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Abstract

Real life applications of Yardstick Regulation frequently refer to historical cost

data. While Yardstick Regulation cuts the link between �rms' own costs and

prices �rms may charge in a static setting, it does not in a dynamic setting

where historical cost data is used. A �rm can in�uence the price it will be

allowed to charge in the future if its behavior today can a�ect future behavior

of other �rms that determines the price this �rm will be able to charge later

on. This paper shows that, assuming that slack, in�ating of costs, is bene�cial

to �rms, a trade-o� between short term pro�t through abstinence from slack

and the bene�t of slack in (in�nitely) many periods arises. A ratchet e�ect

that Yardstick Regulation was meant to overcome can occur and �rms can

realize positive rents because of the use of historical cost data, even if �rms

are identical. Equilibria with positive slack can exist without any collusion

between �rms or threat. Moreover, this problem is more severe if the �rm

with lowest costs of all other �rms instead of the average �rm is the yardstick.
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torical Cost Data
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1 Introduction

Natural monopolies are frequently subject to regulation. As `natural' competition
does not force prices to be a perfect competition outcome, often regulatory agencies
jump in to `regulate' pro�t, prices or revenue. Under traditional Rate of Return
Regulation allowed pro�t of a �rm is linked to capital employed. The well known
result of Averch and Johnson (1962) is that this regulation provides incentives for
the �rms to employ an ine�cient input mix and not to engage in cost minimiz-
ing behavior - in other words: to produce with some slack. Incentive Regulation
is meant to address this issue. Price Cap Regulation, originally suggested by Lit-
tlechild (1983), decouples costs incurred and prices allowed to be charged by �xing
or capping prices, no matter what costs are. The �rm thus becomes the residual
claimant of all costs not incurred and so has a strong incentive to produce without
slack, if pro�t is worth more to the �rm than slack is. Necessarily the question arises,
how the price cap should be de�ned. If the regulator takes into account pro�ts made
and costs incurred the incentive structure is much less clear cut, as e.g. Train (1991)
points out. The basic idea of Yardstick Regulation as described by Shleifer (1985)
solves this problem by using information on costs of other comparable �rms to de-
�ne prices a �rm is allowed to charge. In a static world and in every period prices
and costs for each individual �rm are as a consequence completely independent of
each other. In absence of collusion Yardstick Regulation fosters e�cient produc-
tion especially if �rms and circumstances of production are very similar. Tangerås
(2002) summarizes: �the regulator is able to extract all surplus from �rms and reach
full e�ciency if technologies are perfectly correlated.� This paper shows that this
property does not carry over into a dynamic setting if historical cost data is used. A
�rm can in�uence the price it is allowed to charge in the future via its e�ect on the
behavior of other �rms. A ratchet e�ect can occur under Yardstick Regulation using
historical cost data without any collusion as a result of individual and independent
decision making of �rms.

The contribution of this paper is twofold: In a simple model with three �rms and
an in�nite horizon we show that every �rm can e�ectively in�uence the price it is
allowed to charge if this price is a function of the costs of the other two �rms in the
period before. By this we point out a feature of real world applications of Yardstick
Regulation that has not received much attention, both in academic literature and
in regulatory practice: historical costs are used to de�ne constraints. We show that
steady state equilibria with positive slack are possible without any collusion if �rms
attach at least some positive value to slack. We furthermore compare two variants
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of Yardstick Regulation: Either the �rm with the lowest costs of all �rms but the
evaluated one or the average of the other �rms can be used as the yardstick. Intu-
itively orientation at the best seems to be the tougher form. We show that choosing
this scheme might lead to higher slack and a worse situation for society however.

In the `real world' the price of a service is usually set before customers use the
service. For Incentive Regulation this means that e.g. at the start of a regulatory
period constraints are de�ned based on observations of costs from the regulatory
period before (see e.g. the decree on Incentive Regulation for electricity and gas
networks in Germany (ARegV)). In the debate prior to this decree the question
which yardstick, average performance or best practice/frontier, should be chosen
was intensively discussed (see e.g. Bundesnetzagentur (2006)). This indicates that
it is not obvious, what the optimal yardstick is. The German legislator decided to
apply a frontier approach, a well cited example for the use of average performance
for regulation is Medicare (originally Shleifer (1985)).
Aspects or drawbacks of Yardstick Regulation that are subject to debate are concerns
that quality might be adversely a�ected under Incentive Regulation in general what
makes additional quality regulation necessary, see Sappington (2005) for a survey,
collusion among �rms (e.g. Tangerås (2002)) and investment behavior (e.g. Dalen
(1998)). Another issue is that �rms might lack comparability, necessary for imple-
mentation of Yardstick Regulation (e.g. La�ont and Tirole (1993)). In this paper
we abstract from these issues and show that still the desired outcome, i.e. e�cient
production, might not be reached.
In our dynamic model with three �rms, an in�nite horizon and discrete time we
examine the e�ect of the use of historical cost data under Yardstick Regulation. As
we are interested in the long run e�ects of regulation we focus on the analysis of
resulting steady state equilibria. We show that in absence of all kinds of collusion or
Folk Theorem arguments steady state equilibria with positive slack, i.e. ine�cient
production and positive rents for �rms, can exist. We furthermore show that the
highest slack that can exist in such a steady state equilibrium is higher if the �rm
with the lowest costs of all other �rms instead of the average of the other �rms is
used as the yardstick.
The modelling of slack, i.e. lack of costly e�ort, in this paper di�ers from a major
part of contributions to the debate on Incentive Regulation, represented especially
by La�ont and Tirole (1993): in these models costly e�ort reduces costs of produc-
tion. In our model ine�ciency costs, slack, are added to real, necessary costs of
e�cient production. The instantaneous payo� function used is very similar to the
one in Blackmon (1994). This is done as it allows for straightforward interpretation
of the results and explicitly models the idea that Yardstick Regulation is meant to
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solve the ine�ciency problem of traditional Rate of Return Regulation. In models
considering only two periods, the e�ect driving our results does not appear: Under
Yardstick Regulation using historical cost data current choices of a �rm do not af-
fect the price this �rm can charge in the current and the next period. The direct
e�ect is visible from the next but one period on, only. Like Meran and Hirschhausen
(2009) we use dynamic programming techniques to account for long run e�ects of
the decisions of �rms, however, we come to di�ering conclusions. The key di�erence
between their model, which is expanding the model of Shleifer (1985), and our ap-
proach that leads to these di�ering results is that Meran and Hirschhausen (2009)
do not allow for bene�t for the �rms from slack, consequently �rms do not gain from
keeping costs high.
The remainder of this paper is structured as follows: Section 2 explains the model
setup. In section 3 all possible (punishment-free) Markov-perfect steady state equi-
libria are characterized, existence is proven and the two regulatory schemes are
compared with respect to equilibrium outcomes. Section 4 concludes.

2 Description of the model

2.1 Firms

There are three �rms, labelled j = i, o, x, each producing a homogeneous output
normalized to one. The output is bought by the consumers. One could think of
demand for electricity that is very inelastic with respect to price or demand for
some crucial medical treatment. These �rms could be thought of catering three
comparable regions with electricity grids as local monopolists. The only way they
interact in `competition' is via the regulation imposed to them. In every period the
regulator assigns a price to each of the �rms. Each �rm may not charge more than
this price for its output, so the regulator de�nes a price cap which is equivalent to
a revenue cap under the assumption of completely inelastic demand. As demand
does not react to price in this setting all �rms always charge the maximum price
they are allowed to. While the �rms' output is directly observable the underlying
cost structure is unknown to the regulator. Each �rm veri�ably reports its costs
to the regulator who cannot distinguish between `real' necessary cost, C > 0, and
slack, Sjt ≥ 0, de�ned as additional costs due to ine�cient use of resources, and
only observes the sum of both. C does not change over time and is the same for all
�rms. This is equivalent to assuming that the regulator correctly and completely
accounts for all heterogeneity between �rms respectively (exogenous) circumstances
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of production.1 Each �rm chooses its slack and may choose di�erent slacks in di�er-
ent periods. Slack can be interpreted e.g. as lack of (costly) e�ort from managers,
oversized o�ces or all kinds of `unnecessary' costs that might occur under Rate of
Return Regulation. As slack is ine�cient production by de�nition, the regulator
maximizing utility of society desires to avoid all slack without explicit consideration
of a target function.

