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Abstract

Forecast models with large cross-sections are often subject to overparameteriza-
tion leading to unstable parameter estimates and hence inaccurate forecasts. Recent
articles suggest that a large Bayesian vector autoregression (BVAR) with sufficient
prior information dominates competing approaches. In this paper we evaluate the
forecast performance of large BVAR in comparison to its most natural competitors,
i.e. averaging of small-scale BVARs and factor augmented BVARs with and without
shrinkage. We derive point and density forecasts for euro area real GDP growth
and HICP inflation conditional on an information set which is appropriate for all
approaches and find no consistent outperformance of the large BVAR. While it
produces good point forecasts, the performance is poor when density forecasts
are used to evaluate predictive ability. Moreover, the ranking of the different
approaches depends inter alia on the target variable, the forecast horizon, the state
of the business cycle, and on the size of the dataset. Overall, we find that a factor
augmented BVAR with shrinkage is competitive in all setups.
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1 Introduction

When forecasting economic outcomes, a large set of indicators is wishful in order to avoid model

misspecification. However, forecast models with large cross-sections are often subject to over-

parameterization leading to unstable parameter estimates and hence inaccurate forecasts. Fac-

tor models have been used traditionally to achieve dimension reduction and improve forecast

performance.1 In a recent article Bańbura, Giannone, and Reichlin (2010a) argue, however, that

a vector autoregression (VAR) can forecast better even when the number of dependent vari-

ables is large. Such a situation usually entails the matrix inversion problem since the number

of parameters may easily exceed the number of observations. Bańbura et al. (2010a) propose

Bayesian methods to shrink the overparameterized VAR towards a parsimonious random walk

benchmark. They impose additional information in form of a Minnesota-type prior and show

that large Bayesian VARs (BVARs) can improve on factor models and small VAR systems with

only a handful of variables. However, it is unclear what lies behind the good performance of

the large BVAR. While the superiority of the large BVAR over smaller systems may be traceable

to the fact that it processes a larger information set, the dominance over factor approaches may

root in differences pertaining to the modeling and estimation approach.

In this paper we build on the results in Bańbura et al. (2010a) and evaluate the large

BVAR by comparing it to its most natural competitors. Therefore, our model comparison

relies on different variants of the BVAR model, i.e. averaging of small-scale BVARs, fac-

tor augmented BVARs with and without shrinkage, and large BVARs. To the best of our

knowledge, averaging of BVARs has not been considered as a competing approach in the

related literature before (see e.g. Bańbura et al., 2010a; Giannone, Lenza, and Primiceri, 2012;

D‘Agostino, Gambetti, and Giannone, 2013; Koop, 2013, among others). In order to ensure com-

parability across variants, we condition our model validation exercise on a given amount of in-

formation. The competing approaches are evaluated according to their out-of-sample forecast

performance. Specifically, we forecast the quarterly change in the euro area real gross domestic

product (GDP) and the harmonized index of consumer prices (HICP).

We innovate upon previous literature along various dimensions. First, we believe that a

potential drawback of the analyses in Bańbura et al. (2010a) and related studies is that these

authors compare forecast models of fairly different size. For instance Bańbura et al. (2010a)

consider BVARs with 3, 7, 20, and 131 variables as well as a Bayesian factor augmented VAR

1The idea in this literature is that the information contained in a large number of indicator variables
can be summarized by a rather small number of factors that are added to the variables of interest (see e.g.
Stock and Watson, 2002, 2005, 2006, 2011; Forni, Hallin, Lippi, and Reichlin, 2003, among others).
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(BFAVAR) with also 131 indicators. The models hence produce forecasts conditional on different

information sets, making it difficult to identify whether the relative outperformance of the large

BVARs over the smaller systems is due to the mechanics of these models or simply the result

of the richer information set. In this paper we aim at revealing possible differences among the

competing approaches. For each variant of the BVAR we ensure that forecasts are produced

conditional on all the information that is contained in our dataset. The model variants differ,

however, with respect to the way information is condensed as well as in the complexity and

computing time needed to produce a forecast. In order to evaluate whether adding indicator

variables is useful at all, we also compare all variants to a random walk benchmark.

Second, most studies restrict their attention to the comparison of point forecasts and rank

competing models on the basis of root mean squared errors (RMSE) only (for an exception see

Koop, 2013; Giannone et al., 2012). While discriminating among models using RMSE is ap-

propriate if the loss function of the forecaster depends solely on the forecast error, we argue

that neglecting the uncertainty surrounding the forecasts might be highly misleading. For in-

stance, it is now well documented that in particular monetary policymakers increasingly draw

their attention to the uncertainty that is associated with business cycle and price developments.

The density forecasts of the Bank of England‘s Monetary Policy Committee for U.K. infla-

tion or those of the Sveriges Riksbank for Swedish inflation are prominent examples (see, e.g.

Mitchell and Hall, 2005; Boero, Smith, and Wallis, 2011; Knüppel and Schultefrankenfeld, 2012,

among others). In this paper we hence also rely on density forecasts to rank the competing

variants. In this context, the predictive density is a standard tool to compare different mod-

els (see, e.g., Geweke and Amisano, 2010; Giannone et al., 2012; D‘Agostino et al., 2013; Koop,

2013, among others).

Third, we also consider likelihood ratio tests as in Amisano and Giacomini (2007) to com-

pare competing BVAR variants. These frequentist tests are based on weighted predictive den-

sities and may also be applied to Bayesian predictive distributions. By focusing on different

regions of the distribution, we are able to check how sensitive our results are with respect to

extreme outliers and may compare model performance during normal times versus tail events.

Given that our sample period covers several euro area recessions and booms as well as severe

crises, we believe that it is interesting to inspect the underlying mechanics of the variants.

Fourth, unlike most existing studies, we turn our attention to aggregate euro area data.

Our dataset comprises 44 quarterly macroeconomic and financial indicators spanning the years

1975 to 2009. While applications for the U.S. often build on datasets containing more than one

hundred variables, we believe that such large cross-sections are typically not available for most
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countries. This assumption should at least be true when the time series dimension is required

to be large as well. Thus, it is not clear whether conclusions drawn from the very specific case of

the U.S. translate to other forecast situations. In our view, we consider a set of indicator variables

that most forecasters would probably label a “typical” dataset. Moreover, we emphasize at this

point that the size of our cross-section is also appropriate with respect to all the variants we

consider. Even for factor models it has been shown that approximately 40 series are sufficient

to yield satisfactory forecast accuracy (see Bai and Ng, 2002; Boivin and Ng, 2006).

The results can be summarized as follows. All approaches substantially outperform the

random walk benchmark for HICP inflation, suggesting that the dataset contains valuable in-

formation. Among these variants, the large BVAR delivers almost the best point forecast; for

the first quarter horizon the BFAVAR with shrinkage is marginally better. Similarly, for GDP

growth the large BVAR outperforms the other approaches in the short term while the BFAVAR

with shrinkage is competitive. Overall, the large BVAR appears to be a good choice when the

user is interested in point forecasts. However, when we use density forecasts to evaluate the

performance of the BVAR variants it turns out that the ranking is almost reversed, and the large

BVAR performs worst. However, the BFAVAR with shrinkage now provides the best forecast at

short horizons whereas the BVAR averaging outperforms at the longer horizon. The likelihood

ratio test reveals that all variants perform significantly better than the large BVAR whereas

the remaining variants have a similar forecast performance. Notably, such a result does not

solely depend on extreme or rare events. Even when we concentrate on normal times only, the

BFAVAR with shrinkage outperforms the large BVAR in terms of predictive density. However,

the large BVAR performs exceptionally poor during more turbulent times. Finally, we analyze

the sensitivity of our results when we reduce the cross-sectional dimension of the dataset to

22 variables. While point forecasts remain virtually unaffected, we find that the ranking is af-

fected when we consider density forecasts. Using the medium-scale dataset it turns out that

the relative performance of the large BVAR improves. This is probably due to the fact that we

impose a less restrictive prior on the coefficients of the large BVAR. Nevertheless, a BFAVAR

with shrinkage remains among the best performing variants.

