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Abstract

In a fair division game an indivisible object with an unknown common value

is owned by a group of individuals and should be allocated to one of them while

the others are compensated monetarily. Implementing fair division games in

the lab, we �nd many occurrences of the winner's curse under the �rst-price

rule but only few occurrences under the second-price rule. Moreover, bidding

behavior is very heterogeneous across subjects. A considerable share of our

subjects anticipates that other bidders overbid and respond by bidding lower

than in equilibrium. We �nd that the level-k model performs well in explaining

our results.
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1 Introduction

Auctions and fair division games are used to allocate indivisible goods among a

group of bidders. Whereas in an auction this indivisible good is owned by an ex-

ternal party and bidders seek to buy it from that party, in a fair division game the

good is collectively owned by the group ex ante. Each bidder has the same legal

right to obtain the good, therefore, if one bidder gains acceptance, the price she

pays is equally shared among the bidders. Fair division games are proposed as sim-

ple mechanisms that dissolve equal partnerships e�ciently (Cramton, Gibbons, and

Klemperer, 1987, McAfee, 1992).1 They can be used in con�ict settlements, e.g., in

case of inheritance, divorce, or the dissolution of a joint venture, where the owner

after the bidding has to compensate the others.

A typical example that is due to Engelbrecht-Wiggans (1994) is from Amish inheri-

tance law: When an Amish farmer dies, the farm estate is handed down as a whole.

Ex ante all heirs have the same legal right to receive the estate. Which of the heirs

inherits the farm is determined by a fair division game. When the heirs make their

bids the exact return is unknown but each heir has a private estimate of it. The

heir with the highest bid receives the farm land and the price the winning bidder

pays is split among all the heirs.

The present study is the �rst to analyze fair division games in a common value

environment. The inherited object, e.g., the formerly mutually owned possessions

in a marriage or the joint venture, has the same value to all bidders ex post and

this value is unknown when bidding takes place. Instead, each bidder has private

information on what the future value might be.

Studying common value fair division games in the lab is important for two reasons.

Firstly, understanding the bidding behavior of real subjects in fair division games

1In the partnership dissolution literature, the terms winner's bid auction and loser's bid auction

are used for the �rst- and second-price fair division game, respectively (see, e.g., McAfee, 1992).
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is interesting in its own right. Since fair division games are recommended as a way

to dissolve partnerships in a wide variety of contexts one might want to know more

about how people respond to fair division games. Do they play the equilibrium

strategy straight away? If not, do they learn to play the equilibrium? How costly

are deviations from optimal bidding?

Secondly, studying common value fair division games provides a new angle on recent

attempts to explain the winner's curse in common value auctions. Despite the sim-

ilarity to auctions, fair division games have some unique properties. The fact that

in fair division games the price is not paid to an outside party but divided among

the bidders raises the possibility for a sophisticated bidder to bid deliberately low

in expectation of other bidders falling prey to the winner's curse with this bidder

receiving an excessive price for her share of the object.

Previous experimental studies on auctions with common values have shown that

actual behavior di�ers substantially from what theory predicts. Winning bidders

systematically overbid the (unknown) true value of the item and end up earning

negative payo�s (see, e.g., Bazerman and Samuelson, 1983; Kagel and Levin, 1986;

Kagel, Levin, and Harstad, 1987 and Kagel and Richard, 2001). The winner's curse

phenomenon has been studied extensively in the lab. It is especially distinct with

inexperienced bidders. Moreover, it is pervasive under �rst- and second-price rule.2

Two prominent explanations of the winner's curse are cursed equilibrium (Eyster

and Rabin, 2005) and level-k bidding (Crawford and Iriberri, 2007a). More recently,

two studies analyze whether belief-based models such as level-k reasoning and cursed

equilibrium can explain the winner's curse. Charness and Levin (2009) study an in-

dividual decision making version of the acquiring-a-company game. Ivanov, Levin,

and Niederle (2010) analyze the maximal game. Both studies �nd that the win-

2Some studies claim to �nd the winner's curse in the �eld: Capen, Clapp, and Campell (1971),

Lorenz and Dougherty (1983), Dessauer (1981), Cassing and Douglas (1980) and van Damme

(2002). See also Harrison and List (2008) for a more skeptical view on the winner's curse in the

�eld.
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ner's curse persists in situations in which beliefs do not matter. They conclude that

belief-based models fail to explain the essence of the winner's curse.

In this paper we take the opposite direction. By studying fair division games we

increase the strategic interaction component between bidders relative to auctions.

By doing this we can not only analyze whether a bidder falls prey to the winner's

curse but also study how other bidders respond.

The theory of fair division games is closely related to the auctions considered in

Engelbrecht-Wiggans (1994) and charity auctions Goeree, Maasland, Onderstal, and

Turner (2005). Experimentaly, fair division games have so far only been studied with

private values. Güth, Ivanova-Stenzel, Königstein, and Strobel (2002, 2005) com-

pare repeated �rst- and second-price auctions and fair division games, and analyze

to what extent learning is in�uenced by the structural di�erences between the two

games. They �nd for both games that learning does not drive bidding towards the

benchmark solution. More recently, there are also a few experimental studies about

dissolution of partnership (Kittsteiner, Ockenfels, and Trhal, 2009 and Brooks, Lan-

deo, and Spier, 2009). These studies, however, mainly focus on e�ciency which is

not an issue in a common value environment.

We provide the symmetric risk neutral Nash equilibrium strategies for both �rst-

and second-price fair division games. Based on this theoretical investigation of the

fair division game with common values and independently and identically distributed

private signals, we experimentally study the extent of the winner's curse and bidding

behavior over time. We �nd a high incidence of the winner's curse in �rst-price fair

division games; but in second-price fair division games there are fewer occurrences

of the winner's curse than one would expect in equilibrium. Subjects learn to bid

more cautiously over time under the �rst-price rule but not under the second-price

rule. Moreover, bidding behavior in fair division games is very heterogeneous across

subjects and noisier than in auctions.

In order to explain our �ndings we use two alternative solution concepts: the �-

cursed equilibrium introduced by Eyster and Rabin (2005) and level-k reasoning as
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applied to auctions by Crawford and Iriberri (2007a). We �nd that level-k reasoning

is better suited to explain the heterogeneity in our data: While a considerable part

of the subjects overbids, there is also a large fraction of subjects that anticipates

this and underbids. These subjects prefer not to win the object in order to exploit

the excessive bidding behavior of other bidders. Level-k reasoning provides a good

explanation for how deviations from equilibrium bidding can lead to fewer incidences

of the winner's curse than under equilibrium bidding.

The remainder of this paper is organized as follows. Section 2 provides the sym-

metric risk neutral Nash equilibrium strategies for the fair division games. Section

3 presents the experimental design and section 4 provides the experimental results

for the fair division games. Section 5 compares the results obtained in fair divi-

sion games and auctions. In section 6 we discuss the �-cursed equilibrium and the

level-k bidding strategies and study which model performs better at explaining our

experimental results. Section 7 concludes. The detailed derivation of the equilib-

rium, �-cursed equilibrium and level-k bidding strategies of the fair division game

is deferred to the Appendix.

2 Fair division games

In a fair division setting, all bidders have ex ante the same legal rights concerning

the object. The highest bidder therefore earns the value of the item, but has to

compensate the losers monetarily at the same time. The highest bidder pays the

n-th share of the price to each of the other group members and thus earns the value

of the object less n−1
n

times its price.

This logic results in the following payo� function for bidder i = 1, ..., n, which is
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common knowledge,

ΠFDG
i =

⎧⎨⎩ v − n−1
n
p

p
n

if i = w

otherwise,
(1)

where index w denotes the highest bidder and p equals the highest bid under the

�rst-price rule and second-highest bid under the second-price rule. Since we are

studying a common value setting the true value of the object is unknown to the

bidders, who receive an imprecise private information signal instead.

Theoretical solution

For our derivation we assume that the true value v is uniformly distributed on [v, v].

The signals xi, for i = 1, ..., n, are drawn independently from a uniform distribution

on the interval [v− a
2
, v+ a

2
]. The parameter values v, v and a are common knowledge.

For signals in the region of xi ∈ [v+ a
2
, v− a

2
], i.e., without corner cases, the symmetric

risk neutral Nash equilibrium (SRNNE) strategy is given by 3

b∗1(xi) = xi −
a

2
+

a

n2
+
a(n3 − n2 − n+ 1)

n2(n2 + n− 1)
exp{− n2

a(n− 1)
(xi − (v +

a

2
))} (2)

for the �rst-price fair division game and

b∗2(xi) = xi −
a

2
+
a(n+ 1)

n2
+ C0 exp{

n2

a
xi} (3)

for the second-price fair division game.4 The derivation of the equilibrium bid-

ding functions is transferred to the Appendix.5 Table 2 shows the SRNNE bidding

strategies for the fair division game (FDG) with respect to the parameters in our

experiment.

