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Abstract

This paper proposes a latent dynamic factor model for low- as well as high-dimensional re-

alized covariance matrices of stock returns. The approach is based on the matrix logarithm

and allows for �exible dynamic dependence patterns by combining common latent factors driven

by HAR dynamics and idiosyncratic AR(1) factors. The model accounts for symmetry and

positive de�niteness of covariance matrices without imposing parametric restrictions. Simulated

Bayesian parameter estimates as well as positive de�nite (co)variance forecasts are obtained using

Markov Chain Monte Carlo (MCMC) methods. An empirical application to 5-dimensional and

30-dimensional realized covariance matrices of daily New York Stock Exchange (NYSE) stock re-

turns shows that the model outperforms other approaches of the extant literature both in-sample

and out-of-sample.
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1. Introduction

Many �nancial applications like portfolio management and asset pricing require precise forecasts of

the latent covariance matrix of asset returns. For this reason various speci�cations of multivariate

GARCH (MGARCH, see e.g. Bauwens et al., 2006) and stochastic volatility (MSV, see e.g. Asai et

al., 2006) models have been proposed to model the (co)variance dynamics. While MGARCH models

treat volatility as measurable given past observations, the MSV approach treats the volatility as an

inherently latent state. An alternative approach is based on high-frequency return data which enables

the computation of a consistent nonparametric estimate of the covariance matrix of low-frequency

returns, the so-called realized covariance matrix (see Andersen et al., 2003, and Barndor�-Nielsen

and Shephard, 2004). The dynamics of the realized (co)variance series can then be modeled in a

direct way promising substantial gains in forecasting the state of the latent volatility process.

Although there exists a vast literature on multivariate GARCH models and a variety of multivari-

ate SV approaches the literature concerned with the direct modeling of realized covariance matrices

is rather limited. Besides the requirement of positivity for covariance matrix forecasts, the curse

of dimensionality remains the main challenge: Models designed to capture the complex serial and

cross-sectional (co)variance dynamics tend to be highly parameterized, since the dimension of the

object of interest is proportional to the square of the number of assets. This renders inference on the

volatility dynamics complicated even for moderately sized portfolios. Yet empirical applications, e.g.

the forecasting of optimal portfolio weight vectors in mean/variance portfolio optimization, typically

require forecasts of high-dimensional covariance matrices. Chiriac and Voev (2011) use a fractionally

integrated VARMA process to model the elements of the Cholesky factor of the realized covariance

matrix. The model su�ers from the curse of dimensionality and the authors restrict their empirical

application to six assets. Several models proposed for realized covariance matrices are based on the

conditional Wishart distribution (see Gourieroux et al., 2009, Jin and Maheu, 2011, Noureldin et

al., 2011, and Golosnoy et al., 2012). Empirical applications of the models are overall limited to

portfolios of up to ten assets. Bauer and Vorkink (2011) propose a factor model for the distinct ele-

ments of the matrix logarithm of the covariance matrix. The factors are driven by lagged volatilities,

lagged returns and other forecasting variables. Although the model could in general be applied to
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the forecasting of high-dimensional covariance matrices, the authors restrict their application to the

5-dimensional case and focus on discussing the predictive power of the various forecasting variables.

Since the matrix-log is a nonlinear function bias-correction methods have to be applied for the fore-

casting of volatilities. The non-linear nature of the model furthermore complicates the analysis of

the impact of the forecasting variables on volatility. Recently Bauwens and Storti (2011) proposed

a conditional autoregressive Wishart (CAW) model featuring DCC dynamics, which allows for the

forecasting of high-dimensional covariance matrices. Their empirical application comprises realized

(co)variances for 50 NYSE stocks. Although the CAW-DCC model tackles the curse of dimension-

ality, this achievement does not come without a cost: the model imposes heavy restrictions on the

correlation dynamics.

In the present paper I propose a novel �exible latent dynamic factor model for realized covari-

ance matrices. The factor speci�cation is motivated by persistent common dynamics of realized

(co)variance series. The model is based on the matrix logarithm function which enables the mod-

eling of log-(co)variances in Euclidean space, similar to the approach of Bauer and Vorkink (2011),

preserving positive de�niteness and symmetry of covariance matrix forecasts without having to im-

pose restrictions on the parameter space. By modeling the dynamics of the common factors as

heterogeneous autoregressive processes (HAR, see Corsi, 2009) and assuming AR(1) processes for

the idiosyncratic dynamics the model mitigates (though not eliminates) the curse of dimensionality

while allowing for rich (co)variance dynamics and can be readily applied to the forecasting of high-

dimensional covariance matrices (say, ≤ 30 assets). In contrast to the observation driven approach

of Bauer and Vorkink (2011) the latent factor model o�ers enhanced �exibility by allowing for id-

iosyncratic (co)variance dynamics and modeling the latent covariance matrix via a parameter-driven

state-space approach in the spirit of SV models for asset returns. The simulated Bayesian estimation

approach using Markov Chain Monte Carlo (MCMC) techniques enables straightforward estimation

of the model parameters and forecasting of covariance matrices without having to rely on bias cor-

rection methods as in Bauer and Vorkink (2011). Since the elements of the matrix logarithm of a

covariance matrix can be interpreted as approximations to logarithmic variances and correlations

the factor model allows to investigate the presence of joint risk-factors related to market risk and
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diversi�cation risk and o�ers a direct link to the recent asset pricing literature (see e.g. Krishnan et

al., 2009, and Driessen et al., 2009). In order to assess the model's forecasting performance I conduct

a comprehensive out-of-sample experiment including a range of prominent forecasting models from

the relevant literature. Besides a statistical evaluation based on the mean squared error criterion I

also address the practitioners point of view by investigating the performance of mean-variance op-

timal portfolios selected using the various forecasting models. An application to two data sets of 5

and 30-dimensional covariance matrices of NYSE traded stocks shows that the model outperforms

proposed volatility models of the extant literature for low as well as high-dimensional covariance

matrices both in-sample and out-of-sample.

The rest of the paper is organized as follows. Section 2 reviews the matrix logarithm and introduces

the factor model, its estimation and model diagnostic tests. The empirical application to NYSE data

is presented in Section 3. Section 4 concludes. Details on parameter estimation are provided in the

Appendix.

2. The Volatility Model

2.1 The Matrix Logarithm

This paper is concerned with modeling the dynamics of the n = k(k + 1)/2 distinct elements of

the k × k matrix logarithm Yt = (yij,t) of a time-varying k × k symmetric positive de�nite realized

covariance matrix Rt = (rij,t) recorded at time t (t = 1, . . . , T ).1 The matrix logarithm is the inverse

function of the matrix exponential, which is de�ned by the power series expansion

Rt = expm(Yt) =

∞∑
q=0

Y q
t

q!
, (1)

where Y 0
t is the identity matrix and Y q

t denotes standard matrix multiplication of Yt q times. From

the spectral decomposition Rt = Lt Dt L
′
t we directly obtain Yt = logm(Rt) = Lt ln(Dt) L

′
t, where

ln(Dt) denotes a diagonal matrix of log-eigenvalues and Lt the corresponding matrix of eigenvectors.

1The realized covariance matrix Rt is computed by adding up the outer products of high-frequency (e.g. 5-minute)
log-return vectors within a given day t (for details see Section 3.1 below).

3



Taking the matrix logarithm of a real, positive de�nite matrix Rt results in a real, symmetric matrix

Yt and applying the matrix exponential function to a real symmetric matrix results in a real symmetric

positive de�nite matrix (see Chiu et al., 1996, Lemma 1).

Denote the vector of the n distinct elements of the logarithmic covariance matrix Yt by yt =

vech
(
Yt
)
, where vech(·) is the operator that stacks the lower triangular portion including the diagonal

of a matrix into a vector. The direct modeling of the {yt}Tt=1 series in Euclidean space proves

convenient since the requirement of positive de�niteness and symmetry of covariance matrices is

readily ful�lled by the matrix exponential function.