If �rm j chooses a positive slack in period t it realizes a nonmonetary utility denoted
by B(Sjt ). B is twice continuously di�erentiable with B(0) = 0, 1 > B′ > 0 and
B′′ < 0. Accordingly B(Sjt ) < Sjt for all S

j
t > 0. If the sum of necessary costs and

slack is smaller than the price the �rm is allowed to charge it additionally realizes
a pro�t. The marginal bene�t from an additional unit of pro�t is constant and
normalized to 1. Increasing pro�t and decreasing slack are two sides of the same
medal as they add up to a constant: the price a �rm charges less the necessary costs.
So it is su�cient to explicitly consider just one of the two as the other one emerges
as the residual. The instant payo� function of �rm j is in every period given by:

F j
t = P j

t − C − S
j
t +B(Sjt ) (1)

Firms care about pro�t and slack only. They discount next period's utility with δ,
0 < δ < 1, and maximize their intertemporal utility:

∞∑
t=0

δtF j
t (2)

At all times �rms need to break even, so that C + Sjt ≤ P j
t . Not only from a

perspective of the regulator or society slack is `expensive': one marginal unit of
additional pro�t always results in higher instantaneous utility for the �rm than
an additional marginal unit of slack would. The only reason why Sjt > 0 could
be an optimal choice of j is that it can a�ect the price j is allowed to charge in
later periods. We consider an in�nite number of periods (immortality illusion of
a big �rm) in order to avoid unrealistic e�ects of last rounds in which all slack is
zero.2 Every period there is only one choice per �rm to be taken, the slack the �rm
chooses. The regulatory rule and break even condition are common knowledge, so
are the prices of the current period. Using this knowledge �rms can anticipate how
their choice of slack will a�ect future behavior of the other �rms. Accordingly all

1In Shleifer's (1985) one-period model accounting completely and correctly for heterogeneity
leads to the e�cient equilibrium.

2It is easy to show that a �nite horizon and the corresponding backward solution will result in
zero slack starting in the very �rst period.
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three current prices are state variables for all j. Only Markov-perfect strategies are
considered so �rms react to the state variables they observe and do not care about
the history of states. We outrule punishment between �rms and arguments based
on Folk Theorems, which can be seen as a form of collusive behavior, as Yardstick
Regulation obviously is highly vulnerable to collusion. This paper does not strive to
o�er solutions for this issue but proceeds to show that even if all collusive behavior
can be avoided, uncoordinated individual utility maximization by �rms can result in
equilibria with positive slack. Strategies are anonymous, so �rm i reacts to a change
in behavior of o with constant behavior of x just as it would to change vice versa.
Simple renaming o into x and x into o does not change the behavior of i. Firms
simultaneously choose their slack every period without observing the current choice
of the others.

2.2 Regulatory rules

The price a �rm is allowed to charge is derived from costs realized by the other two
�rms in the period before. We separately look at two regulatory schemes: Average
Yardstick Regulation, under which average costs of the other �rms are used as the
yardstick, and Frontier Yardstick Regulation or Best Practice Regulation, under
which only the costs of the best performing �rm, i.e. the �rm with the lowest costs,
are the yardstick. So the price e.g. �rm i is allowed to charge in period t + 1
accordingly is a function of the slack o and x are choosing in t in both cases:

P i
t+1 = Ri(Sot , S

x
t ) (3)

Under Frontier Yardstick Regulation the price is given by

P i
t+1 = min(C + Sot , C + Sxt ) = C +min(Sot , S

x
t ) (4)

and under Average Yardstick Regulation by

P i
t+1 =

1

2

∑
j 6=i

(
C + Sjt

)
= C +

1

2

∑
j 6=i

Sjt (5)

Regulatory rules for the other �rms and periods are de�ned analogously. Since
necessary cost are constant, C can be factored out under both regulatory regimes
and can be normalized to zero. This is equivalent to interpreting P i

t+1 as the amount
by which the price i may charge in t + 1 is greater than necessary costs C. In the
�rst period of Yardstick Regulation prices are exogenously given - they could be
derived from some regulatory rule that was in place before Yardstick Regulation
was implemented.
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Lemma 1. Under both regulatory rules slacks and prices converge to a steady state
in which all �rms choose the same slack, do so in every period and realize zero pro�ts
due to regulatory mechanics. This slack may be zero.

Proof. see appendix

As long as not all �rms choose the same slack and this slack is equal to the price
they are allowed to charge (C is normalized to zero) the highest slack chosen in t
cannot be chosen by any �rm anymore in t + 2 the latest. Accordingly there is a
downward drift of the highest slack, whenever �rms choose di�ering slacks. As slack
cannot become negative convergence is assured.

3 Equilibrium Analysis

The equilibrium concept applied in this paper is Markov-perfect in which all the �rms
simultaneously decide on their slack. From Lemma 1 we know that convergence to a
steady state in which all �rms are allowed to charge the same price, choose the same
slack and make zero pro�ts follows from regulatory mechanics. If a steady state
with slack greater than zero exists, this slack must be consistent with the �rms'
equilibrium strategies. As we are interested in the long run e�ects of Yardstick
Regulation using historical cost data, we focus on the analysis of the resulting steady
state equilibria. From Lemma 1 we also know that asymmetric Markov-perfect
steady state Nash equilibria cannot exist, so we can furthermore focus on P i

t =
P o
t = P x

t ≥ 0.
It is easy to show that equilibria with very high slack could exist, given initial prices
are su�ciently high, if �rms punish other �rms' uncooperative behavior. From the
proof of Lemma 1 directly follows that under Frontier Yardstick Regulation every
�rm can force all �rms into a steady state equilibrium with zero slack by choosing
zero slack once - the worst possible steady state from the perspective of all �rms.
If �rms know that another �rm will `burn bridges' by choosing zero slack in case
of uncooperative behavior by any �rm this can `discipline' �rms to cooperate. As
will be shown, punishing unilaterally by a decrease of slack is not consistent with
maximization of intertemporal utility by a �rm. If and only if other �rms punish in
this sense it can be optimal for a �rm to do so, too. In the spirit of the Folk Theorem3

a threat of joint mutual punishment, i.e. choosing a very bad steady state for all
�rms, could be used to implement equilibria with very high slack. The analysis of

3See e.g. Osborne and Rubinstein (1994) for a description of Trigger Strategies and Folk Theo-
rems.
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corresponding equilibria does not o�er much additional insight - as described in the
introduction, Yardstick Regulation is known to be highly vulnerable to collusion.
Joint mutual punishment, that no �rm would do unilaterally, can be seen as a form
of collusion. Therefore we explicitly exclude all sorts of joint mutual punishment
and collusion in our analysis and show that still steady state equilibria with positive
slack can exist that are `punishment-free'.
In the following we implicitly de�ne an optimal value of slack each, denoted by
S∗, that maximizes intertemporal utility given current prices under both regulatory
regimes that can characterize a steady state equilibrium. We furthermore derive a
unique level of slack SA∗ under Average Yardstick Regulation and SM∗ under Frontier
Yardstick Regulation that o�ers the highest intertemporal utility for the �rms and
that can exist in a steady state equilibrium, given that prices are su�ciently high.
As will be shown, SA∗ is implicitly de�ned by

B′ = 1−
1
2
δ2

1− 1
2
δ

(6)

and SM∗ by

B′ = 1− δ2 (7)

Both equations, (6) and (7), summarize the respective tradeo� between the marginal
bene�t of reducing slack in the current period and the corresponding marginal costs
from adversely a�ecting future payo� each �rm faces every period under both reg-
ulatory schemes. We show that that every S∗ε[0, SA∗] respectively S∗ε[0, SM∗] can
occur in a Markov-perfect steady state equilibrium, provided the initial prices are
high enough. Conversely, no other slack is possible in a (punishment-free) steady
state equilibrium.