3Following most of the experimental literature on common value auctions, we focus only on the

interior region of signals. Note that signals in the corner regions xi < v+ a
2 and xi > v− a

2 contain
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First-price FDG b∗1(x) = x− 13.125 + 675
152

exp{− 8
45

(x− 65)}

Second-price FDG b∗2(x) = x− 5.625− 8.070× 10−34 exp{ 8
15
x}

Table 1: SRNNE bidding strategies

Note: n = 4, v ∼ U [50, 150], xi ∼ U [v − 15, v + 15], x ∈ [65, 135]

3 Experimental design and procedures

This study focuses on sealed bid common value fair division games and auctions in

which a single indivisible object is awarded to the highest among n bidders. The

true value of the object v is not known at the time bids are placed and is uniformly

distributed on [v, v]. Each bidder receives a private information signal x about the

true value. Four di�erent games are investigated: the �rst- and second-price auction

and the �rst- and second-price fair division game. In our experiment subjects bid

in groups of n = 4. The true values were randomly drawn from the uniform interval

v ∈ [50, 150] and the private signals from the interval xi ∈ [v− 15, v+ 15]. Subjects

were asked to place a single bid bi ∈ [0, 200] in each round. All values are denoted in

a �ctitious currency termed ECU (Experimental Currency Unit). In order to keep

monetary incentives in both games approximately constant, we varied the exchange

rate (100 ECU = 14 Euro in the Auction, 100 ECU = 1 Euro in the fair division

game).6

We conducted 4 sessions, 2 with fair division games and 2 with auctions. In each

additional information about the true value.

4Note that there is no analytical solution for the constant C0. C0 is found numerically for the

parameter values in the experiment.

5Solutions to a similar problem are derived in Engelbrecht-Wiggans (1994).

6Güth, Ivanova-Stenzel, Königstein, and Strobel (2002, 2005) face the same problem of unequal

incentives for both games. Due to the lack of previous data on fair division games with common

values, we accommodated our adjustment of the exchange rate to the one used in Güth et al.

(2002, 2005) for private values.
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Treatm. Period 1-20 Period 21-40 No. of subjects

1 FDG1st FDG2nd 28

2 FDG2nd FDG1st 28

3 Auc1st Auc2nd 32

4 Auc2nd Auc1st 32

Table 2: Experimental design

Note: FDG1st/2nd: Fair division game under �rst/second-price rule, Auc1st/2nd:

Auction under �rst/second-price rule

session each subject played 40 rounds: 20 rounds under �rst-price rule and 20 rounds

under second-price rule. We reversed the order of the price rules for the same game

to check for order e�ects. Bidding groups were rematched after each round within

�xed matching groups.7 See Table 2 for a summary of the experimental design.

In the main text we only report the results of periods 1-20. The games in periods

21-40 are slightly contaminated in the �rst few rounds after the rule change but the

qualitative results are the same as for periods 1-20. An analysis of periods 21-40

can be found in the Appendix.

Subjects took part in only one of the sessions and therefore either played the auction

or the fair division game. In the invitation to this experiment, they were informed

that it was possible to make losses during the experiment. When they entered the

laboratory, the possibility of losses was announced once more, together with the

information that a loss would not be charged in monetary terms but in the form of a

simple task that the subjects concerned would have to perform after the experiment.

The length of this task would depend on how much loss they made.8 Furthermore,

7In the auctions we had four matching groups of 8 subjects and in the fair division games two

matching groups of 8 and one of 12 subjects.

8The task consisted of searching for the letter 'a' in a document produced by a random words

generator. This was, however, only revealed to the subjects that were actually concerned. 25

subjects had to do this chore in the auction treatments. No subject made losses in the fair division
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subjects were told that it was still possible to leave in case they did not agree. How-

ever, only one out of 121 subjects left.

The computerized experiment was conducted in October/November 2007 at the

laboratory of the Max-Planck-Institute of Economics in Jena using z-Tree (Fis-

chbacher, 2007). We recruited 120 undergraduate students from various �elds such

as economics, biology, law and informatics from Jena University, using the ORSEE

software (Greiner, 2004). After reading aloud the instructions several control ques-

tions had to be solved to make sure that the participants understood the game. The

experiment lasted for approximately 2 hours. Average earnings in the fair division

games were 11.93 Euro plus a show up fee of 2.50 Euro.

4 Results

The winner's curse is usually described as bidders' systematic failure to �condition

upon the critical future event (e.g. winning the auction) and correctly infer and

incorporate the relevant posterior in their current bidding decisions.� (Charness

and Levin, 2009, p. 207) This description of the winner's curse, however, is not very

helpful when analyzing data, because it is di�cult to tell whether a deviation from

equilibrium bidding is due to a systematic failure of correct Bayesian updating or

something else. As a result, the following de�nition of winner's curse is often applied

in the common value auction literature (see, e.g., Bazerman and Samuelson, 1983):

The winner of an auction su�ers from the winner's curse if her payo� is negative.

Ex post she prefers to lose the auction and get zero payo�. We apply the same logic

to the fair division game. A winning bidder compares her payo� from winning to

the payo� she would have received if she had lost. We assume that a bidder can

make sure to lose the fair division game by placing the lowest possible bid, a zero

games.
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bid. More formally, the de�nition of the winner's curse applied here looks as follows:

De�nition The winner of the fair division game su�ers the winner's curse, if her

payo� is lower than the payo� resulting from a zero bid, i.e.

(i) in a �rst-price fair division game, winning bidder i su�ers the winner's curse

if v − n−1
n
bi <

q
n
, where bi is bidder i's bid and q is the highest bid among the

remaining n− 1 bidders and

(ii) in a second-price fair division game, winning bidder i su�ers the winner's

curse if v− n−1
n
q < r

n
, where q and r are the highest bid and the second-highest

bid among the remaining n− 1 bidders, respectively.

Note that this is a conservative de�nition of the winner's curse for the second-price

rule. Alternatively, a winning bidder might compare her winning bid with the strat-

egy of undercutting the highest bid of the remaining bidders by a small amount.

The bidder would lose but receive a high price for her share. Since the decisions of

the other bidders are unknown when placing the bid, this strategy entails the risk

of winning the fair division game and is therefore not an appropriate benchmark for

comparing payo�s from winning and losing the fair division game.

For auctions we will say that the winner's curse occurs whenever the ex post payo�

of the winner is negative. Consistent with the theoretical benchmark in the previous

section, we will throughout the analysis only consider bids that are based on signals

within the inner region of v, i.e., x ∈ [v + a
2
, v − a

2
]. Signals outside of this region

were not per se excluded from the experiment; however, they contained additional

information regarding the true value which could possibly have changed the bidding

behavior for those signals. We also frequently refer to the shading rate which is

de�ned as the amount a bid falls short of the signal relative to the dispersion of the

signals. Formally, the shading rate is de�ned by x−b
a/2

.
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FDG 1st FDG 2nd Auc 1st Auc 2nd

All bidders (obs.) 385 360 433 472

Signal overbidding 15.8% 51.4% 10.2% 39.6%

Mean shading rate 0.7786 -0.018 0.5354 0.1542

Mean equil. shading rate 0.8566 0.375 0.9581 0.5

Only winners (obs.) 97 92 101 114

Winner's curse 54.6% 7.6% 70.3% 56.1%

Winner's curse (in SRNNE) 9.3% 26.1% 3.0% 21.1%

Winners with highest signal 48.5% 59.8% 71.3% 55.3%

Signal overbidding 40.2% 78.3% 21.8% 71.1%

Mean shading rate 0.1445 -0.5281 0.2916 -0.2413

Mean pro�t margin -3.084 -4.050 -2.888 -1.113

Mean equil. pro�t margin 7.662 4.882 7.179 3.429

Only losers (obs.) 288 268 332 358

Signal overbidding 7.6% 42.2% 6.6% 29.6%

Mean shading rate 0.985 0.1627 0.6014 0.2816

Table 3: Descriptive statistics for inexperienced bidders (periods 1�20)

Note: FDG/Auc: Fair division game/Auction; 1st/2nd: �rst/second-price rule

The �rst two columns of Table 3 present a general picture of the data obtained

in the fair division game treatments. It provides mean shading rates, equilibrium

shading rates and the fraction of bids that exceed the signal (signal overbidding).

Equilibrium shading rates, i.e., x−b
∗(x)

a/2
, with b∗(x) as the SRNNE bidding functions,

are around 0.85 for the �rst-price fair division game and 0.375 for the second-price

fair division game.

Considering all bidders, we �nd that for both price rules subjects overbid their sig-

nals to a substantial amount and average shading rates are below their equilibrium

predictions. Looking at winners and losers separately suggests that under both price

rules, losers bid relatively close to equilibrium, whereas winners' bids lie dramati-
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cally below the equilibrium shading rate. As a consequence, more than 50% of all

winners su�er from the winner's curse in the �rst-price fair division game, while with

SRNNE bidding less than 10% of the fair division games would lead to the winner's

curse.

