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Simultaneous Search and Network E¢ ciency�

Pieter A. Gautieryand Christian L. Holznerz

Abstract

When workers send applications to vacancies they create a network. Coordina-

tion frictions arise if workers do not know where other workers apply to and �rms

do not know which workers are considered by other �rms. We show that these

coordination frictions and the wage mechanism are not independent. Only wage

mechanisms that allow for ex post competition generate the maximum matching on

any realized network. E¢ cient network formation requires that identical �rms face

the same arrival rate of applicants. If �rms make o¤ers to workers, the resulting

equilibrium is socially ine¢ cient in terms of vacancy creation, worker participation

and search intensity. However, if workers would make o¤ers to �rms, e¢ ciency is

obtained in all dimensions.
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1 Introduction

When workers apply to one or more jobs, a network arises where each application es-

tablishes a link between a worker and a �rm. In such a decentralized environment there

are two coordination frictions, (i) workers do not know where other workers apply to and

(ii) �rms do not know which workers are considered by other �rms. We can think of

the �rst coordination friction as referring to random network formation, while the second

coordination friction a¤ects network clearing (the number of matches on a given net-

work). Treating the job search process as a matching on a bipartite graph (network) gives

new insights into one of the key questions in the search literature namely, under which

conditions is the decentralized market outcome constrained e¢ cient? With constrained

e¢ ciency we mean that the market outcome is identical to the outcome of a hypothetical

social planner who maximizes social welfare given the fundamental frictions (i) and (ii).

The main contribution of our paper is that it shows how the wage mechanism a¤ects

frictions through network formation and clearing.1 We �nd that e¢ cient network clear-

ing requires ex post competition between �rms that consider the same candidate (o¤ers

and counter o¤ers can be made repeatedly). Given that network clearing is e¢ cient,

a requirement for e¢ cient network formation is that identical vacancies have the same

application-arrival rate (this implies no ex ante wage dispersion). Allowing for ex post

competition in wages is important because it allows �rms to respond to a particular re-

alization of the network. Speci�cally, �rms that have n candidates who are collectively

linked to more than n �rms will bid more aggressively than �rms with n candidates who

are collectively linked to less than n �rms. We show how in a decentralized economy,

1Coles and Eeckhout (2003) and Eeckhout and Kircher (2010) show that the number of matches

in a model with identical workers is independent of the posted wage mechanism. We show that this

no longer holds if workers send multiple applications. When workers apply to only one job, only the

�rst coordination friction occurs, since all �rms that receive at least one application can be sure that

their selected candidate has no competing o¤er from another �rm, see Burdett, Shi and Wright (2001).

In the random search models of Diamond (1982), Mortensen (1982) and Pissarides (2000) the wage

determination process and the matching process are fully independent. In Moen�s (2000) competitive

search model, workers can sort in submarkets which are characterized by di¤erent wage and market

tightness pairs. Within each submarket, given market tightness, the number of matches does not depend

on wages.
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workers and �rms can reach the maximum number of matches without knowing the entire

network but only their own links. We then use results from computer science to derive

the explicit matching function that corresponds to our wage game for a given level of mar-

ket tightness and search intensity. Given this matching function we show that vacancy

creation, worker participation and search intensity are not e¢ cient if �rms make wage

o¤ers to workers but that e¢ ciency is restored if workers would propose to �rms. This

generalizes the Kim and Kircher (2012) result that e¢ ciency requires that workers should

receive the worker-maximizing point in the core to a setting with multiple applications

per worker. The fact that there exists a decentralized wage mechanism that is e¢ cient

in all dimensions is surprising because it requires two externalities to exactly o¤set each

other. The �rst externality is a business-stealing externality caused by the fact that a

new vacancy does not internalizes that it reduces the hiring probability of other �rms by

making it more likely that other �rms end up in a �rm graph (�rms are collectively linked

to less workers). The positive externality is caused by the fact that a �rm that ends up in

an even subgraph adds social value but receives nothing if the worker gets the full surplus

in even subgraphs.

In our proposed wage mechanism, �rms are not restricted to make o¤ers to only one

of their candidates as in Albrecht, Gautier and Vroman (2012). They can switch to other

candidates if their current candidate asks for a higher wage. In that sense it is related to

the deferred acceptance algorithm introduced by Gale and Shapley (1962) and the salary-

adjustment mechanism introduced by Crawford and Knoer (1981) and Kelso and Crawford

(1982). The salary-adjustment process provides an explicit mechanism for the assignment

game with transferable utility analyzed by Shapley and Shubik (1972). Neither Crawford

and Knoer (1981) nor Kelso and Crawford (1982) provide an explicit game that leads

to the salary-adjustment mechanism. We show that the salary-adjustment mechanism

proposed by Crawford and Knoer (1981) and Kelso and Crawford (1982) needs to be

amended by a countero¤er stage in each round in order to lead to a perfect Bayesian

Nash equilibrium.

Our paper is the �rst one that analyzes how standard decentralized wage mechanisms
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a¤ect network formation and network clearing in a decentralized search model with com-

plete recall where workers only know to which �rms they applied and �rms only know

which workers applied to them. The only other paper that we are aware of that considers

a search model with multilateral negotiations where workers and �rms do not know the

entire network is Elliot (2011). He focuses on the e¢ ciency of entry and search intensity

and allows for heterogeneity. In his wage mechanism, the bargaining power is assumed

to be independent of the type of subgraph an agent is in, while in our setting the type

of subgraph is the key factor for the agents�realized payo¤.2 Manea (2011) considers a

framework where agents who are connected in a network are randomly selected to bar-

gain. During the bargaining game they are not able to contact other connected agents.

His random selection setting implies that a �rm with many candidates has a stronger

bargaining position, because it is more likely to be selected. In our model it is not only

the number of candidates that matters but also whether or not a �rm is located in a

subgraph with more �rms than workers.

Part of the network literature has analyzed di¤erent pricing mechanisms and has

studied whether these price mechanisms lead to an e¢ cient matching of sellers and buyers.

Kranton and Minehart (2001) show for example that a public ascending price auction

ensures e¢ cient network clearing. Corominas-Bosch (2004) shows for identical sellers

and buyers that an alternating-o¤ers game where all sellers (or buyers) of a subgraph

simultaneously announce prices, leads to a maximum matching. This literature, however,

assumes that once a network has been formed, all agents know the complete network

(or the entire subgraph of the network they are in).3 This knowledge allows sellers and

buyers to determine their exact outside option (trading partners and trading prices). We

show that ex post competition achieves the maximum matching, even if agents do not

know the network structure. Another part of the network literature uses the set-valued

approach, i.e., it either starts with a set of competitive price vectors and shows that the

2Following Corominas-Bosch (2001) each graph can be decomposed into worker subgraphs with an

excess number of workers, �rm subgraphs with an excess number of �rms and even subgraphs with an

equal number of workers and �rms.
3Galeotti et al. (2011) analyse cheap talk in networks and characterise the incentives of agents to

truthfully communicate information to their neighbours.
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resulting matches are pairwise stable and maximize aggregate welfare (see Kranton and

Minehart, 2000), or it starts by assuming that pairwise stable matches must arise and then

analyses wage formation (see Elliott, 2011). Those papers do not layout the game that

leads to a competitive price vector or a pairwise stable matching like we do. Moreover,

pairwise stable matchings are not necessarily maximum matchings (e.g. Kircher, 2009)

but a maximum matching is always stable since an improvement of one agent must make

another agent worse o¤. Finally, there is a growing number of papers that combine insights

from search and network theory.4 Those papers focus mainly on how social networks of

workers can pass information on the location of jobs to each other, which is very di¤erent

from the bipartite network (between workers and �rms) framework that we consider here.

