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Abstract

Real life applications of Yardstick Regulation frequently refer to historical cost
data. While Yardstick Regulation cuts the link between firms’ own costs and
prices firms may charge in a static setting, it does not in a dynamic setting
where historical cost data is used. A firm can influence the price it will be
allowed to charge in the future if its behavior today can affect future behavior
of other firms that determines the price this firm will be able to charge later
on. This paper shows that, assuming that slack, inflating of costs, is beneficial
to firms, a trade-off between short term profit through abstinence from slack
and the benefit of slack in (infinitely) many periods arises. A ratchet effect
that Yardstick Regulation was meant to overcome can occur and firms can
realize positive rents because of the use of historical cost data, even if firms
are identical. Equilibria with positive slack can exist without any collusion
between firms or threat. Moreover, this problem is more severe if the firm
with lowest costs of all other firms instead of the average firm is the yardstick.

Keywords: Yardstick Regulation, Yardstick Competition, Ratchet Effect, His-
torical Cost Data
JEL classification: L51, L98, L97
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1 Introduction

Natural monopolies are frequently subject to regulation. As ‘natural’ competition
does not force prices to be a perfect competition outcome, often regulatory agencies
jump in to ‘regulate’ profit, prices or revenue. Under traditional Rate of Return
Regulation allowed profit of a firm is linked to capital employed. The well known
result of Averch and Johnson (1962) is that this regulation provides incentives for
the firms to employ an inefficient input mix and not to engage in cost minimiz-
ing behavior - in other words: to produce with some slack. Incentive Regulation
is meant to address this issue. Price Cap Regulation, originally suggested by Lit-
tlechild (1983), decouples costs incurred and prices allowed to be charged by fixing
or capping prices, no matter what costs are. The firm thus becomes the residual
claimant of all costs not incurred and so has a strong incentive to produce without
slack, if profit is worth more to the firm than slack is. Necessarily the question arises,
how the price cap should be defined. If the regulator takes into account profits made
and costs incurred the incentive structure is much less clear cut, as e.g. Train (1991)
points out. The basic idea of Yardstick Regulation as described by Shleifer (1985)
solves this problem by using information on costs of other comparable firms to de-
fine prices a firm is allowed to charge. In a static world and in every period prices
and costs for each individual firm are as a consequence completely independent of
each other. In absence of collusion Yardstick Regulation fosters efficient produc-
tion especially if firms and circumstances of production are very similar. Tangeras
(2002) summarizes: “the regulator is able to extract all surplus from firms and reach
full efficiency if technologies are perfectly correlated.” This paper shows that this
property does not carry over into a dynamic setting if historical cost data is used. A
firm can influence the price it is allowed to charge in the future via its effect on the
behavior of other firms. A ratchet effect can occur under Yardstick Regulation using
historical cost data without any collusion as a result of individual and independent
decision making of firms.

The contribution of this paper is twofold: In a simple model with three firms and
an infinite horizon we show that every firm can effectively influence the price it is
allowed to charge if this price is a function of the costs of the other two firms in the
period before. By this we point out a feature of real world applications of Yardstick
Regulation that has not received much attention, both in academic literature and
in regulatory practice: historical costs are used to define constraints. We show that
steady state equilibria with positive slack are possible without any collusion if firms
attach at least some positive value to slack. We furthermore compare two variants



of Yardstick Regulation: Either the firm with the lowest costs of all firms but the
evaluated one or the average of the other firms can be used as the yardstick. Intu-
itively orientation at the best seems to be the tougher form. We show that choosing
this scheme might lead to higher slack and a worse situation for society however.

In the ‘real world” the price of a service is usually set before customers use the
service. For Incentive Regulation this means that e.g. at the start of a regulatory
period constraints are defined based on observations of costs from the regulatory
period before (see e.g. the decree on Incentive Regulation for electricity and gas
networks in Germany (ARegV)). In the debate prior to this decree the question
which yardstick, average performance or best practice/frontier, should be chosen
was intensively discussed (see e.g. Bundesnetzagentur (2006)). This indicates that
it is not obvious, what the optimal yardstick is. The German legislator decided to
apply a frontier approach, a well cited example for the use of average performance
for regulation is Medicare (originally Shleifer (1985)).

Aspects or drawbacks of Yardstick Regulation that are subject to debate are concerns
that quality might be adversely affected under Incentive Regulation in general what
makes additional quality regulation necessary, see Sappington (2005) for a survey,
collusion among firms (e.g. Tangeras (2002)) and investment behavior (e.g. Dalen
(1998)). Another issue is that firms might lack comparability, necessary for imple-
mentation of Yardstick Regulation (e.g. Laffont and Tirole (1993)). In this paper
we abstract from these issues and show that still the desired outcome, i.e. efficient
production, might not be reached.

In our dynamic model with three firms, an infinite horizon and discrete time we
examine the effect of the use of historical cost data under Yardstick Regulation. As
we are interested in the long run effects of regulation we focus on the analysis of
resulting steady state equilibria. We show that in absence of all kinds of collusion or
Folk Theorem arguments steady state equilibria with positive slack, i.e. inefficient
production and positive rents for firms, can exist. We furthermore show that the
highest slack that can exist in such a steady state equilibrium is higher if the firm
with the lowest costs of all other firms instead of the average of the other firms is
used as the yardstick.

The modelling of slack, i.e. lack of costly effort, in this paper differs from a major
part of contributions to the debate on Incentive Regulation, represented especially
by Laffont and Tirole (1993): in these models costly effort reduces costs of produc-
tion. In our model inefficiency costs, slack, are added to real, necessary costs of
efficient production. The instantaneous payoff function used is very similar to the
one in Blackmon (1994). This is done as it allows for straightforward interpretation
of the results and explicitly models the idea that Yardstick Regulation is meant to



solve the inefficiency problem of traditional Rate of Return Regulation. In models
considering only two periods, the effect driving our results does not appear: Under
Yardstick Regulation using historical cost data current choices of a firm do not af-
fect the price this firm can charge in the current and the next period. The direct
effect is visible from the next but one period on, only. Like Meran and Hirschhausen
(2009) we use dynamic programming techniques to account for long run effects of
the decisions of firms, however, we come to differing conclusions. The key difference
between their model, which is expanding the model of Shleifer (1985), and our ap-
proach that leads to these differing results is that Meran and Hirschhausen (2009)
do not allow for benefit for the firms from slack, consequently firms do not gain from
keeping costs high.

The remainder of this paper is structured as follows: Section 2 explains the model
setup. In section 3 all possible (punishment-free) Markov-perfect steady state equi-
libria. are characterized, existence is proven and the two regulatory schemes are
compared with respect to equilibrium outcomes. Section 4 concludes.