3.1 Optimal slack

Assume there exist a steady state equilibrium consistent with the strategies of �rms
i, o and x, denoted by f i(Pt), f

o(Pt) and f
x(Pt), where Pt is the vector of the three

prices valid for �rm i, o and x in t. Strategies need to be optimal in equilibrium by
de�nition. When �rms decide on their slack they consider their discounted utility
in all periods to come given they decide optimally in all future periods given future
states. We use the Principle of Optimality4 to �nd the resulting optimal level of

4See e.g. Acemoglu (2009) or Stokey, Lucas with Prescott (1989) for a detailed description.
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slack for �rm i. So �rm i solves the following maximization problem:

J i(Pt) = J i(P i
t , P

o
t , P

x
t ) = max

Si
t≤P i

t

[F (P i
t , S

i
t) + δJ i(Pt+1)] (8)

Where J i denotes the value function of �rm i and Pt+1 is the vector of prices in
t+1. While the state in t is given the state in t+1 is determined by the regulatory
rule. Plugging the general form of the rule in leads to:

J i(Pt) = max
Si
t≤P i

t

[F (P i
t , S

i
t) + δJ i

(
Ri(Sot , S

x
t ), R

o(Sit , S
x
t ), R

x(Sit , S
o
t )
)
] (9)

Just as i �rms o and x maximize their intertemporal utility given the state variables
they observe. So

Sot = f o(Pt) (10)

and

Sxt = fx(Pt) (11)

describe the optimal slack of o and x given Pt.

With the general forms of the strategies (10) and (11) into (9) we obtain

J i(Pt) = max
Si
t≤P i

t

[
F (P i

t , S
i
t)

+δJ i
(
Ri(f o(Pt), f

x(Pt)), R
o(Sit , f

x(Pt)), R
x(Sit , f

o(Pt))
)] (12)

As this is a constrained maximization problem we rewrite (12) as:

J i(Pt) = max
Si
t

[
F (P i

t , S
i
t)

+ δJ i
(
Ri(f o(Pt), f

x(Pt)), R
o(Sit , f

x(Pt)), R
x(Sit , f

o(Pt))
)

+ λit(P
i
t − Sit)

] (13)

With the complementary slackness conditions:

λit ≥ 0 and λit(P
i
t − Sit) = 0 (14)
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The corresponding �rst order condition (FOC) for the maximum problem is given
by:

F2(P
i
t , S

i
t) + δJ i2(Pt+1) ·Ro

1(S
i
t , S

x
t ) + δJ i3(Pt+1) ·Rx

1(S
i
t , S

o
t )− λit = 0 (15)

Accordingly numbers as the lower index mark derivatives and the respective number
names the argument with respect to which the derivative is taken, while the upper
index describes the function of which the derivative is taken. If the lower index
includes a `t' it is a time index. So Ro

1(S
i
t , S

x
t ) describes how the price o may charge

in t + 1 reacts to a marginal change of the slack of i in t. We only need to look
at derivatives to the left, i.e. reductions of slack, as starting from a steady state no
�rm can increase its slack without violating the break even constraint. Accordingly
throughout this paper all derivatives are to be understood as left hand side deriva-
tives, i.e. reductions of the respective variable.
Now let

Sit = f i(Pt) (16)

describe the optimal slack of �rm i given Pt, i.e. f
i(Pt) is the solution to (15).

Inserting this into (13) leads to:

J i(Pt) = F (P i
t , f

i(Pt))

+ δJ i
(
Ri(f o(Pt), f

x(Pt)), R
o(f i(Pt), f

x(Pt)), R
x(f i(Pt), f

o(Pt))
)

+ λit(P
i
t − f i(Pt))

(17)

taking the derivative to the left with respect P i
t we �nd with Envelope Theorem:

J i1(Pt) = F1(P
i
t , S

i
t)

+ δJ i1(Pt+1) ·Ri
1(S

o
t , S

x
t ) · f o1 (Pt) + δJ i1(Pt+1) ·Ri

2(S
o
t , S

x
t ) · fx1 (Pt)

+ δJ i2(Pt+1) ·Ro
2(S

i
t , S

x
t ) · fx1 (Pt) + δJ i3(Pt+1) ·Rx

2(S
i
t , S

o
t ) · f o1 (Pt)

+ λit

(18)

Analogously we �nd

J i2(Pt) = δJ i1(Pt+1) ·Ri
1(S

o
t , S

x
t ) · f o2 (Pt) + δJ i1(Pt+1) ·Ri

2(S
o
t , S

x
t ) · fx2 (Pt)

+ δJ i2(Pt+1) ·Ro
2(S

i
t , S

x
t ) · fx2 (Pt) + δJ i3(Pt+1) ·Rx

2(S
i
t , S

o
t ) · f o2 (Pt)

(19)

and

J i3(Pt) = δJ i1(Pt+1) ·Ri
1(S

o
t , S

x
t ) · f o3 (Pt) + δJ i1(Pt+1) ·Ri

2(S
o
t , S

x
t ) · fx3 (Pt)

+ δJ i2(Pt+1) ·Ro
2(S

i
t , S

x
t ) · fx3 (Pt) + δJ i3(Pt+1) ·Rx

2(S
i
t , S

o
t ) · f o3 (Pt)

(20)
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Updating (19) and (20) by one period yields

J i2(Pt+1) = δJ i1(Pt+2) ·Ri
1(S

o
t+1, S

x
t+1) · f o2 (Pt+1)

+ δJ i1(Pt+2) ·Ri
2(S

o
t+1, S

x
t+1) · fx2 (Pt+1)

+ δJ i2(Pt+2) ·Ro
2(S

i
t+1, S

x
t+1) · fx2 (Pt+1)

+ δJ i3(Pt+2) ·Rx
2(S

i
t+1, S

o
t+1) · f o2 (Pt+1)

(21)

and

J i3(Pt+1) = δJ i1(Pt+2) ·Ri
1(S

o
t+1, S

x
t+1) · f o3 (Pt+1)

+ δJ i1(Pt+2) ·Ri
2(S

o
t+1, S

x
t+1) · fx3 (Pt+1)

+ δJ i2(Pt+2) ·Ro
2(S

i
t+1, S

x
t+1) · fx3 (Pt+1)

+ δJ i3(Pt+2) ·Rx
2(S

i
t+1, S

o
t+1) · f o3 (Pt+1)

(22)

Plugging (21) and (22) into the FOC (15) leads to

0 = F2(P
i
t , S

i
t)

+ δRo
1(S

i
t , S

x
t ) ·

(
δJ i1(Pt+2) ·Ri

1(S
o
t+1, S

x
t+1) · f o2 (Pt+1)

+ δJ i1(Pt+2) ·Ri
2(S

o
t+1, S

x
t+1) · fx2 (Pt+1)

+ δJ i2(Pt+2) ·Ro
2(S

i
t+1, S

x
t+1) · fx2 (Pt+1)