The paper is organized as follows. We start with a description of the model setup in

section 2. In section 3 we illustrate with a 3-by-3 example our main point that random

search with ex post competition in wages will maximize the expected number of matches.

In section 4 we take the realized network that forms through the random application

process as given and solve the assignment game with ex post competition in wages. We also

show that ex post competition is socially desirable, since it leads to a maximum matching.

Section 5 solves for the matching function that result form the random application process.

In this section we also prove that random search is indeed socially e¢ cient. Section 6

provides the conditions under which the search intensity (number of applications) chosen

by workers and the entry of vacancies and workers are socially e¢ cient. Finally section 7

concludes.

2 Framework

We consider v identical �rms with one vacancy each and u identical risk neutral unem-

ployed workers, who send a � v applications to di¤erent �rms. Search is random, i.e.,

workers send each application with probability 1=v to a speci�c vacancy. Workers have a

reservation wage of 0 and a matched �rm-worker pair produces 1. We start with taking

4Example include, Boorman (1975), Calvó-Armengol and Jackson (2004), Calvó-Armengol and Zenou

(2004), Fontaine (2004).
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the number of applications that workers send out and market tightness as given but in

section 6 we will also discuss entry and search intensity.

The realized network that is formed by the random application process is unknown to

workers and �rms. Below, we describe the timing and the action and information sets of

workers and �rms of the assignment game.

1. Each �rm selects one worker (if present) and o¤ers that worker a wage w � 0. Wage

o¤ers are discrete w 2 f�; 2�; :::; 1��; 1g, where� is a small but discrete amount,

i.e., a cent.

2. A worker with one or more o¤ers can keep at most one o¤er (which is observed and

veri�able by all linked �rms) and must reject all others. The worker and the only

not rejected �rm are labeled to be engaged.

3. The �rms that are rejected select a worker (possibly the same worker) and o¤er that

worker a wage w � 0 given the wage o¤ers from other �rms that are kept by their

applicants.

4. The engaged �rms can make a counter o¤er.

5. A worker with one or more o¤ers can keep at most one o¤er (observed by all linked

�rms) and must reject all others.

6. Return to stage 3)... until the �nal round T (su¢ ciently large).

We assume the following tie breaking rule for workers. Workers keep the o¤er of the

engaged �rm if it o¤ers the same wage as the highest o¤er made by any other �rm. If the

worker was not engaged and two or more outside �rms o¤er the same highest wage, the

worker randomly picks one of them and rejects the others.

The network clearing game assumes that �rms have all the bargaining power and can

make take-it-or-leave-it wage o¤ers. An interesting alternative is the case where workers

have all the bargaining power. In that case, the network clearing game is the same as

5



above except that we have to exchange the roles of �rms and workers (workers now make

wage proposals, w � 1).5

3 3-by-3 example

This section illustrates our main points that: (i) ex post competition is a requirement for

e¢ ciency and (ii) wage dispersion for identical matches is not desirable. In this simple

environment, 3 workers send each 2 applications to 3 �rms without knowing where other

workers apply to.6

First, consider network clearing. E¢ cient network clearing requires that the number

of matches is equal to 3, if all three vacancies are collectively linked to all three workers,

and that the number of matches is equal to 2, if only two vacancies are collectively linked

to all three workers. Note that these are the only two possible outcomes, since no worker

sends both applications to the same �rm. Network clearing is in general not e¢ cient if

�rms commit to their posted wages. To see this, consider the graph in Figure 1, which

pictures a particular realization of the case where each worker sends one application to

the high-wage �rm and one to one of the two low-wage �rms (thick lines).

Inefficient matching Efficient matching

1 2 3

H L L

1 2 3

H L L

Figure 1: Ine¢ ciency without ex post competition in wages

5Kim and Kircher (2012) show in a directed search setting with a = 1 that from a welfare point of

view this is more desirable. In section 6 we extend their result to a � 2:
6If workers send 1 application or 3 applications, the number of matches generated is independent of

the wage mechanism used.
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As Kircher (2010) shows, the directed-search equilibrium with commitment, exhibits

wage dispersion (in the working paper version we derive that in our example one �rm

o¤ers a higher wage than the other two �rms). The number of matches (dashed lines)

now depends on which worker is chosen by the high-wage �rm. If the high-wage �rm o¤ers

the job to one of the workers who are linked to the low-wage �rm with two applicants,

i.e., to worker 2 or 3 in Figure 1, the number of matches is equal to the maximum number

of matches (3). If the high-wage �rm o¤ers the job to the worker linked to the low-wage

�rm with only one applicant, i.e. to worker 1 in Figure 1, there are only two matches,

since the low-wage �rm with only one applicant will remain unmatched. If this �rm could

ex post increase its initial o¤er it would bid the high wage plus epsilon and hire worker 1

while the high-wage �rm would hire one of its other candidates. Following the assignment

game laid out in section 2 it is easy to show that in this example, allowing for ex post

competition always leads to the maximum number of matches.

Now, let us look at random network formation and assume that network clearing

generates the maximum number of matches. Denote by �i = api = 2pi the probability

that a worker sends at least one of her two applications to vacancy i. Under the assumption

that network clearing is e¢ cient, the expected number of matches is,

M =
3X
i=1

�
1� (1� �i)3

�
, with

3X
i=1

�i = 2;

where (1� �i)3 equals the probability that vacancy i does not get any application. Since

the function
�
1� (1� �i)3

�
is concave in �i, Jensen�s inequality implies that the number of

matches is maximized, if all vacancies have the same probability to receive an application,

i.e., if �i = 2=3 or pi = 1=3. Thus, random search leads to the maximum number of

matches, M = 26=9 � 2:889, while directed search with pi 6= 1=3 will leads to less

matches.

This illustrates that the wage mechanism and the matching process are not inde-

pendent. Di¤erent search environments generate di¤erent distributions of networks and

whether the wage mechanism allows for ex post competition or not a¤ects the number of

matches for a given network. A �nal important point is that both wage mechanisms, i.e.,

ex post competition in wages and wage commitment, generate a stable matching.
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4 Network clearing

This section deals with the number of matches on a given network. First, in section

4.1 we solve the assignment game using a decentralized wage mechanism with ex post

competition. In section 4.2 we show that the wage mechanism with ex post competition

leads to a maximum matching on any realized network while ex ante wage commitment

generally fails to achieve the maximum matching on the realized network.

4.1 Assignment game

The time structure of the assignment game has already been laid out in section 2. Before

we are able to solve the assignment game, we need to introduce some concepts of graph

theory that allow us to determine the optimal strategy and describe the equilibrium.