2 Description of the model

2.1 Firms

There are three firms, labelled j = 7,0, z, each producing a homogeneous output
normalized to one. The output is bought by the consumers. One could think of
demand for electricity that is very inelastic with respect to price or demand for
some crucial medical treatment. These firms could be thought of catering three
comparable regions with electricity grids as local monopolists. The only way they
interact in ‘competition’ is via the regulation imposed to them. In every period the
regulator assigns a price to each of the firms. FEach firm may not charge more than
this price for its output, so the regulator defines a price cap which is equivalent to
a revenue cap under the assumption of completely inelastic demand. As demand
does not react to price in this setting all firms always charge the maximum price
they are allowed to. While the firms’ output is directly observable the underlying
cost structure is unknown to the regulator. Each firm verifiably reports its costs
to the regulator who cannot distinguish between ‘real’ necessary cost, C' > 0, and
slack, Sg > 0, defined as additional costs due to inefficient use of resources, and
only observes the sum of both. C' does not change over time and is the same for all
firms. This is equivalent to assuming that the regulator correctly and completely
accounts for all heterogeneity between firms respectively (exogenous) circumstances



of production[] Each firm chooses its slack and may choose different slacks in differ-
ent periods. Slack can be interpreted e.g. as lack of (costly) effort from managers,
oversized offices or all kinds of ‘unnecessary’ costs that might occur under Rate of
Return Regulation. As slack is inefficient production by definition, the regulator
maximizing utility of society desires to avoid all slack without explicit consideration
of a target function.

If firm j chooses a positive slack in period ¢ it realizes a nonmonetary utility denoted
by B(S!). B is twice continuously differentiable with B(0) = 0, 1 > B’ > 0 and
B” < 0. Accordingly B(S7) < S/ for all S} > 0. If the sum of necessary costs and
slack is smaller than the price the firm is allowed to charge it additionally realizes
a profit. The marginal benefit from an additional unit of profit is constant and
normalized to 1. Increasing profit and decreasing slack are two sides of the same
medal as they add up to a constant: the price a firm charges less the necessary costs.
So it is sufficient to explicitly consider just one of the two as the other one emerges
as the residual. The instant payoff function of firm j is in every period given by:

F/ =P/ —C -5+ B(S) (1)

Firms care about profit and slack only. They discount next period’s utility with 9,
0 < ¢ < 1, and maximize their intertemporal utility:

> 8'F} (2)
t=0

At all times firms need to break even, so that C' + S/ < P/. Not only from a
perspective of the regulator or society slack is ‘expensive’: one marginal unit of
additional profit always results in higher instantaneous utility for the firm than
an additional marginal unit of slack would. The only reason why S > 0 could
be an optimal choice of j is that it can affect the price j is allowed to charge in
later periods. We consider an infinite number of periods (immortality illusion of
a big firm) in order to avoid unrealistic effects of last rounds in which all slack is
zeroE] Every period there is only one choice per firm to be taken, the slack the firm
chooses. The regulatory rule and break even condition are common knowledge, so
are the prices of the current period. Using this knowledge firms can anticipate how
their choice of slack will affect future behavior of the other firms. Accordingly all

In Shleifer’s (1985) one-period model accounting completely and correctly for heterogeneity
leads to the efficient equilibrium.

2Tt is easy to show that a finite horizon and the corresponding backward solution will result in
zero slack starting in the very first period.



three current prices are state variables for all j. Only Markov-perfect strategies are
considered so firms react to the state variables they observe and do not care about
the history of states. We outrule punishment between firms and arguments based
on Folk Theorems, which can be seen as a form of collusive behavior, as Yardstick
Regulation obviously is highly vulnerable to collusion. This paper does not strive to
offer solutions for this issue but proceeds to show that even if all collusive behavior
can be avoided, uncoordinated individual utility maximization by firms can result in
equilibria with positive slack. Strategies are anonymous, so firm ¢ reacts to a change
in behavior of o with constant behavior of x just as it would to change vice versa.
Simple renaming o into z and z into o does not change the behavior of 7. Firms
simultaneously choose their slack every period without observing the current choice
of the others.

2.2 Regulatory rules

The price a firm is allowed to charge is derived from costs realized by the other two
firms in the period before. We separately look at two regulatory schemes: Average
Yardstick Regulation, under which average costs of the other firms are used as the
yardstick, and Frontier Yardstick Regulation or Best Practice Regulation, under
which only the costs of the best performing firm, i.e. the firm with the lowest costs,
are the yardstick. So the price e.g. firm ¢ is allowed to charge in period ¢ + 1
accordingly is a function of the slack o and z are choosing in ¢ in both cases:

Py = R'(S7,S7) (3)

Under Frontier Yardstick Regulation the price is given by

P/, =min(C +57,C + 5f) = C'+ min(S7, S)) (4)
and under Average Yardstick Regulation by
. 1 , 1 :
Pt+1:§§(c+sg)zc+§;sg (5)
J7F= J7F

Regulatory rules for the other firms and periods are defined analogously. Since
necessary cost are constant, C can be factored out under both regulatory regimes
and can be normalized to zero. This is equivalent to interpreting P} '+1 as the amount
by which the price ¢ may charge in ¢ + 1 is greater than necessary costs C. In the
first period of Yardstick Regulation prices are exogenously given - they could be
derived from some regulatory rule that was in place before Yardstick Regulation
was implemented.



Lemma 1. Under both requlatory rules slacks and prices converge to a steady state
in which all firms choose the same slack, do so in every period and realize zero profits
due to requlatory mechanics. This slack may be zero.

Proof. see appendix

As long as not all firms choose the same slack and this slack is equal to the price
they are allowed to charge (C' is normalized to zero) the highest slack chosen in ¢
cannot be chosen by any firm anymore in ¢ 4+ 2 the latest. Accordingly there is a
downward drift of the highest slack, whenever firms choose differing slacks. As slack
cannot become negative convergence is assured.

3 Equilibrium Analysis

The equilibrium concept applied in this paper is Markov-perfect in which all the firms
simultaneously decide on their slack. From Lemma [I| we know that convergence to a
steady state in which all firms are allowed to charge the same price, choose the same
slack and make zero profits follows from regulatory mechanics. If a steady state
with slack greater than zero exists, this slack must be consistent with the firms’
equilibrium strategies. As we are interested in the long run effects of Yardstick
Regulation using historical cost data, we focus on the analysis of the resulting steady
state equilibria. From Lemma [I| we also know that asymmetric Markov-perfect
steady state Nash equilibria cannot exist, so we can furthermore focus on P} =
P =PF > 0.