Surprisingly, we �nd the opposite picture for the second-price rule. Here, SRNNE

bidding would lead to the winner's curse in 26% of times. Actual winners, however,

su�er from the winner's curse in only 7.6% of the cases. According to our de�ni-

tion of the winner's curse in fair division games, a bidder su�ers the winner's curse

whenever v < (n−1)q+r
n

. Thus, the higher the second- and third-highest bid the more

likely it is that the winner su�ers the winner's curse. Since there are less occurrences

of the winner's curse compared to SRNNE the second- and third-highest bids must

be below their SRNNE values for some of the periods.

Pro�t margin is de�ned as the di�erence between the realized value of the object

and the price, i.e., it measures the pro�t the winner makes per unit of the object

exchanged. In an auction one unit of the object is exchanged; in the fair division

games only n−1
n

units are exchanged because the winner already possesses 1
n
-th of

the object. If all bidders bid according to SRNNE the average price the winner

pays would be well below the realized value of the object. Average pro�t margins in

equilibrium are 7.7 and 4.9 for the �rst- and second-price rule, respectively. Average

pro�t margins resulting from actual bidding behavior are negative; winning bidders

overpay on average.

Finally, Table 3 reveals that bidding behavior in our experiment is very heteroge-

neous. This is evident in the large di�erences in shading rates between winners

and losers. Moreover, the probability that the holder of the highest signal wins the

fair division game is only around 50% for the �rst-price rule and around 60% for

the second-price rule. This suggests that the subjects employ very di�erent bidding

strategies.

Table 4 explores learning behavior for both price rules separately. The endogenous

variables in these regressions are the shading rate and the winner's pro�t margin.
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FDG 1st FDG 2nd

Dep. variable shading rate pro�t margin shading rate pro�t margin

Coef. Coef. Coef. Coef.

(Intercept) 0.9443*** -7.251*** 0.0152 -5.2024***

Period -0.013* 0.4016** -0.0033 0.0649

Obs 385 97 360 92

*** p < 0.01 ** p < 0.05 * p < 0.1

Table 4: Shading rates and winner pro�t margins in the fair division game Note:

Mixed e�ects linear regression model with nested random e�ects on the individual and the

matching group level

Looking at shading rates �rst, we �nd that they are on average signi�cantly pos-

itive for �rst-price fair division games. Under the second-price rule we �nd that

average shading rates at the outset of the game are not signi�cantly di�erent from

zero. Moreover, shading rates do not increase in the number periods played. With

respect to the pro�t margins, we �nd that under both �rst- and second-price rule

winners make on average considerable losses. Under the �rst-price rule this is re-

duced over time, since we �nd a positive e�ect of period. Overall, the in�uence of

time suggests that a learning process is taking place under the �rst-price rule but

not the second-price rule.

5 Comparing fair division games and auctions

The theoretical solutions for the �rst- and second-price auction with common values

for the same distributions of the random variables are available in the literature

and can be directly adapted (see, e.g., Milgrom and Weber, 1982, Kagel and Levin,

2002). For signals in the region of xi ∈ [65, 135], i.e., without corner cases, the
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symmetric risk neutral Nash equilibrium strategies for the auctions are given by

b∗A1(xi) = xi − 15 + 6 exp{− 2

15
(xi − 65)} (4)

for the �rst-price rule and

b∗A2(xi) = xi −
15

2
(5)

for the second-price rule.

Figure 1 represents the SRNNE solutions for both auctions and fair division games

graphically for the parameter values employed in the experiment. For a given price

rule and a given signal the equilibrium bid in the fair division game is slightly higher

than in the corresponding auction. Furthermore, Figure 1 shows that the nonlinear-

ities at both ends of the range of signals we consider are rather small.9 In contrast

to the rather similar SRNNE bidding strategies, we �nd behavioral di�erences be-

tween fair division games and auctions. The fair division games display a higher

proportion of bids that exceed the signal (see columns three and four of Table 3).

15.8% of all bids in the �rst-price fair division game and 51.4% in the second-price

fair division game exceed the signal, whereas this is true for only 10.2% in �rst-price

auctions and 39.6% in second-price auctions (pairwise comparisons are statistically

signi�cant at p=0.0059 for the �rst-price rule and p=7.24e-05 for the second-price

rule).

There are more occurrences of the winner's curse for auctions than for the fair divi-

sion games than in the auctions. 70.3% of all winners in the �rst-price auction and

56.1% in the second-price auction make losses and consequently su�er the winner's

curse.

Figure 2 graphically shows the development of shading rates (averaged over the

matching groups). The upper horizontal line in each of the four graphs indicates

the shading rate implied by the SRNNE bidding strategy. The lower horizontal

9This is because the exponential term in the equilibrium bidding functions is negligible in that

region.
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Figure 1: SRNNE bidding functions for the auction and fair division games

Note: n = 4, v ∼ U [50, 150], xi ∼ U [v − 15, v + 15], x ∈ [65, 135], FD 1st/2nd: Fair

division game under �rst/second-price rule, Auc 1st/2nd: Auction under

�rst/second-price rule
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Auc 1st Auc 2nd

Dep. variable shading rate pro�t margin shading rate pro�t margin

Coef. Coef. Coef. Coef.

(Intercept) 0.3096*** -7.5595*** 0.1629** -0.6652

Period 0.0197*** 0.4393*** -0.0013 -0.0460

Obs 433 101 472 114

*** p < 0.01 ** p < 0.05 * p < 0.1

Table 5: Shading rates and winner pro�t margins in the auction games Note: Mixed

e�ects linear regression model with nested random e�ects on the individual and the match-

ing group level

line displays the shading rate leading to an expected pro�t margin of exactly zero,

the break-even shading rate. Figure 2 suggests that bidding behavior in auctions

converges on average to the region around the break even shading rate and, thus,

subjects learn to avoid the winner's curse. In the fair division games, however, bid-

ding behavior is rather dispersed and does not converge.

The observations from Figure 2 are con�rmed in Table 5. For both price rules aver-

age shading rates are signi�cantly positive at the outset of the game. Pro�t margins

are signi�cantly negative in the starting periods of the �rst-price auction but shad-

ing rates increase signi�cantly and losses are avoided in the �nal periods. In the

second-price auction pro�t margins are not signi�cantly di�erent from zero in the

�rst periods and no learning takes place.

6 Explaining the observed bidding behavior

The previous sections have shown that the bidding behavior in the experiment dif-

fers signi�cantly from SRNNE bidding. Moreover, bidding behavior is very hetero-

geneous. This leads to more occurrences of the winner's curse for the �rst-price rule
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Figure 2: Mean shading rates over time (matching group level)

Note: '−' equilibrium behavior, '- - -' break even strategy
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and less occurrences of winner's curse for the second-price rule relative to SRNNE

bidding. In order to better understand bidding behavior in our experimental data,

we therefore turn to alternative solution concepts. The solution concepts that we

will apply are the �-cursed equilibrium and level-k reasoning.

6.1 Cursed equilibrium

Eyster and Rabin (2005) account for the winner's curse in their �-cursed equilib-

rium by assuming that each bidder �correctly predicts the probability distribution

over her opponents actions, but she underappreciates the connection between her

opponents' equilibrium action pro�le and their types.� (Eyster and Rabin, 2005,

p. 1629) If in the �rst- and second-price fair division game, bidders are fully cursed,

i.e. � = 1, they do not see any correlation between the other bidders' bids and the

true value and act as if in a private value environment. Their expected value of

the item, conditional on winning, is perceived to be E(v∣xi). If � = 0, bidders are

perfectly rational, and their expectation of the true value conditional on winning

is E(v∣xi, xi ≥ xj ,∀j). Consequently, they play the SRNNE strategies. For the

�-cursed equilibrium it is typically assumed that all bidders have the same degree

of cursedness � ∈ [0, 1] and that this is common knowledge.

The �-cursed equilibrium bidding functions for the �rst- and second-price fair divi-

sion game are10

b�1 (x) = x− 13.125 + 7.5 �

and

b�2 (x) = x− 5.625 + 7.5 � .

As discussed above, for a bidder with � = 0 the bidding strategies collapse to the

Nash equilibrium strategies. A fully cursed bidder (� = 1) overbids by 7.5 under

10See Appendix A.1 for the derivation. The exponential terms are neglected.
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both price rules. For a degree of cursedness strictly between 0 and 1 the bidding

function is between these two extremes. However, as Fudenberg (2006) points out,

equilibria with � ∈ (0, 1) are di�cult to justify from a learning-theoretic perspective.

Moreover, evidence from experiments with experienced bidders, such as Kagel and

Richard (2001), suggest that the winner's curse is a transitory phenomenon that

vanishes with experience (Fudenberg, 2006). In the �-cursed equilibrium, however,

the winner's curse is a feature of the stable outcome.

6.2 Level-k reasoning

Crawford and Iriberri (2007a) propose level-k reasoning as an alternative explana-

tion for the winner's curse. Level-k reasoning was introduced in Stahl and Wilson

(1994, 1995) and Nagel (1995) and it relaxes the assumption that players' beliefs

about other players' behavior coincide with the Nash equilibrium strategies.11 In-

stead, players are classi�ed according to di�erent types: Level-0 type players are

assumed to choose a non-strategic action. In many applications this is a random

action from a uniform distribution over the action space. Level-1 types assume that

all other players are level-0 types and they play the best response, level-2 types best

respond to the level-1 type players, and so on. In Crawford and Iriberri (2007a) and

other applications of level-k reasoning it is considered su�cient to concentrate on

levels 0 to 2.