4.1.1 Network decomposition

In order to determine the optimal strategies for workers and �rms we use the properties

of the Decomposition Theorem by Corominas-Bosch (2004) (for details see Appendix B),

which �in terms of our terminology �decomposes a realized network into �rm-, worker-

and even subgraphs. A �rm subgraph contains more �rms than workers. A worker

subgraph contains more workers than �rms. In even subgraphs, the number of workers

equals the number of �rms (see Figure 2). The decomposition algorithm �rst looks for

�rm subgraphs and separates all of them from the network. Then it identi�es worker

subgraphs and removes all of them from the network. The remaining subgraphs are even

subgraphs. The decomposition is not unique but the Decomposition Theorem states that

any �rm and any worker will always belong to the same type of subgraph, a property

important to guarantee that the di¤erent possible decompositions are payo¤ equivalent.

Figure 2 illustrates the Decomposition Theorem. The algorithm starts with the �rst

�rm and identi�es a set of �rms as �rm subgraph if it has less neighbors (more precisely,

if it is jointly linked to less neighbors, i.e., jF j > jN (F )j). In order to ensure that the

maximum matching is found, the algorithm has to start with jF j = 1. The number jF j

increases by one once all �rm combinations with jF j have been considered (Hall�s Theorem,
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1935). The �rst subgraph in Figure 2 is the unmatched �rm G. The �rm subgraph Gf1 is

removed before the algorithm continues. Since there are no �rm subgraphs with jF j = 2,

the next �rm subgraph has three �rms, i.e., jF j = 3, The three �rms A, B and C in

this subgraph are collectively linked to workers 1 and 2, i.e., N (fA;B;Cg) = f1; 2g and

jN (fA;B;Cg)j = 2. Once the �rm-subgraph Gf2 is removed, it is easy to verify that

the remaining sets of �rms are collectively linked to more neighbors, i.e., jF j � jN (F )j.

Hence, there are no further �rm subgraphs. The algorithm continues by looking for worker

subgraphs in the same way as it looked for �rm subgraphs. At jW j = 4, the algorithm

identi�es a worker subgraph with N (f3; 4; 5; 6g) = fD;E; Fg and jN (f3; 4; 5; 6g)j = 3.

Once the worker subgraph Gw1 is removed, and no further worker subgraphs are found

the algorithm stops by identifying all remaining subgraphs as even subgraphs, i.e., in

Figure 2 the remaining subgraph Ge1 is an even subgraph with N (f7; 8g) = fH; Ig and

jN (f7; 8g)j = 2 = jfH; Igj.

1 2 3 4 5 6 7 8

A B C G H ID E F
firms

workers

1 2 3 4 5 6 7 8

A B C G H ID E F

G2
f G1

fG1
w G1

e

Figure 2: Graph-Decomposition

Figure 2 illustrates an important property of the resulting subgraphs (compare Corominas-

Bosch, 2004, p. 51). The long side of a subgraph has only links to the short side of the
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respective subgraph, i.e., the workers in a worker-subgraph, Gwi (�rms in a �rm-subgraph,

Gfi ) are only linked to �rms (workers) in a worker (�rm) subgraph. Workers in an even

subgraph, Gei , are only linked to �rms in worker- or even subgraphs and the �rms in even

subgraphs can only be linked to workers in �rm- or even subgraphs.

4.1.2 Information sets and beliefs

The actions of �rms (or more general, the actions of the agents who have the power to

propose the wage) will depend on their belief about the subgraph they are in. Firms will

update their beliefs given the number of applicants N they have and the wage o¤ers of

their applicants, i.e., the set of wage o¤ers WN the applicants hold from their engaged

�rms. Denote the belief of �rm j in round t that it is in a �rm subgraph given N and

WN , by bj;t
�
N;WN

�
. I.e., if a �rm is sure to be in a �rm subgraph bj;t

�
N;WN

�
= 1.

Firms without any applicant are by de�nition in a �rm subgraph (see Gf1 in Figure 2).

Firms with at least one applicant can (initially) be in any type of subgraph.

We will show below that �rms can infer from the (sub)sets of observed wage o¤ers

WN whether they are in a �rm subgraph or not. De�ne the following subsets. If k 2

f0; 1; :::; Ng applicants receive no o¤er, denote the respective subset of wage o¤ers by

Øk. If l 2 f0; 1; :::; Ng applicants hold wage o¤ers equal to zero, denote the respective

subset by 0l. If m 2 f0; 1; :::; Ng applicants hold an o¤er equal to one cent, denote

the respective subset by �m. Finally, if q 2 f0; 1; :::; Ng applicants hold an o¤er equal

to one, denote the respective subset by 1q. Thus, the set of wage o¤ers is equal to

WN =
nfWN�k�l�m�n;Øk; 0l;�m; 1q

o
, where fWN�k�l�m�q equals the remaining subset

of wage o¤ers with wages w 2 f2�; 3�; :::; 1��g. We show below that in equilibriumfWN�k�l�m�n is empty in the �nal round given that T is su¢ ciently large.

4.1.3 Workers�and �rms�strategies

Below, we prove that the following set of strategies constitutes a perfect Bayesian Nash

equilibrium to the assignment game.

Consider the following worker strategies:
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A1 In the �nal round T , accept the best o¤er.

A2 In any previous round t < T , keep the best o¤er wh = max fw1; w2; :::; wag, and

reject all other o¤ers. Accept the best o¤er, if wh = 1.

Engaged �rms have one advantage over rejected �rms. They can make a counter o¤er

before the next round starts. This implies that they can base their actions on the set of

wage o¤ersWN they observe and do not need to base their actions on the beliefs about the

type of subgraph they are in. We therefore consider the following counter o¤er strategies

for engaged �rms:

B1 In the �nal round T , match any o¤er.

B2 In any previous round t < T , match any outside o¤er wh = 0. Match the o¤er

wh � �, if all other applicants hold an o¤er ewh � wh � �, and don�t match the

o¤er wh � �, if at least one other applicant holds no o¤er or an o¤er ewh < wh��.
For rejected �rms in rounds t < T we consider strategies that are independent of the

�rm�s belief bj;t
�
N;WN

�
. Only in the �nal round T we consider strategies that depend

on the belief bj;T
�
N;WN

�
.

C1 In the �nal round T .

C1a If at least one applicant holds no o¤er, i.e.,WN =
nfWN�k�l�m�q;Øk; 0l;�m; 1q

o
with k > 0, then o¤er one of the k applicants w = 0 if bj;T

�
N;WN

�
= 0, else of-

fer one applicant w 2 F (w) if bj;T
�
N;WN

�
6= 0, where the optimal wage o¤er

distribution F (w) is characterized in Gautier and Moraga-Gonzalez (2004).

(Note, that we show below that for T su¢ ciently large bj;T
�
N;WN

�
= 0 if

k > 0.)

C1b If all applicants hold an o¤er, select one worker and o¤er him w = 1 (irrespec-

tive of bj;T
�
N;WN

�
).

C2 In any previous round t < T , the strategy is as follows:
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C2a If at least one applicant holds no o¤er, i.e.,WN =
nfWN�k�l�m�q;Øk; 0l;�m; 1q

o
with k > 0, o¤er one of the k applicants w = 0 irrespective of the belief

bj;t
�
N;WN

�
.