It is easy to show that equilibria with very high slack could exist, given initial prices
are sufficiently high, if firms punish other firms’ uncooperative behavior. From the
proof of Lemma (1| directly follows that under Frontier Yardstick Regulation every
firm can force all firms into a steady state equilibrium with zero slack by choosing
zero slack once - the worst possible steady state from the perspective of all firms.
If firms know that another firm will ‘burn bridges’ by choosing zero slack in case
of uncooperative behavior by any firm this can ‘discipline’ firms to cooperate. As
will be shown, punishing unilaterally by a decrease of slack is not consistent with
maximization of intertemporal utility by a firm. If and only if other firms punish in
this sense it can be optimal for a firm to do so, too. In the spirit of the Folk Theoremﬁ]
a threat of joint mutual punishment, i.e. choosing a very bad steady state for all
firms, could be used to implement equilibria with very high slack. The analysis of

3See e.g. Osborne and Rubinstein (1994) for a description of Trigger Strategies and Folk Theo-
rems.



corresponding equilibria does not offer much additional insight - as described in the
introduction, Yardstick Regulation is known to be highly vulnerable to collusion.
Joint mutual punishment, that no firm would do unilaterally, can be seen as a form
of collusion. Therefore we explicitly exclude all sorts of joint mutual punishment
and collusion in our analysis and show that still steady state equilibria with positive
slack can exist that are ‘punishment-free’.

In the following we implicitly define an optimal value of slack each, denoted by
S*, that maximizes intertemporal utility given current prices under both regulatory
regimes that can characterize a steady state equilibrium. We furthermore derive a
unique level of slack S4* under Average Yardstick Regulation and S** under Frontier
Yardstick Regulation that offers the highest intertemporal utility for the firms and
that can exist in a steady state equilibrium, given that prices are sufficiently high.
As will be shown, S4* is implicitly defined by

152
B =1--2 (6)
1—30
and SM* by
B =1-4§ (7)

Both equations, (@ and , summarize the respective tradeoff between the marginal
benefit of reducing slack in the current period and the corresponding marginal costs
from adversely affecting future payoff each firm faces every period under both reg-
ulatory schemes. We show that that every S*e[0, S4*] respectively S*e[0, SM*] can
occur in a Markov-perfect steady state equilibrium, provided the initial prices are
high enough. Conversely, no other slack is possible in a (punishment-free) steady
state equilibrium.

3.1 Optimal slack

Assume there exist a steady state equilibrium consistent with the strategies of firms
i,0 and z, denoted by f{(Py), f°(Py) and f*(Py), where Py is the vector of the three
prices valid for firm ¢, 0 and x in ¢. Strategies need to be optimal in equilibrium by
definition. When firms decide on their slack they consider their discounted utility
in all periods to come given they decide optimally in all future periods given future
states. We use the Principle of Optimalitylﬂ to find the resulting optimal level of

4See e.g. Acemoglu (2009) or Stokey, Lucas with Prescott (1989) for a detailed description.



slack for firm . So firm 7 solves the following maximization problem:

J'(Py) = JU(P, P, Py) = max [F(P], ) + 0. (Peya)] (8)

Si<py

Where J¢ denotes the value function of firm 7 and Py 4 is the vector of prices in
t+ 1. While the state in ¢ is given the state in £ + 1 is determined by the regulatory
rule. Plugging the general form of the rule in leads to:

J(P) = max[F (P}, §}) + 0 (R(S¢, S7), R(S1, $¢), RE(SL, S0)) - (9)

Sy<Py

Just as ¢ firms o and x maximize their intertemporal utility given the state variables
they observe. So

Sto = fO(Pt) (10)
and
Sy = f"(Py) (11)

describe the optimal slack of o and z given Py.
With the general forms of the strategies and into (9) we obtain

Ji(Py) = max [F(Pj,St")
= | | (12)
87 (R (P, £7(P0). B(SL. £(P). R(S:. £7(P) )

As this is a constrained maximization problem we rewrite (12) as:

J{(P,) = max| F(P., S})
Sy

+oJ! (Ri(f"(Pt),f”ﬁ(Pt)LRO(S;‘,fx(Pt)),RI(S;fO(pt))) (13)
F (P — s;')]
With the complementary slackness conditions:

A >0 and NP — S}) =0 (14)



The corresponding first order condition (FOC) for the maximum problem is given
by:

F>(P, 8)) + 0.J5(Pesa) - R(S, S7) + 0J5(Pesa) - RI(S;, S7) = Ay =0 (15)

Accordingly numbers as the lower index mark derivatives and the respective number
names the argument with respect to which the derivative is taken, while the upper
index describes the function of which the derivative is taken. If the lower index
includes a ‘¢’ it is a time index. So R¢(S}, S?) describes how the price o may charge
in t 4+ 1 reacts to a marginal change of the slack of ¢ in ¢. We only need to look
at derivatives to the left, i.e. reductions of slack, as starting from a steady state no
firm can increase its slack without violating the break even constraint. Accordingly
throughout this paper all derivatives are to be understood as left hand side deriva-
tives, i.e. reductions of the respective variable.

Now let

Sti = fi(Pt) (16)

describe the optimal slack of firm i given Py, i.e. fi(Py) is the solution to (15).
Inserting this into leads to:

J'(Py) = F(PL, f(Py))
+ 0T (RSP, F2(PO), RS (Po), £ (Po), RE(F(Pe), £(P)) (17)
TN~ fi(Py)

taking the derivative to the left with respect P we find with Envelope Theorem:

Ji(Py) = F1(P],S))
+0J{(Pey1) - RU(S?, SF) - f1(Py) +6J1(Pega) - Ry(S7,S7) - f1(Py)

1 0 1 x x 1 x 7 0o o (18)
+0J3(Peyr) - B3(SE, SY) - fi(Pe) + 6J3(Pesa) - R3(S;, S7) - 1 (Py)
+ Al
Analogously we find
J3(Pe) = 0J1(Peyr) - RISy, SP) - f(Pe) 4+ 0J(Pey1) - R5(S7, SE) - f5(Py) (19)
+0J3(Peya) - (S, SY) - f3(Pe) + 6J3(Pera) - R5(S;,57) - f3(Py)
and
Ji(Py) = 0J{(Peya) - Ri(S7,S7) - f§(Pe) + 6.J1(Peya) - Ry(S7, S7) - f5(Py) (20)

+6J5(Peya) - R3(S;, S7) - 15 (Pe) + 6J5(Pesa) - R5(S,S7) - f5(Py)