As argued by Chiu et al. (1996) and Bauer and Vorkink (2011) there is no direct interpretation of

the matrix logarithm in applications to covariance matrices. The elements of yt can nevertheless be

interpreted as approximations to correlations and logarithmic variances. Denoting the ij'th element

of the matrix Y q
t by y

[q]
ij,t and applying standard matrix multiplication to obtain y

[q]
ij,t =

∑k
z=1 yiz,ty

[q−1]
zj,t

for q ≥ 2 we can use Eq. (1) in order to write ∀ i = 1, . . . , k

rii,t =

∞∑
q=0

1

q!
y
[q]
ii,t = 1 + yii,t +

∞∑
q=2

1

q!

[ k∑
z=1

yiz,ty
[q−1]
zi,t

]
(2)

=

∞∑
q=0

1

q!
yqii,t + νii,t (3)

= exp(yii,t) + νii,t, (4)

where repeated substitution reveals that νii,t =
∑∞

q=2
1
q!

[∑q−1
j=1 y

j−1
ii,t

∑
z 6=i yiz,ty

[q−j]
zi,t

]
. Hence rii,t ∼=

exp(yii,t) and the diagonal elements of Yt are approximations to logarithmic variances, where the

approximation error νii,t is a function of cross-products of the elements in Yt. The properties of the

approximation error, and hence the quality of the approximation itself, must be assessed using the

speci�c data set at hand. Using rii,t ∼= exp(yii,t) and denoting the correlation coe�cients by (ρij,t),

we obtain for i 6= j

rij,t = ρij,t
√
rii,trjj,t ∼= ρij,t exp

(1

2

(
yii,t + yjj,t

))
. (5)
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Approximating exp
(
1
2(yii,t + yjj,t)

)
by a 1'st order TSE around 1

2(yii,t + yjj,t) = 0, we arrive at

rij,t ∼= ρij,t

(
1 +

1

2

(
yii,t + yjj,t

))
∀ i 6= j. (6)

Truncating the power series expansion of Eq. (1) at the second order, we obtain

rij,t ∼= yij,t +
1

2

k∑
z=1

yiz,tyzj,t

∼= yij,t +
1

2
yij,t

(
yii,t + yjj,t

)
= yij,t

(
1 +

1

2
(yii,t + yjj,t)

)
∀ i 6= j, (7)

where the second equation follows from the �rst by setting yiz,tyzj,t = 0 for z /∈ {i, j}. Eqs. (6) and

(7) imply yij,t ∼= ρij,t. The quality of this approximation depends on the quality of the log-variance

approximation by the diagonal elements of the matrix logarithm and the overall variance level (see the

1'st order TSE around 1
2

(
yii,t + yjj,t

)
= 0 leading to Eq. 6). Section 3.1 below analyzes the quality

of the approximation for a time-series of 5-dimensional covariance matrices. The results indicate

that the elements of the logarithmic covariance matrices capture the dynamics of correlations and

log-variances to a great extent.

2.2 The Dynamic Factor Model

The k×k realized covariance matrix Rt consistently estimates the latent integrated covariance matrix

Σt of the k-dimensional period-t log-return vector ξt.
2 The literature on realized volatility modeling

concludes that realized variances and covariances as well as their logarithmic counterparts feature a

common long-memory type of dependence pattern (see e.g. Bauer and Vorkink, 2011, Chiriac and

Voev, 2011, and Figures 1 and 3). Motivated by persistent common dynamics in logarithmic realized

variances and covariances, I assume a persistent latent common factor structure for the n distinct

elements of the matrix logarithm xt = vech
(
logm(Σt)

)
. Given the series of vectorized logarithmic

2See e.g. Andersen et al., 2003, Barndor�-Nielsen and Shephard, 2004, and the very general assumptions on the
log-price process therein.
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realized covariance matrices {yt}Tt=1 the resulting state-space model reads

xt = a+Bcf ct + wt (8)

yt = xt + ut, ut
iid∼ N(0,Σu), (9)

where a = (a1, . . . , an)′ is a vector of constants, Bc is a matrix of factor loadings

Bc =



bc1,1 bc1,2 . . . bc1,p

bc2,1 bc2,2 . . . bc2,p
...

...

bcn,1 bcn,2 . . . bcn,p


, (10)

and f ct = (f ct,1, . . . , f
c
t,p)
′ is a vector of p orthogonal dynamic latent factors driving the common

dynamics of the variances and covariances in log-space. The n-dimensional vector wt captures se-

ries speci�c random variation driven by an idiosyncratic factor structure wt = Bif it , where B
i =

diag
(

(bi1, b
i
2, . . . , b

i
n )′

)
and f it = (f it,1, . . . , f

i
t,n )′. The measurement error ut results from esti-

mating the latent log-(co)variance process using realized (co)variances. In order to mitigate the

curse of dimensionality the measurement error covariance matrix is assumed to be of diagonal type,

Σu = diag
(

(σ2u,1, . . . , σ
2
u,n)′

)
.

In order to allow for common long-memory type of persistence patterns I adapt the heterogeneous

autoregressive (HAR) model of Corsi (2009) to the modeling of common latent log-volatility factors.

The HAR model forecasts volatility via a hierarchical autoregressive speci�cation including lagged

daily as well as weekly and monthly volatilities. The model amounts to a parsimonious and simple

approach to modeling strong persistence in �nancial time series and represents an approximation to

long-memory models. Assuming HAR structures for the common factors the respective dynamics are

given by

f ct,j = αc
j + φcj,1f

c
t−1,j + φcj,2

5∑
i=1

f ct−i,j + φcj,3

10∑
i=1

f ct−i,j + φcj,4

20∑
i=1

f ct−i,j + ηct,j , (11)

where ηct,j ∼ N(0, σ2c,j) and j = 1, . . . , p. The HARmodel results in a restricted AR(20) representation
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for the common factor dynamics. Corsi (2009) and Audrino and Corsi (2010) �nd that HAR processes

o�er enhanced in-sample �t and out-of-sample forecasting performance in modeling log-volatilities

and correlations, which are e�ectively approximated by the matrix logarithm. Due to the aggregation

of �exible HAR dynamics for the p common factors, the factor structure is expected to accommodate

a large variety of dependence patterns. Residual persistence is therefore expected to be short-lived

and series-speci�c dynamics in wt are assumed to be driven by AR(1) processes:

f it,j = αi
j + φijf

i
t−1,j + ηit,j , ηit,j ∼ N(0, σ2i,j), (12)

where j = 1, . . . , n.

The model presented so far is unidenti�ed. In order to identify the model the following restrictions

are imposed: (i) Bc is restricted to a lower triangular matrix; (ii) the triangular elements of Bc and Bi

are restricted to positivity; (iii) σ2c,j
!

= 1 and σ2i,j
!

= 1 ∀j and (iv) αc
j

!
= 0 and αi

j
!

= 0. The identifying

restrictions are proposed by Geweke and Zhou (1996) and are standard in the literature. An identi�ed

model comprises 4p + n(p + 4) − p(p − 1)/2 parameters. Since the total number of parameters is

a linear function in the number of time series n the model tackles the curse of dimensionality in

multivariate volatility modeling. The property of weak stationarity of the underlying (co)variance

process is easily checked via computing the characteristic roots of the factors' AR processes. The

model then implies a stationary Gaussian distribution for the vector of logarithmic (co)variances yt.

An important part of factor analysis is devoted to the interpretation of the common factors.

From an asset pricing perspective we expect systematic variance dynamics re�ected by the volatil-

ity of the latent market portfolio appearing e.g. in the CAPM asset pricing model (see Sharpe,

1964). A respective variance factor indicates un-diversi�able market risk. Krishnan et al. (2009)

and Driessen et al. (2009) analyze the pricing of market-wide time-varying diversi�cation bene�ts:

So-called �correlation risk� is captured by a market-wide correlation factor. Investors would pay a

premium for assets that perform well in states of high asset correlation, since increasing correlations

imply lower diversi�cation bene�ts and typically increasing market volatility. Driessen et al. (2009)

assume a market-wide correlation factor and observe a signi�cant pricing of correlation risk, which

furthermore removes well-known biases in option pricing models. Krishnan et al. (2009) mention the
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importance of controlling for the market variance and asset-speci�c volatility when estimating corre-

lation risk: If asset returns follow a one-factor model, the model-implied correlations are increasing

in the asset betas and market variance and decreasing in idiosyncratic asset volatility, everything

else held equal. The proposed factor model allows for investigating the presence of both systematic

correlation and market risk.

