ≡ 0, contradicting the initial claim.

B Proof of Theorem 2

Proof of Theorem 2. We establish the preconditions of Proposition 1. Fix an arbitrary
history ht and consider the stage mechanism (x,w) employed after this history. Let
w := maxθ{w1(θ) + w2(θ)} and let θw be an optimizer. We normalize w such that
w1(θw) = w2(θw) = 0 by decreasing wi by wi(θw) for all i. After the normalization we
have

w1(θ) + w2(θ) ≤ 0.

We start with some preliminaries where we derive a set of inequalities that are satisfied
by every incentive compatible stage mechanism for which the above inequality holds.

Preliminaries:

Set (θ̂1, θ̂2) := (θ, θ), let hi denote the resulting redistribution functions implied by Lemma

1 and define gi(θ) := θix(θ) −
∫ θi
θ̂i
x(β, θ−i)dβ. It follows from Lemma 1 that wi(θ) =

−gi(θ) + hi(θ−i). Let h∗ := maxθ{h1(θ) + h2(−θ)}− θ and θ∗ be a maximizer. Normalize

10



θ1

θ2

(θ, θ)

h∗
θ∗

a−θ∗

Figure 1: Proof of Theorem 2

h such that h1(θ∗) = h∗ + θ and h2(−θ∗) = 0 by increasing h1(x2) and decreasing h2(x1)
by h2(−θ∗). The definition of h∗ implies

h1(θ) + h2(−θ) ≤ h∗ + θ for all θ, (8)

and w1(θ,−θ) + w2(θ,−θ) ≤ 0 implies

h1(θ) + h2(−θ) ≤ g1(−θ, θ) + g2(−θ, θ)

= −
∫ −θ
θ

x(β, θ)dβ −
∫ θ

θ

x(−θ, β)dβ

≤
∫ θ

−θ
x(β, θ)dβ ≤ θ + θ. (9)

By plugging θ∗ into (9) and using the definition of h∗, it follows that h∗ ≤ θ∗.
Define a := inf{θ1 | x(θ1, h

∗) = 1}. If there does not exist θ1 such that x(θ1, h
∗) = 1,

set a := θ. Without loss we can assume that a ≥ −h∗, since otherwise we can “mirror”
the mechanism on the dotted line shown in Figure 1.2 Let θ1 ≥ a. Then expanding and
rearranging w1(θ1, θ

∗) + w2(θ1, θ
∗) ≤ 0 yields

h2(θ1) ≤ −(h∗ + θ) + g1(θ1, θ
∗) + g2(θ1, θ

∗)

= −h∗ − θ + θ1 −
∫ θ1

θ

x(β, θ∗)dβ + θ∗ −
∫ θ∗

θ

x(θ1, β)dβ

= −h∗ + θ∗ − θ∗ + h∗ −
∫ h∗

θ

x(θ1, β)dβ

2Let (x#, w#) be the mirrored mechanism, then x#(θ1, θ2) = 1 − x(−θ2,−θ1), w#
i (θ1, θ2) =

w−i(−θ2,−θ1). The new mechanism is IC iff. the old mechanism is IC and by our symmetry assumptions
the mirrored mechanism yields the same welfare.
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= −
∫ h∗

θ

x(θ1, β)dβ. (10)

Define b := inf{θ2 | x(−h∗, θ2) = 1} (if there is no θ2 such that x(−h∗, θ2) = 1, set
b := θ) and let θ2 ≤ b. Then w1(−θ∗, θ2) + w2(−θ∗, θ2) ≤ 0 implies

h1(θ2) ≤ g1(θ∗, θ2) + g2(θ∗, θ2)

= 0−
∫ −θ∗
θ

x(β, θ2)dβ −
∫ θ2

θ

x(−θ∗, β)dβ

=

∫ θ

−θ∗
x(β, θ2)dβ. (11)

Since by Lemma 1 an incentive compatible stage mechanism is completely determined
by x and h, we will in the following change x and h in a number of consecutive steps
while making sure that x stays monotone and we never decrease the welfare Uht(x, h) :=
Uht(x,w). First, we increase h2(θ1) for θ1 ≥ a and h1(θ2) for θ2 ≤ b until (10) and (11)
hold with equality since this trivially weakly increases welfare.

Step 1:

In this step we will change the variables x(θ) with θ ∈ A := {(θ1, θ2) | θ1 ≥ a, θ2 ≤ h∗},
h2(θ1) with θ1 ≥ a and h1(θ2) with θ2 ≤ h∗. If we change h1 and h2 such that (11) and
(10) continue to hold with equality, we can express changes of all the variables in terms
of changes of x. Making use of the fact that for θ2 ≤ h∗, (11) is equivalent to

h1(θ2) =

∫ θ

a

x(β, θ2)dβ,

and by substituting (11) and (10), we can rewrite the the part of Uht that depends on
changes of the variables x(θ) for θ ∈ A as∫ θ

a

∫ h∗

θ

[
1− F (θ1)

f(θ1)
+
−F (θ2)

f(θ2)

]
x(θ1, θ2)dF (θ2)dF (θ1).