10



Updating and by one period yields

Jg(PtJrl) = 5J1i(Pt+2) - R ( t+1aS£T+1) fé)(PtJrl)
+0J1(Peya) - Ry(SP1, S5) - f5 (Peta) 1)
+0J5(Peya) - R5(Si1s S5 - f5 (Peta)
+0J5(Pyya) - RS (Styr, Sti1) - f5(Peya)
and
J3(Pes1) 0J1(Pys2) - R1(Sfi1, Sta) - f5 (Pesn)
+0J1(Peya) - Ry(SP1, S5) - f5 (Pesa) (22)
+0J5(Piya) - RS(S)41, S51) - f3 (Peya)
+0J5(Pyya) - R5(Styr, Stir) - f5 (Peya)
Plugging and into the FOC leads to
0= Fy(P/,S;)
RS, 57) - (075(Pesa) - Ri(SEh, Stn) - f5(Pusa)
+ 5Jf (Pt—l—Z) ’ Ré(St+1’ Stx—i—l) wi(Pt-&-l)
+0J5(Per2) - R3(Sii1, Siia) + f5 (Peta)
+ 13(Pesa) - B3 (Siyr: Stin) - f5(Pesa) ) -
+ORE(SE S7) - (71 (Pesa) - Ri(STh, SEa) - f5(Pusa)
+ 0T} (Pyya) - RZ2(St+1’ Str1) - f5 (Pega)
+ 0J5(Per2) - R3(Sii1, Siia) « f5 (Pesa)
003 (Puia) - B3(Sipn, S0) - F5(Pusa) )

_)\i

In equation (23) we clearly see the consequence of the use of historical cost data
under Yardstick Regulation we pointed out in the introduction: The price firm ¢ can
charge in the future is influenced by its behavior today. The choice of slack of ¢ in
t does not only define its instantaneous payoff, implicitly represented by Fy(P}, S?),
but also affects the prices o and x may and will charge in ¢ 4+ 1 via the regulatory
rule, R°(S}, S7) respectively R*(S},S?). Firms o and z choose their slack in ¢ + 1
based on the state they observe and under the restriction that they have to break
even according to their strategies, f°(P¢y1) and f*(Pyi1). Via the regulatory rule

11



the slacks o and x choose in ¢+ 1 then affect P72, and P, and determine the price
i is allowed to charge in t + 2, P/, ,. These three prices are the arguments of the
value function of 4, and in period ¢ firm ¢ discounts the effects in t + 2 with §2.

From Lemma [I| we know that in every steady state all firms choose the same slack.
Thus starting from a steady state unilateral reduction of the slack of ¢ affects
the price o and x may charge in the following period just the same way so that
RY(S!, S¥) = R¥(S},S5¢?). (We extensively deal with the derivatives of the regulatory
rule in the appendix.) This reduces (23] to

+OR(S], 5) - (071(Pesa) - RUSE0, STi) - [f5(Pasa) + f5(Pesa)]
+ 0T} (Pyya) - Ré(StHa St) - [f;(Pt+1) + /3 (Peta)] (24)
+0J5(Peya) - RS(Siis SE) - [fs (Peyn) + f5 (Pega)]
+0J3(Pesa) - R3(SE0, S0) - 15 (Prsa) + £ (Pua)])

_)\i

From Lemma [1| furthermore follows that, due to regulatory mechanics, in all steady
states all firms realize zero profits, i.e. all firms choose the slack that is equal to the
maximum price each firm may charge. So starting from a steady state a marginal
unilateral reduction of the slack of ¢ in ¢ leads to P2, = P, < P/, ;. Under both
regulatory schemes the two other firms, o and x, will reduce their slack the next
period by exactly the resulting marginal reduction of their respective price, given
the price they face is not higher than the unique optimal slack S** respectively S™*.
We formalize this in the following Lemma considering reductions of slack only for
both regulatory regimes:

Lemma 2.
Frontier Yardstick Regulation:
If P2y = Pfy < Pl and Py = P, < S,

then f§(Pei1) + f§(Per1) = f5(Pera) + f5(Pesa) = 1
Avemge Yardstick Regulation

If P, 1 = Py < P v and P2y = P, < SA*;
then f3(Pei1) + f3 (Pt+1) J5(Pega) + f§(Pegr) =1

Proof. see appendix
Intuitively Lemma [2 means the following: Starting from a steady state a firm has

12



to reduce its slack if the price this firm can charge is reduced, as it needs to break
even. Given that the firm would not voluntarily unilaterally deviate from the steady
state equilibrium it cannot increase its intertemporal payoff by deviating even more
than necessary. That another firm also has to reduce its slack by the same amount
does not change the situation here.

With Lemma [2| equation (24]) reduces to
0= Fy(P/, S})
+ OR(S!, 5) - (071(Pesa) - [RE(Sr, S7i) + Ro(SE4, 5]
+0J5(Peya) - R5(Stirs SEa) (25)
+ 0J3(Pusa) - R3(Sty1 501 )
— )\i

In order to show how the solutions to this equation differ under both regulatory
schemes we need to look at them separately.

Frontier Yardstick Regulation. From Lemma [l it followed that in all steady state
equilibria firms choose the same slack and the slack is equal to each firms’ price due
to regulatory mechanics. So in such a steady state ¢ will choose the same slack every
period, i.e. Si; =S; = S*. Every period i could deviate by reducing its slack (no
firm can increase its slack in a steady state because of the break even constraint). So
S* must solve the FOC in every period. Now assume ¢ marginally reduces its slack
in . From the FOC directly follows that it cannot be optimal for 7 to choose a higher
slack in ¢t+1 than in ¢t. With S} < S} the slacks of 0 and  would have to be smaller
than the one ¢ chooses in t+1 from the regulatory rule and the break even constraint.
Accordingly in t+ 1 the left hand side derivatives of the regulatory rule with respect
to the slack of i drop to zero if S} < S, ;. It follows that S; < S;,, cannot describe an
optimal strategy of i: the FOC could not hold in t+1 as F5(Pf, S;) = B'—1 is smaller
than zero and A.,, is nonnegative from the complementary slackness conditions.
Accordingly we assume ¢ marginally reduces its slack in periods ¢ and ¢ + 1, too, so
that S} = S;,, < S = Sf. From the regulatory rule (4) the prices o and = may
charge in t+1 decrease to P2, = P, = 5] and given S; = 57, there is no additional
effect on P2, = P, from this change in the behavior of 0 and z: The prices o and x
may charge in ¢+ 2 are given by P72, = min(S;,, S%,,) and P, = min(Sy, ;, S¢.4).
So if 0 and x decrease their slack in t + 1 to S; = S;,; they do neither change P/,
nor P, so that in this situation the left hand side derivatives of the regulatory
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rule are given by R$(S},,,S7,,) = R5(S,1,5¢,1) = 0F] Intuitively i decides about
its slack in ¢, knowing that its slack in ¢t + 1 will be the same. So deciding about
slack in ¢ and ¢ + 1 firm ¢ knows that P?,, respectively Py, are equal to Si,, for
all S¥., > S}, respectively Sp,; > Si.,. Accordingly the only price in ¢ + 2 that
is changed as a consequence of the induced reduction of the slack of o and x to
SP., = Sfy = Siy, = S is the price firm ¢ itself can charge in ¢ + 2, P/ ,. As in
addition R{(Sy,,Sf. )+ R5(S?, 1, Sf.,) = 1is always true under Frontier Yardstick
Regulation (see appendix) equation (25) reduces to:

0= FQ(Pti7 StZ) + 5RT(SZ7 Sf) ’ 5‘]i(Pt+2) - )‘zzt (26)

We consider unilateral reductions of the slack of ¢ starting from a steady state so
R$(S;,S¢) = 1. Furthermore with J{(Pyi2) =1+ A;_, (Lemma [{]in the appendix)
and Fy(Pf,S}) = B — 1, it follows:

0=B —1+8(1+A,,) =\ (27)

as the optimization problem is the same in every period in a steady state equilibrium

— \?¢

N = i, = A solving for B’ yields the implicit solution for S*.
B'=1-8§+(1-46)A (28)

This condition summarizes the tradeoff between marginal benefits and marginal
costs of decreasing slack. The less patient firm ¢ is, so the more weight it puts on
instantaneous payoff, i.e. the smaller § is, the greater is B’ and with B” < 0 the
smaller is the slack i chooses. So if § decreases the firm cares less about slack in
the future but grasps profit today. A more detailed intuition based on an infinite
geometric series if given in the appendix. If A > 0 the constraint must be binding
from the complementary slackness condition. So B’ must then be greater and with
B" < 0 slack must be smaller. So if the constraint is binding firm 4 has to choose a
smaller slack than it would otherwise do. If X is zero, the solution to the constrained
maximization problem is equal to the solution to the unconstrained maximization
problem, i.e. the slack S** firm ¢ chooses in equilibrium if all prices are sufficiently
high. So the implicit definition for S™* is given by:

B =1-6 (29)

Average Yardstick Regulation. Under this regulatory rule all derivatives of the reg-
ulatory rule are always % as each price is the average of two slacks (see appendix).

5Derivatives would be greater than zero for further decreases of their slack though.
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Using this and that in all steady state equilibria the FOC must hold in every period,
we can update the FOC by one period and plug it into to find

0= Fa(P}, 87) + 05 - (871 (Pusa) = Fal Py, Sii) + X ) = (30)

Applying the same reasoning as above with S}, ; = S} = S*, J{(Pyy2) = 1+ X,
Fy(P},S)) =B —1and A=\, = A\jy; = A, we find:

_pa-t. loo 15 Lo tp
0=DB'(1 25%+Mf5+25 U+A$5+25 1) (31)

and solving for B’ it follows the implicit solution for S*:

(1— 182 = 18) + A1 — 162 — Lg)

2
1
—55

B =

(32)

Under Average Yardstick Regulation B’ also decreases in d, so the slack ¢ chooses
increases in the weight the firm puts on future payoff. Again B’ increases in A so the
slack chosen if the constraint is binding is smaller than the slack chosen if all prices
are sufficiently high. The solution to the corresponding unconstrained maximization
problem, i.e. the slack S4* firm i chooses in equilibrium if all prices are sufficiently
high, does not include A. So S4* is implicitly defined by:

152
50

1—1§

2

B'=1-

(33)

3.2 Steady state equilibria

From Lemma [I] it followed that there cannot exist any asymmetric steady state
equilibrium. It is straightforward that the above analysis can analogously be done
for firms o and z. Taking the optimal strategies of firms o and x as given we show
that it is optimal for 7 to choose the same strategy. Doing this, we proof existence
of the equilibria characterized above.

Assume optimal strategies of firms o and x under Frontier Yardstick Regulation are
given by

fo(Pt> = fx(Pt) = min(SM*7P16i7Pz€O7 Ptgc) (34)

So 0 and x choose a slack equal to SM* if all prices of the current period are at least
SM=_If this is not the case they choose a slack equal the lowest price. Obviously,
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it cannot be optimal then to choose any slack greater than S™* for firm i, as it
could reduce its slack to S™* without affecting any price in t + 1. As Fy(P},Si) < 0
this would always result in higher instantaneous and intertemporal payoff. The
same is true for any S; > Sf = S, as ¢’s slack does not affect future prices if
S > S° = S from the regulatory rule. Accordingly the FOC cannot hold with
Si > 82 = ST as Fy(P},S!) < 0 and X! is nonnegative from the complementary
slackness conditions. Thus it is never optimal for ¢ to choose a slack higher than o
and z under Frontier Yardstick Regulation and the optimal strategy of ¢ given Py
must be fi(Py) < min(SM*, P}, P?, PF).

By Theorem 6.4 of Acemoglu (2009) together with the relaxed assumption 6.3 that
the instant payoff function is (weakly) concave (Acemoglu (2009), p. 189) it follows
that the value function is concave in the state variables, as Assumptions 6.1, 6.2 and
and the relaxed version of Assumption 6.3 from Acemoglu (2009) hold in our setup.
As furthermore F is strictly concave in slack and the left hand side derivative of the
regulatory rule with respect to the slack of ¢ must be equal to one in all equilibria
with S* > 0, A > 0 in all equilibria with S* < SM*. Accordingly the steady state
described by SM* is strictly preferred by firm i over all other steady states with
lower slack. (Obviously all steady state equilibria with positive slack are preferred
by ¢ over the zero slack equilibrium.) From the concavity of the value function
and the strict concavity of F' concerning slack it also follows that A decreases in
the steady state value of slack for all S* < SM*. As a consequence firm i never
unilaterally deviates by reducing slack from a situation where all firms choose the
same slack, given S¢ < S™*: If firm i unilaterally reduces its slack starting from such
a situation in ¢, the constraint is not binding that period, so ! needs to be zero from
the complementary slackness conditions. With the concavity of the value function
and strict concavity of F' with respect to slack this cannot be optimal, as the FOC
could not hold. Then fi(Py) = min(SM*, P}, P?, P¥) is the optimal strategy given
the strategies of o and z and every slack S*¢[0, S™*] can describe a steady state
equilibrium under Frontier Yardstick Regulation. Assuming firms o and x would
not choose, ‘jump to’, S™* in the first period given prices are sufficiently high, but
would simply choose the slack equal to the lowest price of all in ¢, we can furthermore
show that there cannot exist any other steady state equilibrium. As A is nonnegative
from the complementary slackness conditions, the derivatives of the regulatory rule
cannot be greater than 1, and the value function is concave in the prices, while F'
is strictly concave in slack, the FOC could not hold in any steady state with slack
greater than SM*. So firm i would unilaterally deviate by reducing its slack, which
contradicts the existence of (punishment-free) Markov-perfect steady state equilibria
with slack higher S™*. In every steady state with slack S™* marginal benefits of
unilaterally reducing slack would be greater than marginal costs of doing so.
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Assume further that optimal strategies of firms o and x under Average Yardstick
Regulation are given by

fo(Py) = f*(Py) = min(S™, P}, P, Py) (35)