Level-k reasoning is best suited to explain initial play. When players play a game

repeatedly, they learn about other players' behavior, increase their level of reason-

ing and may ultimately play the Nash equilibrium. Following Crawford and Iriberri

(2007a) we, therefore, restrict our analysis to the �rst �ve rounds. Note that the

level-0 type is not meant to explain a signi�cant fraction of players' behavior. Its

11See Crawford, Costa-Gomes, and Iriberri (2012) for a recent survey on level-k reasoning and

alternative models of strategic thinking.
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�rst-price FDG second-price FDG

R.L1 bR.L11 (x) = x− 6 bR.L12 (x) = x+ 6

R.L2 bR.L21 (x) = x− 13.6 bR.L22 (x) = x− 6.4

T.L1 bT.L11 (x) = x− 14 bT.L12 (x) = x− 6

T.L2 bT.L21 (x) = x− 12.84 bT.L22 (x) = x+ 1.69

Table 6: Level-k strategies for the �rst- and second-price fair division games

Note: The derivation of the level-k strategies is given in the Appendix A.2.

main purpose is to anchor the beliefs of the level-1 types.12 In an auction setting,

apart from random play, there is a second candidate for level-0 behavior, namely

naive or truthful bidding: A truthful level-0 bidder (T.L0) bids her private signal. A

truthful level-1 bidder (T.L1) chooses her optimal bidding function assuming that all

other bidders bid their own private signals, and so on. As in Crawford and Iriberri

(2007a), we consider the following types: random level-0 (R.L0), random level-1

(R.L1), random level-2 (R.L2), truthful level-0 (T.L0), truthful level-1 (T.L1) and

truthful level-2 (T.L2).

Table 6 presents the level-k strategies for the parameter values used in our experi-

ment. The derivation of the di�erent level-k bidding strategies for fair division games

can be found in Appendix A.2. Comparing the level-k bidding strategies in Table 6

with the SRNNE bidding strategies, we observe the following general pattern: R.L1

types overbid relative to SRNNE bidding. The R.L2 types best respond by bidding

slightly lower than in equilibrium. Similarly, since the T.L0 type overbids by con-

struction, the T.L1 underbids relative to equilibrium. The T.L2 type responds by

overbidding, but for the �rst-price fair division game the T.L2 type is quite close

to the Nash equilibrium both in terms of her bidding strategy as well as her beliefs

about her opponents' strategies.

12A random level-1 bidder with signal x beliefs that her opponents (random level-0 bidders) bid

uniformly on the range of possible signals [x− a, x+ a].
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6.3 Estimation of �- and k-types in our population

In order to categorize the subjects in our experiment into the di�erent level-k, �-

cursed or equilibrium types, we closely follow the mixture model approach pioneered

in Stahl and Wilson (1994, 1995) which was later adapted to the auction setting by

Crawford and Iriberri (2007a). In this speci�cation all bidders make logistic errors.

Let k denote the type of a bidder (e.g. random level-1, but k can also represent the

degree of cursedness or equilibrium beliefs) and g denote the game (i.e. �rst-price

or second-price fair division game). Bidder i's observed bid in game g in the t-th

round is cgit and her corresponding expected utility given her belief type k and signal

xit is S
g
k(cgit∣xit). The probability of bid cgit if subject i is of type k is then given by

Pr(cgit∣k, xit, g, �i) =
exp(�i S

g
k(cgit∣xit))∫ c

c
exp(�i S

g
k(e∣xit))de

, (6)

where �i denotes the precision of subject i and c and c are the lower and upper

bound of the relevant action space, respectively.13 As �i → 0, subject i's bids are

uniformly distributed on the interval [c, c]; as �i →∞ bidder i always plays exactly

the best response.

Let �ik denote the probability that bidder i is of type k , with
∑K

k=1 �ik = 1. For

each individual i = 1, ..., N we �nd the values (�i1, ..., �iK , �i) that maximize the

likelihood
K∑
k=1

�ik

5∏
t=1

Pr(cgit∣k, xit, g, �i). (7)

Using the estimates of the �iks, we can classify the subjects into di�erent types and

�nally obtain the proportion �k of each type k in our population of subjects.

The results of the classi�cation are presented in Table 7.14 For each price rule, i.e.

�rst-price fair division game and second-price fair division game, we estimate two

13Following Crawford and Iriberri (2007a) we assume that the relevant action space is equal to

the possible values of v given signal xi, i.e., c = max{v, xi − a
2} and c = min{v, xi +

a
2}.

14Tables that present the classi�cation of types on the subject-level are provided in Appendix

B.
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Level-k plus Equilibrium Cursed Equilibrium

�rst-price second-price �rst-price second-price

Type (k) �k �k � �k �k

R.L0 0.25 0.39 R.L0 0.25 0.61

R.L1 0.11 0.14 0 0.52 0.07

R.L2 0.14 0.21 0.1 0.02 0.07

T.L1 0.50 0.09 0.2 0.00 0.00

T.L2 ∼ EQ 0.05 0.3 0.00 0.07

EQ 0.00 0.11 0.4 0.04 0.00

0.5 0.00 0.04

0.6 0.04 0.04

0.7 0.04 0.00

0.8 0.04 0.00

0.9 0.00 0.00

1 0.07 0.11

Log-likelihood -998.97 -1039.84 -1034.20 -1049.52

Table 7: Models and estimates for the fair division games

models: In the �rst model, called level-k plus equilibrium, we estimate the fractions

of R.L1, R.L2, T.L1 and T.L2 types and, in addition, equilibrium bidders. Subjects

that cannot be assigned to any of these types (i.e., �ik = 0 for all k) are labeled

R.L0 types. The second model, called cursed equilibrium, assumes that the subjects

are �-cursed (and believe that other subjects are equally cursed), where we vary the

degree of cursedness from 0 to 1 in steps of 0.1. Note that this model also includes

equilibrium bidders, since � = 0 implies equilibrium behavior. Again, subjects that

cannot be assigned to any level of cursedness, are labeled R.L0 bidders. Comparing

the likelihoods of the two models, we see that, for both price rules, the level-k plus

equilibrium model explains the experimental data better than the cursed equilib-

rium model. Given that the level-k plus equilibrium model uses fewer parameters,

22



this is a considerable advantage.

Table 7 also shows that subjects are very heterogeneous: In the �rst-price fair di-

vision game 11% overbid (R.L1 types) and 64% underbid (R.L2 and T.L1 types).

In the second-price fair division game 19% overbid (R.L1 and T.L2 types) and 30%

underbid (R.L2 and T.L1 types). This heterogeneity explains the low probability

that the bidder with the highest signal wins and the di�erence in shading rates be-

tween winners and losers, documented in section 5.

Comparing the �-cursed equilibrium and the level-k model (both plus equilibrium),

we �nd that the level-k model fares better in explaining our results. Note, that

the �-cursed bidding functions describe a symmetric equilibrium. Thus, it seems

obvious that a non-equilibrium model that allows for heterogeneous types performs

better. For our econometric speci�cation, however, we allow for di�erent degrees of

cursedness that can coexist within the population. In fact, the cursed equilibrium

model has more parameters than the level-k plus equilibrium model. Nonetheless,

the level-k model has a clear likelihood advantage.

Compared to the results of Crawford and Iriberri (2007a) there is a greater frac-

tion of R.L0 types in our data. Recall that level-0 types are usually not thought

to describe the behavior of real subjects, but are merely present in the minds of

level-1 bidders. Thus, Crawford, Costa-Gomes, and Iriberri (2012) interpret a low

estimated fraction of level-0 types as soundness of the results. This suggests that

behavior is more noisy in our fair division game experiments. Our results for the

�rst-price and second-price auction (reported in Appendix B) are similar to the

results of Crawford and Iriberri (2007a) and show a lower fraction of R.L0 types.

This suggests that the higher fraction of R.L0 types is indeed attributable to the

fair division game and not to our experimental procedures or to the subject pool.

How can the level-k model help to explain the �nding that there are many oc-

currences of the winner's curse in the �rst-price fair division game and few in the

second-price fair division game? Suppose two overbidders (say R.L1 types) and two

underbidders (R.L2 or T.L1 types) play a fair division game together. One of the
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Figure 3: Histogram of average shading rates per subject for the �rst-price fair

division game.
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Figure 4: Histogram of average shading rates per subject for the second-price fair

division game.
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two overbidders is likely to win and pays her bid under the �rst-price rule. If this

bidder had made a zero bid she would receive a share of the second-highest bid

which is likely to be high, because it is either from the second overbidder or from

an underbidder with a very high signal. Thus, it is quite likely that the winner's

payo� is less than what she would have received as a loser. The winner su�ers from

the winner's curse. In a second-price fair division game, however, the winner's pay-

o� from making a zero bid is a share of the third-highest bid which is likely to be

from an underbidder and thus is low. This makes losing the game unattractive and

the winner may prefer her payo� even if she pays more than in equilibrium for the

object.