The remainder of this paper is organized as follows. In Section 2 we describe our dataset.

Section 3 develops the BVAR model and all the variants we use to produce out-of-sample fore-

casts for euro area real GDP growth and HICP inflation. In Section 4 we explain our forecast

experiment and present the main results. The results for the medium-size dataset are discussed

in Section 5. Section 6 concludes. In the Appendix we provide additional information on our

dataset and tables for the medium-size dataset.
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2 Dataset

The dataset comprises 44 quarterly euro area macroeconomic and financial time series cover-

ing the period 1975:1 to 2009:4. In case of aggregate euro area data both the cross-sectional

and time series dimension approximately represent the maximal size available at the moment.

The dataset includes real GDP and the overall HICP as the variables of interest. The indicator

variables cover the following seven categories: national accounts data, price indexes, interna-

tional data, employment data, surveys, monetary aggregates, and financial data. We take the

natural logarithm of most series, except of those that are already expressed in rates, such as

unemployment or interest rates. In most cases the series are obtained from the 10th (and most

recent) update of the Area-wide Model (AWM) database which is maintained by the European

Central Bank (ECB). The AWM database is a unique and rich source for aggregate euro area

data. The historical series are backdated by the ECB staff using individual country informa-

tion in a coherent manner. Moreover, the AWM database is the preferred source for researchers

and policymakers alike interested in topics relevant for the euro area. In addition, survey data,

monetary aggregates, and a share price index are downloaded from Datastream. A detailed

description of the dataset is provided in Appendix A.

The dataset thus includes all variables that a forecaster typically has on her wish list when

forecasting euro area real GDP and the HICP. Besides the fact that forecasting euro area data is

interesting in its own right, note that for countries other than the U.S. long time series for liter-

ally hundreds of indicator variables are not available. Hence, our dataset is also typical in the

sense that it strikes a balance between the maximum availability of the cross-sectional and the

time series dimension of the predictors. In addition, the size of our cross-section is appropriate

with respect to all the variants of the BVAR that we consider. Although factor approaches are

designed for even larger cross-sections, Bai and Ng (2002) as well as Boivin and Ng (2006) show

that approximately 40 series are sufficient to yield satisfactory forecast accuracy.

We have to stress at this point, however, that the euro area did not exist before January 1999

and vintage series are hence not available. While the absence of real-time data is a potential

drawback in studies where the objective is to conduct a realistic out-of-sample forecast experi-

ment, we believe it is not in our case. The forecast experiment in this paper is understood as a

model validation exercise designed to investigate which variant of the BVAR deals best with the

problem of overparameterization that is inevitably inherent in models with large cross-sections.

Evaluating out-of-sample forecasts is an appropriate and established procedure to do so since

forecasts reflect all sources of error typically associated with the modeling of economic out-

comes including parameter uncertainty and model misspecification.

4



3 Forecasting with a BVAR Model

In this section we develop the BVAR model and all the variants we use to produce out-of-sample

forecasts for euro area real GDP growth and HICP inflation in the next section.

3.1 BVAR Model

We consider the following VAR model

yt = c+B1yt−1 + ...+Bpyt−p + ut, (1)

where yt is a n×1 vector of variables including, among others, real GDP and the HICP; c is a n×1

vector of intercepts; Bi are n×n matrices of coefficients; i = 1, ..., p denotes the lags included; ut

is a n×1 vector of normally distributed residual terms with zero mean and covariance matrix Σ;

and data are available for t = 1− p, ..., T . Let us denote y = (y1, ..., yT )
′, xt =

(

y′t−1, ..., y
′
t−p, 1

)′
,

x = (x1, ..., xT )
′, B = (B1, ..., Bp, c)

′, and u = (u1, ..., uT )
′. The VAR in (1) can be rewritten as

y = xB + u. Moreover, let β = vec (B) with vec (·) being the column stacking operator and

k = n (1 + np). Then β is a k × 1 vector containing all coefficients of the model.

In the forecast experiment we estimate the VAR on up to n = 44 variables including p = 4

lags of each variable (hence k = 7788). Such a large dimensional system of multivariate regres-

sions is, however, not estimable without imposing additional prior beliefs on the parameters.

In addition, there is evidence that even VARs with only a handful of variables might benefit

from imposing prior information (see, e.g., Robertson and Tallman, 1999, among many others).

We follow common practice and use a variant of the Minnesota prior to deal with the dense

parameterization of the model. The basic idea is that a random walk with drift is a reasonable

description of the data generating process behind most macroeconomic and financial time se-

ries. In addition, the prior captures the belief that own lags are more informative than those

of other variables and that more recent lags contain more information than more distant ones.

The VAR is hence centered around the prior mean yi,t = ci + yi,t−1 + ui,t and imposing the prior

amounts to shrinking the diagonal elements of B1 towards one and the remaining coefficients

in B1, ..., Bp towards zero.

In contrast to the original Minnesota prior developed in Litterman (1980, 1986), we do not

assume the residual covariance matrix Σ to be known and diagonal. Instead, we use a general-

ized version of the prior proposed in Kadiyala and Karlsson (1997) which allows for correlation

among residual terms. The evidence in Bańbura et al. (2010a) as well as Robertson and Tallman

(1999) suggests that a generalized Minnesota prior produces accurate forecasts for major
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macroeconomic series such as GDP growth or inflation even though the n (n+ 1) /2 distinct

elements of Σ have to be estimated on top of the k coefficients. In particular, we consider a

conjugate Normal-Inverse-Wishart prior of the following form:

Σ ∼ IW (Ψ, d) and β|Σ ∼ N (b,Σ⊗ Ω) , (2)

where ⊗ denotes the Kronecker product and the elements Ψ, d, b, and Ω are functions of hy-

perparameters. The conjugate prior implies a likelihood and posterior that come from the same

family of distributions and hence makes Bayesian inference feasible for researchers.2 We follow

Bańbura et al. (2010a) and implement the prior by constructing the following set of artificial

observations:

y+ =















diag (δ1σ1, ..., δnσn) /λ

0n(p−1)×n

diag (σ1, ..., σn)

01×n















, x+ =









diag (1, 2, .., p)⊗ diag (σ1, ..., σn) /λ 0np×1

0n×np 0n×1

01×np ǫ









,

where diag (·) denotes a diagonal matrix. The hyperparameters δi are all set equal to 1, reflecting

the prior belief that all variables are characterized by high persistence. The hyperparameters σi

account for the different scale and variability of the series and are set equal to the standard

deviation of a residual from a univariate autoregression for the variable yi,t on an initial sample

running from 1975:1 to 1984:4. The lag order is the same as in the VAR. The hyperparameter ǫ is

set to a very small number (10−4), reflecting a diffuse prior for the intercept terms. Finally, the

hyperparameter λ determines the degree of shrinkage and hence the tightness of the prior. As

λ → ∞ the prior becomes uninformative and posterior expectations coincide with the ordinary

least squares (OLS) estimates. For λ → 0 the posterior equals the prior and the information

variables do not influence the estimation outcome. λ is hence the key parameter in the BVAR

and its calibration for each model variant is explained in detail in Section 3.2.

In order to further improve the forecast accuracy of BVARs, the literature proposes

to consider additional prior information in form of a “sum-of-coefficients” prior (see, e.g.,

Robertson and Tallman, 1999; Bańbura et al., 2010a; Giannone et al., 2012, among others). This

prior is implemented by generating n artificial observations and reflects the belief that a no-

change forecast is a good forecast at the beginning of a sample period. In particular, we con-

struct:

y++ = diag (µ1, ..., µn) /τ , x++ = [(1 2...p)⊗ diag (µ1, ..., µn) /τ 0n×1] ,

2Non-conjugate priors are an alternative to conjugate priors in systems with up to 20 variables but are
not available for large BVARs (see Koop, 2013).
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where τ = 10λ and the hyperparameters µi capture some prior belief about the average level of

variable yi,t. Consistent with the calibration of the σi’s, we set µi equal to the average value of

yi,t in the initial sample period 1975:1 to 1984:4.