C2b If all applicants hold an o¤er wh � 0, i.e.,WN =
nfWN�k�l�m�q;Øk; 0l;�m; 1q

o
with k = 0, o¤er the worker with the lowest best o¤er wh = minWN the wage

w = wh + � if wh < 1 irrespective of the belief bj;t
�
N;WN

�
and w = 1 if

wh = 1.

4.1.4 Wages and beliefs

In order to show that the proposed strategies are indeed optimal it will be useful to

analyze �rst the wages that are paid in each type of subgraph, if workers and �rms follow

the strategies laid out in section 4.1.3.

Lemma 1 If workers and �rms use strategies A1-A2, B1-B2 and C1a-C2b, then

(i) at t � u all �rms in worker subgraphs are engaged and their engaged workers hold an

o¤er no higher than w = 0,

(ii) at t � 2u all workers and �rms in even subgraphs are engaged and all workers hold

an o¤er w 2 f0;�g,

(iii) at t � u=� all workers in �rm subgraphs are engaged and hold an o¤er w = 1.

Proof. See Appendix A.1.

Following the strategies above �rms (workers) in worker (�rm) subgraphs will receive

the whole surplus, since they are collectively linked to less workers (�rms). Thus, workers

in worker subgraphs will receive a wage o¤er no higher than w = 0 and workers in �rm

subgraphs will eventually (after su¢ ciently many rounds) be o¤ered the marginal product,

i.e., w = 1. Since a rejected �rm o¤ers its job in the next round to a candidate without

an o¤er (if present), it takes at most t = u rounds until all �rms in a worker subgraph are

engaged (because there are more workers than �rms). By the same argument all workers

in �rm subgraphs are engaged after t = u rounds. Since rejected �rms in �rm subgraphs

only o¤er � more than the lowest o¤er made by their competitors wh, it takes at most
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t = u=� rounds (starting from an initial o¤er of w = 0) until all workers hold an o¤er

w = 1. The wage result for even subgraphs is due to the assumption that only �rms can

make o¤ers (have all the bargaining power). Since two �rms might initially compete for

the same worker, it can be the case that a rejected �rm (with no other option) has to

o¤er a wage w = � in order to ensure that it gets engaged with the worker.

Lemma 1 implies that all �rms in worker and even subgraphs are engaged at wages

w 2 f0;�g after t = 2u rounds. Thus, a �rm that remains rejected after t = 2u rounds

although it o¤ered a wage w = � can infer that it is part of a �rm subgraph. This is

stated in part (i) in the following Lemma. Lemma 1 also shows that after t � u=� rounds

have passed, all workers in �rm subgraphs will have received an o¤er wh = 1 and have

accepted it. Therefore, all other �rms that are not part of a �rm subgraph can infer from

the absence of wage o¤ers wh = 1, i.e., from q = 0 at t � u=�, that they are not in a �rm

subgraph. This is stated in part (ii) in the following Lemma.

Lemma 2 (i) Rejected �rms that observe that their applicants hold wage o¤ers WN =�
WN�m�n;�m; 1n

	
with k = l = 0 in round t � 2u hold a belief

bj;t
�
N;
�
WN�m�n;�m; 1n

	�
= 1:

(ii) At t = u=� all �rms that observe WN =
n
Øk; 0N�k�m;�m

o
hold a belief

bj;u=�

�
N;

n
Øk; 0N�k�m; �m

o�
= 0:

Proof. See Appendix A.2.

4.1.5 Equilibrium of the assignment game

From Lemma 2 we know that T = u=� is su¢ ciently high to ensure that �rms can infer

whether or not they are in a �rm subgraph. We therefore set T = u=�.

Proposition 1 With T = u=� the strategy pro�le A1-A2, B1-B2 and C1a-C2b constitute

a perfect Bayesian Nash equilibrium to the assignment game.
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Proof. See Appendix A.3

Clearly, the workers�strategy A1 to accept the best o¤er in round T maximizes the

workers�payo¤. The same is true for the engaged �rms�strategy B1 of matching any

outside o¤er in round T , since engaged �rms that do not match outside o¤ers would

remain idle and earn a pro�t of zero. The actions of a rejected �rm depend on its belief

about whether or not it has competitors. If it believes to have no competitors, then

strategy C1a, i.e., to o¤er w = 0 to a candidate without an application, is optimal. If it

has a belief bj;t
�
N;WN

�
2 (0; 1) it is optimal to follow the action implied by the second

part of strategy C1a as characterized in Gautier and Moraga-Gonzalez (2004). Finally, if

all applicants hold an o¤er, the �rm will make zero pro�ts, since any o¤er will be matched

by the engaged �rm (see strategy B1). It is therefore equally pro�table to follow strategy

C1b and o¤er w = 1.

In any round t < T , the workers�strategy A2 to keep the best o¤er wh is a dominant

strategy, because the rejected �rms�strategies C2a and C2b imply that keeping a lower

o¤er can lead to a lower payo¤ for the worker without increasing the chances of receiving

better o¤ers in the future. For engaged �rms in rounds t < T , strategy B2 to match

o¤ers wh � �, if all other applicants hold an o¤er ewh � wh ��, and not to match o¤ers
wh � �, if at least one other applicant holds no o¤er or an o¤er ewh < wh��, is optimal.
To see this, note that any deviation in the case where all other applicants hold an o¤erewh � wh � � implies that the currently engaged �rm has to o¤er ewh + � = wh to the

other candidate. But now it does not have the certainty to become engaged again (since

other �rms might also o¤er wh). If one of the other applicants holds no o¤er, matching

the o¤er wh � � cannot be optimal, because the worker holding the o¤er wh � � must

be part of an even or �rm subgraph (see Lemma 1), while the applicant that does not hold

an o¤er can also be part of a worker subgraph, which generates in expected terms a higher

pro�t. If the other candidates hold an o¤er ewh < wh ��, the currently engaged worker
must be part of a �rm subgraph, since ewh � 0 implies wh > �. Thus, also the competing
�rm that o¤ered wh > � must be part of a �rm subgraph. Since the competing �rm in

the �rm subgraph will eventually pay a wage w = 1, it is optimal for the engaged �rm
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not to compete, i.e., not to match wh, but to o¤er the job to another applicant at the

wage ewh+� < wh, since this other applicant could be part of an even subgraph. Finally,
the strategies C2a and C2b of rejected �rms, i.e., to pick (one of) the applicant(s) with

the lowest o¤er and to o¤er this applicant the job at the lowest possible wage, are also

optimal, since any deviation can potentially lead to lower pro�ts.

Note, that the option for engaged �rms to make counter o¤ers is crucial to rule out

strategic behavior of rejected �rms in order to manipulate the belief of other engaged

�rms. Suppose for example there are 3 �rms (A,B,C) in a �rm subgraph with 2 workers

(1,2) who applied to all three �rms. Suppose �rm A�s wage o¤er w = � has been rejected.

Then, it infers according to Lemma 2 that it is in a �rm subgraph. Firms B and C will

continue to believe (with a positive probability) they are in an even subgraph and o¤er

w = � (or w = 0) to workers 1 and 2 as long as their workers do not show better o¤ers.