This argument assumes that our subjects can be classi�ed in overbidders who might

fall prey to the winner's curse and bidders that best respond to this behavior by

bidding low. However, there are other explanations that can lead to the same re-

sult. The �rst alternative explanation is that subjects are not consistent. They

sometimes shade their signal a lot, sometimes they shade too little. In this case sub-

jects cannot be classi�ed into over- or underbidders. If this explanation were true,

average shading rates for the 20 rounds would be very similar across subjects and

centered around a moderate value. Figures 3 and 4 show the histograms of average

shading rates for the �rst-price and second-price fair division game, respectively.

The histogram for the �rst-price fair division game is roughly centered around an

average shading rate of 0.6. However, there are extreme values well above 1 that are

hard to obtain as average shading rates from random over- and underbidding. The

histogram for the second-price rule is bimodal with one mode at a negative average

shading rate of -0.5 and the other mode at 0.3.

Moreover, the classi�cation according to the level-k model (although only based on

the �rst �ve rounds) works rather well: The R.L0 bidders are evenly spread across

the range of average shading rates. The highest average shading rates stem from

T.L1 bidders for the �rst-price rule and from R.L2 bidders for the second-price rule.

R.L1 bidders are consistently among the bidders with the lowest shading rate. Based
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on this evidence we reject the alternative explanation that all subjects choose their

shading rates randomly each round.

A second alternative explanation is that each subject has an inborn shading rate and

that these inborn shading rates stem from a �xed distribution over some interval.

On average the bidder with the highest shading rate wins and the losers have lower

shading rates. The di�erence to the level-k explanation is that this behavior is not

driven by di�erent beliefs and the corresponding best responses. If this explanation

were true we would observe similar histograms for both price rules. Figures 3 and 4,

however, show that subjects react di�erently when faced with di�erent price rules.

Finally, if subjects do not best respond to beliefs, the level-k model and the �-cursed

model are equally wrong. Since the cursed model allows for more types and hence

covers the interval more densely, one would expect that the �-cursed model �ts the

data better than the level-k model. The fact that the level-k model fares better

for both price rules (and for �rst- and second-price auctions) suggests that best

responding to lower types' actions does play a role at least for some of our subjects.

7 Discussion and conclusions

The level-k analysis highlights that in fair division games some bidders exploit the

excessive bidding of other bidders. Note that this is easier under the �rst-price rule.

In the second-price fair division game, two overbidding players are necessary to push

the price above the value of the object. If three players bid low and attempt to ex-

ploit the winner, the winner pays only a rather low price. Moreover, by placing a

high bid, it is even possible for a bidder to increase the price she receives for her

share. This might explain why we observe a smaller fraction of overbidding types

and more underbidding types in the �rst-price fair division game as compared to

the second-price rule.

Since fair division games are advocated in situations of con�ict about who should

27



get an object and how other parties involved should be compensated, one could ask

whether they are a useful mechanism to solve such con�icts. The results of this ex-

periment suggest that fair division games are not a very appropriate mechanism in a

common value environment. The winners systematically overpay and there is little

learning at least for the second-price rule. Bidding behavior is very heterogeneous

and largely driven by the attempt to outguess the other bidders. This behavior leads

to bids that do not re�ect the private signals very well. Consequently, the price will

not be an unbiased estimator of the common value, and the fair division game will

not accurately aggregate the privately owned signals.

Our results support the �nding in Crawford and Iriberri (2007a) that the level-k

model can explain bidding behavior and occurrences of the winner's curse in com-

mon value environments better than the cursed equilibrium model. Moreover, level-k

reasoning explains the surprising �nding that subjects in our experiment generate

fewer occurrences of the winner's curse than SRNNE bidding predicts for the second

price rule. Charness and Levin (2009) and Ivanov, Levin, and Niederle (2010), how-

ever, �nd that belief based models such as cursed equilibrium and level-k reasoning

fail to explain the winner's curse. How can we reconcile this seemingly contradictory

evidence?

One argument is provided by Camerer, Nunnari, and Palfrey (2012). In our econo-

metric speci�cation we allow for logistic errors in subjects' best responses. Thus, as

for the majority of empirical studies that use non-equilibrium beliefs, our explanation

of bidding behavior is not purely belief-based but a combination of non-equilibrium

beliefs and imperfect best responses.

But there is a second important di�erence. Charness and Levin (2009) and Ivanov,

Levin, and Niederle (2010) concentrate on �correct Bayesian updating�, i.e., overbid-

ding as a result of ignoring the information contained by the event of winning. In the

level-k speci�cation that we use to classify our subjects, only random L1-types do

not condition on the event of winning the object. Since they assume that all other

bidders bid randomly, winning the object is not informative from their perspective.
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Random L1-types form only a relatively small fraction of subjects in our experiment

(11% and 14% in the �rst- and second-price fair division game, respectively). All

other types may overbid or underbid relative SRNNE but these deviations are driven

by strategic considerations (or noise in case of random L0 types) and are not a re-

sult of incorrect updating. Thus, we believe that there is no contradiction between

our results and those of Charness and Levin (2009) and Ivanov, Levin, and Niederle

(2010): While the level-k model provides a good description of the bidding behavior,

it does not necessarily lead to the winner's curse. In fact, in the second-price fair

division game level-k bidding even helps to overcome the winner's curse.

Appendix

A Derivation of bidding strategies

We use the framework introduced by Milgrom and Weber (1982) and extended

by Eyster and Rabin (2005) to incorporate the �-cursed equilibrium to �nd the

equilibrium bidding strategies for the fair division game both under the �rst- and

second-price rule.

An indivisible object is auctioned o� to n ≥ 3 risk neutral bidders.15 At the outset

of the fair division game each bidder owns one n-th of the object. The vector

(x1, ..., xn) ∈ [x, x]n ⊂ ℝn is a pro�le of private signals held by the individual

bidders and v ∈ ℝ is an additional possibly payo� relevant random variable with

density ℎ(v) . We assume that for every i, g(xi∣v) satis�es the monotone-likelihood

property. In our common value environment the signals held by di�erent bidders

15For the �rst-price fair division game the minimum number of bidders is 2. For our presentation

of the second-price fair division game, however, we require that n ≥ 3 .
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are uncorrelated given v . Thus, the joint density of x1, ..., xn, v is f(x1, ..., xn, v) =∏n
i=1 g(xi∣v)ℎ(v) . The value of the object to a bidder is u(x1, ..., xn, v) which is

continuous and increasing in the signals xi and v. We further assume that bidders

are symmetric, i.e., u(x1, ..., xn, v) is symmetric in the private signals xi .

Let Y−i and Z−i be the highest and second-highest signals among all bidders except i .

Following Milgrom and Weber (1982) we de�ne the following two functions: r(xi) =

E[u(x1, ..., xn, v)∣xi] is the expectation of the object's value given the private signal

xi and �(xi, y) = E[u(x1, ..., xn, v)∣xi, Y−i = y] is the expectation of the object's value

given the private signal xi and given that the highest signal of the other bidders is

y .

We derive the general bidding functions and provide the bidding functions for the

following speci�cation: u(x1, ..., xn, v) = v, v ∼ U [v, v] and xi ∼ U [v − a
2
, v + a

2
], for

i = 1, ..., n .

But before we derive the di�erent bidding strategies, this section presents some

important results that will be used in the next sections. Firstly, we need to know

bidder i's expectation of the common value given that she observes signal x and that

the highest bid of the remaining n−1 bidders is y . Secondly, we need the probability

density function (pdf) and cumulative density function (cdf) of the highest signal

among all bidders except bidder i, given that bidder i observes signal x. Thirdly,

for the second-price fair division game, we need an expression for the joint pdf and

cdf of the highest and second-highest bids among all bidders except bidder i, given

that bidder i observes signal x. The �rst two are already derived in Crawford and
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Iriberri (2007b):

�(x, y) =

⎧⎨⎩
x− a

2
+ a

n
− x−y

n
, x− a < y ≤ x ,

y − a
2

+ a
n
− ( y−x

a
)n−1

1−( y−x
a

)n−1

(
n−1
n

)
(x+ a− y) , x < y ≤ x+ a ,

fY ∣X(y∣x) =

⎧⎨⎩
1
a

(
1− x−y

a

)n−1
, x− a < y ≤ x ,

1
a

[
1− (y−x

a
)n−1

]
, x < y ≤ x+ a ,

FY ∣X(y∣x) =

⎧⎨⎩
1
n

(
1− x−y

a

)n
, x− a < y ≤ x ,

1
a

[
y − x− a

n
(y−x

a
)n
]