2.3 Model Estimation and Diagnostics

Since the proposed factor model belongs to the class of linear Gaussian state space models, Maximum

Likelihood estimation and Bayesian inference using Monte Carlo Markov Chain (MCMC) methods are

straightforward to implement. In contrast to the ML approach, the Bayesian estimation scheme o�ers

the advantage of avoiding high-dimensional numerical optimization of the log-likelihood function.

In addition, Bayesian estimation easily accommodates nonlinear forecasting of covariance matrices

within the MCMC sampling scheme. Standard Kalman �lter based Maximum Likelihood estimation,

in contrast, implies biased volatility forecasts due to the nonlinear matrix exponential function. I

therefore apply Bayesian estimation with conjugate prior distributions for all model parameters.

Forward Filtering Backward Sampling (FFBS) serves for joint full conditional sampling of the latent

factors (see Kim and Nelson, 1999). Details on the (overall uninformative) prior distributions, the

implementation of the Gibbs sampling algorithm and the forecasting of covariance matrices are

provided in the Appendix.

The criterion of Onatski (2010) is applied in order to obtain an upper bound for the number of

common factors. The criterion consistently estimates the number of factors in an approximate factor

model while allowing for serially correlated idiosyncratic terms. The model selection is supplemented

by model diagnostics. The diagnostic tests are based on Pearson residuals which are obtained as

et = Var[yt|Ft−1]
−1/2 ( yt − E[yt|Ft−1] ), (13)

where Ft−1 is the information set including lagged observations up to period t−1 and Var[yt|Ft−1]
−1/2

denotes the inverse Cholesky factor of Var[yt|Ft−1]. For a correctly speci�ed model the standardized

residuals eij,t in et are serially and cross-sectionally uncorrelated. The modi�ed Portmanteau test
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statistic represents a standard tool for detecting signi�cant serial and cross-correlation in the residual

series of multivariate econometric models. The modi�ed Portmanteau statistic at l lags is

Q̄l = T 2
l∑

i=1

(T − i)−1tr(Ĉ ′iĈ−10 ĈiĈ
−1
0 ), (14)

where Ĉi = 1/T
∑T

t=i+1 ete
′
t−i. Under general conditions Q̄l

a∼ χ2(n2l) (see Lütkepohl, 2005, p. 510).

For low-dimensional cross-sections this test can be accompanied by F-test statistics for a regression

of each single residual series on a constant and, say, 50 lags of the observed data yt.
3 This allows to

detect single predictable residual series and o�ers a higher resolution in discovering violations of the

null hypothesis.

3. Empirical Application

3.1 Data

The proposed dynamic factor model is applied to a 5-dimensional and a 30-dimensional data set

of daily realized covariance matrices of equity market returns. The underlying stocks are traded at

the New York Stock Exchange (NYSE) and listed in Table 1. The daily realized covariance matrix

is computed as Rt =
∑M

j=1 ξt,jξ
′
t,j , where ξt,j is the vector of returns for the k = 5 or k = 30

stocks computed for the jth 5-minute interval of trading day t between 9:30 a.m. and 4:00 p.m. The

ordering of the assets in the vector ξt,j corresponds to the ordering of the assets in Table 1. Following

Chiriac and Voev (2011) the realized (co)variance measure is further re�ned by averaging over 30

subsampling subgrids per day in order to exploit the data richness more e�ciently and to cope with

market microstructure noise. The sample period of the �rst data set (�Data Set 1�) starts at January

1, 2000, and ends on December 31, 2009, covering 2514 trading days including the sub-prime crisis.

The data has already been studied by Golosnoy et al. (2012) and represents an updated version of

the data set evaluated by Chiriac and Voev (2011). The application of the proposed factor model to

5-dimensional covariance matrices allows for an in-sample and out-of sample comparison to various

3For k = 5 (k = 30) assets a regression of a single residual series on a constant and, say, 50 lags of the observed
data yt comprises 15 × 50 + 1 = 751 (465 × 50 + 1 = 23251) regressors. Since the according data sets analyzed in
Section 3 comprise 2514 (1564) observations, the regression becomes infeasible in the high-dimensional case.
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volatility models from the relevant literature, where applications to higher dimensions, say larger than

10, are practically impossible. The second data set (�Data Set 2�) extends the �rst by 25 additional

stocks randomly selected from the S&P 100. Since intra-day price data for the additional stocks is

not freely available for the whole sample period of data set 1, the second data set is restricted to the

period from February 2, 2002, to May 30, 2008, covering 1564 trading days.

Figure 1 shows time series plots of the realized variances and covariances of the �rst data set.

It reveals strong persistence and a common U-shaped pattern in the variance and covariance series.

During the early 2000s, in the aftermath of the dot-com bubble, and during the recent sub-prime crisis

starting in 2008 the level of the variances and covariances is signi�cantly higher than in the middle

part of the sample. Descriptive statistics are provided in Table 2. The empirical distribution of the

variances and the covariances is highly skewed to the right and highly leptokurtic. The respective

autocorrelation functions (ACFs) plotted in Figure 2 die out at a very slow rate indicating very strong

serial correlation. Figures 3 and 4 illustrate the corresponding matrix-logarithmic time series and

autocorrelation functions. Unsurprisingly, while the original series feature huge isolated volatility

peaks, the logarithm greatly reduces the scale of these events letting the series appear much more

homogeneous. The sample ACFs show persistent serial correlation, which is particularly pronounced

for the diagonal elements of the matrix logarithm. Furthermore, the series feature distinct dynamic

patterns for the diagonal and o�-diagonal matrix-log elements. As discussed in Section 2.1 the

diagonal elements can be interpreted as approximations to logarithmic variances while the o�-diagonal

elements can be interpreted as approximations to correlations. Figure 5 illustrates the quality of this

approximation by comparing log-variance and correlation series with the matrix logarithm. The

matrix-logarithmic series capture the dynamics of the original log-variance and correlation series to

a great extent. The second data set extends the �rst and comprises 465 distinct series, where the

according statistical properties are similar to the 15 time series of the �rst data set.
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3.2 Estimation Results

3.2.1 Data Set 1: 5-Dimensional Covariance Matrix

Applying the Onatski criterion to data set 1 results in a maximum number of p = 2 common

dynamic factors. I therefore estimate the factor model from Equations (8) to (12) including one and

two common HAR factors. The MCMC scheme is based on 40,000 Gibbs iterations and a burn-

in of 2,000 iterations. In order to assess the numerical accuracy of the estimates, MC standard

errors are calculated using a correlation consistent Parzen window based spectral estimator for the

variance of the sample mean (see Kim et al., 1998). The ratio of MC standard error to posterior

standard deviation addresses the proportion of variation in the estimates due to simulation relative

to the variation induced by the data. All numerical standard errors are within the range of 0.006-7%

of the posterior standard deviations, indicating an acceptable balance of numerical and statistical

uncertainty (see e.g. Kim et al., 1998). The chosen prior distributions are overall uninformative and

given in the Appendix. The parameter estimates indicate weak stationarity of the data generating

processes for all considered models.

I now turn to the in-sample analysis. In order to enable a comparison to competing models from

the relevant literature, I also estimate the MIDAS-CAW(3,3) model analyzed by Golosnoy et al.

(2012)4 and the DCC-CAW model of Bauwens and Storti (2011). The models are illustrated in

Section 3.3.1 below.