Why is it then not in the interest of �rm A to make no o¤er till T � 1 and then o¤er 2�

in round T? This is not pro�table because in that case �rms B or C will match this o¤er.

Since �rm A will not be able to engage with one of the workers in the last round, it may

as well immediately make an o¤er 2� in the next round.

4.2 Maximum matching

In order to prove that ex post competition leads to a maximum matching on any realized

network, we will �rst introduce and explain some simple concepts and insights from graph

theory.

4.2.1 Berge�s Theorem

When workers apply to jobs, each of their applications is an edge (link) in a bipartite

graph. The graphs from the random application process are simple (workers do not send

multiple applications to the same �rm), undirected (if worker i is linked to �rm j, then

�rm j is linked to worker i) and bipartite (G = hu [ v; Li consists of a set of nodes formed

by two di¤erent kind of agents, i.e., by workers and vacancies, and a set of links L where

each link connects a worker to a �rm, so workers are not linked to other workers and �rms
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are not linked to other �rms).

De�nition 1 A matching M in a graph G is a set of links such that every node of G is

in at most one link of M .

Central to our result that ex post competition leads to a maximum matching is the

following theorem by Berge.

Berge�s Theorem (1957):

A matching M in a graph G is a maximum matching if and only if G contains no M-

augmenting path.

In our bipartite graph environment an M -augmenting path is de�ned as a path where

1. worker-�rm links that are part of the matching M alternate with worker-�rm links

that are not part of the matching M (de�nition of an M -alternating path) and

2. neither the origin (�rm or worker) nor the terminus (worker or �rm) of the path is

part of the matching M .

M­alternating path M­augmenting path

1 2 3 4 1 2 3 4

A B C A B C

Figure 3: M -alternating path and M -augmenting path

Figure 3 depicts an M -alternating path and an M -augmenting path in a particular

network. The dots represent vacancies and the squares unemployed workers. The solid

lines represent applications (a = 2) and the dashed lines represent matched worker-�rm

pairs. The M -alternating path in the �rst panel (A � 1 � B � 2 � C � 4) starts with
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the matched vacancy A and ends at the matched worker 4. The M -augmenting path

(A�1�B�2�C�4) in the second panel of Figure 3 starts with an unmatched vacancy

A and ends with an unmatched worker 4.

Berge�s Theorem, translated to our setting implies that a maximum matching in a

graph is only guaranteed if an unmatched �rm is not linked to an unmatched worker via

an M -augmenting path. The reason that a matching is not optimal, if an M -augmenting

path exists, is that one could create one more match by switching the links from not

being in the matching to being in the matching and visa versa. Then, the unmatched

�rm at the start of the M -augmenting path and the unmatched worker at the end of the

M -augmenting path will both be matched at the expense of one match in the middle.

Comparing the two paths in the second panel of Figure 3 illustrates this. The matching

M = f1�B; 2� Cg in an M -augmenting path can always be increased by switching the

dashed and solid links resulting in an extra link, i.e., M = fA� 1; B � 2; C � 4g.

1 2 3 4

A B C

Figure 4: Symmetric di¤erence operation (N�M)

What remains to be shown is that if a matching M has no M -augmenting paths,

it is a maximum matching. This can be proven by contradiction. Suppose that in a

particular graph there is a matching M for which there are no M -augmenting paths but

that (contrary to Berge�s Theorem) this matching is not a maximum matching. Then

there is a matching N (i.e., A � 1; B � 2; C � 4; dashed lines in Figure 4) with more

links than M (i.e., 1� B; 2� C; dotted lines in Figure 4), jN j > jM j. Now consider the

symmetric di¤erence N�M de�ned as the set of links that is either in N orM but not in

both (the sum of dashed and dotted lines in Figure 4, A� 1; B� 2; C � 4; 1�B; 2�C).
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Each worker or �rm can have at most 2 links in N�M because he is hired by at most one

�rm in M and at most one �rm in N . Moreover, the links of the paths alternate between

being in M and being in N , because by the de�nition of a matching, no node can have

two links in M or two links in N . Since by assumption N is strictly bigger than M there

must be at least one path in N�M with an odd number of links that starts with a �rm

(worker) in N and ends with a worker (�rm) in N (i.e., A � 1 � B � 2 � C � 4). But

then this is an M -augmenting path because the �rm and worker at the start and end of

the path are (by the symmetric di¤erence operation) not in M . This gives us the desired

contradiction, because we started by assuming that M has no M -augmenting paths.

Thus, in order to show that ex post competition leads to a maximum matching we

need to rule out that an M -augmenting path exists.

4.2.2 Optimality of ex post competition

In this section we show that for a given network, ex post competition with complete recall

generates a maximum matching.

Lemma 3 If a �rm remains unmatched after T rounds, then all workers along an M-

alternating path that starts with the unmatched �rm must earn a wage equal to the marginal

product, i.e., w = 1.

Proof: To see why all workers along the M -alternating path receive w = 1, �rst note

that if a �rm with candidates (�rm A) remains unmatched after T rounds, then all its

applicants must have accepted a wage w = 1 (since if at least one of its candidates would

earn w < 1, �rm A would have o¤ered that worker w < 1 and make positive pro�ts). But

then the other candidate of the next �rm along theM -alternating path (�rm B) that hired

�rm A�s candidate must also receive w = 1 otherwise �rm B would have hired that worker

at a w < 1. Repeating this argument implies that all �rms along the M -alternating path

pay a wage of 1. �

Lemma 3 implies that all workers inM -alternating paths that start with an unmatched

�rm have been o¤ered a wage equal to 1 in round T .
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Lemma 4 If a worker remains unmatched after T rounds, each �rm along anM-alternating

path that starts with the unmatched worker pays no more than w = �.

Proof: The �rm (�rm A) to which the unmatched worker (worker 1) applied will o¤er

the worker who it hired (worker 2) at most w = 0 otherwise it could have o¤ered the job

to the unmatched worker 1. But then the worker (worker 3) who is hired by the next

�rm along the M -alternating path (�rm B) must also earn w 2 f0;�g, else this �rm (B)

would have hired worker 2 by o¤ering w = �. Repeating this argument implies that all

�rms along the M -alternating path that starts with an unmatched worker pay a wage

w 2 f0;�g. �

Lemma 4 implies that all workers inM -alternating paths that start with an unmatched

worker have been o¤ered a wage w 2 f0;�g in round T . According to Berge�s Theorem

a maximum matching exists if and only if there is noM -alternating path that starts with

an unmatched worker and ends with an unmatched �rm, i.e., if and only if there is no

M -augmented path. Given the wage pattern in an M -alternating path that starts with

an unmatched worker (Lemma 4) or with an unmatched �rm (Lemma 3), we can write

down our main Proposition.

Proposition 2 Ex post competition leads to a maximum matching in any realized net-

work.