+ 1
n
, x < y ≤ x+ a ,

The joint density of the highest (y) and second-highest (z) valuation of the other

n− 1 bidders given bidder i's own valuation x is

fY,Z∣X(y, z∣x) =
[
− n− 1

a2
(
z − v
a

+
1

2
)n−2

]upperbound
lowerbound

, (8)

for y ≥ z and zero otherwise. We have to distinguish the following cases:

case lowerbound upperbound

A X ≥ Y ≥ Z x− a/2 z + a/2

B Y ≥ X ≥ Z y − a/2 z + a/2

C Y ≥ Z ≥ X y − a/2 x+ a/2

Case A:

fY,Z∣X(y, z∣x) =
n− 1

a2
(1− x− z

a
)n−2, for a ≥ y − z ≥ 0 and 0 otherwise. (9)

FY,Z∣X(y, z∣x) =

∫ z

x−a

∫ y

z̃

n− 1

a2
(1− x− z̃

a
)n−2dỹ dz̃

=
1

n
(1− x− z

a
)n + (1− x− z

a
)n−1

y − z
a

Case B:

fY,Z∣X(y, z∣x) =
n− 1

a2
(1− y − z

a
)n−2, for a ≥ y − z ≥ 0 and 0 otherwise. (10)
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FY,Z∣X(y, z∣x) =

∫ z

x−a

∫ x

z̃

n− 1

a2
(1− x− z̃

a
)n−2dỹ dz̃

+

∫ y

x

∫ z

ỹ−a

n− 1

a2
(1− y − z

a
)n−2dz̃ dỹ

=
2

n
(1− x− z

a
)n − 1

n
(1− y − z

a
)n + (1− x− z

a
)n−1

x− z
a

Case C:

fY,Z∣X(y, z∣x) =
n− 1

a2
[(1− y − z

a
)n−2 − (

z − x
a

)n−2], (11)

for a ≥ y − z ≥ 0 and 0 otherwise.

FY,Z∣X(y, z∣x) = FY,Z∣X(y, x∣x) +

∫ z

x

∫ y

z̃

n− 1

a2
[(1− ỹ − z̃

a
)n−2 − (

z̃ − x
a

)n−2]dỹ dz̃

=
2

n
− 1

n
(1− y − x

a
)n +

z − x
a
− 1

n
(1− y − z

a
)n

+
1

n
(1− y − x

a
)n − 1

n
(
z − x
a

)n − (
z − x
a

)n−1
y − z
a

=
2

n
+
z − x
a
− 1

n
(1− y − z

a
)n − 1

n
(
z − x
a

)n − (
z − x
a

)n−1
y − z
a

For the derivation of the (cursed) equilibrium strategies we also need the expressions

for the conditional valuation, pdf and cdf for the corner regions of the signal range:

x ∈ [v − a
2
, v + a

2
] x ∈ [v + a

2
, v − a

2
] x ∈ [v − a

2
, v + a

2
]

r(x)
x+a

2
+v

2
x

x−a
2
+v

2

�(x, x) v +
x+a

2
−v

n
x− a

2
+ a

n
v +

(x−a
2
−v)an−1+(an−(x−v+a

2
)n)/n

an−1−(x−v+a
2
)n−1

fY ∣X(x∣x) 1
a

(
x−v+a

2

a
)n−2 1

a
1

v−x+a
2

(1− (
x−v+a

2

a
)n−1)

FY ∣X(x∣x) 1
n

(
x−v+a

2

a
)n−1 1

n
1
n

a
v−x+a

2
(1− (

x−v+a
2

a
)n)
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A.1 Derivation of SRNN and �-cursed equilibrium bidding

strategies

A.1.1 First-price fair division game

In the �rst-price fair division game the bidder with the highest bid wins and pays

her own bid. In contrast to the auction, however, she does not pay the price to an

auctioneer but to all bidders, including herself, in equal parts. Therefore, a bidder

receives some positive payo� even if she is not the highest bidder. A �-cursed bidder

with private signal x maximizes the expected payo�

max
b

∫ b∗−1(b)

x˜
((1− �)�(x, y) + �r(x)− n− 1

n
b)fY ∣X(y∣x) dy

+

∫ x̃

b∗−1(b)

b∗(y)

n
fY ∣X(y∣x) dy ,

(12)

where x˜ = max{v − a
2
, x− a} and x̃ = min{v + a

2
, x+ a} are the lowest and highest

signal one of the other bidders can have received from the perspective of a bidder

with signal x. Setting the �rst derivative of (12) equal to zero and applying the

symmetry condition b = b∗(x), we obtain the di�erential equation

b∗
′
(x) =

n

n− 1
((1− �)�(x, x) + �r(x)− b∗(x))

fY ∣X(x∣x)

FY ∣X(x∣x)
. (13)

Let �(x) = n
n−1

fY ∣X(x∣x)
FY ∣X(x∣x) and v�(x) = (1 − �)�(x, x) + �r(x). Then we can rewrite

equation (13) as

b∗
′
(x) + b∗(x)�(x) = v�(x)�(x) . (14)

Let x = v − a
2
and x = v + a

2
be the lowest and highest signal a bidder can receive,

respectively. Using the integrating factor P (x) = exp{−
∫ x
x
�(u)du} we obtain

(b∗(x)P (x))′ = v�(x)�(x)P (x).
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Integrating both sides yields

b∗(x)P (x)− b∗(x)P (x) =

∫ x

x

v�(t)�(t)P (t)dt

=

∫ x

x

v�(t)P ′(t)dt

= v�(x)P (x)− v�(x)P (x) +

∫ x

x

v�(t)P ′(t)dt.

Using the initial condition b∗(x) = v�(x) this yields

b∗(x) = v�(x)− P (x)−1
∫ x

x

P (t)
dv�(t)

dt
dt

and plugging in the expression for the integrating factor, we �nally obtain

b∗(x) = v�(x)−
∫ x

x

exp{−
∫ x

t

�(u)du}dv�(t)

dt
dt.

b∗(x) = (1− �)�(x, x) + �r(x)−
∫ x

x

exp{−
∫ x

t

n

n− 1

fY ∣X(u∣u)

FY ∣X(u∣u)
du}d(1− �)�(t, t) + �r(t)

dt
dt.

Plugging in the expressions for r(x), �(x, x), fY ∣X(x∣x) and FY ∣X(x∣x) for the the

three di�erent regions of x, we obtain the following solution

b∗(x) =

⎧⎨⎩

n(x+a
2
)+n2v−v

n2+n−1 + �
(x−v+a

2
)n(n−2)

2(n2+n−1) , x ∈ [v − a
2
, v + a

2
] ,

x− a
2

+ a
n2 + �a

2
n−2
n

+ [ 1
n2 − (1−�

n
+ �

2
) 1
n2+n−1 ]

× (n− 1) a exp{− n2

n−1
x−v−a

2

a
} , x ∈ [v + a

2
, v − a

2
] ,

v�(x)+
(
[ 1
n2 − (1−�

n
+ �

2
) 1
n2+n−1 ] exp{− n2

n−1
v−v−a
a
} − 1

n2

)
× (n− 1) aP (v − a

2
;x)−

∫ x
v−a

2
P (t;x)dv�(t)

dt
dt , x ∈ [v − a

2
, v + a

2
] ,

(15)

where P (t;x) = exp{−
∫ x
t
�(u)du}.

A.1.2 Second-price fair division game

In the second-price fair division game the highest bidder receives the object and

has to pay the second-highest bid to all bidders in equal parts. A bidder who does
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not win the object might therefore receive one n-th of her own bid, if she is the

second-highest bidder or she receives one n-th of the second-highest bid of the other

n− 1 bidders, if her bid is below this bid. Thus, the �-cursed equilibrium strategy

solves

max
b

∫ b∗−1(b)

x˜
((1− �)�(x, y) + �r(x)− n− 1

n
b∗(y))fY ∣X(y∣x) dy

+

∫ x̃

b∗−1(b)

∫ b∗−1(b)

x˜
b

n
fY,Z∣X(y, z∣x) dz dy

+

∫ x̃

b∗−1(b)

∫ x̃

z

b∗(z)

n
fY,Z∣X(y, z∣x) dy dz .

(16)

Setting the �rst derivative of (16) equal to zero and applying the symmetry condition

b = b∗(x), we obtain the di�erential equation

b∗
′
(x) = −n ((1− �)�(x, x) + �r(x)− b∗(x))

fY ∣X(x∣x)

FY,Z∣X(x̃, x∣x)− FY,Z∣X(x, x∣x)
. (17)

We de�ne �(x) = n
fY ∣X(x∣x)

FY,Z∣X(x̃,x∣x)−FY,Z∣X(x,x∣x) . Together with the de�nition v�(x) =

(1− �)�(x, x) + �r(x) we can simplify the �rst-order condition to

b∗
′
(x)− b∗(x)�(x) = −v�(x)�(x) . (18)

Using the integrating factor Q(x) = exp{
∫ x
x
�(u)du} we obtain

(b∗(x)Q(x))′ = −v�(x)�(x)Q(x).