Table 3 shows Portmanteau diagnostic test results for the estimated Pearson residual series. Note

that the diagnostics for the factor models are based on residual series obtained for logarithmic

(co)variance data, while the test results for the CAW models are based on residual series obtained

for the original (co)variance data. Hence the results cannot be compared directly, but indicate how

the models �t the dynamics of the respective original or logarithmic time series. Due to the rich serial

and cross-sectional dynamics of the n = 15 (co)variance series the diagnostic tests indicate signi�cant

residual predictability for all considered models. Yet a comparison to the obtained test statistics for

the raw data shows that all models successfully account for a major portion of the highly persistent

4In the empirical analysis provided by Golosnoy et al. (2012) the MIDAS-CAW(3,3) model was found to o�er the
overall best in-sample �t within the range of considered CAW speci�cations.
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(co)variance dynamics. The diagnostics for the 2-factor model indicate signi�cant improvements

compared to both competing models. This �nding is particulary remarkable in relation to the �exible

MIDAS-CAW approach. The dynamics implied by the MIDAS-CAW(3,3) model are driven by 168

(often insigni�cant) parameters as opposed to 82 parameters for the 2-factor model5. The previous

�ndings are con�rmed by additional F-test results for residual predictability presented in Table 4.

Considering the 1% signi�cance level and 50 lags of daily (logarithmic) realized (co)variances, the two-

factor model successfully accounts for the predictability of twelve out of 15 logarithmic (co)variance

series as opposed to �ve (co)variance series for the MIDAS-CAW and four (co)variance series for

the DCC-CAW model. Figure 6 shows sample autocorrelation functions of the 15 residual series

obtained for the �tted 2-factor model. The plots indicate that the model dramatically reduces the

serial correlation in the raw data (compare to Figure 4). Summarizing the model diagnostic results,

a parsimoniously parameterized factor model with two common factors and idiosyncratic dynamics

o�ers a good �t to the complex serial and cross-sectional dynamics of the underlying logarithmic

(co)variance data. Compared to the MIDAS-CAW approach the main source of parsimony is the

reduction of cross-sectional dependence to loadings on a few persistent common factors.

Motivated by the model diagnostic results the subsequent analysis focuses on the 2-factor spec-

i�cation. Table 5 shows the parameter estimates. All estimated loadings are signi�cantly di�erent

from zero. The estimates of the HAR parameters imply signi�cance of the �rst, second and fourth

HAR component. The estimated characteristic roots of the HAR-implied AR(20) processes are given

by .9942 and .9893, respectively, and imply weak stationarity though strong persistence. The esti-

mated AR(1) coe�cients of the idiosyncratic factors reveal strong series speci�c serial correlation.

Figure 7 shows bar plots of the fraction of total variance explained by the factors. Besides indicating

the importance of idiosyncratic dynamics the �gure shows that the �rst common factor is mainly

associated with the diagonal elements of Yt, while the second common factor appears to be almost

exclusively driving o�-diagonal dynamics. Referring to the properties of the matrix logarithm dis-

cussed in Section 2.1 this �nding allows for the interpretation of common factors as market risk and

correlation risk factor, in line with the asset pricing literature (see Section 2.2). Filtered estimates

5The Schwarz-preferred MIDAS-CAW(2,2) model still comprises 118 parameters and o�ers slightly worse model
diagnostic results compared to the MIDAS-CAW(3,3) model.
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are depicted in Figure 8 and con�rm this interpretation. Comparing the second plot of Figure 8

with the time series in Figure 3 shows that the dynamics of the correlation factor mainly capture

the persistently high correlation level in 2003 to 2007 when market volatility was comparably low.

The second bar-plot in Figure 7 shows that the market risk factor has explanatory power for the

correlation series, which are approximated by the o�-diagonal elements in Yt. This result corresponds

to the common �nding that high market volatility tends to be accompanied by strong correlation

(see e.g. Solnik et al., 1996). Figure 9 depicts �ltered estimates of the idiosyncratic factors. The

time-series plots show that series-speci�c dynamics are mainly caused by the recent sub-prime crisis

resulting in strong distinct reactions of a few logarithmic (co)variance series in 2007 to 2009 letting

the dynamics of the corresponding idiosyncratic factors appear non-stationary. This �nding indicates

potential crisis related breaks in the idiosyncratic volatility and correlation structure which would

motivate further research e.g. addressing Markov Switching regimes in volatility/correlation levels

(see e.g. Lopes and Carvalho, 2007), which are beyond the scope of this paper.

3.2.2 Data Set 2: 30-Dimensional Covariance Matrix

The second data set comprises n = 465 distinct logarithmic (co)variance series of 30 asset returns

covering the period from February 2, 2002, to May 30, 2008. The Onatski criterion suggests a

maximum number of p = 3 common factors. The MCMC sampling scheme is based on 40,000 Gibbs

iterations and a burn-in of 10,000 iterations. The numerical standard errors are within the range of

0.008-10% of posterior standard deviations. The parameter estimates imply weak stationarity of the

data-generating processes.

Table 3 shows model diagnostic results. Since (MIDAS-)CAW models are generally not tractable

for more than ten assets, the diagnostics are limited to the factor models and the DCC-CAW ap-

proach. The DCC-CAW results indicate signi�cant residual predictability at any conventional sig-

ni�cance level. The factor model residuals, in contrast, pass the test of the Null of no serial and

cross-correlation at the 1% signi�cance level for 75 as well as 100 lags. The large cross-sectional

dimension precludes further testing for predictability of single residual series. Comparing the Port-

manteau diagnostic test results for the factor model residuals obtained for data set 1 to the respective
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test results obtained for data set 2 reveals a better model �t to the observed logarithmic (co)variance

dynamics in case of data set 2. Since the second data set does not cover the full extent of the sub-

prime crisis this �nding indicates a general problem of �tting the complex (co)variance dynamics in

this particular period.

Motivated by the model diagnostic results the subsequent analysis focuses on the 3-factor model.

Table 6 shows estimates of the HAR parameters, which imply signi�cance of the �rst, second and

fourth HAR component. The characteristic roots are given by .9906, .9723 and .9981 indicating

weak stationarity and high persistence of the joint (co)variance dynamics. Figure 10 depicts the

fraction of total variance of the {yt}Tt=1 series explained by the factors. The �rst row of plots

in Figure 10 illustrates the importance of idiosyncratic variation for the series of (approximate)

logarithmic variances with e.g. 30% explained variation for the American Express volatility and 26%

explained variation for the volatility of the Dell stock. Signi�cant explanatory power is also found for

idiosyncratic factors of particular o�-diagonal matrix-log elements (up to 22% explained variation),

where the respective series mostly refer to approximate correlations involving Citigroup, JP Morgan

Chase & Co., Intel, Dell and Microsoft, which have all been particularly a�ected by the sub-prime

crisis inducing partly idiosyncratic volatility and correlation dynamics.

The particularly high fraction of variation of the diagonal matrix-log elements explained by the �rst

common factor (30-80%, see Figure 10, second row of plots) motivates the interpretation as market

risk factor. As already observed for data set 1, the market risk factor also captures signi�cant

variation of particular o�-diagonal matrix-log series (up to 12%). The explanatory power of the

second common factor is overall limited (up to 3% of total variation), but it appears to be mainly

attributed to the o�-diagonal elements in Yt (compare the two plots in the third row of Figure 10).

The factor is therefore interpreted as correlation risk factor. Figure 11 shows �ltered factor estimates

which con�rm the previous factor interpretations (compare to Figure 8). In addition, the �gure

sheds light on the role of the third common factor, which appears to cover joint dynamics speci�cally

linked to the sub-prime crisis inducing pronounced volatility and correlation peaks. Particularly

high fractions of total variation explained by the third common factor are found for approximate

log-variances of Citigroup (8%), JP Morgan Chase & Co. (7%), Intel (5%), and Microsoft (5%) and
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corresponding o�-diagonal matrix-log elements (5-25% explained variation). As mentioned above,

these stocks have been particularly a�ected by the sub-prime crisis.