The artificial observations are added on top of the data matrices, which are then used for

inference. The augmented regression model reads as

y∗ = x∗B + u∗,

where y∗ =
(

y′, y+
′

, y++′
)′

, x∗ =
(

x′, x+
′

, x++′
)′

, and u∗ =
(

u′, u+
′

, u++′
)′

. Adding artificial ob-

servations solves the matrix inversion problem which arises in VARs with large cross-sections.

The posterior of the parameters can be computed in closed form as a function of the hyper-

parameters:

Σ|y ∼ IW
(

Σ̂, T + n+ 2
)

and β|Σ, y ∼ N

(

β̂,Σ⊗
(

x∗
′

x∗
)−1

)

,

where Σ̂ and β̂ are the covariance matrix and the coefficients from an OLS regression of y∗ on x∗,

respectively. In principle, the one-step-ahead predictive density p (yT+1|β,Σ, y) would also be

available in closed form. When forecasting more than one period ahead, however, an analytical

expression for the posterior predictive density does not exist since forecasts are non-linear com-

binations of model parameters. In this case we use a Gibbs sampler and we sequentially draw

a covariance matrix (given the data), coefficients (given the covariance matrix and the data),

residual terms (given the covariance matrix and the data), and produce out-of-sample forecasts

up to horizon H . We repeat this cycle 500 times and obtain the posterior predictive density at all

horizons by smoothing the empirical distribution of forecasts using a normal kernel function.3

3.2 Model Variants

We consider the following variants that are all nested in the BVAR. The variants differ, how-

ever, with respect to the way information is condensed. One important difference between the

variants lies in the degree of shrinkage λ. As emphasized by De Mol, Giannone, and Reichlin

(2008), a requirement for the hyperparameter λ is that the degree of shrinkage increases with the

cross-sectional dimension. To determine λ we rest on the assumption that a three-variable VAR

system is parsimonious and hence does not suffer from overparameterization. The Bayesian

shrinkage procedure follows Bańbura et al. (2010a) by choosing λ such that the average in-

sample fit for real GDP and the HICP of all variants is the same during the initial sample period

3See for instance D‘Agostino et al. (2013) for a similar procedure.
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from 1975:1 to 1984:4. That is, each model is shrunk to the size of a parsimonious VAR. We

obtain the desired magnitude of fit by performing a search over a fine grid for λ. Notably,

this procedure maintains the comparability across variants, and it ensures that we shrink more

when the size of the model increases.

Random Walk As a benchmark we consider the random walk variant. Random walk forecasts

are obtained by imposing a dogmatic prior (hence λ = 0). The posterior beliefs are thus not

shaped by the indicator variables, and the random walk is the natural benchmark to investigate

whether using these series is useful at all in forecasting. The predictive mean for real GDP

growth and HICP inflation is therefore the same at all horizons and equal to the estimated drift

term, i.e. the average growth rate during the sample period. Note that the estimated average

growth rate may adapt over time providing a naïve but nonetheless competitive benchmark for

any forecast model.

BVAR Averaging In the second variant we estimate a variety of three-variable BVARs each

including real GDP and the HICP and one indicator variable at a time. Recent stud-

ies argue that averaging forecasts is a simple though successful method to handle a large

dataset and improve out-of-sample forecast accuracy (see, e.g., Clark and McCracken, 2010;

Aiolfi, Capistrán, and Timmermann, 2011; Henzel and Mayr, 2013, among others). This is mo-

tivated by portfolio diversification or hedging arguments, guaranteeing insurance against large

forecast errors. Moreover, by segmenting the set of indicators and estimating a battery of parsi-

monious models, pooling is a way to condense information and avoid parameter proliferation.

Note that BVAR averaging is straightforward and economizes computing time as the small-

scale VAR models are easily estimated. We obtain predictions for real GDP and the HICP by

averaging forecasts across models using equal weights. In particular, we follow Wallis (2005)

and simulate a posterior distribution of mean forecasts. In each cycle we construct forecasts for

each of the 42 models and record the arithmetic mean. We repeat this exercise 500 times and ob-

tain an empirical distribution of mean forecasts for both real GDP and the HICP at all horizons.

Since we assume that three-variable VAR models are not subject to overparameterization, we

impose an uninformative prior, i.e. we set λ = ∞.

BFAVAR-1F It is often argued that factor augmented regression models are successful

in achieving dimension reduction and forecasting macroeconomic time series (see, e.g.

Stock and Watson, 2002, 2005, 2006, 2011; Forni et al., 2003; Barhoumi, Darné, and Ferrara, 2013,

among others). The idea is that a bulk of the variation in the indicator variables may be ex-

plained by a rather small number of factors which are added to a model with the variables of

interest. Here, we consider a BFAVAR including real GDP and the HICP and one factor as the
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third variant. To estimate the parameters we follow Bernanke, Boivin, and Eliasz (2005) and use

a two-step approach. In the first step we difference the indicator variables to achieve station-

arity and standardize them by subtracting the mean and dividing by the standard deviation.

In principal, we obtain k factors by extracting the first k principal components from these stan-

dardized series. In the second step we augment a BVAR by the first factor. Since the factor is

extracted from differenced series, a random walk prior would not be appropriate in this case

and we thus impose a white noise prior instead, i.e. we set δi = 0. As the BVAR system consists

of only three variables, we assume that overparameterization is not an issue here and perform

the estimation without shrinkage and set λ = ∞. Similar to BVAR averaging, the method econ-

omizes on computing time as principal components are readily computed and the estimation

involves only small-scale VARs.

BFAVAR-3F Since adding one factor might not be sufficient to capture the dynamics in our

dataset, we augment the BVAR from above with k = 3 factors. Given that a VAR with five

variables is already large and likely subject to overparameterization, we apply shrinkage to

further reduce the dimension of the system. Hence, this variant combines the advantages of

the factor approach with Bayesian shrinkage. We set the shrinkage parameter λ such that the

average in-sample fit of the BFAVAR for real GDP and the HICP in the initial sample period

1975:1 to 1984:4 is the same as that of the BVAR averaging. Note that the BVAR augmented with

three factors is computationally more demanding than the BFAVAR-1F since simulation of the

posterior involves repeated inversion of large matrices.

Large BVAR In the last variant we estimate the BVAR on all the 44 series at the same time. The

literature refers to this variant as a large BVAR (see, e.g., Bańbura et al., 2010a; Giannone et al.,

2012; Koop, 2013, among others). In order to deal with the dense parameterization of the model

and to maintain comparability across specifications, we again apply Baysian shrinkage and

choose λ such that the average in-sample fit for real GDP and the HICP during the period

1975:1 to 1984:4 is the same as that of the BFAVAR and the BVAR averaging. Notably, the large

BVAR is by far the most computationally demanding and time consuming variant analyzed in

this paper.

4 Model Validation

In this section we evaluate the performance of the different BVAR variants in terms of out-of-

sample forecast accuracy. We first explain our forecast experiment and then present results for

the predictive mean and the entire predictive density of real GDP growth and HICP inflation.
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4.1 Forecast Experiment

We use each of the five BVAR variants to produce out-of-sample forecasts for real GDP and

the HICP for four quarters. We start with the initial sample period from 1975:1 to 1984:4 and

generate the posterior predictive density of each variant for the horizon 1985:1 to 1985:4. This

procedure is iterated forward until 2008:4, producing forecasts for 2009:1 to 2009:4, always using

the most recent 10 years of data and yields a sequence of 97 density forecasts for each variant.

The evaluation period thus runs from 1985:1 to 2009:4 and coincides with the “Great Modera-

tion” period of low and stable volatility.