Integrating both sides yields

b∗(x)Q(x)− b∗(x)Q(x) =

∫ x

x

−v�(t)�(t)Q(t)dt

=

∫ x

x

v�(t)Q′(t)dt

b∗(x)Q(x) = b∗(x)Q(x)−
∫ x

x

v�(t)Q′(t)dt

= b∗(x)Q(x)− [v�(t)Q(t)]xx +

∫ x

x

v′�(t)Q(t)dt

= b∗(x)Q(x)− v�(x)Q(x) + v�(x)Q(x) +

∫ x

x

v′�(t)Q(t)dt
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The boundary condition that we used for the �rst-price fair division game, b∗(x) =

(1−�)�(x, x)+�r(x) , is not applicable for the second-price fair division game. Since

equilibrium bidding strategies are strictly increasing in signals, a bidder who observes

x = x knows that she has the lowest bid and can increase her expected payo� by

raising her bid slightly above (1−�)�(x, x) +�r(x) . By doing this she will still not

win the object but she increases the probability of being the second-highest bidder

and, thus, increase her payment in case of losing. Instead, we use the condition

b∗(x) = (1−�)�(x, x)+�r(x) . A bidder with the highest possible signal knows that

she is the highest bidder. Increasing her bid further does not change her expected

payo� and reducing her bid increases the probability of not winning the object and

receiving a smaller payment.16 With this boundary condition b∗(x) = v�(x) the �rst

two terms on the right-hand side cancel out. Thus, we obtain

b∗(x) = v�(x) +Q(x)−1
∫ x

x

v′�(t)Q(t)dt (19)

Plugging in the expression for the integrating factor yields

b∗(x) = v�(x) +

∫ x

x

exp{−
∫ t

x

�(u)du}dv�(t)

dt
dt. (20)

16For our speci�c example we obtain that a bidder with the lowest possible signal x = v − a
2 ,

and who therefore knows that v = v , bids v in the �rst-price fair division game and above v in the

second-price fair division game. Conversely, a bidder with the highest possible signal x = v + a
2

knows that v = v and bids v in the second-price fair division game and below v in the �rst-price

fair division game. This parallels the result in Güth and van Damme (1986) that the �rst-price

rule guarantees overbidding proofness and the second-price rule guarantees underbidding proofness

in fair division games in a private value environment.
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Plugging in the expressions for v�(x) and �(x) for the three di�erent regions of x in

equation (20) for our setting yields

b∗(x) =

⎧⎨⎩

(1− �)(v + x−v+a/2
n

) + � x+v+a/2
2

+ (1−�
n

+ �
2
)
∫ v+a

2

x
Q(x; t)dt

+
∫ v−a

2

v+a
2
Q(x; t)dt+

∫ v+a
2

v−a
2
Q(x; t)dv�(t)

dt
dt , x ∈ [v − a

2
, v + a

2
] ,

x− a
2

+ a(n+1)
n2 + �a

2
n−2
n

+ exp{−n2

a
(v − a

2
− x)}

×
( ∫ v+a

2

v−a
2
Q(v − a

2
; t)dv�(t)

dt
dt− a

n2

)
, x ∈ [v + a

2
, v − a

2
] ,

v�(x) +
∫ v+a

2

x
Q(x; t)dv�(t)

dt
dt , x ∈ [v − a

2
, v + a

2
] ,

(21)

where Q(x; t) = exp{−
∫ t
x
�(u)du}.For x ∈ [v + a

2
, v − a

2
] we can simplify this to

b∗(x) = x− a

2
+
a(n+ 1)

n2
+ �

a

2

n− 2

n
+ C0 exp{n

2x

a
}. (22)

From the numerical solution for the speci�c values � = 0, n = 4, a = 30 and v = 150

we obtain C0 = −8.070×10−34 . Plotting the bidding function in equation (22) with

these parameters on the range x ∈ [65, 135] gives an almost straight line, which

suggest that the exponential term is negligible.

A.2 Derivation of the level-k bidding strategies

A.2.1 First-price fair division game

If bidder i believes all other bidders employ the bidding strategy b(x), she solves the

maximization problem:

max
bi

∫ b−1(bi)

xi−a
(�(xi, y)− n− 1

n
bi)fY ∣X(y∣xi) dy

+

∫ xi+a

b−1(bi)

b(y)

n
fY ∣X(y∣xi) dy .

(23)

The �rst-order condition is

(�(xi, b
−1(bi))− bi)fY ∣X(b−1(bi)∣xi) =

n− 1

n
FY ∣X(b−1(bi)∣xi)

∂b−1(bi)

∂bi
. (24)

37



Truthful L0-players:

A truthful level-0 bidder bids bT.L01 (x) = x . A truthful L1 bidder best responds to

the truthful L0 bidder. Thus, the �rst-order condition becomes

(�(xi, bi)− bi)fY ∣X(bi∣xi) =
n− 1

n
FY ∣X(bi∣xi). (25)

Using the conditional expectation and the conditional pdf and cdf for the case where

y ≤ x and solving for bi we obtain

bT.L11 (x) = x− n2 − 2

2(n2 − 1)
a. (26)

A truthful L2 bidder best responds to the truthful L1 bidder. Plugging the truthful

L1 bidder's strategy in the �rst-order condition we obtain

(�(xi, (b
T.L1
1 )−1(bi))− bi)fY ∣X((bT.L11 )−1(bi)∣xi) =

n− 1

n
FY ∣X((bT.L11 )−1(bi)∣xi). (27)

We conjecture and verify later that bT.L21 (x) ≥ bT.L11 (x). Thus, we plug in the ex-

pected value, pdf and cdf for the case y ≥ x. There is no closed form solution for

the general case. For our parameter values we obtain

bT.L21 (x) = x− 12.8355. (28)

Random L0-players:

Random L0-types bid uniform on [x−a, x+a]. Thus, for random L1-bidders winning

the fair division game is not informative. Their maximization problem is:

max
bi

∫ bi

xi−a
(r(xi)−

n− 1

n
bi)fY (y) dy +

∫ xi+a

bi

y

n
fY (y) dy , (29)

where r(x) = x and

fY (y) =
n− 1

2a
(
y − xi + a

2a
)n−2 ,

FY (y) = (
y − xi + a

2a
)n−1 .
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The �rst-order condition is

xi − bi −
n− 1

n

bi − xi + a

n− 1
= 0 (30)

which yields the bidding strategy

bR.L11 (x) = x− a

n+ 1
. (31)

For random L2-bidders the �rst-order condition is the same as in equation (24) with

b−1(bi) = bi + a
n+1

. For bR.L21 (x) ≤ bR.L11 (x), we have y = (bR.L11 )−1(b) ≤ x. Using

the corresponding pdf and cdf, we can solve the �rst-order condition and obtain the

bidding strategy

bR.L21 (x) = x− n3 + n2 − 2n− 4

2(n+ 1)(n2 − 1)
a. (32)

The objective function for the random L1 decision rule is

S1
R.L1(b∣x) =

⎧⎨⎩
x
n

+ n−2
n2 a if b ≤ x− a,

x
n

+ n−2
n2 a+ ( b−x+a

2a
)n−1(x− b+ b−x+a

n2 ) if x− a < b < x+ a,

x− n−1
n
b if x+ a ≤ b .

(33)

For k = T.L1, T.L2, R.L2 the objective functions are

S1
k(b∣x) =

⎧⎨⎩

x
n

+ (n−2) a
2n2 − d

n
if b−1k−1(b) < x− a,

x
n

+ (n−2) a
2n2 − d

n
+ (1− x−b−d

a
)n 2(n−1)(x−b)−(n−2)a+2d

2n2 if x− a < b−1k−1(b) < x,

x
n
− na+2(n−1)(x−b)+2d

2n2 ( b+d−x
a

)n

+n(b+d−x)−n2(b−d−x)−a(n2−2)
2n2

b+d−x
a

if x < b−1k−1(b) < x+ a,

x− n−1
n
b if x+ a < b−1k−1(b) ,

(34)

where d is the amount a bid falls short of the signal of a bidder of type k − 1, so

that (bk−11 )−1(b) = b+ d .
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A.2.2 Second-price fair division game

If bidder i believes all other bidders employ the bidding strategy b(x), she solves the

maximization problem:

max
bi

∫ b−1(bi)

xi−a
(�(xi, y)− n− 1

n
b(y))fY ∣X(y∣xi) dy

+

∫ xi+a

b−1(bi)

∫ b−1(bi)

xi−a

bi
n
fY,Z∣X(y, z∣xi) dz dy

+

∫ xi+a

b−1(bi)

∫ xi+a

z

b(z)

n
fY,Z∣X(y, z∣xi) dy dz .

(35)

The �rst-order condition for the second-price fair division game is:

(�(xi, b
−1(bi))− bi)fY (b−1(bi)∣xi)

∂b−1(bi)

∂bi

+
1

n
(FY,Z∣X(y, b−1(bi)∣xi)− FY,Z∣X(b−1(bi), b

−1(bi)∣xi)) = 0.