Proof: Suppose it would not lead to a maximum matching. In that case there would

exist an M -augmenting path with at least one unmatched worker and one unmatched

�rm. But then Lemmas 3 and 4 imply that all �rms along the M -augmenting path (that

is also anM -alternating path) o¤er both a wage w 2 f0;�g and a wage equal to 1, which

is a contradiction. �

Note that this result is very general. If �rms can only interview a subset of their

workers as in Woltho¤ (2011) or one as in Albrecht et al. (2006) and Galenianos and

Kircher (2009), the realized network will be di¤erent but Proposition 2 still holds. The

same is true, if workers have for example di¤erent search costs and consequently send

out di¤erent numbers of applications. Also, if �rms can create shortlists of at most n
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candidates, our result holds. This just requires an intermediate step where all �rms with

more than n candidates must eliminate (at random) the excessive number of links. After

this intermediate step, a new network arises for which the same results on maximum

matching hold as above.

The �exibility of ex post competition in wages is central to achieve e¢ ciency in network

clearing. If �rms commit ex ante to a posted wage and do not adjust their wages ex post,

a maximum matching will typically not arise. If both end nodes of theM -alternating path

are unmatched, i.e., if we have an M -augmenting path, there is no mechanism inherent

in the matching process associated with wage commitment that can induce the matched

�rm-worker pairs to rematch with the unmatched �rm and worker at the end of the M -

augmenting path. Thus, the ine¢ cient network clearing result of wage commitment from

the 3 by 3 example of section 3 holds in general. Therefore, Berge�s Theorem also implies

the following Corollary.

Corollary 1 If �rms commit not to increase their posted wages ex post, network clearing

is generally ine¢ cient and the maximum matching is not realized.

Corollary 1 shows that directed search models with �xed posted wages are not able to

solve the second coordination friction (�rms do not know which workers are considered

by other �rms). Thus, although directed search with �xed posted wages is constraint

e¢ cient in terms of �rm entry and number of applications that workers send, see Kircher

(2009), it generally does not generate the maximum matching that is possible given the

network that is formed between �rms and their applicants.7

5 Random network formation

In this section we use the graph theoretical results in Frieze and Melsted (2009, 2012) to

derive the expected number of matches M (v; u; a) that results from maximum matching

on the realized network and random search. We only consider large markets, i.e. v; u!1

with � = v=u.
7Note, that Kircher�s (2009) equilibrium is constrained e¢ cient because the planner takes the existence

of a subset of �rms that match �rst as given, whereas here this is not part of the planner�s constraint.
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5.1 The matching function

Point of departure is the Karp-Sipser algorithm that ensures a maximum matching in

large markets (see Karp-Sipser, 1981). The algorithm consists of two phases. Phase 1 is

based on the fact that if a vacancy has only one applicant, then there exists a maximum

matching that includes this vacancy and its applicant.8 Thus, in any round of Phase

1 the algorithm picks a vacancy with only one application and allocates the respective

worker-�rm pair to the matching. This part is repeated as long as there are vacancies with

one application. Note, that vacancies that initially belong to the class of vacancies with

more than one applicant can later in the process become part of the class of vacancies

with only one application. The number of matches generated in Phase 1 of the algorithm

equals the number of rounds. The round in which Phase 1 ends is denoted by t�. The

number of unemployed workers at the end of Phase 1 is thus given by u (t�) = u� t�.

The graph that remains has by construction of the Karp-Sipser algorithm a minimum

degree of two, i.e., each vacancy has at least two applications and each remaining worker

has still a applications.9 Frieze and Melsted (2009, 2012) show for a large market that the

expected maximum number of matches on the remaining graph equals the minimum of

the remaining vacancies and the remaining workers, i.e., min [v (t�) ; u (t�)] as v; u ! 1.

Thus, the expected maximum number of matches on the initial graph is given by,

M (v; u; a) = t� +min [v (t�) ; u (t�)] .

There are two cases to consider. In case 1 all unemployed workers are matched, either

because min [v (t�) ; u (t�)] = u (t�), which implies M (v; u; a) = t� + u (t�) = u, since

u (t�) = u � t�, or because Phase 1 of the Karp-Sipser algorithm continues until the last

worker is matched, i.e., t� = u. In case 2, the expected number of matches is equal to

M (v; u; a) = t� + v (t�), since min [v (t�) ; u (t�)] = v (t�). Following Frieze and Melsted

8Denote the maximum matching on a realized network (graph) G by M . If M 0 is the maximum

matching on Gn fu; vg, i.e., on the graph without the vacancy v (of degree one) and its applicant u, then
M includes the �rm-worker pair fu; vg.

9Each remaining worker has still all a applications, because in Phase 1 the algorithm removes only

vacancies with one applicant, i.e., only the linked worker is matched and removed but no other worker is

a¤ected.
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(2009, 2012) we will provide the conditions that determine which case prevails after we

presented the matching function.

5.1.1 Phase 1 of the Karp-Sipser algorithm

Phase 1 of the Karp-Sipser algorithm can be described by a sequence of Poisson distri-

butions. Since search is random, the initial distribution of applications yj at vacancy j

follows a Poisson distribution with mean z0 = au=v, i.e.,

P (yj = kjz0) =
(z0)

k e�z0

k!
:

The number of applications at the remaining vacancies with two or more applications

in round t still follows a Poisson distribution albeit with a di¤erent mean. This can be

understood as follows. First, note that in each round in Phase 1 exactly one worker is

matched and all other workers and applications remain una¤ected. This implies that

the applications of the remaining workers are still randomly distributed. Second, with

every matched worker, a � 1 applications are withdrawn randomly from the remaining

vacancies. It follows that the number of applications at the remaining vacancies with

two or more applications (type 2) follow a truncated Poisson distribution (see Frieze and

Melsted, 2012, p. 5), i.e.,

P (yj = kjzt; k � 2) =
zkt e

�zt

k! (1� e�zt � zte�zt)
:

The number of applications going to vacancies with only one applicant (type 1) does not

follow the same truncated Poisson distribution because the number of vacancies with one

applicant is reduced by one each round.

The parameter zt that governs the underlying Poisson at the type 2 vacancies is simply

the average number of applications going to vacancies with at least two applications.

Let v1t denote the number of vacancies with exactly one application, and vt denote the

number of vacancies with at least two applications. Since aut equals the total number of

applications in round t, we can write,

aut � v1t
vt

=
1X
k=2

k
zkt e

�zt

k! (1� e�zt � zte�zt)
;
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which implies,
aut � v1t
vt

=
zt (1� e�zt)

1� e�zt � zte�zt
: (1)

Note that for given ut, v1t , and vt the solution zt to the function de�ned in equation (1)

is unique.10

The development of the number of type-1 vacancies, v1t+1 and of the number vacancies

with two and more applications, vt+1 given the set 
t = fut; v1t ; vtg can �according to

the Karp-Sipser algorithm �be described by the following di¤erence equations,

E
�
v1t+1 � v1t j
t

�
= �1� (a� 1)

aut
v1t +

(a� 1)
aut

(zt)
2 e�zt

1� e�zt � zte�zt
vt; (2)

E [vt+1 � vtj
t] = �
(a� 1)
aut

(zt)
2 e�zt

1� e�zt � zte�zt
vt: (3)

The type-1 vacancies decrease by 1 in each round. Furthermore, as the remaining a � 1

applications of the matched worker are withdrawn an additional vacancy with exactly

one applicant is eliminated with probability (a� 1) =aut and a vacancy with exactly two

applicants becomes a type 1-vacancy with probability 2 (a� 1) =aut. Note, that the term

(zt)
2 e�zt= [2 (1� e�zt � zte�zt)] equals the probability that a type-2 vacancy has exactly

two applications. The vacancies with two applicants that switch to type-1 vacancies

reduce the number of type-2 vacancies.