+ δJ i3(Pt+2) ·Rx
2(S

i
t+1, S

o
t+1) · f o2 (Pt+1)

)
+ δRx

1(S
i
t , S

o
t ) ·
(
δJ i1(Pt+2) ·Ri

1(S
o
t+1, S

x
t+1) · f o3 (Pt+1)

+ δJ i1(Pt+2) ·Ri
2(S

o
t+1, S

x
t+1) · fx3 (Pt+1)

+ δJ i2(Pt+2) ·Ro
2(S

i
t+1, S

x
t+1) · fx3 (Pt+1)

+ δJ i3(Pt+2) ·Rx
2(S

i
t+1, S

o
t+1) · f o3 (Pt+1)

)
− λit

(23)

In equation (23) we clearly see the consequence of the use of historical cost data
under Yardstick Regulation we pointed out in the introduction: The price �rm i can
charge in the future is in�uenced by its behavior today. The choice of slack of i in
t does not only de�ne its instantaneous payo�, implicitly represented by F2(P

i
t , S

i
t),

but also a�ects the prices o and x may and will charge in t + 1 via the regulatory
rule, Ro(Sit , S

x
t ) respectively R

x(Sit , S
o
t ). Firms o and x choose their slack in t + 1

based on the state they observe and under the restriction that they have to break
even according to their strategies, f o(Pt+1) and f

x(Pt+1). Via the regulatory rule
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the slacks o and x choose in t+1 then a�ect P o
t+2 and P

x
t+2 and determine the price

i is allowed to charge in t + 2, P i
t+2. These three prices are the arguments of the

value function of i, and in period t �rm i discounts the e�ects in t+ 2 with δ2.

From Lemma 1 we know that in every steady state all �rms choose the same slack.
Thus starting from a steady state unilateral reduction of the slack of i a�ects
the price o and x may charge in the following period just the same way so that
Ro

1(S
i
t , S

x
t ) = Rx

1(S
i
t , S

o
t ). (We extensively deal with the derivatives of the regulatory

rule in the appendix.) This reduces (23) to

0 = F2(P
i
t , S

i
t)

+ δRo
1(S

i
t , S

x
t ) ·

(
δJ i1(Pt+2) ·Ri

1(S
o
t+1, S

x
t+1) · [f o2 (Pt+1) + f o3 (Pt+1)]

+ δJ i1(Pt+2) ·Ri
2(S

o
t+1, S

x
t+1) · [fx2 (Pt+1) + fx3 (Pt+1)]

+ δJ i2(Pt+2) ·Ro
2(S

i
t+1, S

x
t+1) · [fx2 (Pt+1) + fx3 (Pt+1)]

+ δJ i3(Pt+2) ·Rx
2(S

i
t+1, S

o
t+1) · [f o2 (Pt+1) + f o3 (Pt+1)]

)
− λit

(24)

From Lemma 1 furthermore follows that, due to regulatory mechanics, in all steady
states all �rms realize zero pro�ts, i.e. all �rms choose the slack that is equal to the
maximum price each �rm may charge. So starting from a steady state a marginal
unilateral reduction of the slack of i in t leads to P o

t+1 = P x
t+1 < P i

t+1. Under both
regulatory schemes the two other �rms, o and x, will reduce their slack the next
period by exactly the resulting marginal reduction of their respective price, given
the price they face is not higher than the unique optimal slack SA∗ respectively SM∗.
We formalize this in the following Lemma considering reductions of slack only for
both regulatory regimes:

Lemma 2.

Frontier Yardstick Regulation:
If P o

t+1 = P x
t+1 ≤ P i

t+1 and P o
t+1 = P x

t+1 ≤ SM∗,
then f o2 (Pt+1) + f o3 (Pt+1) = fx2 (Pt+1) + fx3 (Pt+1) = 1
Average Yardstick Regulation:
If P o

t+1 = P x
t+1 ≤ P i

t+1 and P o
t+1 = P x

t+1 ≤ SA∗,
then f o2 (Pt+1) + f o3 (Pt+1) = fx2 (Pt+1) + fx3 (Pt+1) = 1

Proof. see appendix

Intuitively Lemma 2 means the following: Starting from a steady state a �rm has

12



to reduce its slack if the price this �rm can charge is reduced, as it needs to break
even. Given that the �rm would not voluntarily unilaterally deviate from the steady
state equilibrium it cannot increase its intertemporal payo� by deviating even more
than necessary. That another �rm also has to reduce its slack by the same amount
does not change the situation here.

With Lemma 2 equation (24) reduces to

0 = F2(P
i
t , S

i
t)

+ δRo
1(S

i
t , S

x
t ) ·

(
δJ i1(Pt+2) · [Ri

1(S
o
t+1, S

x
t+1) +Ri

2(S
o
t+1, S

x
t+1)]

+ δJ i2(Pt+2) ·Ro
2(S

i
t+1, S

x
t+1)

+ δJ i3(Pt+2) ·Rx
2(S

i
t+1, S

o
t+1)

)
− λit

(25)

In order to show how the solutions to this equation di�er under both regulatory
schemes we need to look at them separately.

Frontier Yardstick Regulation. From Lemma 1 it followed that in all steady state
equilibria �rms choose the same slack and the slack is equal to each �rms' price due
to regulatory mechanics. So in such a steady state i will choose the same slack every
period, i.e. Sit+1 = Sit = S∗. Every period i could deviate by reducing its slack (no
�rm can increase its slack in a steady state because of the break even constraint). So
S∗ must solve the FOC in every period. Now assume i marginally reduces its slack
in t. From the FOC directly follows that it cannot be optimal for i to choose a higher
slack in t+1 than in t. With Sit < Sit+1 the slacks of o and x would have to be smaller
than the one i chooses in t+1 from the regulatory rule and the break even constraint.
Accordingly in t+1 the left hand side derivatives of the regulatory rule with respect
to the slack of i drop to zero if Sit < Sit+1. It follows that S

i
t < Sit+1 cannot describe an

optimal strategy of i: the FOC could not hold in t+1 as F2(P
i
t , S

i
t) = B′−1 is smaller

than zero and λit+1 is nonnegative from the complementary slackness conditions.
Accordingly we assume i marginally reduces its slack in periods t and t+ 1, too, so
that Sit = Sit+1 < Sot = Sxt . From the regulatory rule (4) the prices o and x may
charge in t+1 decrease to P o

t+1 = P x
t+1 = Sit and given S

i
t = Sit+1 there is no additional

e�ect on P o
t+2 = P x

t+2 from this change in the behavior of o and x: The prices o and x
may charge in t+2 are given by P o

t+2 = min(Sit+1, S
x
t+1) and P

x
t+2 = min(Sit+1, S

o
t+1).

So if o and x decrease their slack in t+ 1 to Sit = Sit+1 they do neither change P o
t+2

nor P x
t+2 so that in this situation the left hand side derivatives of the regulatory

13



rule are given by Ro
2(S

i
t+1, S

x
t+1) = Rx

2(S
i
t+1, S

o
t+1) = 0.5 Intuitively i decides about

its slack in t, knowing that its slack in t + 1 will be the same. So deciding about
slack in t and t + 1 �rm i knows that P o

t+2 respectively P x
t+2 are equal to Sit+1 for

all Sxt+1 ≥ Sit+1 respectively Sot+1 ≥ Sit+1. Accordingly the only price in t + 2 that
is changed as a consequence of the induced reduction of the slack of o and x to
Sot+1 = Sxt+1 = Sit+1 = Sit is the price �rm i itself can charge in t + 2, P i

t+2. As in
addition Ri

1(S
o
t+1, S

x
t+1) +Ri

2(S
o
t+1, S

x
t+1) = 1 is always true under Frontier Yardstick

Regulation (see appendix) equation (25) reduces to:

0 = F2(P
i
t , S

i
t) + δRo

1(S
i
t , S

x
t ) · δJ i1(Pt+2)− λit (26)

We consider unilateral reductions of the slack of i starting from a steady state so
Ro

1(S
i
t , S

x
t ) = 1. Furthermore with J i1(Pt+2) = 1 + λit+2 (Lemma 4 in the appendix)

and F2(P
i
t , S

i
t) = B′ − 1, it follows:

0 = B′ − 1 + δ2(1 + λit+2)− λit (27)

as the optimization problem is the same in every period in a steady state equilibrium
λit = λit+2 = λ solving for B′ yields the implicit solution for S∗.