We prefer a rolling-window forecast scheme to a recursive (or expanding) scheme, which

uses all the past observations, since a rolling scheme may better handle parameter instabilities

that are likely to be present in aggregate euro area data. Moreover, it is consistent with the

conventional view that more recent observations are more informative than those at the very

beginning of a sample period. In addition, the statistical tests we use to compare the forecast

performance explicitly build on an asymptotically non-vanishing estimation uncertainty; an

assumption which would, however, be violated in an expanding-window forecast scheme (see

Giacomini and White, 2006; Amisano and Giacomini, 2007).

The choice for the size of the estimation window is motivated by two competing influences.

On the one hand, the window should not be too small since otherwise a meaningful estimation

of the BVAR would not be possible. On the other hand, the window should not be too large since

otherwise the sequence of density forecasts would be too short for inference. In particular, the

likelihood ratio tests require a relatively large number of observations. An estimation window

of 10 years seems to account well for both concerns.

For both real GDP and the HICP the evaluation target is the quarter-on-quarter growth rate,

i.e. ∆yi,T+h = yi,T+h − yi,T+h−1, where h denotes the forecast horizon and T the last data

point used in estimation. We hence evaluate out-of-sample forecast accuracy based on real

GDP growth and HICP inflation rather than their respective level forecasts since these are the

variables forecasters, policymakers, and researchers alike are typically interested in.

4.2 Predictive Mean

To begin with, we report the shrinkage hyperparameter λ in the last row of Table 1. These num-

bers are the result of the calibration procedure which maintains the average in-sample fit for

real GDP and the HICP fixed across variants. As we emphasize above, for the BVAR averaging

and the BFAVAR with one factor we assume that the overparameterization problem does not

occur. Hence, the shrinkage parameter is set to λ = ∞, reflecting an uninformative prior. In
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case of the BFAVAR with three factors the prior becomes tighter and λ is 0.645. For the large

BVAR with all the 44 variables we have to impose a lot more shrinkage, and λ reduces to 0.059.

In the following, we evaluate the different BVAR variants by the accuracy of the point fore-

cast. Let the superscript m denote the mean of the predictive density or the predictive mean.

We measure out-of-sample forecast accuracy for model variant λ with respect to variable i in

terms of RMSE:

RMSEλ
i,h =

√

√

√

√

1

T1 − T0 −H + 1

T1−H+h
∑

T=T0+h

(

∆ym,λ

i,T+h|T −∆yi,T+h

)2
,

where H = 4 is the maximal forecast horizon, and T0 = 40 and T1 = 140 are the start and end of

the evaluation period, respectively. For a forecaster with a quadratic loss function the predictive

mean is the optimal forecast and the RMSE is an appropriate measure to discriminate among

model specifications (see Weiss, 1996). In Table 1 we report the RMSE for the different model

variants.

Table 1: Root Mean Squared Errors

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F Large BVAR

h GDP HICP GDP HICP GDP HICP GDP HICP GDP HICP

1 0.63 0.55 0.69 0.30 0.60 0.31 0.57 0.26 0.50 0.27
2 0.64 0.57 0.74 0.36 0.70 0.34 0.70 0.32 0.59 0.30
3 0.64 0.58 0.80 0.40 0.75 0.38 0.76 0.38 0.66 0.32
4 0.65 0.58 0.81 0.46 0.76 0.44 0.83 0.44 0.70 0.36

λ 0 ∞ ∞ 0.645 0.059

Notes: this table shows the RMSE for different BVAR variants. These variants include the random walk,

the BVAR averaging, the BFAVAR with 1 and 3 factor(s), and the large BVAR with 44 variables. The

hyperparameter λ determines the degree of Bayesian shrinkage and is set such that the average in-sample

fit for real GDP and the HICP of all variants is the same during the initial sample period 1975:1 to 1984:4.

The evaluation period runs from 1985:1 to 2009:4 and the forecast horizon h is in quarters. The variables

we forecast are quarterly real GDP growth and HICP inflation. The lower the RMSE is the better is the

forecast accuracy of a BVAR variant.

With respect to the forecast accuracy of the different BVAR variants the following results

emerge from Table 1. First, the random walk benchmark produces the worst forecast for HICP

inflation at all horizons. When using a large BVAR for instance the forecaster could cut the

RMSE by about half at h = 1 or one third at h = 4. Substantial improvements compared to the

11



random walk forecast are also possible with the other variants.4 We therefore conclude that the

set of indicators contains valuable information about the prospective path of HICP inflation.

Second, we obtain rather small differences in the forecast accuracy of these BVAR variants.

In some instances, the BVAR averaging appears to underperform the other variants. Overall,

the RMSE ranges between 0.26 and 0.31 at h = 1 as well as 0.36 and 0.46 at h = 4, showing a

marginal outperformance of the BFAVAR-3F with shrinkage at h = 1 and the large BVAR at h =

2 to 4. In Table B.1 in the Appendix we provide the results of a Giacomini and White (2006) test

of conditional predictive ability of the point forecast. It turns out that the differences among the

variants are insignificant in the majority of cases. Apparently, the way information is condensed

has a limited impact on the forecast accuracy of the predictive mean for HICP inflation.

Third, for real GDP growth the large BVAR delivers the best forecast performance at the

short horizon h = 1 and 2. By contrast, the random walk produces the best forecast for real

GDP growth at longer horizons h = 3 and 4, suggesting that the set of indicators contains

little to no information about changes in real GDP one year ahead. The relatively poor fore-

cast performance of all the variants with respect to quarterly GDP growth in the longer run is

mainly due to the fact that the series shows little to no persistence and is hence largely driven

by unpredictable shocks.5

Fourth, the differences in forecast accuracy with respect to real GDP growth are again rather

small, particularly as the differences in predictive ability between these variants are insignificant

in most setups (compare Table B.1 in the Appendix). The RMSE varies between 0.50 and 0.69 at

h = 1 as well as 0.65 and 0.81 at h = 4. Overall, there appears to be a slight dominance of the

large BVAR but the BFAVAR with shrinkage is also competitive.

4.3 Predictive Density

In the previous subsection we have compared different model variants on the basis of RMSE,

which is appropriate if the forecaster is concerned only about the accuracy of the predictive

mean but indifferent to the uncertainty that is surrounding it. In this subsection we relax

4Table B.1 in the Appendix reveals that these differences in forecast ability are significant according to
a Giacomini and White (2006) test of conditional predictive ability.

5Note that we do not claim here that current quarter GDP growth is unpredictable. However, the
VAR model class does not make use of valuable within-quarter information such as monthly indus-
trial production or business survey data. For an extensive discussion on methods using mixed fre-
quency or unsynchronized data (“bridging models” or “jagged edge data”) to improve the forecast
of current quarter GDP growth (“nowcasting”), we refer to inter alia Giannone, Reichlin, and Small
(2008), Angelini, Bańbura, and Rünstler (2010), Bańbura, Giannone, and Reichlin (2010b), as well as
Angelini, Camba-Mendez, Giannone, Reichlin, and Rünstler (2011).
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this strong assumption and consider the entire density of the forecasts. In particular, we rank

BVAR variants based on the log predictive density, which is a convenient way of comparing

models in a Bayesian setting and has become the standard in the related literature (see, e.g.,

Geweke and Amisano, 2010; Giannone et al., 2012; D‘Agostino et al., 2013; Koop, 2013, among

others). The larger the log predictive density is the higher is the probability that a variant gen-

erates a forecast that equals (or is close to) the realized value of the variable given the history of

the data (y) and the parameters (β,Σ). A perfect BVAR variant would hence generate a forecast

that is equal to the actual outcome with a probability of 100%. The log predictive density is thus

zero in the limit.

In Table 2 we document the average log predictive density of each variant λ with respect to

variable i at horizon h evaluated at the realized value ∆yi,T+h:

PDλ
i,h =

1

T1 − T0 −H + 1

T1−H+h
∑

T=T0+h

log p (∆yi,T+h|y, λ) .