Frieze and Melsted (2009, 2012) show that the di¤erence equations (2) and (3) can in

a large market be approximated by the following di¤erential equations,11

dv1 (t)

dt
= �1� (a� 1)

au (t)
v1 (t) +

(a� 1)
au (t)

z (t)2 e�z(t)

1� e�z(t) � z (t) e�z(t)v (t) ;

dv (t)

dt
= �(a� 1)

au (t)

z (t)2 e�z(t)

1� e�z(t) � z (t) e�z(t)v (t) ;

where u (t) = U � t and z (t) satis�es equation (1). The Boundary conditions are given

by u (0) = u, z (0) = au=v, v1 (0) = vz (0) e�z(0), and v (0) = v
�
1� e�z(0) � z (0) e�z(0)

�
.

The solution to this di¤erential equation system is given by the following Lemma.

10This can easily be seen by rearranging equation (1) as follows, �zt
t = (zt � 
t) (ezt � 1), where

t = (aut � v1t )=vt.
11Luby et al. (2001) and Dembo and Montanari (2008) also showed that the algorithm can be approx-

imated by two di¤erential equations.
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Lemma 5 The solution to the di¤erential equations is,

t = u

 
1�

�
z (t)

z (0)

� a
a�1
!
; (4)

u (t) = u

�
z (t)

z (0)

� a
a�1

; (5)

v (t) = v
�
1� e�z(t) � z (t) e�z(t)

�
; (6)

v1 (t) = vz (t)

 �
z (t)

z (0)

� 1
a�1

+ e�z(t) � 1
!
; (7)

where
au (t)� v1 (t)

v (t)
=

z (t)
�
1� e�z(t)

�
1� e�z(t) � z (t) e�z(t) : (8)

Proof: See Frieze and Melsted (2009) Lemma 9, which is summarized in Appendix A.4.

Phase 1 ends in round t� where all vacancies with only one application are withdrawn,

i.e. at v1 (t�) = 0. The corresponding z (t�) is given by the largest non-negative solution

to, �
z (t�)

z (0)

� 1
a�1

= 1� e�z(t�): (9)

The expected number of matches during Phase 1 is therefore given by,

t� = u
�
1�

�
1� e�z(t�)

�a�
: (10)

The intuition behind the expected number of matches during Phase 1 is the following.

Consider a particular worker, who sent a applications. With probability e�z(t
�) there were

no other applicants at the �rm where he sent a particular application. With probability�
1� e�z(t�)

�
there were other applicants. With probability

�
1� e�z(t�)

�a
there were ap-

plicants at all the �rms where he applied and with probability
�
1�

�
1� e�z(t�)

�a�
there

was at least one �rm where he had applied to that had no other applicants. The worker

was therefore the only applicant and matched for sure during Phase 1. Since there are u

workers, u
�
1�

�
1� e�z(t�)

�a�
is the expected number of workers that got matched during

Phase 1.

All unemployed workers are matched during Phase 1, if there exists a round t such

that u (t) = 0 and v1 (t) > 0. The threshold value z1 (0) that ensures that v1 (t) > 0 holds
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for all z (0) � z1 (0) is given by rearranging equation (7) at v1 (t) = 0, i.e.,

z1 (0) =
z1 (t)

(1� e�z1(t))(a�1)
; (11)

where z1 (t) is no longer given by equation (9), but is de�ned such that the right hand

side of equation (9) touches the left hand side of equation (9), i.e., by,

@

@z1 (t)

�
z1 (t)

z1 (0)

� 1
a�1

=
@
�
1� e�z1(t)

�
@z1 (t)

=) 1

a� 1

�
z1 (t)

z1 (0)

� 1
a�1 1

z1 (t)
= e�z1(t):

Put di¤erently, the right hand side and the left hand side do not cross, because v1 (t) = 0

is not reached at a �nite t but only in the limit as t!1.

Rearranging terms, using the de�nition of the threshold (11) implies that z1 (t) is the

positive solution to,
1� e�z1(t)
(a� 1) e�z1(t) = z1 (t) : (12)

Lemma 6 If au=v � z1 (0), then M (v; u; a) = u.

Proof: See Theorem 2 in Frieze and Melsted (2009).

For a = 2 this condition is never satis�ed, for a = 3 it is satis�ed if v % 3u and for

a = 5 if v % 2u. These examples show that the number of vacancies need to be relatively
high in order to ensure that all unemployed workers are matched. In section 6 we show

that in the case where vacancy creation is costly, the socially optimal number of vacancies

implies au=v > z1 (0).

5.1.2 The expected number of matches after Phase 2

If Phase 1 ends before all unemployed workers are matched, i.e., if au=v = z (0) > z1 (0),

then Frieze and Melsted (2009, 2012) show that the total number of matches equals

M (v; u; a) = t�+min [v (t�) ; u (t�)].12 The expected number of vacancies and unemployed

workers on the remaining graph are according to Lemma 5 given by,

u (t�) = u
�
1� e�z(t�)

�a
; and v (t�) = v

�
1� e�z(t�) � z (t�) e�z(t�)

�
:

12Theorem 1 in Frieze and Melsted (2012) is based on a � 3. The case of a = 2 is dealt with in Devroye
and Morin (2003), Pagh and Rodler (2004) and Kutzelnigg (2006).
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The total number of matches equals the number of unemployed workers, if u (t�) =

min [v (t�) ; u (t�)]. The threshold value z2 (0) that ensures u (t�) � v (t�) for all z (0) �

z2 (0) is de�ned by using equation (9),

z2 (0) =
z2 (t

�)

(1� e�z2(t�))(a�1)
; (13)

where z2 (t�) is determined by u (t�) = v (t�). Rearranging implies,

a =
z2 (t

�)
�
1� e�z2(t�)

�
1� e�z2(t�) � z2 (t�) e�z2(t�)

: (14)

Note, that the threshold value z2 (0) can be below or above the threshold value z1 (0).

This implies that the expected number of matches can be summarized by the following

Lemma.

Lemma 7 If au=v � max [z1 (0) ; z2 (0)], thenM (v; u; a) = u. If au=v > max [z1 (0) ; z2 (0)]

then

M (v; u; a) = u
�
1�

�
1� e�z(t�)

�a�
+ v

�
1� e�z(t�) � z (t�) e�z(t�)

�
; (15)

where
z (t�)

z (0)
=
�
1� e�z(t�)

�a�1
: (16)

Proof: This follows from Theorem 3 in Frieze and Melsted (2009) for a � 3 and Devroye

and Morin (2003), Pagh and Rodler (2004) and Kutzelnigg (2006) for a = 2. For a = 1

note that equation (16) implies z (t�) = z (0) = u=v. Inserting this into the matching func-

tion (15) implies M (v; u; 1) = v
�
1� e�z(0)

�
which is the well known urn-ball matching

function.