B′ = 1− δ2 + (1− δ2)λ (28)

This condition summarizes the tradeo� between marginal bene�ts and marginal
costs of decreasing slack. The less patient �rm i is, so the more weight it puts on
instantaneous payo�, i.e. the smaller δ is, the greater is B′ and with B′′ < 0 the
smaller is the slack i chooses. So if δ decreases the �rm cares less about slack in
the future but grasps pro�t today. A more detailed intuition based on an in�nite
geometric series if given in the appendix. If λ > 0 the constraint must be binding
from the complementary slackness condition. So B′ must then be greater and with
B′′ < 0 slack must be smaller. So if the constraint is binding �rm i has to choose a
smaller slack than it would otherwise do. If λ is zero, the solution to the constrained
maximization problem is equal to the solution to the unconstrained maximization
problem, i.e. the slack SM∗ �rm i chooses in equilibrium if all prices are su�ciently
high. So the implicit de�nition for SM∗ is given by:

B′ = 1− δ2 (29)

Average Yardstick Regulation. Under this regulatory rule all derivatives of the reg-
ulatory rule are always 1

2
as each price is the average of two slacks (see appendix).

5Derivatives would be greater than zero for further decreases of their slack though.
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Using this and that in all steady state equilibria the FOC must hold in every period,
we can update the FOC (15) by one period and plug it into (25) to �nd

0 = F2(P
i
t , S

i
t) + δ

1

2
·
(
δJ i1(Pt+2)− F2(P

i
t+1, S

i
t+1) + λit+1

)
− λit (30)

Applying the same reasoning as above with Sit+1 = Sit = S∗, J i1(Pt+2) = 1 + λit+2,
F2(P

i
t , S

i
t) = B′ − 1 and λ = λt = λit+1 = λit+2 we �nd:

0 = B′(1− 1

2
· δ) + 1(

1

2
δ2 +

1

2
δ − 1) + λ(

1

2
δ +

1

2
δ2 − 1) (31)

and solving for B′ it follows the implicit solution for S∗:

B′ =
(1− 1

2
δ2 − 1

2
δ) + λ(1− 1

2
δ2 − 1

2
δ)

1− 1
2
δ

(32)

Under Average Yardstick Regulation B′ also decreases in δ, so the slack i chooses
increases in the weight the �rm puts on future payo�. Again B′ increases in λ so the
slack chosen if the constraint is binding is smaller than the slack chosen if all prices
are su�ciently high. The solution to the corresponding unconstrained maximization
problem, i.e. the slack SA∗ �rm i chooses in equilibrium if all prices are su�ciently
high, does not include λ. So SA∗ is implicitly de�ned by:

B′ = 1−
1
2
δ2

1− 1
2
δ

(33)

3.2 Steady state equilibria

From Lemma 1 it followed that there cannot exist any asymmetric steady state
equilibrium. It is straightforward that the above analysis can analogously be done
for �rms o and x. Taking the optimal strategies of �rms o and x as given we show
that it is optimal for i to choose the same strategy. Doing this, we proof existence
of the equilibria characterized above.
Assume optimal strategies of �rms o and x under Frontier Yardstick Regulation are
given by

f o(Pt) = fx(Pt) = min(SM∗, P i
t , P

o
t , P

x
t ) (34)

So o and x choose a slack equal to SM∗ if all prices of the current period are at least
SM∗. If this is not the case they choose a slack equal the lowest price. Obviously,
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it cannot be optimal then to choose any slack greater than SM∗ for �rm i, as it
could reduce its slack to SM∗ without a�ecting any price in t+1. As F2(P

i
t , S

i
t) < 0

this would always result in higher instantaneous and intertemporal payo�. The
same is true for any Sit > Sot = Sxt , as i's slack does not a�ect future prices if
Sit > Sot = Sxt from the regulatory rule. Accordingly the FOC cannot hold with
Sit > Sot = Sxt as F2(P

i
t , S

i
t) < 0 and λit is nonnegative from the complementary

slackness conditions. Thus it is never optimal for i to choose a slack higher than o
and x under Frontier Yardstick Regulation and the optimal strategy of i given Pt

must be f i(Pt) ≤ min(SM∗, P i
t , P

o
t , P

x
t ).

By Theorem 6.4 of Acemoglu (2009) together with the relaxed assumption 6.3 that
the instant payo� function is (weakly) concave (Acemoglu (2009), p. 189) it follows
that the value function is concave in the state variables, as Assumptions 6.1, 6.2 and
and the relaxed version of Assumption 6.3 from Acemoglu (2009) hold in our setup.
As furthermore F is strictly concave in slack and the left hand side derivative of the
regulatory rule with respect to the slack of i must be equal to one in all equilibria
with S∗ > 0, λ > 0 in all equilibria with S∗ < SM∗. Accordingly the steady state
described by SM∗ is strictly preferred by �rm i over all other steady states with
lower slack. (Obviously all steady state equilibria with positive slack are preferred
by i over the zero slack equilibrium.) From the concavity of the value function
and the strict concavity of F concerning slack it also follows that λ decreases in
the steady state value of slack for all S∗ < SM∗. As a consequence �rm i never
unilaterally deviates by reducing slack from a situation where all �rms choose the
same slack, given Sit ≤ SM∗: If �rm i unilaterally reduces its slack starting from such
a situation in t, the constraint is not binding that period, so λit needs to be zero from
the complementary slackness conditions. With the concavity of the value function
and strict concavity of F with respect to slack this cannot be optimal, as the FOC
could not hold. Then f i(Pt) = min(SM∗, P i

t , P
o
t , P

x
t ) is the optimal strategy given

the strategies of o and x and every slack S∗ε[0, SM∗] can describe a steady state
equilibrium under Frontier Yardstick Regulation. Assuming �rms o and x would
not choose, `jump to', SM∗ in the �rst period given prices are su�ciently high, but
would simply choose the slack equal to the lowest price of all in t, we can furthermore
show that there cannot exist any other steady state equilibrium. As λ is nonnegative
from the complementary slackness conditions, the derivatives of the regulatory rule
cannot be greater than 1, and the value function is concave in the prices, while F
is strictly concave in slack, the FOC could not hold in any steady state with slack
greater than SM∗. So �rm i would unilaterally deviate by reducing its slack, which
contradicts the existence of (punishment-free) Markov-perfect steady state equilibria
with slack higher SM∗. In every steady state with slack SM∗ marginal bene�ts of
unilaterally reducing slack would be greater than marginal costs of doing so.
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Assume further that optimal strategies of �rms o and x under Average Yardstick
Regulation are given by

f o(Pt) = fx(Pt) = min(SA∗, P i
t , P

o
t , P

x
t ) (35)

Strategies given by equations (34) respectively (35) di�er only by the unique optimal
value of slack, given prices are su�ciently high. Accordingly the corresponding proof
for Average Yardstick Regulation is are very similar to the one above: It is not opti-
mal for �rm i to choose a slack higher than the one o and x choose given their above
strategies. Under Average Yardstick Regulation all derivatives of the regulatory rule
are equal to 1