The most important conclusion that we draw from Table 2 is that the ranking of the BVAR vari-

ants dramatically changes when the focus shifts from the predictive mean to the entire density

of the forecasts. While the random walk still produces the worst forecast for HICP inflation at

all horizons, the performance of the large BVAR substantially deteriorates when forecast uncer-

tainty is taken into account. Despite its quite accurate mean forecast, the large BVAR appar-

ently attaches a too low probability to events that actually occur. This seems to be traceable to

the tightness of the prior restrictions which seems to result in a predictive density that is too

concentrated around the predictive mean rather than the actual realization. By contrast, the

BFAVAR with three factors does not lose much of its forecast performance and is now deliv-

ering the best forecast at the short horizon h = 1 and 2. Notably, the BVAR averaging now

dominates the other approaches at the longer horizons h = 3 and 4. The predictive ability of the

BVAR averaging and the BFAVAR with three factors with respect to HICP inflation is, however,

similar.

For real GDP growth the ranking of the BVAR variants is completely reversed compared to

the ranking based on RMSE. Both the random walk and the large BVAR now display a poor

forecast performance at all horizons. As in the case of HICP inflation, the tight prior restrictions

imposed seem to generate a predictive density that is too concentrated around the predictive

mean. In contrast, the BVAR averaging, which produces rather inaccurate mean forecasts, now

performs exceptionally well and appears to dominate the other approaches at longer horizons

h = 2 to 4. Note that the BFAVAR with three factors remains competitive even when we con-

sider the entire density to evaluate the performance. It generates the best forecast at h = 1.
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Table 2: Average Log Predictive Densities

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F Large BVAR

h GDP HICP GDP HICP GDP HICP GDP HICP GDP HICP

1 −2.86 −2.82 −1.82 −2.00 −1.94 −2.22 −1.79 −1.82 −2.24 −2.49
2 −3.29 −3.07 −1.81 −2.00 −2.07 −2.04 −1.91 −1.93 −2.69 −2.55
3 −3.45 −3.14 −1.72 −1.86 −1.95 −1.88 −1.95 −1.99 −3.08 −2.55
4 −3.71 −3.20 −1.71 −1.89 −1.95 −2.03 −2.16 −2.15 −3.25 −2.71

λ 0 ∞ ∞ 0.645 0.059

Notes: this table shows the average log predictive densities for different BVAR variants. The higher the

average log predictive density is the better is the predictive ability of a variant. See also notes to Table 1.

In sum we find that an accurate mean forecast does not necessarily imply a good predic-

tive ability. Model selection based on RMSE only may hence be misleading if the user is also

concerned about forecast uncertainty.

4.4 Weighted Likelihood Ratio Tests

Given the rankings obtained in the previous section, we now investigate whether the

predictive densities in Table 2 are significantly different from each other. We follow

Amisano and Giacomini (2007) and construct for two competing density forecasts λ1 and λ0

a weighted average of likelihood ratios:

WLRλ1,λ0

i,h =
1

T1 − T0 −H + 1

T1−H+h
∑

T=T0+h

w
(

∆ysti,T+h

) (

log p
(

∆yi,T+h|y, λ1
)

− log p
(

∆yi,T+h|y, λ0
))

,

where ∆ysti,T+h is the realized value, standardized using an estimate of the unconditional mean

and standard deviation of ∆yi,t, and the weight function w (·) is chosen to select a desired region

of the distribution of ∆yi,t.

In particular, we consider three different choices for the weight function. First, we choose

w (·) = 1 and construct an unweighted average of likelihood ratios. Second, we set w (·) = φ (·),
with φ denoting the standard normal probability density function, which allows us to focus

on the center of the distribution. Realized values that are near to the unconditional mean of

∆yi,t receive a higher weight than those at the tails of the distribution. Third, we select w (·) =
1 − φ (·) /φ (0), meaning that we attach a higher weight to values at the tails of the distribution

than to those close to the unconditional mean.
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Table 3: Unweighted Likelihood Ratio Tests

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F

Benchmark h GDP HICP GDP HICP GDP HICP GDP HICP

BVAR Averaging

1

−1.04 -0.82

BFAVAR-1F −0.92 −0.60 0.12 0.22
BFAVAR-3F -1.07 -1.00 −0.03 −0.18 −0.15 -0.40

Large BVAR −0.62 −0.33 0.42 0.49 0.30 0.28 0.46 0.67

BVAR Averaging

2

−1.49 -1.08

BFAVAR-1F −1.23 -1.03 0.26 0.05
BFAVAR-3F -1.38 -1.15 0.11 −0.07 −0.16 −0.11
Large BVAR −0.60 -0.52 0.88 0.56 0.62 0.51 0.78 0.63

BVAR Averaging

3

−1.73 -1.28

BFAVAR-1F −1.49 -1.26 0.23 0.02
BFAVAR-3F -1.50 -1.15 0.23 0.13 −0.01 0.11
Large BVAR −0.37 -0.59 1.36 0.69 1.13 0.67 1.13 0.56

BVAR Averaging

4

−2.00 -1.31

BFAVAR-1F −1.76 -1.18 0.24 0.13
BFAVAR-3F -1.55 -1.06 0.46 0.25 0.21 0.12
Large BVAR −0.46 −0.49 1.55 0.81 1.31 0.68 1.09 0.56

Notes: the entries are unweighted averages of likelihood ratios as in Amisano and Giacomini (2007). A

positive (negative) value means that the BVAR variant under consideration outperforms (underperforms)

its benchmark variant in terms of predictive ability. Bold entries denote significance at the 5 percent level.

See also notes to Table 1.

For a uniform weight function, the test is a conventional likelihood ratio test often used for

model selection. Comparing weighted averages of likelihood ratios provides some interesting

additional information. For instance, we may evaluate to what extent extreme outliers influence

our results, which seems important since the sample period includes two severe crises: the

breakdown of the European Exchange Rate Mechanism in 1992/93 and the global financial crisis

in 2008/09. Moreover, we may compare model performance during normal times vs. tail events.

The latter covering for example recessions or deflationary episodes.

The test is based on the statistic

t =
WLRλ1,λ0

i,h

σ̂/
√
T1 − T0 −H + 1

,

where σ̂ is an estimate of the standard deviation of WLRλ1,λ0

i,h . The null hypothesis of equal

performance of λ1 and λ0 is rejected at the 5 percent level whenever |t| > 1.96. In case of

15



Table 4: Center-Weighted Likelihood Ratio Tests

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F

Benchmark h GDP HICP GDP HICP GDP HICP GDP HICP

BVAR Averaging

1

0.05 0.07
BFAVAR-1F 0.08 0.14 0.03 0.07
BFAVAR-3F 0.06 −0.00 −0.04 -0.07 -0.07 -0.04

Large BVAR 0.03 0.10 −0.02 0.04 −0.05 0.28 0.02 0.10

BVAR Averaging

2

0.04 0.06
BFAVAR-1F 0.05 0.07 0.01 0.06
BFAVAR-3F 0.03 −0.00 -0.04 −0.06 -0.05 −0.07
Large BVAR 0.06 0.10 0.02 0.04 0.01 0.03 0.06 0.10

BVAR Averaging

3

0.02 −0.00
BFAVAR-1F 0.03 0.02 0.01 0.02
BFAVAR-3F −0.01 0.01 −0.03 0.01 −0.04 −0.02
Large BVAR 0.08 0.06 0.06 0.06 0.05 0.04 0.10 0.05

BVAR Averaging

4

−0.01 0.03
BFAVAR-1F 0.00 0.07 0.01 0.04
BFAVAR-3F −0.02 0.05 −0.01 0.02 −0.02 −0.02
Large BVAR 0.08 0.10 0.09 0.07 0.08 0.03 0.10 0.05

Notes: the entries are center-weighted averages of likelihood ratios as in Amisano and Giacomini (2007).