3.3 Forecasting Results

I now compare the 1-day ahead forecasting performance of the dynamic factor model with alternative

forecasting models from the relevant literature. Forecasts are denoted by R̂t+1 = E(Rt+1|Ft). In ad-

dition to a statistical evaluation of the models' forecasting capabilities based on a root mean squared

error (RMSE) criterion I follow Chiriac and Voev (2011) in also addressing potential economic bene-

�ts associated with accurate volatility forecasts. This is accomplished via evaluating the performance

of portfolio optimization strategies based on volatility forecasts. For the �rst data set I follow the

lines of Golosnoy et al. (2012), and select two out-of-sample windows: The �rst window is selected

to be prior to the recent sub-prime crisis and covers the period from July 2, 2007 through June 30,

2008, with relatively low volatility (see the dark-gray shaded areas in Figures 1 and 3). The second

window starts at July 1, 2008 and ends June 30, 2009 (see the light-gray shaded areas in Figures 1

and 3). The window covers the sub-prime crisis featuring a very high volatility level. The second

data set ends at May 30, 2008, and allows for a slightly truncated version of the �rst forecasting

window. All models are re-estimated daily and new forecasts are generated based on the updated

parameter estimates. The set of competing models is given by the CAW, MIDAS-CAW, HAR-CAW,

DCC-CAW, BEKK-GARCH, DCC-GARCH, and the EWMA approach, which are illustrated below.

3.3.1 Competing Models

The baseline CAW(p, q) model proposed by Golosnoy et al. (2012) assumes a conditional Wishart

distribution for the covariance matrix Rt,

Rt|Ft−1 ∼ Wk(ν, St/ν), (15)

where Wk denotes the law of a k-dimensional Wishart distribution and ν > k is the scalar degree of

freedom. St/ν is the k× k symmetric, positive de�nite scale matrix, such that the conditional mean
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is given by E(Rt|Ft−1) = St, which is assumed to follow a linear recursion of order (p,q)

St = CC ′ +

p∑
i=1

BiSt−iB
′
i +

q∑
j=1

AjRt−jA
′
j , (16)

where C is a k × k lower-triangular matrix and Aj , Bi are k × k parameter matrices. Golosnoy et

al. (2012) additionally propose Mixed Data Sampling (MIDAS)-CAW and HAR-CAW speci�cations,

which are speci�cally designed to capture the long-run movements of the (co)variances. The MIDAS-

CAW model decomposes volatility into a secular component Mt and a mean-reverting short-run

component S∗t :

E(Rt|Ft−1) = St = CtS
∗
tC
′
t, with Mt = CtC

′
t, (17)

where Ct is the lower-triangular Cholesky factor of the secular componentMt. The short-run compo-

nent S∗t is then assumed to follow a covariance-stationary CAW(p, q) process with E(S∗t ) = Ik. The

long-run component Mt is speci�ed as an extension of the MIDAS polynomial proposed by Engle et

al. (2009), which aggregates weighted realized covariance matrices computed over L lags of m-period

realized (co)variances, where the authors select L = 12 and m = 20. The HAR-CAW model assumes

the following speci�cation for the scale matrix St:

St = CC ′ +ARt−1A
′ +A(w)R̄

(w)
t−1A

(w)′ +A(bw)R̄
(bw)
t−1 A

(bw)′ +A(m)R̄
(m)
t−1A

(m)′ , (18)

with R̄
(x)
t−1 denoting the realized covariance computed over a time window x = {w, bw,m}, where

w stands for the weekly (5 days), bw for the biweekly (10 days), and m for the monthly (20 days)

horizon. A and A(x) are k × k parameter matrices. Although the autoregressive parameter matrices

can be restricted to the diagonal case, the illustrated CAW speci�cations are hardly applicable to

more than ten assets (see Golosnoy et al., 2012). Diagonal CAW models completely exclude cross-

sectional (co)variance dynamics.

I furthermore consider two multivariate GARCH approaches for asset returns, which are frequently

applied in the literature. The BEKK-GARCH(p,q) model of Engle and Kroner (1995) for a vector
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of k daily stock returns, denoted by ξt, assumes ξt = Σ
1/2
t υt, where υt ∼ N (0, Ik) and Σ

1/2
t is the

Cholesky factor of the conditional covariance matrix Σt, which is then speci�ed as

Σt = D0D
′
0 +

p∑
i=1

DiΣt−iD
′
i +

q∑
j=1

Gj [ξt−jξ
′
t−j ]G

′
j , (19)

whereD0 is a lower triangular k×k matrix andDi, Gj are k×k matrices. Similar to the CAWmodels,

empirical applications of the BEKK-GARCH(p,q) model and respective diagonal speci�cations are

restricted to lower dimensional covariance matrices.

The DCC-GARCH model of Engle (2002) constitutes a multivariate GARCH approach applicable

to high-dimensional covariance matrices. The DCC-GARCH(p,q) model assumes conditional nor-

mality for the return vector ξt and GARCH(p,q) dynamics for the conditional variances {σ2ii,t}ki=1.

The modeling of dynamic conditional correlations is based on the decomposition

Σt = DtPtDt, (20)

where Dt = diag(σ11,t, . . . , σkk,t) and Pt is a k × k conditional correlation matrix. The latter is

expressed as

Pt =
(
diag(Qt)

)− 1
2Qt

(
diag(Qt)

)− 1
2 , (21)

with Qt being a k × k symmetric, positive de�nite matrix given by

Qt = (1− α− β)Q̄+ αut−1u
′
t−1 + βQt−1, (22)

where α and β are positive scalar parameters and ut is the k-dimensional vector of standardized

residuals with elements

ui,t =
ξi,t
σii,t

, i = 1, . . . , k. (23)

Q̄ is the unconditional covariance matrix of ut which is consistently estimated by the according

sample covariance matrix.

Recently Bauwens and Storti (2011) proposed a conditional autoregressive Wishart (CAW) model
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featuring DCC dynamics, which can be readily applied to the forecasting of high-dimensional co-

variance matrices. The model assumes a conditional Wishart distribution for the realized covariance

matrix Rt and decomposes the scale matrix St as

St = DtPtDt, (24)

where Dt = diag(
√
s11,t, . . . ,

√
skk,t) and Pt is a k×k conditional correlation matrix. The model now

assumes a dynamic equation for the matrix Pt similar to the DCC-GARCH model:

Pt = (1− α− β)R̄+ αZt−1 + βPt−1, (25)

where Zt denotes the realized correlation matrix at time t,

Zt =
(
diag(Rt)

)− 1
2Rt

(
diag(Rt)

)− 1
2 , (26)

and α and β are positive scalar parameters. R̄ denotes the unconditional correlation matrix which

is consistently estimated by the sample mean of realized correlation matrices. Bauwens and Storti

(2011) assume independent HAR dynamics for the conditional variances {sii,t}ki=1.

The Exponentially Weighted Moving Average (EWMA) approach �nally represents a simple fore-

casting model being applicable even for high-dimensional realized covariance matrices. The EWMA

model, which is often used in risk management systems like RiskMetrics (see J.P. Morgan, 1996) to

forecast variances and covariances, is given by

E(Rt|Ft−1) = (1− λ)Rt−1 + λE(Rt−1|Ft−2), (27)

where I set λ to its typical value given by 0.94.

Detailed discussions on obtaining forecasts given the volatility models illustrated above are pro-

vided by Golosnoy et al. (2012) and Chiriac and Voev (2011).
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3.3.2 Statistical Evaluation

In order to assess the predictive accuracy for a given forecasting model I follow Ledoit et al. (2003)

in using the RMSE based on the Frobenius norm of the forecast error, given by

FN =
1

T fore

∑
t

||Rt+1 − R̂t+1|| =
1

T fore

∑
t

∑
i,j

(rij,t+1 − r̂ij,t+1)
2

1/2

, (28)

where T fore is the number of forecast periods.

Table 7 shows the forecasting results for data set 1 and Table 8 presents those for data set 2.

In forecasting the 5-dimensional covariance matrices of data set 1 the 2-factor model outperforms

the competing models in terms of forecasting precision prior to the subprime crisis as well as in

the crisis period. For data set 2 the set of competing models is substantially reduced since only

the EWMA approach, the DCC-GARCH and the DCC-CAW model can be successfully applied to

high-dimensional (co)variance forecasting. The lowest average Frobenius norm is obtained for the

DCC-CAW approach closely followed by the 3-factor model. Note that the forecasting results for

models based on daily asset return data are overall clearly inferior to the forecasting results obtained

by volatility models using realized covariance matrices.