Strategies given by equations respectively differ only by the unique optimal
value of slack, given prices are sufficiently high. Accordingly the corresponding proof
for Average Yardstick Regulation is are very similar to the one above: It is not opti-
mal for firm ¢ to choose a slack higher than the one 0 and = choose given their above
strategies. Under Average Yardstick Regulation all derivatives of the regulatory rule
are equal to %, as every price is the average of the slacks of the other two firms of the
period before. Still it is not optimal for 7 to choose S; > S7 = S7. Neither o nor «
would choose a higher slack in ¢+ 1 as then min(P}, |, P2, P%) = P, = Sf = ST.
It follows that the highest possible slack from ¢ 4+ 2 on would not be greater than
S¢ =S¥ for all slacks Si > S? = SF. As Fy(P},S!) < 0, ¢ could increase its instanta-
neous and intertemporal payoff by decreasing its slack and choosing S} = S = S7.
The rest of the proof is a straightforward repetition of the arguments above using
S4* and the corresponding derivatives of the regulatory rule.

We summarize these findings in the following proposition:

Proposition 1. There exists an optimal value of slack, denoted by S*, that maxi-
mazes intertemporal utility given current prices under both regulatory regimes, that
can describe a steady state equilibrium. There furthermore exists a unique level of
slack SM* under Frontier Yardstick Regulation and S** under Average Yardstick
Regulation that offers the highest intertemporal payoff of all possible (punishment-
free) Markov-perfect steady state equilibria for all firms given prices are sufficiently
high. Ewvery slack S*e[0, S™*] under Frontier Yardstick Regulation and S*€[0, S4*]
under Average Yardstick Regulation can characterize a steady state equilibrium.
There are no other (punishment-free) Markov-perfect steady state equilibria.

It is important to note, that the regulator cannot induce the zero slack steady
state by simply setting all prices to zero. In our analysis necessary costs have
been normalized to zero - and the reason why regulatory schemes like Yardstick
Regulation exist is that the regulator does not know necessary costs of production.
So by setting too low prices in the first regulatory period, the regulator risk firms
going bankrupt, as they cannot break even anymore.

3.3 Comparative dynamics

From Proposition [I| we know that every slack between 0 and S™* under Frontier
Yardstick Regulation respectively 0 and S“4* under Average Yardstick Regulation
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can describe a steady state equilibrium and that there cannot exist (punishment-
free) Markov-perfect steady state equilibria with higher slack under the respective
regulatory regime. By comparing the implicit solutions for S™* and S4* we find that
all (punishment-free) Markov-perfect steady state equilibria under Average Yardstick
Regulation can be equilibria under Frontier Yardstick Regulation, while the reverse
is not true. This leads to the following Proposition:

Proposition 2. The highest slack that can be realized in a (punishment-free) Markov-
perfect steady state equilibrium is greater under Frontier Yardstick Regulation than
under Average Yardstick Regulation.

Proof. S#* is implicitly defined by and the corresponding value under Frontier
Yardstick Regulation, S**, is implicitly defined by (29). As B’ > 0 and B” < 0,
SM+ > §A% if the following inequality holds:

152
- —2—>1-4§" (36)
1-36
152
5 > 2 (37)
1—36

1 1

1>96 (39)
18 always true, what completes the prool.

39) is al h 1 h f ]

Intuitively, orientation at the performance of ‘the best’ of all other firms rather
than the average of all other firms to define constraints for a firm under Yardstick
Regulation seems to be the tougher regulation. Incentives to produce efficiently,
i.e. without slack, should be high. Proposition [2| questions this intuition. Using
historical cost data of other firms allows each firm to influence the yardstick, and as
this influence is greater under Frontier Yardstick Regulation all firms could be less
willing to ‘push’ the other firms, because they will have to ‘push back’.

4 Conclusion

While Shleifer’s (1985) version of Yardstick Regulation uses current performance of
other firms to find current constraints for an evaluated firm, real life applications of
Yardstick Regulation frequently ex ante define constraints, e.g. prices allowed to be
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charged, based on data from the regulatory period(s) before. This use of historical
cost data in Yardstick Regulation enables a firm to affect the price it can charge
in the future. By affecting other firms’ constraints and thus behavior the current
performance of a firm is directly linked to its own future constraints. This analysis
showed in a simple model framework that inefficient steady state equilibria in which
all firms choose positive slack can exist under Yardstick Regulation without any
form of collusion if historical cost data is used. Furthermore the highest slack that
can exist in a (punishment-free) Markov-perfect steady state equilibrium is higher
under Frontier Yardstick Regulation, where the firm with the lowest costs of all but
the evaluated firm defines the yardstick, than if the average of all other firms is
used. This challenges the perception that the best of all other firms should be the
yardstick in Yardstick Regulation using historical cost data.
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Appendix

Proofs

Proof of Lemma

As regulatory rules are anonymous only 5 relevant different cases can be distin-
guished, potentially with indices changed and updated though. (C'is normalized to
Z€r0):

(I
(I

) Bi=P =P =S =8 =8
) S

(I) Si > S¢ = S2
)
) S

=57 > S7

(IV) Si > S¢ > 5S¢

(V =Sy <P =P =P

The reasoning is explained in detail for case (IT) under Frontier Yardstick Regu-
lation and Average Yardstick Regulation, the remaining is then a straightforward
application along these lines.

Frontier Yardstick Regulation

To (I):

If all three prices and all three slacks are the same in ¢ the regulatory rule does not
force any change. Prices in ¢ 4 1 are the same and the same slack as in ¢ is possible
for all firms.

To (I1):
Pl =Py =85 <Pi1=5=05
=
Sta1 < 57

St =S¢
St <8 =87
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=
t+2 < Ptl+2 <S¢
t+2 < Pt(z‘rQ <57

t+2<PtI+2<S$

then either (I) or one of (II)-(V) applies.

Under Frontier Yardstick Regulation the price a firm is allowed to charge is the
minimum of the slack the other two firms chose in the period before. So if firms
7 and o choose the same slack in ¢ and = chooses a smaller one, the price ¢ and
o are allowed to charge in ¢ + 1 is equal to SF, while P, is equal to the slack i
and o choose in t. In ¢t + 1 z may as the consequence choose any slack that is not
greater than P, = S; = 57, while ¢ and o have to choose a slack not greater than
P!,y = P?, = S} what is smaller than P, = S} = S{. In ¢ + 2 the price ¢, 0 and
x may charge is not greater than the smallest slack in ¢, i.e. S7. Because even if z,
the only firm that can choose a higher slack than this in ¢t 4+ 1, does so, the smaller
one of any two slacks in ¢ 4+ 1 cannot be greater than S¥. In ¢ + 2 either all three
firms choose the same slack and this slack is equal to the price they may charge or
one of (II) to (V) applies.