A positive (negative) value means that the BVAR variant under consideration outperforms (underper-

forms) its benchmark variant in terms of predictive ability. Bold entries denote significance at the 5

percent level. See also notes to Table 1.

rejection, one would choose λ1 (λ0) whenever WLRλ1,λ0

i,h is positive (negative).

We perform pairwise weighted likelihood ratio tests using our sequence of 97 density fore-

casts and show their results in Tables 3 to 5. The entries in the tables are the values of WLRλ1,λ0

i,h .

Whenever the value is positive (negative) the BVAR variant under consideration outperforms

(underperforms) its benchmark variant in terms of predictive ability. Bold entries denote signif-

icance at the 5 percent level.

In Table 3 we document the results for the unweighted case. Consistent with the findings of

the previous subsection, the random walk is outperformed by all other variants at all horizons

for all variables. For inflation the likelihood ratio is also significantly different from zero in most

cases, while for GDP growth only the BFAVAR with three factors does significantly better than

the random walk. Most notably, the large BVAR displays a poor predictive ability for both GDP

growth and inflation. The large BVAR is typically outperformed by BVAR averaging and both
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Table 5: Tails-Weighted Likelihood Ratio Tests

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F

Benchmark h GDP HICP GDP HICP GDP HICP GDP HICP

BVAR Averaging

1

-1.16 -0.98

BFAVAR-1F -1.11 -0.95 0.06 0.03
BFAVAR-3F -1.09 -0.99 0.08 −0.01 0.02 −0.04
Large BVAR −0.68 -0.58 0.48 0.40 0.42 0.37 0.40 0.41

BVAR Averaging

2

-1.60 -1.23

BFAVAR-1F -1.36 -1.19 0.24 0.03
BFAVAR-3F −1.39 -1.14 0.21 −0.06 −0.03 0.05
Large BVAR −0.75 -0.76 0.85 0.47 0.61 0.44 0.64 0.38

BVAR Averaging

3

−1.78 -1.28

BFAVAR-1F -1.56 -1.32 0.22 −0.04
BFAVAR-3F -1.46 -1.16 0.31 0.01 0.10 0.16
Large BVAR −0.57 -0.73 1.21 0.54 0.99 0.59 0.89 0.43

BVAR Averaging

4

−1.99 -1.38

BFAVAR-1F -1.77 -1.35 0.22 0.03
BFAVAR-3F -1.51 -1.17 0.48 0.02 0.26 0.17

Large BVAR −0.66 -0.76 1.34 0.64 1.11 0.61 0.85 0.43

Notes: the entries are tails-weighted averages of likelihood ratios as in Amisano and Giacomini (2007). A

positive (negative) value means that the BVAR variant under consideration outperforms (underperforms)

its benchmark variant in terms of predictive ability. Bold entries denote significance at the 5 percent level.

See also notes to Table 1.

variants of the BFAVAR. Among the latter three, the predictive ability does not differ from each

other significantly in all but one cases.

The outcome of the center-weighted test is reported in Table 4. Two striking differences

compared to the unweighted case are readily apparent. First, the average likelihood ratios are

much smaller when we focus on the center of the distribution of ∆yi,t. Second, we obtain many

insignificant values in the first two columns of Table 4 which suggests that the random walk is

hard to beat when we are in normal times. However, it should be emphasized that the BFAVAR

with three factors tends to outperform most of the other approaches. In particular it has a

significantly better forecast ability than the large BVAR in all but one cases (GDP at h = 1). We

thus conclude that the ranking obtained in Table 3 is not solely driven by extreme or rare events.

Table 5 collects the results of the tails-weighted test procedure. It turns out that the poor

(unweighted) forecast performance of the random walk seems to be largely driven by tail events
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which suggests that information provided by indicator variables is valuable particularly during

turbulent times. Most notably, the large BVAR is significantly outperformed by BVAR averaging

and both BFAVARs in all but one constellations (GDP at h = 4). It appears that more extreme

events that actually occur from time to time render the forecast performance of the large BVAR

exceptionally bad. Finally, the differences between the remaining three BVAR variants (BVAR

averaging, BFAVAR-1F, BFAVAR-3F) in Table 5 are only minor and in most cases insignificant.

5 Medium-Size Dataset

In the previous section we have shown how the ranking of the BVAR variants changes when the

focus is on different target variables, different forecast horizons, alternative loss functions, and

different regions of the distribution of the target variable. However, the relative performance

may also depend on the size of the dataset since each variant may be affected differently by the

amount of cross-sectional information. In this section we investigate whether the results of our

forecast experiment are sensitive to changes in the size of the dataset. We diminish the cross-

section of the dataset and repeat the entire forecast experiment with a medium-size dataset

consisting of 22 variables. The analysis can be motivated as follows. First of all, Bańbura et al.

(2010a) argue that VARs with about 20 indicator variables produce reasonable forecasts and

that adding more information improves the forecast performance only marginally. And second,

in practice it is common not to use all the series available but to extract a subset of indicators -

either based on past experience or on the basis of sound economic arguments. The latter consid-

eration typically leads to information sets like the one we consider in this section. We provide

details on the exact composition of the medium-size dataset in Appendix A. With respect to both

the number and type of indicator variables, the medium-size dataset is similar to those typically

considered in the related literature (see, e.g., Bańbura et al., 2010a; Giannone et al., 2012; Koop,

2013, among others).

We report the results for the medium-size dataset in Tables C.1 to C.5 in Appendix C. To

begin with, Table C.1 shows that we have to shrink less in case of the BFAVAR with three factors

and the large BVAR since the size of our cross-section decreased. As a result, λ increases from

0.645 to 0.880 (BFAVAR-3F) and from 0.059 to 0.081 (large BVAR). Notably, we obtain point

forecasts and hence RMSE that are similar to those obtained with the larger dataset, supporting

the notion that using more indicator variables does not always lead to a better outcome. For

HICP inflation the large BVAR is now slightly better than the BFAVAR with three factors also

at h = 1, suggesting that the reduction of variables does not harm the performance of the large

BVAR. Moreover, the ranking obtained for the GDP forecasts does not change.
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Table C.2 documents that the average log predictive density of the large BVAR improves

when using the medium-size dataset, while the predictive ability of the BFAVARs and the BVAR

averaging is virtually unaffected by the size of the cross-section. This finding squares with our

interpretation of the results in Section 4.4. It appears that we have to shrink too much in case of

the large BVAR when the size of the cross-section is large, resulting in a predictive density that is

too concentrated around the predictive mean and hence attaches a too low probability to events

that actually occur. Similarly, the likelihood ratio tests in Table C.4 show that the large BVAR is

at least not significantly worse than other variants when the medium-size dataset is used. The

improved relative performance of the large BVAR is also reflected in the center-weighted test

results. It turns out that the GDP forecasts of the large BVAR now significantly outperform the

BFAVAR with one factor. Finally, even at the tails of the distribution the differences between the

variants become largely insignificant.

6 Summary and Conclusion

Recently, a number of studies have argued that large VARs combined with Bayesian shrinkage

(large BVARs) seem to outperform other modeling approaches which had been proposed to

overcome the overparameterization problem. In this paper we evaluate different variants of the

general BVAR model, i.e. averaging of small-scale BVARs, factor augmented BVARs with and

without shrinkage (BFAVARs), and large BVARs. These variants of the BVAR model differ in

the way information is condensed as well as in the complexity and computing time needed for

estimation. To evaluate how these variants process information contained in a large dataset, we

condition our analysis on a given amount of information. The proposed variants are evaluated

according to their out-of-sample forecast performance. In particular, we analyze whether the

relative superiority of the large BVAR is maintained in our setup. To this end, we predict euro

area real GDP growth and HICP inflation using a dataset which we believe is, first, adequate for

all modeling approaches and, second, comprehensive. That is, we consider a set of 42 indicator

variables that most forecasters would probably label a “typical” dataset because it contains all

variables that are on the wish list of a practical forecaster. Note that for most countries long

time series for hundreds of indicator variables are not available. Hence, the size of our dataset

strikes a balance between the maximum availability of the cross-sectional and the time series

dimension of the predictors.