3.3.3 Economic Evaluation

In order to assess the economic value of the obtained volatility forecasts I follow Chiriac and Voev

(2011) in constructing portfolios which maximize the utility of a risk-averse investor. Here I as-

sume a second degree polynomial utility function and/or a conditional return distribution which is

completely characterized by its �rst two moments (e.g. the normal distribution). The investor's

portfolio optimization problem then reduces to the minimization of portfolio volatility via selecting

the according asset weights while �xing a given expected return (Markowitz, 1952).

I now assume an investor minimizing portfolio volatility subject to an expected portfolio return

µp for the next trading day. The optimal portfolio is then given by the solution ω̂t+1 to the quadratic
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problem

ω̂t+1 = arg min
ωt+1

ω′t+1 R̂t+1 ωt+1 s.t. ω′t+1 E(ξt+1|Ft) = µp and ω′t+1 ι = 1, (29)

where ωt+1 is the k×1 vector of portfolio weights chosen at t and held until t+1, ι is an k×1 vector of

ones, and µp is the target return. ξt+1 denotes the 1-day ahead asset return vector. I assume serially

uncorrelated daily asset returns which is typically met in practice and set E(ξt+1|Ft)
!

= µ, where µ

is approximated by the sample mean of returns. In order to assess the predictive accuracy of the

considered models I compare the ex-post realization of the conditional portfolio mean and standard

deviation. I therefore solve the minimization problem of Equation (19) resulting in an optimal weight

vector ω̂t+1 for each model and compute ξpt+1 = ω̂′t+1ξt+1 and σ
p
t+1 =

√
ω̂′t+1Rt+1ω̂t+1 for t = T ?, T ?+

1, T ? +2, . . . , where T ? denotes the number of in-sample observations. Solving the optimal portfolio

problem for various levels of the target portfolio return µp results in a predicted e�ciency frontier,

which characterizes the best mean-variance trade-o� achievable by using a particular forecasting

model. A suitable benchmark scenario is obtained by constructing the e�ciency frontier using the

ideal forecast R̂t+1 = Rt+1.

Figures 12 to 14 show the obtained e�ciency frontiers for the two data sets and forecasting win-

dows averaged over the respective forecasting periods. As expected, the results show a by far lower

achievable portfolio variance for a given portfolio mean in case of the ideal benchmark forecasts.

Among the considered forecasting models the factor approach shows overall remarkably good ex-post

mean-variance tradeo�s. The EWMA and the DCC-CAW models are nevertheless strong competi-

tors. Selecting the global minimum variance portfolio as a natural reference point, the factor models

stay unmatched in the rather calm forecasting phase I of data set 1 but are marginally outperformed

in the turbulent phase II of data set 1 and the calm phase of data set 2. The results show considerable

gains by the direct modeling of realized (co)variances opposed to daily return data based GARCH

models where forecast-based ex post mean-variance tradeo�s are overall strictly inferior.

Summarizing the results, although the applied statistical and economic evaluation criteria are

based on completely di�erent objective functions, they overall result in the same models as the best

performing ones, including the set of factor model speci�cations. This �nding can be interpreted as
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evidence in favor of the factor model approach illustrated in this chapter.

4. Conclusions

In this paper I propose a �exible latent dynamic factor model for realized covariance matrices. The

model is based on the matrix logarithm function which enables the modeling of log-(co)variances in

Euclidean space, preserving positive de�niteness and symmetry of covariance matrix forecasts without

having to impose restrictions on the parameter space. By combining latent heterogeneous autore-

gressive processes (HAR, see Corsi, 2009) for the common factor structure with idiosyncratic AR(1)

factors for series-speci�c dynamics the model mitigates the curse of dimensionality while allowing

for rich (co)variance dynamics including a long-memory type of persistence. The simulated Bayesian

estimation approach using basic Markov Chain Monte Carlo (MCMC) techniques enables straightfor-

ward estimation of the model parameters. An empirical application to realized (co)variances of up to

30 NYSE stocks shows that the model can be readily applied to the forecasting of high-dimensional

covariance matrices. Since the elements of the matrix logarithm of a covariance matrix can be inter-

preted as approximations to logarithmic variances and correlations joint factors can be interpreted

as risk-factors related to market-risk and diversi�cation risk, o�ering a direct link to the recent asset

pricing literature.

The empirical application to 5- and 30-dimensional realized covariance matrices of NYSE-traded

stocks shows that the factor model successfully accounts for the observed dynamic behavior of up

to 465 (co)variance series, where 2 to 3 common factors appear overall su�cient in in order to drive

the cross-sectional dynamics. This �nding implies signi�cant dimension reduction in multivariate

volatility modeling without substantially a�ecting in-sample �t. A comprehensive out-of-sample

forecasting experiment based on statistical and economical evaluation criteria �nally shows that the

factor model speci�cations outperform a range of prominent forecasting models from the relevant

literature.
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Appendix: Gibbs Sampling Algorithm

I now illustrate the Gibbs sampling algorithm for obtaining simulated Bayesian point estimates

of the parameters of the factor model presented in Section 2.2. According to Bayes' theorem the

full conditional distribution of each sub-vector of the model's augmented parameter vector θaug =

(a′, vec(Bc)′, diag(Bi)′, diag(Σu)′, φ′, f ′)′ is proportional to the product of the likelihood function and

the sub-vector's joint prior distribution. Here the vector φ embraces the factors' AR coe�cients and f

summarizes all q = p+n factors for all time periods. I assume that the joint prior distribution can be

factorized into the product of marginal prior distributions. Given an initialization for the parameter

vector θaug the Gibbs sampling algorithm now consists in iterative simulation of parameter values

from the full conditional distributions of sub-vectors of θaug. The algorithm thereby generates a

Markov chain which converges to the posterior of the model parameters6. The Gibbs draws conducted

until convergence (so-called burn-in phase) are discarded and only the remaining draws are used for

estimation purposes. Posterior mean and Posterior standard deviation are then approximated by the

respective sample moments. I now state the applied full conditional distributions.

Full conditional sampling of a, Bc and Bi:

Given the factors f and the error variances σ2u,i the model reduces to n independent linear re-

gressions yi = Xiβi + ui, where i = 1, . . . , n and yi denotes the T -dimensional vector of observations

yt,i, Xi is a T × (q + 1) regressor matrix including a constant and the factors {f ct,j}
p
j=1 and f it,i, ui

is a T -dimensional vector of innovations ut,i, and βi = (ai, b
′
i)
′, where bi denotes the vector of row

parameters of the loadings matrix B = (Bc, Bi). Assuming a joint normal prior distribution for βi

with mean µ0,i and variance Σ0,i, the according full conditional distribution is normal with mean

and variance

µi = Σi

(
Σ−10,i µ0,i + Σ̂−1i,ols β̂i,ols

)
, Σi =

(
Σ−10,i + Σ̂−1i,ols

)−1
, (30)

where β̂i,ols = (X ′iXi)
−1X ′iyi and Σ̂i,ols = σ2u,i(X

′
iXi)

−1 denote the ordinary least squares estimates

of βi and the residual variance. In the empirical application of Section 3.2 I chose the following

6For details on the Gibbs sampling algorithm and Monte Carlo Markov Chain methods see e.g. Bauwens et al.
(1999).
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hyper-parameters: µ0,i = 0.2 and Σ0,i = 0.04× Iq+1, implying a prior standard-deviation of 0.2.

Full conditional sampling of σ2u,i:

Given f , a and B and assuming inverted gamma prior distributions for the error variances σ2u,i with

parameters γ0,i and δ0,i the full conditional distribution of σ2u,i is inverted gamma with parameters

γi =
(T

2
+ γ0,i

)
, δi =

(u′iui
2

+ δ−10,i

)−1
. (31)

In the empirical application of Section 3.2 I chose the following hyper-parameters: γ0,i = 2.04 and

δ0,i = 4.81, implying a prior mean of 0.2 and a prior standard-deviation of 1.