Truthful L0-players:

A truthful level-1 bidder best responds to the bidding function bT.L02 (x) = x. Plugging

this in the �rst-order condition and assuming that b−1(bi) ≤ x we get

bT.L12 (x) = x− n2 − 2n− 2

2(n2 − 1)
a. (36)

A truthful level-2 bidder best responds to the bidding function bT.L12 (x). We conjec-

ture and verify later that b−1(bi) ≥ x. There is no general closed form solution, but

for our speci�c parameter values (a = 30 and n = 4) we get

bT.L22 (x) = x+ 1.687.

Random L0-players:

Since a random L0 bidder's bid is uniform on [x− a, x+ a], having the highest bid
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is not informative about the value of the object for a R.L1 bidder. Thus, she solves

max
bi

∫ bi

xi−a
(r(xi)−

n− 1

n
y)fY (y) dy +

∫ xi+a

bi

∫ bi

xi−a

b

n
fY,Z(y, z) dz dy

+

∫ xi+a

bi

∫ xi+a

z

z

n
fY,Z(y, z) dy dz ,

where r(xi) = xi and for y ≥ z

fY,Z(y, z) = (n− 1)(n− 2)(
1

2a
)2 (

z − xi + a

2a
)n−3

FY,Z(y, z) = (n− 1)
y − xi + a

2a
(
z − xi + a

2a
)n−2 − (n− 2)(

z − xi + a

2a
)n−1 .

This yields the following bidding function for random L1-bidders:

bR.L12 (x) = x+
a

n+ 1
. (37)

For random L2-bidders the same �rst-order condition as for truthful L1- and L2-

bidders applies, with b−1(bi) = bi − a
n+1

. This yields the bidding function

bR.L22 (x) = x− n3 − n2 − 4n

2(n+ 1)(n2 − 1)
a. (38)

The objective function for the Random L1 decision rule is

S2
R.L1(b∣x) =

⎧⎨⎩
x
n

+ n−4
n2 a if b ≤ x− a,

x
n

+ n−4
n2 a+ ( b−x+a

2a
)n−1(x− b+ 2a

n
(1 + 1

n
b−x+a

2a
)) if x− a < b < x+ a,

x
n
− (n−2)(n−1)

n2 a if x+ a ≤ b .

(39)

For k = T.L1, T.L2, R.L2 the objective functions are

S2
k(b∣x) =

⎧⎨⎩

x
n

+ (n−4) a
2n2 − d

n
if b−1k−1(b) < x− a,

x
n

+ (n−4) a
2n2 − d

n
+ (1− x−b−d

a
)n 2(n−1)(x−b)−(n−4)a+2d

2n2 if x− a < b−1k−1(b) < x,

x
n

+ (2d−a)n2+2a(n+1)
2n2

b+d−x
a
− 2(b+d−x)+2n(x−b)+(n+2)a

2n2 ( b+d−x
a

)n if x < b−1k−1(b) < x+ a,

x
n
− (n−2)(n−1)

2n2 a+ n−1
n
d if x+ a < b−1k−1(b) ,

(40)

where d is the amount a bid falls short of the signal of a bidder of type k − 1, so

that (bk−12 )−1(b) = b+ d .
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B Additional tables

FDG 1st FDG 2nd Auc 1st Auc 2nd

All bidders (obs.) 428 392 496 468

Signal overbidding 26.2% 36.5% 5.04% 37.6%

Mean shading rate 0.4476 0.0813 0.6248 0.1853

Mean equil. shading rate 0.8494 0.375 0.9517 0.5

Only winners (obs.) 104 92 126 111

Winner's curse 67.3% 19.6% 61.11% 50.54%

Winner's curse (in SRNNE) 11.5% 29.3% 6.25% 20.63%

Winners with highest signal 50.6% 48.9% 69.84% 66.66%

Signal overbidding 56.7% 70.7% 13.49% 57.65%

Mean shading rate -0.0201 -0.6521 0.4508 -0.1006

Mean pro�t margin -5.885 -2.284 -1.363 0.098

Mean equil. pro�t margin 7.191 3.943 6.277 2.959

Only losers (obs.) 324 300 370 357

Signal overbidding 16.4% 26.0% 2.16% 31.37%

Mean shading rate 0.5906 0.301 0.6898 0.2808

Table 8: Descriptive statistics for experienced bidders (periods 21�40)

Note: FDG 1st/2nd: Fair division game under �rst/second-price rule; Auc 1st/2nd:

Auction under �rst/second-price rule
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FDG 1st FDG 2nd

Dep. variable shading rate pro�t margin shading rate pro�t margin

Coef. Coef. Coef. Coef.

(Intercept) 0.2692** -8.6685*** 0.1147 -2.5788

Period 0.0162** 0.2773* -0.0040 -0.0203

Obs 428 104 392 92

*** p < 0.01 ** p < 0.05 * p < 0.1

Table 9: Shading rates and winner pro�t margins in the fair division games with ex-

perienced subjects (mixed e�ects linear regression model with nested random e�ects

on the individual and the matching group level)

Auc 1st Auc 2nd

Dep. variable shading rate pro�t margin shading rate pro�t margin

Coef. Coef. Coef. Coef.

(Intercept) 0.5389*** -4.0632*** 0.2411*** 1.2485

Period 0.0086*** 0.2556** -0.0088*** -0.1416

Obs 496 126 468 111

*** p < 0.01 ** p < 0.05 * p < 0.1

Table 10: Shading rates and winner pro�t margins in the auction games with expe-

rienced subjects (mixed e�ects linear regression model with nested random e�ects

on the individual and the matching group level)
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Level-k plus Equilibrium Cursed Equilibrium

�rst-price second-price �rst-price second-price

Type (k) �k �k � �k �k

R.L0 0.13 0.09 R.L0 0.13 0.25

R.L1 0.59 0.31 0 0.28 0.06

R.L2 0.00 0.28 0.1 0.00 0.06

T.L1 0.19 ∼ R.L2 0.2 0.00 0.06

T.L2 ∼ EQ 0.19 0.3 0.00 0.03

EQ 0.09 0.13 0.4 0.00 0.06

0.5 0.00 0.00

0.6 0.00 0.00

0.7 0.03 0.03

0.8 0.00 0.09

0.9 0.06 0.00

1 0.50 0.34

Log-likelihood -1112.65 -1178.66 -1114.73 -1201.62

Table 11: Models and estimates for the auction games
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Level-k plus Equilibrium Cursed Equilibrium

Subject-Speci�c Subject-Speci�c

Subject Type Precision (�i) � Precision (�i)

1 T.L1 15.74 0 1.37

2 R.L1 0.77 0.7 0.27

3 T.L1 10.91 0 4.24

4 T.L1 0.37 0 0.27

5 R.L1 0.52 1 0.17

6 R.L0 0 R.L0 0

7 T.L1 6.29 0 0.45

8 T.L1 7.75 0 0.33

9 T.L1 0.81 0.8 0.63

10 R.L0 0 R.L0 0

11 T.L1 9.00 0 0.63

12 R.L2 3.39 0.4 40.58

13 R.L1 2.32 1 0.76

14 T.L1 0.67 0 0.63

15 T.L1 0.95 0 0.61

16 T.L1 184.38 0 8.32

17 R.L2 0.18 0 0.17

18 T.L1 5.30 0 0.34

19 T.L1 5.30 0 0.26

20 R.L0 0 R.L0 0

21 R.L0 0 R.L0 0

22 R.L2 0.08 0 0.07

23 R.L2 0.55 0.6 0.66

24 R.L0 0 R.L0 0

25 R.L0 0 R.L0 0

26 T.L1 6.85 0 1.28

27 R.L0 0 R.L0 0

28 T.L1 0.02 0/0.1 0.01

Table 12: Models and estimates for the �rst-price fair division game
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Level-k plus Equilibrium Cursed Equilibrium

Subject-Speci�c Subject-Speci�c

Subject Type Precision (�i) � Precision (�i)

1 T.L1 3.40 0.3 3.61

2 R.L2 2.10 0.1 6.24

3 R.L0 0 R.L0 0

4 R.L2 4.51 R.L0 0

5 R.L0 0 R.L0 0

6 R.L1 0.91 R.L0 0

7 R.L1 0.43 R.L0 0

8 R.L0 0 R.L0 0

9 R.L0 0 R.L0 0

10 R.L0 0 R.L0 0

11 T.L1 0.16 R.L0 0

12 T.L1/T.L2 8.54 1 1.99

13 R.L0 0 R.L0 0

14 R.L0 0 R.L0 0

15 R.L2 1.86 R.L0 0

16 R.L2 2.83 0.5 1.65

17 R.L0 0 R.L0 0

18 R.L1 1.12 0 2.23

19 EQ 75.34 0.6 45.89

20 EQ 16.96 0 16.96

21 T.L2 90.45 1 13.93

22 R.L2 2.54 R.L0 0

23 R.L0 0 R.L0 0

24 R.L0 0 R.L0 0

25 R.L2 0.59 0.3 1.07

26 R.L0 0 R.L0 0

27 R.L1 0.89 1 0.05

28 EQ 87.82 0.1 27.21

Table 13: Models and estimates for the second-price fair division game
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