To begin with, we evaluate the point forecasts and find that all approaches substantially out-

perform a naïve forecast for HICP inflation. For quarterly GDP growth the naïve scheme beats

only the BVAR averaging. It turns out that the large BVAR delivers almost the best point fore-
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cast. For HICP inflation the factor augmented VAR with Bayesian shrinkage does marginally

better. Hence, the large BVAR appears to be a good choice when the user is interested in point

forecasts. However, many policy makers are interested in density forecasts which take into ac-

count the uncertainty surrounding a prediction. Consequently, we also study whether the loss

function has an impact on the ranking of the different modeling strategies. That is, we use den-

sity forecasts to evaluate the performance of the BVAR variants. It turns out that the large BVAR

performs worst in the sense that it provides the lowest predictive density. When we conduct a

likelihood ratio test, the other approaches perform significantly better with slight advantages

for the BFAVAR with shrinkage at short horizons and the BVAR averaging at longer horizons.

Moreover, we also provide a breakdown of the results conditional on the region of the dis-

tribution of the target variable. At the center of the distribution, the differences between the

approaches are small. However, the large BVAR does not significantly outperform any of the

other approaches whereas it is dominated by the BFAVAR with three factors and shrinkage.

At the tails of the distribution, the large BVAR delivers forecasts which are significantly worse

than those of any other BVAR variant. We hence emphasize that the large BVAR attaches more

weight to prior information than the other variants. Overall, we conclude that the prior we have

to impose on the large BVAR is probably too restrictive when it comes to density forecasting.

As a result, the large BVAR attaches too little probability to extreme events. The BFAVAR with

shrinkage appears to circumvent this problem. This is probably due to the fact that we have

to shrink less because the number of coefficients is comparably small when the information is

condensed in only a few factors.

Finally, we analyze the sensitivity of our results when we reduce the cross-sectional dimen-

sion of the dataset to 22 variables. We find that the ranking of the different BVAR variants is

affected by the size of the dataset when we consider density forecasts. It turns out that the rela-

tive performance of the large BVAR improves when we rely on the medium-scale dataset. This

result is probably due to the fact that we have to impose a less restrictive prior on the coefficients

of the large BVAR. Nevertheless, a BFAVAR with shrinkage remains among the best performing

variants.

We believe that there is no consistent outperformance of the large BVAR. Particularly, we

have to be careful when we are interested in density forecasts. As the tightness of prior infor-

mation increases with the number of predictors, there seems to be an upper limit to the number

of predictors where the benefits from the large BVAR are retained. Moreover, the ranking of the

different variants depends inter alia on the target variable, the forecast horizon, the size of the

dataset, and – to a lesser extent – on the state of the business cycle. Overall, we find that a factor
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augmented BVAR with three factors is competitive in all setups. Hence, it appears to be advis-

able to combine a factor augmented VAR with Bayesian shrinkage. From a practical point of

view it should also be noted that we found the large BVAR being computationally much more

demanding and time-consuming than the BVAR averaging or the factor augmented BVARs.
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Angelini, E., M. Bańbura, and G. Rünstler (2010). Estimating and Forecasting the Euro Area

Monthly National Accounts From a Dynamic Factor Model. Journal of Business Cycle Measure-

ment and Analysis 2010(1), 1–22.

Angelini, E., G. Camba-Mendez, D. Giannone, L. Reichlin, and G. Rünstler (2011). Short-Term

Forecasts of Euro Area GDP Growth. Econometrics Journal 14(1), 25–44.

Bai, J. and S. Ng (2002). Determining the Number of Factors in Approximate Factor Models.

Econometrica 70(1), 191–221.
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A Description of the Dataset

The dataset comprises 44 quarterly euro area macroeconomic and financial time series covering

the period 1975:1 to 2009:4. The series are described in detail below. The format is as follows:

series number, series mnemonic used by the original data source, series label, series category,

the original data source (AWM = Area-wide Model database; DS = Datastream), and series

transformation. The last column indicates if a series is included in the medium-size dataset.

No. Mnemonic Label Category Source Transform. Medium

01 YER Real GDP National Accounts AWM Log x
02 PCR Real Private Consumption National Accounts AWM Log x
03 GCR Real Government Consumption National Accounts AWM Log
04 ITR Real Gross Investment National Accounts AWM Log x
05 XTR Real Exports of Goods and Services National Accounts AWM Log
06 MTR Real Imports of Goods and Services National Accounts AWM Log
07 YFN GDP at Factor Costs National Accounts AWM Log
08 WIN Compensation to Employees National Accounts AWM Log
09 GON Gross Operating Surplus National Accounts AWM Log
10 TIN Indirect Taxes (net of subsidies) National Accounts AWM Log
11 YIN GDP Income Side National Accounts AWM Log
12 NFNYEN Net Factor Income from Abroad/GDP National Accounts AWM Raw
13 SAX Household’s Savings Ratio National Accounts AWM Raw
14 HICP Overall HICP Price Indexes AWM Log x
15 YED GDP Deflator Price Indexes AWM Log x
16 PCD Private Consumption Deflator Price Indexes AWM Log x
17 GCD Government Consumption Deflator Price Indexes AWM Log
18 ITD Gross Investment Deflator Price Indexes AWM Log x
19 XTD Exports of Goods and Services Deflator Price Indexes AWM Log
20 MTD Imports of Goods and Services Deflator Price Indexes AWM Log
21 YFD GDP at Factor Costs Deflator Price Indexes AWM Log
22 YWR Real World GDP International AWM Log x
23 YWRX Real World Demand International AWM Log
24 YWD World GDP Deflator International AWM Log x
25 COMPR Commodity Prices International AWM Log
26 PCOMU Non-Oil Commodity Prices International AWM Log x
27 POILU Oil Prices International AWM Log x
28 LFN Labor Force Employment AWM Log
29 LNN Total Employment Employment AWM Log x
30 LEN Employees Employment AWM Log
31 UNN Number of Unemployed Employment AWM Log
32 URX Unemployment Rate Employment AWM Raw x
33 LPROD Labor Productivity Employment AWM Log
34 ULC Unit Labor Costs Employment AWM Log
35 WRN Wages Employment AWM Log
36 EKOL2002Q Composite Leading Indicator Surveys DS Raw x
37 EKOCS002Q Consumer Confidence Indicator Surveys DS Raw x
38 EKQMA027B M1 Money Stock Monetary Aggregates DS Log x
39 EKQMA013B M3 Money Stock Monetary Aggregates DS Log x
40 STN Short-Term Interest Rate Financial AWM Raw x
41 LTN Long-Term Interest Rate Financial AWM Raw x
42 EMSHRPRCF Share Price Index Financial DS Log x
43 EEN Nominal Effective Exchange Rate Financial AWM Log x
44 EXR Euro per U.S.D Exchange Rate Financial AWM Log x
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B Testing for Equal Predictive Ability of Point Forecasts

Table B.1: Test of Equal Predictive Ability

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F

Benchmark h GDP HICP GDP HICP GDP HICP GDP HICP

BVAR Averaging

1

8.10 -45.25

BFAVAR-1F -4.87 -44.24 -12.00 1.84
BFAVAR-3F -9.83 -52.81 -16.58 -13.81 -5.20 -15.37
Large BVAR -21.47 -51.46 -27.36 -11.35 -17.45 -12.95 -12.92 2.85

BVAR Averaging

2

14.97 -36.75

BFAVAR-1F 8.95 -39.70 -5.23 -4.67
BFAVAR-3F 9.43 -42.74 -4.81 -9.48 0.44 -5.04
Large BVAR -8.47 -46.48 -20.39 -15.38 -15.99 -11.24 -16.36 -6.52