Full conditional sampling of φ:

Given the factors f and assuming conjugate Gaussian priors, the factor persistencies are sampled

analogously to βi. In the empirical application of Section 3.2 I chose the following hyper-parameters:

µ0,i = 0.5 × ιq̃ and Σ0,i = Iq̃, where q̃ = 1 for idiosyncratic factors and q̃ = 4 for common HAR

factors; i ∈ {1, . . . , q}. ιq̃ denotes a q̃-dimensional column vector of ones.

Full conditional distribution of the factors f :

All factors are drawn jointly by the �Forward Filtering Backward Sampling� (FFBS) scheme based

on the Kalman �lter (see Kim and Nelson, 1999). For the illustration of the FFBS method it proves

convenient to write the (identi�ed) factor model in standard state-space representation

yt = a+ Zst + ut, ut
iid∼ N(0,Σu) (32)

st = Hst−1 +Rηt, ηt
iid∼ N(0, Iq), (33)

where st is the m-dimensional vector of latent state variables, Z and H are n × m and m × m

matrices, and Iq is a q-dimensional identity matrix. For a q-factor model with idiosyncratic dynamics

and p common HAR (AR(20)) factors we obtain st = (f i
′

t , f
c′
t , f

c′
t−1, . . . , f

c′
t−20)

′, where f it is the n-

dimensional vector of idiosyncratic factors and f ct is a p-dimensional vector of common factors for
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period t. Hence m = n+ 20p. Accordingly

Z =

(
B, 0n×19p

)
, H =



diag(φi1, . . . , φ
i
n) 0 0 0 . . . 0 0

Φ1 Φ2 Φ3 . . . Φ19 Φ20

020p×n Ip 0 0 . . . 0 0

0 Ip 0 . . . 0 0

...
...

... . . .
...

...

0 0 0 . . . Ip 0


, (34)

where 0u×v denotes a u × v matrix of zeros and Φj , j = 1, . . . , 20, are p-dimensional diagonal

matrices of HAR-model implied lag-j autoregressive parameters for the p common factors. Finally

R = [Iq, 019p×q].

Denoting the set of states and data for t = 1, . . . , T by sT = {st}Tt=1 and yT = {yt}Tt=1, respectively,

the joint full conditional density of the latent state variables for all time periods is now obtained as

P (sT |yT ) = P (sT |yT )× P (sT−1|sT , yT )× P (sT−2|sT−1, sT , yT ) (35)

×P (sT−3|sT−2, sT−1, sT , yT )× · · · × P (s1|s2, s3, . . . , sT , yT )

= P (sT |yT )× P (sT−1|sT , yT−1)× P (sT−2|sT−1, yT−2)

×P (sT−3|sT−2, yT−3)× · · · × P (s1|s2, y1)

= P (sT |yT )×
T−1∏
t=1

P (st|st+1, yt),

where I omit dependence on the parameter vector for the sake of readability. The second step of the

derivations in Eq. (25) is due to the state-space framework of Eqs (22) and (23) implying a Markov

property for st and no additional information beyond st+1 and y
t
relevant for predicting st. The

decomposition of the joint full conditional density of sT in Eq. (25) implies that the whole sT sequence

can be drawn jointly via recursive sampling from P (st|st+1, yt). Note that the state-space model

includes state-equations, which are identities. This results in a conditional variance of st given st−1

being not positive de�nite. Therefore only the �rst q elements of st denoted by s
∗
t can be conditioning

factors in the full conditional sampling of sT and hence P (sT |yT ) = P (sT |yT )×
∏T−1

t=1 P (st|s∗t+1, yt)
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(see Kim and Nelson, 1999, p. 194 �.). Due to the model's linear Gaussian nature we directly obtain

a conditional normal distribution for st given s
∗
t+1 and yt with mean and variance given by

st|t,s∗t+1
= st|t + Pt|tH

∗′(H∗Pt|tH
∗′ + Iq)

−1(s∗t+1 −H∗st|t) (36)

Pt|t,s∗t+1
= Pt|t − Pt|tH

∗′(H∗Pt|tH
∗′ + Iq)

−1H∗Pt|t, (37)

whereH∗ comprises the �rst q rows ofH and I refer to standard Kalman �ltering notation in denoting

st|t = E[st|yt] and Pt|t = Var[st|yt]. Both st|t and Pt|t are readily available from the Kalman �lter

algorithm ∀t. The prior derivations imply that the whole sT sequence can be drawn jointly full

conditional via recursive sampling from conditional normal distributions with moments given in Eqs.

(26) and (27).

Forecasting:

The forecast of the latent covariance matrix VT+1 = expm(vech−1(a + BfT+1)) is given by

E[VT+1|FT ], where vech−1 denotes the inverse function of the vech operator. Simulations from

the forecast distribution can be obtained within the Gibbs sampling algorithm via running the Gibbs

sampler based on all available data up to period T and simulating conditional on the respective Gibbs

sweep θaug,(i) the random matrix V
(i)
T+1 = expm(vech−1(a(i) + B(i)f

(i)
T+1)). A consistent simulation

based estimate of E[VT+1|FT ] is then obtained by computing the sample mean of the respective

draws after convergence of the Gibbs sampler.
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Table 1. NYSE Traded Stocks of Data Set 1 and Data Set 2.

Name Symbol Name Symbol

Alcoa AA Home Depot* HD
Abbott Laboratories ABT Hewlett Packard HPQ
Allstate ALL International Business Machines* IBM
Amgen AMGN Intel INTC
American Express* AXP Johnson & Johnson JNJ
Bristol-Myers Squibb BMY JP Morgan Chase & Co. JPM
Citigroup* C Kraft Foods KFT
Colgate-Palmolive CL The Coca-Cola Company KO
Cisco Systems CSCO McDonald's MCD
DuPont DD Medtronic MDT
Dell DELL Microsoft MSFT
The Walt Disney Company DIS P�zer PFE
EMC Corporation EMC Wal-Mart WMT
FedEx FDX Weyerhaeuser WY
General Electric* GE Xerox XRX

*: Stock belongs to data set 1.
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Table 2. Descriptive statistics.

Stock Mean Max. Min. Std. dev. Skewness Kurtosis

Diagonal

AXP (y11) (r11) 0.59 (3.44) 5.29 (57.58) -2.72 (0.07) 1.25 (4.68) 0.21 (4.23) 2.44 (32.78)
C (y22) (r22) 0.71 (3.61) 6.68 (119.86) -2.27 (0.11) 1.37 (5.91) 0.71 (7.65) 3.48 (108.49)
GE (y33) (r33) 0.32 (2.43) 4.98 (51.40) -2.3 (0.10) 1.09 (3.17) 0.51 (4.90) 3.07 (46.97)
HD (y44) (r44) 0.74 (3.46) 4.64 (51.38) -1.99 (0.16) 0.87 (3.97) 0.35 (3.92) 2.82 (28.01)
IBM (y55) (r55) 0.16 (2.26) 3.77 (56.91) -2.37 (0.12) 0.95 (3.05) 0.56 (5.98) 2.95 (67.60)

O�-Diagonal

C-AXP (y21) (r21) 0.35 (1.59) 1.14 (37.66) -0.32 (-0.55) 0.19 (2.78) 0.54 (5.32) 3.64 (46.13)
GE-AXP (y31) (r31) 0.28 (1.11) 0.88 (26.32) -0.24 (-1.47) 0.15 (1.85) -0.03 (5.90) 3.06 (58.08)
HD-AXP (y41) (r41) 0.24 (1.16) 0.85 (27.66) -0.30 (-2.46) 0.15 (1.97) 0.11 (5.33) 3.09 (47.60)
IBM-AXP (y51) (r51) 0.24 (0.92) 0.66 (23.43) -0.31 (-0.79) 0.14 (1.46) -0.14 (5.65) 3.25 (55.89)
GE-C (y32) (r32) 0.31 (1.24) 0.78 (41.69) -0.23 (-0.58) 0.15 (2.12) 0.01 (7.02) 2.84 (91.59)
HD-C (y42) (r42) 0.24 (1.27) 0.76 (27.34) -0.25 (-0.93) 0.15 (2.17) 0.24 (5.02) 3.04 (39.51)
IBM-C (y52) (r52) 0.25 (1.03) 0.81 (36.73) -0.28 (-3.27) 0.14 (1.74) 0.03 (5.33) 3.01 (109.96)
HD-GE (y43) (r43) 0.25 (1.04) 0.78 (26.85) -0.29 (-1.14) 0.14 (1.70) -0.29 (5.90) 3.14 (59.20)
IBM-GE (y53) (r53) 0.28 (0.90) 0.73 (24.05) -0.19 (-0.33) 0.14 (1.44) -0.04 (0.76) 2.79 (57.77)
IBM-HD (y54) (r54) 0.24 (0.87) 0.84 (18.32) -0.31 (-1.20) 0.14 (1.34) 0.06 (5.21) 3.25 (44.18)

Descriptive statistics for the logarithmic and original covariance series of data set 1. Descriptive statistics for original

(co)variance data in brackets.
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Table 3. Portmanteau Diagnostic Test Results.