To (II1):

t+1§P11_Sx:Sf
RN
St S Pl =57 =57

then either (I) or one of (II)-(V) applies.
To (IV):
Py =57

P, =S
P, =50

=
< Sx

0 <57
Sty < 59

t+1

21



=
Siva < Pl <57
Sty < Py < S
Sty < Py < S

then either (I) or one of (II)-(V) applies.

To (V):
Py = Pl = Phy = Si= S0 = S

then either (I) or one of (II)-(V) applies.

Average Yardstick Regulation

To (II):
; Sy + SY
pi _ Xt t
t+1 2
o _ St SE
t+1 = 9
. SIS i e
PtJrlz%:St:St
=

. SO+ §% A
Sin< 2 <)

Si+ S
St < L <8
T Si—{_So % o T T
Sr1 < t2 t =5 =5 [andStHzSt]

=

; ; Si+SE4+SI+5 L e
Siya < Plp < : t4 t t<St:St
. . So—}—Sx—}—Si—}—SO . ;
Stia < Py < — t4 — < S = 5
. e _SPESIHSIHSE i e
Stya < Plip < : t4 : t<St:St
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So the highest slack chosen in ¢ cannot be chosen by anyone in ¢ + 2. Then either
(I) or one of (II)-(V) applies.

Under Average Yardstick Regulation the price a firm may charge is equal to the
average of the slacks the other two firms chose in the period before. So if firms ¢
and o choose the same slack in ¢ and x chooses a smaller one, the price 7 and o are
allowed to charge in t 41 is smaller than the one x may charge and smaller than the
slack ¢ and o choose in t. Accordingly they have to choose a smaller slack in ¢ + 1.
x may in t + 1 choose a slack that is greater than S¥ but not greater than the slack
¢ and o choose in ¢t. In ¢+ 2 all prices are smaller than the greatest slack in ¢ so that
this slack cannot be chosen anymore. Then either all three firms choose the same
slack and this slack is equal to the price they may charge or one of (IT) to (V) applies.

To (LL1):
) SO+SI o x
Pt+1:%:5’t:5t
Pt+1: t2 :
. Si—f—So
Pt+1:tTt

=

i SO_'—Sx o T i
t+1§%=5t25t<5t
o Sl_’—Sx 4 [} o
1 = t2 L < 5} [and t+1§ H
x Si+SO i T x
t+1§%<st [and t+1§ ¢ ]

So the highest slack chosen in ¢ cannot be chosen by anyone in ¢ + 1. Then either
(I) or one of (II)-(V) applies.

23



To (IV):

i = SLESE
Ptoﬂzsz—;—Sf
Ptilzsng?

_
SZ+1§%<SZ
s < S5
sr< S8 g

So the highest slack chosen in ¢ cannot be chosen by anyone in ¢ + 1. Then either
(I) or one of (II)-(V) applies.

To (V):

Sy + SY
2

Si 4 Sz Si 4 S0 ,
L = s s =S

Py = =Pl =
=

Sti+1 < Pti+1 = Szf =5y =57

St < Py =57 =5, = 5¢

Si1 S Py =57 =5, =57

Then either (I) or one of (II)-(V) applies.

As long as slacks differ in period t in t 4+ 2 the latest the highest slack of ¢ cannot
be chosen by any firm anymore under both regulatory schemes. (Under Frontier
Yardstick Regulation the latest in ¢ + 2 no slack higher than the smallest of ¢ can be
chosen.) So the maximum of the three slacks monotonically decreases, potentially
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with a delay that is not greater than two periods. Furthermore all slacks are bounded
below at zero. It follows that slacks necessarily have to converge. As the price for
each firm is in every period the minimum respectively the average of the slack of
the other two firms in the period before, prices converge, too. Prices and slacks
cannot converge to different values, as this would decrease prices the next period,
so in every steady state profits of all firms must be zero.

Derivatives

Regulatory Rules

Frontier Yardstick Regulation. We again focus on the example of firm <. The corre-
sponding derivatives for the other firms are found analogously. The regulatory rule

is given by (4)):
Pti+1 = C' 4+ min(S7, SF) = Ri(Stoa S¥)

The derivatives of this function are:

: IR (S?, S¥) 1 for S < S7

RI(S°. §*) = o=t ) t t 40
157, 57) 0S¢ {0 for S° > S? (40)
- IR (S?, SY) 0 for S? < S¥

RI(SO. S — to~t ) t t 41
257,57 aSF {1 for Sp > Sf e

and
RY(S?,SF) + Ry(SP, SF) = OR(S7, 5¢) + OR(S7, 5F) _ 1 for all 5,57 (42)

957 oSt
To derive for SP = SP and simultaneous changes of slack of o and z let
59 = 80 +¢
and

§§”sz+6
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where € # 0. L
For Sy = S} and Sy = S we see that

min(S¢,5¢) = S¢ = 5¢ and min(S¢, 57) = S¢ = 57
then

min(:S’\tg, gf) — min(Sy, S;) = ¢
In analogy to the definition of the derivative we find

lim min(Sy + €, S + €) — min(Sy, SY)
e—0 €

=1 (43)

(Starting from S? = S¥ even a marginal reduction of S? holding S} constant results
in min(Sy, S7) = S < S¥ and vice versa.)

Average Yardstick Regulation. The regulatory rule is given by :
i 1 j 1 j i/ Qo QT
Plha=52 (C+58)=0+53 8= R(S.5)
J#i J#i
So we see that all changes in slack of any firm will result in changes in the prices

the other two firms may charge in the following period of half the magnitude of the
aforementioned change. Spelt out for firm ¢ this is

% o x % o x 1
Rl<St75t):R2<Stast>:§ (44)

All other derivatives of the regulatory rule under Average Yardstick Regulation are

equal to %, too.