Lemma 3 implies that this term is maximized by setting x(θ) = 0 or 1 for θ ∈ A. To see
that we cannot gain by setting x(θ) = 1 we bound

Uht(1) =

∫ θ

a

∫ h∗

θ

[
1− F (θ1)

f(θ1)
+
−F (θ2)

f(θ2)

]
dF (θ2)dF (θ1)

=

∫ −a
θ

∫ h∗

θ

[
F (θ1)

f(θ1)
+
−F (θ2)

f(θ2)

]
dF (θ2)dF (θ1)

=

∫ −a
θ

∫ h∗

−a

[
F (θ1)

f(θ1)
+
−F (θ2)

f(θ2)

]
dF (θ2)dF (θ1)

≤ 0 = Uht(0).

Here, symmetry yields the second and third equality, and log-concavity of F and the fact
that −a ≤ h∗ yield the inequality. Hence, we weakly increase welfare by setting x ≡ 0 in
A and h1 and h2 according to (11) and (10), respectively.
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Step 2:

For this step define the set B = {θ1 > −h∗, θ2 > h∗ | x(θ1, θ2) = 0}. Set x(θ) = 1 for
θ ∈ B and h1(θ2) = h∗+θ for all θ2 for which there is a θ1 such that (θ1, θ2) ∈ B. We claim
that this does not decrease Uht . Since allocative efficiency improved in this step, we only
need to check that the sum of promised continuations increased. First, let (θ1, θ2) ∈ B.
Then (11) is equivalent to

h1(θ2) =

∫ θ

−h∗
x(β, θ2)dβ

Continuations before this change are given by

h2(θ1) + h1(θ2) +

∫ θ1

θ

x(β, θ2)dβ = h2(θ1) +

∫ θ

−h∗
x(β, θ2)dβ +

∫ θ1

θ

x(β, θ2)dβ = h2(θ1).

After the change we get:

h2(θ1) + h∗ + θ − θ1 +

∫ θ1

θ

x(β, θ2)dβ − θ2 +

∫ θ2

h∗
x(θ1, β)dβ = h2(θ1).

The claim can similarly be shown for the points (θ′1, θ2) and (θ1, θ
′
2) where θ′2 > θ2.

Step 3:

We claim that setting x(θ) = 1 or x(θ) = 0 for θ ∈ [θ,−h∗] × [h∗, θ] increases Uh∗ . This
follows from the fact that, since, ignoring the part which depends on hi, the objective
function in the area where we change x has the form required by Lemma 3. Symmetry
implies that x(θ) = 0 gives the same welfare as x(θ) = 1.

Step 4:

Note that the original mechanism satisfied

h1(−θ) + h2(θ) ≤ h∗ + θ.

Therefore, welfare is not decreased by setting h2(θ) := 0 and h1(−θ) = h∗+ θ for θ ≤ −b.
Note that the changed mechanism satisfies w1(θ,−θ) + w2(θ,−θ) ≤ 0: For a ≤ θ this

holds as we assumed (10) and (11) to be binding in Step 1, hence g1(θ,−θ) = g2(θ,−θ) =
h1(−θ) = h2(θ) = 0. For −h∗ ≤ θ ≤ a, this holds as continuations weren’t changed for
these values (changed Pivot payments were offset by changes in the h functions, as (11)
was assumed to hold with equality in Step 1). For −b ≤ θ ≤ −h∗ this holds as constraints
were assumed to bind in Step 2. For θ ≤ θ ≤ −b this holds as h1(−θ) + h2(θ) ≤ h∗ + θ =
g1(θ,−θ) + g2(θ,−θ).

The fact that w1(θ,−θ) + w2(θ,−θ) ≤ 0 implies that h1(−θ) + h2(θ) ≤ g1(θ,−θ) +
g2(θ,−θ). We can increase h so that equality holds, thereby again improving the mech-
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anism, ending up with the following stage mechanism:

x(θ) =

{
1 if θ1 ≥ h∗

0 else,

h1(θ2) =

{
0 if θ2 ≤ h∗

h∗ + θ else,

h2(θ1) = 0.

We call this class of mechanisms phantom dictatorship with parameter h∗.

Step 5:

So far we have shown that every stage mechanism can be modified until it is a phantom
dictatorship while weakly improving welfare. To prove that for every stage mechan-
ism there is a simple voting stage mechanism with weakly higher welfare, we show that
simple voting weakly welfare-dominates every phantom dictatorship: Indeed, the optimal
phantom dictatorship is given by the parameter h∗ = E[θ]. Therefore, symmetry around
0 implies that the optimal phantom dictatorship is characterized by h∗ = 0, which has
the same aggregate welfare as unanimity voting.

The voting stage mechanism we have constructed so far has the continuations profile
w1(θ) = w2(θ) = 0 for all θ. It remains to show that this mechanism is admissible.
But this follows from the fact that (0, 0) was an implementable continuation profile of
the original mechanism (namely, at the type profile θw). We therefore established the
conditions for Proposition 1, which completes the proof of the theorem.
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