2
, as every price is the average of the slacks of the other two �rms of the

period before. Still it is not optimal for i to choose Sit > Sot = Sxt . Neither o nor x
would choose a higher slack in t+1 as then min(P i

t+1, P
o
t+1, P

x
t+1) = P i

t+1 = Sot = Sxt .
It follows that the highest possible slack from t + 2 on would not be greater than
Sot = Sxt for all slacks S

i
t > Sot = Sxt . As F2(P

i
t , S

i
t) < 0, i could increase its instanta-

neous and intertemporal payo� by decreasing its slack and choosing Sit = Sot = Sxt .
The rest of the proof is a straightforward repetition of the arguments above using
SA∗ and the corresponding derivatives of the regulatory rule.
We summarize these �ndings in the following proposition:

Proposition 1. There exists an optimal value of slack, denoted by S∗, that maxi-
mizes intertemporal utility given current prices under both regulatory regimes, that
can describe a steady state equilibrium. There furthermore exists a unique level of
slack SM∗ under Frontier Yardstick Regulation and SA∗ under Average Yardstick
Regulation that o�ers the highest intertemporal payo� of all possible (punishment-
free) Markov-perfect steady state equilibria for all �rms given prices are su�ciently
high. Every slack S∗ε[0, SM∗] under Frontier Yardstick Regulation and S∗ε[0, SA∗]
under Average Yardstick Regulation can characterize a steady state equilibrium.
There are no other (punishment-free) Markov-perfect steady state equilibria.

It is important to note, that the regulator cannot induce the zero slack steady
state by simply setting all prices to zero. In our analysis necessary costs have
been normalized to zero - and the reason why regulatory schemes like Yardstick
Regulation exist is that the regulator does not know necessary costs of production.
So by setting too low prices in the �rst regulatory period, the regulator risk �rms
going bankrupt, as they cannot break even anymore.

3.3 Comparative dynamics

From Proposition 1 we know that every slack between 0 and SM∗ under Frontier
Yardstick Regulation respectively 0 and SA∗ under Average Yardstick Regulation
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can describe a steady state equilibrium and that there cannot exist (punishment-
free) Markov-perfect steady state equilibria with higher slack under the respective
regulatory regime. By comparing the implicit solutions for SM∗ and SA∗ we �nd that
all (punishment-free) Markov-perfect steady state equilibria under Average Yardstick
Regulation can be equilibria under Frontier Yardstick Regulation, while the reverse
is not true. This leads to the following Proposition:

Proposition 2. The highest slack that can be realized in a (punishment-free) Markov-
perfect steady state equilibrium is greater under Frontier Yardstick Regulation than
under Average Yardstick Regulation.

Proof. SA∗ is implicitly de�ned by (33) and the corresponding value under Frontier
Yardstick Regulation, SM∗, is implicitly de�ned by (29). As B′ > 0 and B′′ < 0,
SM∗ > SA∗ if the following inequality holds:

1−
1
2
δ2

1− 1
2
δ
> 1− δ2 (36)

δ2 >
1
2
δ2

1− 1
2
δ

(37)

1− 1

2
δ >

1

2
(38)

1 > δ (39)

(39) is always true, what completes the proof.

Intuitively, orientation at the performance of `the best' of all other �rms rather
than the average of all other �rms to de�ne constraints for a �rm under Yardstick
Regulation seems to be the tougher regulation. Incentives to produce e�ciently,
i.e. without slack, should be high. Proposition 2 questions this intuition. Using
historical cost data of other �rms allows each �rm to in�uence the yardstick, and as
this in�uence is greater under Frontier Yardstick Regulation all �rms could be less
willing to `push' the other �rms, because they will have to `push back'.

4 Conclusion

While Shleifer's (1985) version of Yardstick Regulation uses current performance of
other �rms to �nd current constraints for an evaluated �rm, real life applications of
Yardstick Regulation frequently ex ante de�ne constraints, e.g. prices allowed to be
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charged, based on data from the regulatory period(s) before. This use of historical
cost data in Yardstick Regulation enables a �rm to a�ect the price it can charge
in the future. By a�ecting other �rms' constraints and thus behavior the current
performance of a �rm is directly linked to its own future constraints. This analysis
showed in a simple model framework that ine�cient steady state equilibria in which
all �rms choose positive slack can exist under Yardstick Regulation without any
form of collusion if historical cost data is used. Furthermore the highest slack that
can exist in a (punishment-free) Markov-perfect steady state equilibrium is higher
under Frontier Yardstick Regulation, where the �rm with the lowest costs of all but
the evaluated �rm de�nes the yardstick, than if the average of all other �rms is
used. This challenges the perception that the best of all other �rms should be the
yardstick in Yardstick Regulation using historical cost data.
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Appendix

Proofs

Proof of Lemma 1

As regulatory rules are anonymous only 5 relevant di�erent cases can be distin-
guished, potentially with indices changed and updated though. (C is normalized to
zero):

(I) P i
t = P o

t = P x
t = Sit = Sot = Sxt

(II) Sit = Sot > Sxt

(III) Sit > Sot = Sxt

(IV) Sit > Sot > Sxt

(V) Sit = Sot = Sxt < P i
t = P o

t = P x
t

The reasoning is explained in detail for case (II) under Frontier Yardstick Regu-
lation and Average Yardstick Regulation, the remaining is then a straightforward
application along these lines.

Frontier Yardstick Regulation
To (I):
If all three prices and all three slacks are the same in t the regulatory rule does not
force any change. Prices in t+ 1 are the same and the same slack as in t is possible
for all �rms.

To (II):

P i
t+1 = P o

t+1 = Sxt < P x
t+1 = Sit = Sot

⇒
Sit+1 ≤ Sxt
Sot+1 ≤ Sxt

Sxt+1 ≤ Sit = Sot
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⇒
Sit+2 ≤ P i

t+2 ≤ Sxt
Sot+2 ≤ P o

t+2 ≤ Sxt
Sxt+2 ≤ P x

t+2 ≤ Sxt

then either (I) or one of (II)-(V) applies.

Under Frontier Yardstick Regulation the price a �rm is allowed to charge is the
minimum of the slack the other two �rms chose in the period before. So if �rms
i and o choose the same slack in t and x chooses a smaller one, the price i and
o are allowed to charge in t + 1 is equal to Sxt , while P

x
t+1 is equal to the slack i

and o choose in t. In t + 1 x may as the consequence choose any slack that is not
greater than P x

t+1 = Sit = Sot , while i and o have to choose a slack not greater than
P i
t+1 = P o

t+1 = Sxt what is smaller than P x
t+1 = Sit = Sot . In t + 2 the price i, o and

x may charge is not greater than the smallest slack in t, i.e. Sxt . Because even if x,
the only �rm that can choose a higher slack than this in t+ 1, does so, the smaller
one of any two slacks in t + 1 cannot be greater than Sxt . In t + 2 either all three
�rms choose the same slack and this slack is equal to the price they may charge or
one of (II) to (V) applies.

To (III):

Sit+1 ≤ P i
t+1 = Sxt = Sot

Sot+1 ≤ P o
t+1 = Sxt = Sot

Sxt+1 ≤ P x
t+1 = Sot = Sxt

then either (I) or one of (II)-(V) applies.

To (IV):

P i
t+1 = Sxt
P o
t+1 = Sxt
P x
t+1 = Sot

⇒
Sit+1 ≤ Sxt
Sot+1 ≤ Sxt
Sxt+1 ≤ Sot
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⇒
Sit+2 ≤ P i

t+2 ≤ Sxt
Sot+2 ≤ P o

t+2 ≤ Sxt
Sxt+2 ≤ P x

t+2 ≤ Sxt

then either (I) or one of (II)-(V) applies.