BVAR Averaging

3

24.40 -30.15
BFAVAR-1F 16.51 -34.35 -6.34 -6.02

BFAVAR-3F 17.82 -34.29 -5.29 -5.93 1.13 0.09
Large BVAR 3.37 -43.87 -16.91 -19.65 -11.28 -14.50 -12.27 -14.58

BVAR Averaging

4

25.80 -20.62
BFAVAR-1F 17.18 -23.62 -6.85 -3.78

BFAVAR-3F 28.30 -23.93 1.99 -4.16 9.49 -0.40
Large BVAR 8.56 -37.27 -13.70 -20.98 -7.36 -17.87 -15.38 -17.54

Notes: the entries are differences in RMSE (as percentage of the respective BVAR variant). A positive (neg-

ative) value means that the BVAR variant under consideration outperforms (underperforms) its bench-

mark variant in terms of RMSE. Differences in forecast ability are tested with a Giacomini and White

(2006) test of equal conditional predictive ability. The test is based on squared forecast error loss. Bold

entries denote that the forecast ability of both approaches is significantly different at the 5 percent level.
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C Additional Tables for Medium-Size Dataset

In this section we document the results for the forecast experiment which is based on a subset

of 22 indicator variables.

Table C.1: Root Mean Squared Errors

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F Large BVAR

h GDP HICP GDP HICP GDP HICP GDP HICP GDP HICP

1 0.63 0.55 0.69 0.30 0.59 0.30 0.53 0.29 0.49 0.26
2 0.64 0.57 0.74 0.36 0.71 0.33 0.66 0.34 0.58 0.29
3 0.65 0.58 0.80 0.41 0.77 0.36 0.71 0.38 0.66 0.32
4 0.65 0.58 0.81 0.46 0.76 0.43 0.77 0.43 0.70 0.35

λ 0 ∞ ∞ 0.880 0.081

Notes: this table shows the RMSE for different BVAR variants. See also notes to Table 1.

Table C.2: Average Log Predictive Densities

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F Large BVAR

h GDP HICP GDP HICP GDP HICP GDP HICP GDP HICP

1 −2.30 −2.29 −1.83 −1.98 −1.92 −2.11 −1.73 −2.02 −1.87 −2.03
2 −2.64 −2.42 −1.82 −1.99 −2.18 −1.97 −1.93 −1.99 −2.13 −2.04
3 −2.75 −2.59 −1.71 −1.87 −2.08 −1.88 −2.21 −2.03 −2.39 −2.05
4 −2.99 −2.59 −1.68 −1.90 −2.04 −1.95 −2.54 −2.09 −2.50 −2.16

λ 0 ∞ ∞ 0.880 0.081

Notes: this table shows the average log predictive densities for different BVAR variants. See also notes to

Tables 1 and 2.
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Table C.3: Unweighted Likelihood Ratio Tests

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F

Benchmark h GDP HICP GDP HICP GDP HICP GDP HICP

BVAR Averaging

1

−0.46 −0.31
BFAVAR-1F −0.38 −0.18 0.09 0.13
BFAVAR-3F −0.57 −0.27 −0.11 0.04 −0.19 −0.09
Large BVAR −0.43 −0.25 0.03 0.05 −0.05 −0.08 0.14 0.01

BVAR Averaging

2

−0.82 −0.44
BFAVAR-1F −0.46 -0.45 0.36 −0.02
BFAVAR-3F −0.71 -0.43 0.11 0.01 −0.25 0.02
Large BVAR −0.51 -0.38 0.32 0.05 −0.05 0.07 0.21 0.05

BVAR Averaging

3

−1.03 -0.72

BFAVAR-1F −0.67 -0.71 0.37 0.01
BFAVAR-3F −0.54 -0.55 0.49 0.16 0.13 0.15
Large BVAR −0.36 -0.54 0.67 0.18 0.31 0.17 0.18 0.02

BVAR Averaging

4

−1.31 -0.69

BFAVAR-1F −0.94 -0.64 0.37 0.05
BFAVAR-3F −0.44 -0.50 0.87 0.19 0.50 0.14
Large BVAR −0.49 −0.43 1.55 0.83 0.46 0.21 −0.04 0.07

Notes: the entries are unweighted averages of likelihood ratios as in Amisano and Giacomini (2007). A

positive (negative) value means that the BVAR variant under consideration outperforms (underperforms)

its benchmark variant in terms of predictive ability. Bold entries denote significance at the 5 percent level.

See also notes to Table 1.
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Table C.4: Center-Weighted Likelihood Ratio Tests

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F

Benchmark h GDP HICP GDP HICP GDP HICP GDP HICP

BVAR Averaging

1

0.09 0.11

BFAVAR-1F 0.11 0.15 0.02 0.05
BFAVAR-3F 0.04 0.11 -0.05 0.01 -0.07 −0.05
Large BVAR 0.02 0.07 0.03 0.05 -0.09 −0.09 −0.02 −0.04

BVAR Averaging

2

0.08 0.10
BFAVAR-1F 0.09 0.09 0.01 −0.01
BFAVAR-3F 0.03 0.07 -0.05 −0.03 -0.06 −0.01
Large BVAR 0.03 0.06 0.32 0.05 -0.06 −0.03 0.00 −0.01

BVAR Averaging

3

0.06 0.04
BFAVAR-1F 0.07 0.06 0.01 0.02
BFAVAR-3F 0.03 0.08 −0.02 0.04 −0.04 0.02
Large BVAR 0.05 0.04 0.67 0.18 −0.02 −0.02 0.02 -0.05

BVAR Averaging

4

0.03 0.07

BFAVAR-1F 0.04 0.09 0.02 0.02
BFAVAR-3F 0.06 0.10 0.03 0.03 0.01 0.01
Large BVAR 0.05 0.07 1.55 0.83 0.00 −0.02 −0.01 −0.03

Notes: the entries are unweighted averages of likelihood ratios as in Amisano and Giacomini (2007). A

positive (negative) value means that the BVAR variant under consideration outperforms (underperforms)

its benchmark variant in terms of predictive ability. Bold entries denote significance at the 5 percent level.

See also notes to Table 1.
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Table C.5: Tails-Weighted Likelihood Ratio Tests

Random Walk BVAR Averaging BFAVAR-1F BFAVAR-3F

Benchmark h GDP HICP GDP HICP GDP HICP GDP HICP

BVAR Averaging

1

−0.70 -0.57

BFAVAR-1F -0.65 -0.56 0.05 0.01
BFAVAR-3F −0.67 -0.54 0.02 0.03 −0.02 0.02
Large BVAR −0.48 -0.43 0.22 0.15 0.17 0.14 0.20 0.12

BVAR Averaging

2

−1.03 -0.68

BFAVAR-1F -0.68 -0.67 0.35 0.02
BFAVAR-3F −0.79 -0.61 0.24 0.07 −0.11 0.05
Large BVAR −0.59 -0.53 0.44 0.15 0.09 0.13 0.20 0.08

BVAR Averaging

3

−1.18 -0.82

BFAVAR-1F -0.84 -0.85 0.34 −0.03
BFAVAR-3F -0.62 -0.76 0.56 0.07 0.22 0.10
Large BVAR −0.48 -0.62 0.70 0.20 0.36 0.23 0.14 0.13

BVAR Averaging

4

−1.39 -0.86

BFAVAR-1F −1.06 -0.86 0.33 0.00
BFAVAR-3F −0.59 -0.75 0.80 0.11 0.47 0.11
Large BVAR -0.61 -0.60 0.78 0.26 0.45 0.26 −0.02 0.15

Notes: the entries are unweighted averages of likelihood ratios as in Amisano and Giacomini (2007). A

positive (negative) value means that the BVAR variant under consideration outperforms (underperforms)

its benchmark variant in terms of predictive ability. Bold entries denote significance at the 5 percent level.

See also notes to Table 1.
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