Lags:
25 50 75 100 25 50 75 100

5-dim. covariance matrix 30-dim. covariance matrix

Data: {Rt}Tt=1

121,838* 214,590* 300,239* 379,713* 5,507,128* 10,979,971* 16,437,898* 21,871,688*

1 common factor:

6,889* 12,694* 18,540* 24,407* 5,430,351* 10,833,631* 16,221,666 21,586,103

2 common factors:

6,556* 12,323* 18,096* 23,914* 5,428,924* 10,832,944* 16,222,752 21,589,451

3 common factors:

5,425,550* 10,827,337* 16,217,204 21,585,275

MIDAS-CAW(3,3):

6,951* 12,878* 18,805* 24,584*

DCC-CAW (HAR):

6,820* 12,848* 18,798* 24,625* 5,501,739* 10,975,374* 16,423,168* 21,813,917*

1% critical values:

5,874 11,602 17,305 22,996 5,413,277 10,822,071 16,230,127 21,637,801

* indicates signi�cance at the 1% level.
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Table 4. P-values of Residual F-tests.

e11 e21 e31 e41 e51 e22 e32 e42 e52 e33 e43 e53 e44 e54 e55

1 common factor:

<.01* <.01* .03 .06 .17 .01 .19 .05 <.01* <.01* .11 <.01* <.01* .01 <.01*

2 common factors:

.02 .02 .11 .11 .26 .19 .38 .06 .03 <.01* .23 .02 <.01* .02 <.01*

MIDAS-CAW(3,3):

.89 .84 .01 <.01* <.01* <.01* <.01* <.01* <.01* <.01* <.01* <.01* .91 <.01* .04

DCC-CAW (HAR):

.26 .03 .12 <.01* <.01* <.01* <.01* <.01* <.01* <.01* <.01* <.01* .09 <.01* <.01*

P-values of residual F-tests for a regression of each single residual series on a constant and 50 lags of the observed

data. * indicates signi�cance at the 1% level.
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Table 6. Estimation Results: 3 Factor Model, Data Set 2.

fc
1 φc

1,1 φc
1,2 φc

1,3 φc
1,4 ψ1 fc

2 φc
2,1 φc

2,2 φc
2,3 φc

2,4 ψ2

.6152 .0433 .0080? .0033? .9906 .3043 .0575 .0189? .0057? .9723

fc
3 φc

3,1 φc
3,2 φc

3,3 φc
3,4 ψ3

.1967 .0228? .0292? .0195 .9981

?: 95% posterior con�dence region includes the null. Number of Gibbs sequences: 40,000; Burn-in: 10,000. ψi:

characteristic root of the i'th common factor's restricted AR(20) process (HAR).
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Table 7. Statistical Evaluation of Forecasting Accuracy: Data Set 1.

Phase 1 Phase 2 Phase 1 Phase 2

Model (p, q) (p, q) Model

Unrestricted CAW (3,2) 6.074 (3,2) 52.474 EWMA 7.380 62.361

Diagonal CAW (3,3) 6.062 (3,3) 52.799 DCC-CAW (HAR) 6.000 52.377

Unrestricted (3,3) 6.121 (3,2) 53.977 Unrestricted 6.233 52.974
MIDAS-CAW HAR-CAW

Diagonal (3,2) 6.029 (3,2) 54.276 Diagonal 6.108 53.113
MIDAS-CAW HAR-CAW

Unrestricted (2,3) 7.705 (2,3) 76.201
BEKK-GARCH

Diagonal (3,3) 7.441 (3,3) 63.550
BEKK-GARCH

DCC-GARCH (1,2) 8.093 (3,3) 72.121

Factor Models:

1 common factor 5.979 48.771
2 common factors 5.952 48.366

Reported is the average Frobenius norm of the forecast error. If model orders are quoted, models up to order (4, 4)

have been estimated and the presentation is limited to the lowest obtained average Frobenius norm. Bold numbers

indicate the smallest number of the average Frobenius norm.
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Table 8. Statistical Evaluation of Forecasting Accuracy: Data Set 2, Phase 1.

Model Model

DCC-GARCH (3,3) 25.861 1 common factor 21.473

DCC-CAW (HAR) 21.135 2 common factors 21.651

EWMA 24.800 3 common factors 21.257

Reported is the average Frobenius norm of the forecast error. If model orders are quoted, models up to order (4, 4)

have been estimated and the presentation is limited to the lowest obtained average Frobenius norm. Bold numbers

indicate the smallest number of the average Frobenius norm.
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Figure 5. Logarithmic variances and correlations and corresponding matrix-logarithmic approximations for AXP

(i = 1), C (i = 2) and GE (i = 3), data set 1. Dashed lines: matrix-log. For reasons of legibility every 100'th

observation is plotted.
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Figure 7. Fraction of total variance explained by the factors. Factor model including 2 common and 15 idiosyncratic

factors; data set 1.
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Figure 8. Filtered common factors. Factor model including 2 common and 15 idiosyncratic factors; data set 1.
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Figure 10. Fraction of total variance explained by the factors. Factor model including 3 common and 465

idiosyncratic factors; data set 2. Left panel: fraction of total variance explained by factors for the k = 30 diagonal

matrix-log elements. Right panel: fraction of total variance explained by factors for the k(k− 1)/2 = 435 o�-diagonal

matrix-log elements.
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Figure 11. Filtered common factors. Factor model including 3 common and 465 idiosyncratic factors; data set 2.
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Figure 12. Mean-variance plots of the ex-post realized portfolio return (y-axis in %) against realized standard

deviation (on the x-axis in %) for data set 1, out-of-sample phase I. Dashed solid line: ideal forecast based on

observed covariance matrix; dashed bold dark-gray line: 1-factor model; bold light-gray line: 2-factor model; ∗:

multivariate GARCH models based on daily returns; +: EWMA; ◦: DCC-CAW; solid: remaining CAW models. All

plots are averages across the 252 out-of-sample periods in phase I.
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Figure 13. Mean-variance plots of the ex-post realized portfolio return (y-axis in %) against realized standard

deviation (on the x-axis in %) for data set 1, out-of-sample phase II. Dashed solid line: ideal forecast based on

observed covariance matrix; dashed bold dark-gray line: 1-factor model; bold light-gray line: 2-factor model; ∗:

multivariate GARCH models based on daily returns; +: EWMA; ◦: DCC-CAW; solid: remaining CAW models. All

plots are averages across the 251 out-of-sample periods in phase II.
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Figure 14. Mean-variance plots of the ex-post realized portfolio return (y-axis in %) against realized standard

deviation (on the x-axis in %) for data set 2, out-of-sample phase I. Dashed solid line: ideal forecast based on

observed covariance matrix; dashed bold dark-gray line: 1-factor model; bold light-gray line: 2-factor model; dashed

bold light-gray line: 3-factor model; ∗: multivariate GARCH models based on daily returns; +: EWMA; ◦:

DCC-CAW; solid: remaining CAW models. All plots are averages across the 228 out-of-sample periods in phase I.
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