Proof of Lemma
Recall the FOC, equation (15)),

Fy(P/, 8)) + 0.J5(Pesa) - R(S}, S7) + 0J5(Peya) - RE(S, 7)) — Ay =0
and complementary slackness conditions :

A>0and \i(Pf—S) =0

Assume firms are in a steady state so that P = P? = P* = S! = §? = S¥ and
P} < 8% under Average Yardstick Regulation respectively P/ < S™* under Frontier
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Yardstick Regulation. If ¢’s choice of slack is optimal, the FOC and complementary
slackness conditions must hold. Now assume one of the other firms, e.g. firm o,
instead chooses a marginally smaller slack in ¢ so that P/, = Pf, < P2, and
Pl < S# under Average Yardstick Regulation respectively P}, < S™* under
Frontier Yardstick Regulation. From the break even condition we know that 7 has
to reduce its slack by at least that marginal change of the price it may charge in
t + 1 so that the left hand site derivative of fi(Py,1) with respect to i’s own price
cannot be smaller than one. Clearly then the sum of the left hand site derivatives
[i(Pei1) + fa(Pyyq) > 1, too. (As throughout the paper we are only considering
reductions of slack here.) If it is optimal for 7 to decrease its slack by even more than
that marginal change of his price to any §§+1 < P}, the constraint in ¢ + 1 is not
binding and it follows A{,, = 0 from the complementary slackness conditions. With
Si.q < Siit furthermore follows Fy(Pf .y, S 1) > Fo(P},S) as F is strictly concave
in slack. Also the value function is concave in the state variables (see section
accordingly Ji(Pyiq1) > J4(Py) and Ji(Pyyq) > J4(Py). Looking at both regulatory
schemes separately we can show the following:

Under Average Yardstick Regulation all derivatives of the regulatory rule are equal
to % Then in ¢+ 1 we have A} ; = 0 and all other terms of the FOC are not smaller
than the respective values in t. It follows that the FOC cannot hold in ¢ + 1 what
contradicts the assumption that §i 41 is the optimal choice of 1.

Under Frontier Yardstick Regulation the left hand side derivatives of the regulatory
rule relevant for ¢ are equal to 1 if 7 chooses a slack that is smaller than the slack
of the other two firms. So if S}, < S2, and S, < 57, the FOC in ¢t + 1 does
not hold, what again shows that S}, cannot be the optimal slack. So i does not
unilaterally reduce its slack more than necessary.

Here we can clearly observe the vulnerability of Yardstick Regulation against the
threat of joint mutual punishment and collusion in general, as discussed at the
beginning section 3} If at least one of the other firms chooses a very small slack under
Frontier Yardstick Regulation, it is optimal for ¢ to do so, too: From the proof of
Lemma [1| we know that the smallest slack of all in ¢ is an upper bound for all prices
and slacks from ¢ + 2 onwards. So if Sy, ; > min(Sy, ,S¥,,), it directly follows that
i could reduce its slack and by this increase instantaneous payoff without adversely
affecting future prices. Carrying this argument to the extreme: if any of the firms
chooses zero slack, it is optimal for all other firms to do so, too. At the same time
clearly all firms prefer all other possible steady state equilibria over the zero slack
equilibrium. Furthermore we just have proven that in this setting it is not optimal
for ¢ to unilaterally choose any slack smaller than the price it can charge in ¢ + 1.
Accordingly fi(Pyy1) + fi(P¢y1) > 1 could result from joint mutual punishment
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behavior only and thus cannot be the optimal punishment-free strategy of firm zﬁ
We can apply the same reasoning with indices changed, i.e. P{; = P2, < P/, and
for firm o and x what completes the proof.

Lemma 3.

Frontier Yardstick Regulation:

If PLoy = Py < Py and Py < S™*, then fi(Py1) =0
Awverage Yardstick Requlation:

If Ploy = Py < Py and Py < 8%, then fi(Pyq) =0

Proof. Assume P} = PP < P? and P} < SM* under Frontier Yardstick Regulation
respectively P/ < S4* under Average Yardstick Regulation. As i optimally decides
on its slack the FOC holds and S; = ;. If P? decreases to P, with P}, = P} =
Pt = P < P2, < P? and i reacts to this by choosing any smaller slack S}, < S},
i.e. f(Pgr1) > 0, the constraint is not binding, so that A{,; = 0. Applying the
same reasoning as in the proof of Lemma [2| it follows that §i 41 is not an optimal
choice, so that f5(Pyyq) = 0. O

An intuition for Lemma [3| under Frontier Yardstick Regulation is the following: Firm
© knows that the lowest slack in ¢ 4+ 1 describes an upper bound for all slacks and
prices from ¢ 4+ 3 onwards. So as long as the slacks of the other two firms are not
smaller than the one i chooses, this upper bound is the same for every slack o and x
choose. Then the marginal benefits and costs of a reduction of slack do not depend
on these slacks, thus the decision of ¢ is not affected. Again the same reasoning
applies for P} = P? < P¥ as well as for firms o and x, too, with indices changed.

6Tt is easy to show that with a threat of ¢ ‘to burn bridges’ in case of uncooperative behavior of
the other firms, what corresponds to f{(P¢y1) + f3(P¢41) > 1 in our setting, equilibria with even
higher slack could exist.
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Lemma 4.

Frontier Yardstick Regulation:

If Piyy = Pfy < Plyy and Pfyy = Py < S, then Ji(PY72) = 1+ X,
Average Yardstick Regulation:

If PPy = Py < Ply and PPy = Pfy < S, then Ji(P*?) =1+ Abio

Proof. Recall equation ((18)):

Ji(Py) = Fy(P, S))
+0J{(Peia) - RY(SY, SP) - [R(Py) + 6.1 (Pesr) - R5(S7,S7) - f1(Py)
+0J5(Peya) - R5(S;, ) - [T(Py) +6J5(Peya) - R3(S;, S7) - f1(Py)
+ Al

The way the value function of i is affected by a change of the price ¢ may charge
depends on how the other two firms react to this change. Using Lemma [3| for the
reactions of o and z, inserting F|(Pf,S!) = 1 and updating (18 by two periods
completes the proof. O

Intuitively Lemma {4| says that if firms are in the steady state equilibrium described
by SM* respectively S4* and A = 0, they would not change their slack if their price
was higher but would realize a positive profit that period. So the discounted sum
of the utility of ¢ increases by 1 if the price 7 is allowed to charge in ¢ increases by
one unit. In any steady state equilibrium with a slack smaller than SM* respectively
S4* we have A > 0. So firms would like to move to a steady state equilibrium with
higher slack, but cannot because of the (binding) break even constraint.

Intuition for S** based on geometric series

When firm ¢ decides on the slack in ¢ it considers that its slack defines an upper
bound for all prices from t 4+ 2 onwards under Frontier Yardstick Regulation given
S; < min(S?, S¥). From the proof of Lemma [2| we know that o and z choose the
highest slack they are allowed to, given P, = P, < P{,, and P}, = P}, < SM*,
in their optimal decision. Firm ¢ has to trade off profit in ¢ and ¢ 4 1 against slack
int,t+1,t+2, .., 00 when it decides about S! = S™*. (As the price i may charge
in ¢t + 1 is unaffected by S! it can ‘cash in’ the profit from reducing slack twice.) In
the steady state equilibrium described by S**, implicitly defined by , marginal
costs of reducing slack and marginal benefits from doing so must be equal to each

29



other. So that

1+6-1=) 6B (45)

Z=0

With § < 1 it follows that

, 1
B =(1+6)(1-9)
B =1-¢§* (46)

Which is the same equation as ([29).
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