To (V):

P i
t+1 = P o

t+1 = P x
t+1 = Sit = Sot = Sxt

then either (I) or one of (II)-(V) applies.

Average Yardstick Regulation
To (II):

P i
t+1 =

Sot + Sxt
2

P o
t+1 =

Sit + Sxt
2

P x
t+1 =

Sit + Sot
2

= Sit = Sot

⇒

Sit+1 ≤
Sot + Sxt

2
< Sit

Sot+1 ≤
Sit + Sxt

2
< Sot

Sxt+1 ≤
Sit + Sot

2
= Sit = Sot [and S

x
t+1 R Sxt ]

⇒

Sit+2 ≤ P i
t+2 ≤

Sit + Sxt + Sit + Sot
4

< Sit = Sot

Sot+2 ≤ P o
t+2 ≤

Sot + Sxt + Sit + Sot
4

< Sot = Sit

Sxt+2 ≤ P x
t+2 ≤

Sot + Sxt + Sit + Sxt
4

< Sit = Sot
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So the highest slack chosen in t cannot be chosen by anyone in t + 2. Then either
(I) or one of (II)-(V) applies.
Under Average Yardstick Regulation the price a �rm may charge is equal to the
average of the slacks the other two �rms chose in the period before. So if �rms i
and o choose the same slack in t and x chooses a smaller one, the price i and o are
allowed to charge in t+1 is smaller than the one x may charge and smaller than the
slack i and o choose in t. Accordingly they have to choose a smaller slack in t + 1.
x may in t+ 1 choose a slack that is greater than Sxt but not greater than the slack
i and o choose in t. In t+2 all prices are smaller than the greatest slack in t so that
this slack cannot be chosen anymore. Then either all three �rms choose the same
slack and this slack is equal to the price they may charge or one of (II) to (V) applies.

To (III):

P i
t+1 =

Sot + Sxt
2

= Sot = Sxt

P o
t+1 =

Sit + Sxt
2

P x
t+1 =

Sit + Sot
2

⇒

Sit+1 ≤
Sot + Sxt

2
= Sot = Sxt < Sit

Sot+1 ≤
Sit + Sxt

2
< Sit [and S

o
t+1 R Sot ]

Sxt+1 ≤
Sit + Sot

2
< Sit [and S

x
t+1 R Sxt ]

So the highest slack chosen in t cannot be chosen by anyone in t + 1. Then either
(I) or one of (II)-(V) applies.
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To (IV):

P i
t+1 =

Sot + Sxt
2

P o
t+1 =

Sit + Sxt
2

P x
t+1 =

Sit + Sot
2

⇒

Sit+1 ≤
Sot + Sxt

2
< Sit

Sot+1 ≤
Sit + Sxt

2
< Sit

Sxt+1 ≤
Sit + Sot

2
< Sit

So the highest slack chosen in t cannot be chosen by anyone in t + 1. Then either
(I) or one of (II)-(V) applies.

To (V):

P i
t+1 =

Sot + Sxt
2

= P o
t+1 =

Sit + Sxt
2

= P x
t+1 =

Sit + Sot
2

= Sit = Sot = Sxt

⇒
Sit+1 ≤ P i

t+1 = Sit = Sot = Sxt

Sot+1 ≤ P o
t+1 = Sot = Sit = Sxt

Sxt+1 ≤ P x
t+1 = Sxt = Sit = Sot

Then either (I) or one of (II)-(V) applies.

As long as slacks di�er in period t in t + 2 the latest the highest slack of t cannot
be chosen by any �rm anymore under both regulatory schemes. (Under Frontier
Yardstick Regulation the latest in t+2 no slack higher than the smallest of t can be
chosen.) So the maximum of the three slacks monotonically decreases, potentially
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with a delay that is not greater than two periods. Furthermore all slacks are bounded
below at zero. It follows that slacks necessarily have to converge. As the price for
each �rm is in every period the minimum respectively the average of the slack of
the other two �rms in the period before, prices converge, too. Prices and slacks
cannot converge to di�erent values, as this would decrease prices the next period,
so in every steady state pro�ts of all �rms must be zero.

�

Derivatives

Regulatory Rules

Frontier Yardstick Regulation. We again focus on the example of �rm i. The corre-
sponding derivatives for the other �rms are found analogously. The regulatory rule
is given by (4):

P i
t+1 = C +min(Sot , S

x
t ) = Ri(Sot , S

x
t )

The derivatives of this function are:

Ri
1(S

o
t , S

x
t ) =

∂Ri(Sot , S
x
t )

∂Sot
=

{
1 for Sot < Sxt
0 for Sot > Sxt

(40)

Ri
2(S

o
t , S

x
t ) =

∂Ri(Sot , S
x
t )

∂Sxt
=

{
0 for Sot < Sxt
1 for Sot > Sxt

(41)

and

Ri
1(S

o
t , S

x
t ) +Ri

2(S
o
t , S

x
t ) =

∂Ri(Sot , S
x
t )

∂Sot
+
∂Ri(Sot , S

x
t )

∂Sxt
= 1 for all Sot , S

x
t (42)

To derive (42) for Sot = Sxt and simultaneous changes of slack of o and x let

S̃ot = Sot + ε

and

S̃xt = Sxt + ε

25



where ε 6= 0.
For Sot = Sxt and S̃ot = S̃xt we see that

min(Sot , S
x
t ) = Sot = Sxt and min(S̃ot , S̃

x
t ) = S̃ot = S̃xt

then

min(S̃ot , S̃
x
t )−min(Sot , S

x
t ) = ε

In analogy to the de�nition of the derivative we �nd

lim
ε→0

min(Sot + ε, Sxt + ε)−min(Sot , S
x
t )

ε
= 1 (43)

(Starting from Sot = Sxt even a marginal reduction of Sot holding S
x
t constant results

in min(Sot , S
x
t ) = Sot < Sxt and vice versa.)

Average Yardstick Regulation. The regulatory rule is given by (5):

P i
t+1 =

1

2

∑
j 6=i

(
C + Sjt

)
= C +

1

2

∑
j 6=i

Sjt = Ri(Sot , S
x
t )

So we see that all changes in slack of any �rm will result in changes in the prices
the other two �rms may charge in the following period of half the magnitude of the
aforementioned change. Spelt out for �rm i this is

Ri
1(S

o
t , S

x
t ) = Ri

2(S
o
t , S

x
t ) =

1

2
(44)

All other derivatives of the regulatory rule under Average Yardstick Regulation are
equal to 1

2
, too.

Proof of Lemma 2

Recall the FOC, equation (15),

F2(P
i
t , S

i
t) + δJ i2(Pt+1) ·Ro

1(S
i
t , S

x
t ) + δJ i3(Pt+1) ·Rx

1(S
i
t , S

o
t )− λit = 0

and complementary slackness conditions (14):

λit ≥ 0 and λit(P
i
t − Sit) = 0

Assume �rms are in a steady state so that P i
t = P o

t = P x
t = Sit = Sot = Sxt and

P i
t ≤ SA∗ under Average Yardstick Regulation respectively P i

t ≤ SM∗ under Frontier
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Yardstick Regulation. If i's choice of slack is optimal, the FOC and complementary
slackness conditions must hold. Now assume one of the other �rms, e.g. �rm o,
instead chooses a marginally smaller slack in t so that P i

t+1 = P x
t+1 < P o

t+1 and
P i
t+1 < SA∗ under Average Yardstick Regulation respectively P i

t+1 < SM∗ under
Frontier Yardstick Regulation. From the break even condition we know that i has
to reduce its slack by at least that marginal change of the price it may charge in
t + 1 so that the left hand site derivative of f i(Pt+1) with respect to i's own price
cannot be smaller than one. Clearly then the sum of the left hand site derivatives
f i1(Pt+1) + f i3(Pt+1) ≥ 1, too. (As throughout the paper we are only considering
reductions of slack here.) If it is optimal for i to decrease its slack by even more than
that marginal change of his price to any Sit+1 < P i

t+1, the constraint in t + 1 is not
binding and it follows λit+1 = 0 from the complementary slackness conditions. With
Sit+1 < Sit it furthermore follows F2(P

i
t+1, S

i
t+1) > F2(P

i
t , S

i
t) as F is strictly concave

in slack. Also the value function is concave in the state variables (see section 3.2)
accordingly J i2(Pt+1) ≥ J i2(Pt) and J

i
3(Pt+1) ≥ J i3(Pt). Looking at both regulatory

schemes separately we can show the following:
Under Average Yardstick Regulation all derivatives of the regulatory rule are equal
to 1

2
. Then in t+1 we have λit+1 = 0 and all other terms of the FOC are not smaller

than the respective values in t. It follows that the FOC cannot hold in t + 1 what
contradicts the assumption that Sit+1 is the optimal choice of i.
Under Frontier Yardstick Regulation the left hand side derivatives of the regulatory
rule relevant for i are equal to 1 if i chooses a slack that is smaller than the slack
of the other two �rms. So if Sit+1 < Sot+1 and Sit+1 < Sxt+1 the FOC in t + 1 does
not hold, what again shows that Sit+1 cannot be the optimal slack. So i does not
unilaterally reduce its slack more than necessary.
Here we can clearly observe the vulnerability of Yardstick Regulation against the
threat of joint mutual punishment and collusion in general, as discussed at the
beginning section 3: If at least one of the other �rms chooses a very small slack under
Frontier Yardstick Regulation, it is optimal for i to do so, too: From the proof of
Lemma 1 we know that the smallest slack of all in t is an upper bound for all prices
and slacks from t+ 2 onwards. So if Sit+1 > min(Sot+1, S

x
t+1), it directly follows that

i could reduce its slack and by this increase instantaneous payo� without adversely
a�ecting future prices. Carrying this argument to the extreme: if any of the �rms
chooses zero slack, it is optimal for all other �rms to do so, too. At the same time
clearly all �rms prefer all other possible steady state equilibria over the zero slack
equilibrium. Furthermore we just have proven that in this setting it is not optimal
for i to unilaterally choose any slack smaller than the price it can charge in t + 1.
Accordingly f i1(Pt+1) + f i3(Pt+1) > 1 could result from joint mutual punishment
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behavior only and thus cannot be the optimal punishment-free strategy of �rm i.6

We can apply the same reasoning with indices changed, i.e. P i
t+1 = P o

t+1 < P x
t+1, and

for �rm o and x what completes the proof.

�

Lemma 3.

Frontier Yardstick Regulation:
If P i

t+1 = P x
t+1 < P o

t+1 and P i
t+1 ≤ SM∗, then f ′i2 (Pt+1) = 0

Average Yardstick Regulation:
If P i

t+1 = P x
t+1 < P o

t+1 and P i
t+1 ≤ SA∗, then f ′i2 (Pt+1) = 0

Proof. Assume P i
t = P x

t < P o
t and P i

t ≤ SM∗ under Frontier Yardstick Regulation
respectively P i

t ≤ SA∗ under Average Yardstick Regulation. As i optimally decides
on its slack the FOC holds and Sit = P i

t . If P
o
t decreases to P o

t+1, with P
i
t+1 = P i

t =
P x
t+1 = P x

t ≤ P o
t+1 < P o

t and i reacts to this by choosing any smaller slack Sit+1 < Sit ,
i.e. f ′i2 (Pt+1) > 0, the constraint is not binding, so that λit+1 = 0. Applying the
same reasoning as in the proof of Lemma 2 it follows that Sit+1 is not an optimal
choice, so that f ′i2 (Pt+1) = 0.

An intuition for Lemma 3 under Frontier Yardstick Regulation is the following: Firm
i knows that the lowest slack in t + 1 describes an upper bound for all slacks and
prices from t + 3 onwards. So as long as the slacks of the other two �rms are not
smaller than the one i chooses, this upper bound is the same for every slack o and x
choose. Then the marginal bene�ts and costs of a reduction of slack do not depend
on these slacks, thus the decision of i is not a�ected. Again the same reasoning
applies for P i

t = P o
t < P x

t as well as for �rms o and x, too, with indices changed.

6It is easy to show that with a threat of i `to burn bridges' in case of uncooperative behavior of
the other �rms, what corresponds to f i

1(Pt+1) + f i
3(Pt+1) > 1 in our setting, equilibria with even

higher slack could exist.
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Lemma 4.

Frontier Yardstick Regulation:
If P o

t+2 = P x
t+2 < P i

t+2 and P o
t+2 = P x

t+2 ≤ SM∗, then J i1(P
t+2) = 1 + λit+2

Average Yardstick Regulation:
If P o

t+2 = P x
t+2 < P i

t+2 and P o
t+2 = P x

t+2 ≤ SA∗, then J i1(P
t+2) = 1 + λit+2

Proof. Recall equation (18):

J i1(Pt) = F1(P
i
t , S

i
t)

+ δJ i1(Pt+1) ·Ri
1(S

o
t , S

x
t ) · f o1 (Pt) + δJ i1(Pt+1) ·Ri

2(S
o
t , S

x
t ) · fx1 (Pt)

+ δJ i2(Pt+1) ·Ro
2(S

i
t , S

x
t ) · fx1 (Pt) + δJ i3(Pt+1) ·Rx

2(S
i
t , S

o
t ) · f o1 (Pt)

+ λit

The way the value function of i is a�ected by a change of the price i may charge
depends on how the other two �rms react to this change. Using Lemma 3 for the
reactions of o and x, inserting F1(P

i
t , S

i
t) = 1 and updating (18) by two periods

completes the proof.

Intuitively Lemma 4 says that if �rms are in the steady state equilibrium described
by SM∗ respectively SA∗ and λ = 0, they would not change their slack if their price
was higher but would realize a positive pro�t that period. So the discounted sum
of the utility of i increases by 1 if the price i is allowed to charge in t increases by
one unit. In any steady state equilibrium with a slack smaller than SM∗ respectively
SA∗, we have λ > 0. So �rms would like to move to a steady state equilibrium with
higher slack, but cannot because of the (binding) break even constraint.

Intuition for SM∗ based on geometric series

When �rm i decides on the slack in t it considers that its slack de�nes an upper
bound for all prices from t + 2 onwards under Frontier Yardstick Regulation given
Sit ≤ min(Sot , S

x
t ). From the proof of Lemma 2 we know that o and x choose the

highest slack they are allowed to, given P o
t+1 = P x

t+1 ≤ P i
t+1 and P

o
t+1 = P x

t+1 ≤ SM∗,
in their optimal decision. Firm i has to trade o� pro�t in t and t + 1 against slack
in t, t+ 1, t+ 2, ...,∞ when it decides about Sit = SM∗. (As the price i may charge
in t+ 1 is una�ected by Sit it can `cash in' the pro�t from reducing slack twice.) In
the steady state equilibrium described by SM∗, implicitly de�ned by (29), marginal
costs of reducing slack and marginal bene�ts from doing so must be equal to each
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other. So that

1 + δ · 1 =
∞∑
z=o

δz ·B′ (45)

With δ < 1 it follows that

1 + δ · 1 = B′
1

1− δ
B′ = (1 + δ)(1− δ)
B′ = 1− δ2 (46)

Which is the same equation as (29).
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