5.2 E¢ cient network formation

In order to show that random network formation is constrained e¢ cient, we allow the

social planner to choose the set of �rm subgroups C (where each subgroup c is de�ned by

a certain color), the measure of vacancies vc within each subgroup c and the probability

pc that a worker sends a particular application to subgroup c 2 C. We show that the
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matching is maximized if all vacancies have the same arrival rate which is obtained if all

workers apply to a particular vacancy with probability a=v.

First, note that
P

c2C vc = v and
P

c2C pc = 1. Within each subgroup c the applica-

tions at each vacancy are distributed according to the Poisson distributions,

P (yj = kjzc0) =
(zc0)

k e�z0;c

k!
;

with parameter z0;c = pcau=vc. The parameter zt;c that governs the underlying Poisson

distribution for vacancies with at least two applications must satisfy,

pcaut � v1t;c
vt;c

=
zt;c (1� e�zt;c)

1� e�zt;c � zt;ce�zt;c
: (17)

The development of the number of vacancies with exactly one application v1t+1;c and the

number vacancies with two and more applications vt+1;c given the set
t;c =
�
ut; v

1
t;c; vt;c; pc

	
in round t can according to the Karp-Sipser algorithm be described by the following dif-

ference equations 8c 2 C,

E
�
v1t+1;c � v1t;cj
t;c

�
= ��t;c �

pca� �t;c
pcaut

v1t;c +
pca� �t;c
pcaut

(zt;c)
2 e�zt;c

1� e�zt;c � zt;ce�zt;c
vt;c;

E [vt+1;c � vt;cj
t;c] = �
pca� �t;c
pcaut

(zt;c)
2 e�zt;c

1� e�zt;c � zt;ce�zt;c
vt;c;

where �t;c denotes the probability that the randomly picked vacancy with only one ap-

plicant in round t is a vacancy of subgroup c. i.e., �t;c = v1t;c=
P

c2C v
1
t;c. The remaining

a� 1 applications are going with probability (pca� �t;c) =pcaut to a vacancy of subgroup

c with exactly one applicant. The expected number of applications going to vacancies of

subgroup c are given by pca� �t;c = �t;c (pca� 1) + (1� �t;c) pca. I.e., if a vacancy with

one applicant of subgroup c is removed, then in expectation, (pca� 1) applications still

go to subgroup c and if a vacancy with one applicant of a di¤erent subgroup is removed,

which happens with probability 1 � �t;c, then in expectation, pca applications still go to

subgroup c. The remaining parts are identical to the random application case.

The solution to the respective di¤erential equation system is given by the following

Lemma.
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Lemma 8 The solution to the di¤erential equations is

t = u

0@1� Y
c2C

�
zc (t)

zc (0)

�pc! a
a�1
1A ; (18)

u (t) = u

 Y
c2C

�
zc (t)

zc (0)

�pc! a
a�1

; (19)

vc (t) = vc
�
1� e�zc(t) � zc (t) e�zc(t)

�
for all c 2 C; (20)

v1c (t) = vc

0@zc (0) Y
c2C

�
zc (t)

zc (0)

�pc! a
a�1

+ zc (t)
�
e�zc(t) � 1

�1A for all c 2 C; (21)

where
pcau (t)� v1c (t)

vc (t)
=

zc (t)
�
1� e�zc(t)

�
1� e�zc(t) � zc (t) e�zc(t)

: (22)

Proof: See Appendix A.5.

Note, that Phase 1 of the Karp-Sipser algorithm ends when in all subgroups c 2 C

the number of vacancies with one applicant is equal to zero, i.e., v1c (t
�) = 0 for all c 2 C.

This is guaranteed by the de�nition of �c (t) = v1c (t) =
P

c2C v
1
c (t).

The expected number of matches is either equal to the number of unemployed workers

or to the expected number of rounds in Phase 1 plus the expected number of matches

on the remaining graph. In the �rst case, having di¤erent subgroups with di¤erent ap-

plication probabilities generates the same expected number of matches as the case where

workers randomize over all vacancies. In the second case, the result that the expected

number of matches on the remaining graph is equal to min [u (t�) ; v (t�)] requires full ran-

domization over vacancies. In order to prove that full randomization over vacancies is

socially e¢ cient, we only need to show that t�+min
�
u (t�) ;

P
c2C vc (t

�)
�
is maximized if

all vacancies have an equal probability to receive an application, i.e. pc=vc = 1=v for all

subgroups c 2 C.

Proposition 3 Random search is socially e¢ cient, i.e., t� +min
�
u (t�) ;

P
c2C vc (t

�)
�
is

maximized if
pc
vc
=
1

v
for all c 2 C:
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Proof: See Appendix A.6.

Finally, we conjecture that in a directed search version of our model where �rms post

a minimum wage that can ex-post be bid up by counter o¤ers, network formation will

also be e¢ cient. From the competing mechanism literature, i.e. McAfee (1993), Peters

and Severinov (1997) and Albrecht et al. (2013), we know that when search is non rival

and the market is large that the surviving mechanisms are simple auctions (no entry fees

and a reserve prices equal to zero). In our setting, the posted wage would play the same

role as a reserve price. The intuition for why reserve prices go to zero is that only e¢ cient

mechanisms survive that leave no surplus on the table. Since buyers can vote with their

feet, sellers must o¤er the buyers market-utility and they can keep the rest. For similar

reasons we conjecture that in a directed-search equilibrium, lowering the posted wage to

zero is the most e¢ cient way to o¤er workers the required market utility. A formal proof

goes beyond the scope of this paper. If all �rms post a zero wage, workers will again

randomize over all vacancies and as we showed above this is desirable from a social point

of view.

6 Search intensity and entry

Although random search with ex post competition in wages is e¢ cient in terms of network

formation and network clearing, it need not be e¢ cient in other dimensions like vacancy

creation, worker participation or the number of applications that workers send out. In

this section we derive the conditions for optimal �rm and worker entry and for the optimal

number of applications per worker. The way we derive the marginal social contribution

of a worker, �rm or application is by considering the counterfactual cases, i.e. what

could have happened with the network structure in the absence of the worker, �rm or

application. Then, we compare the social contribution with the expected private returns.

6.1 E¢ cient search intensity

Since workers�payo¤s are independent of whether they are in a worker or even subgraph

(if �rms receive the full surplus in even subgraphs), they do not take into account that
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an additional application can turn a worker subgraph into an even subgraph and thereby

generate an additional match. There is also a rent seeking externality caused by the fact

that an additional application can increase the chances of turning an even subgraph into a

�rm subgraph. This does not add any social value because no additional match is created,

only surplus is redistributed from the �rm to the worker. The following Proposition shows

that social e¢ ciency requires that workers receive the full surplus in even subgraphs (i.e

they receive the worker-optimal point in the core).

Proposition 4 Workers choose the e¢ cient number of applications a, if they receive the

full surplus in even subgraphs.

Proof: Consider the social and private returns of an additional application. We

denote the social return by Si!j, where the superscript i denotes the subgraph where the

worker would end up if he would not have sent the additional application, i 2 ff; w; eg,

where f , w and e denote a �rm, worker and even subgraph, and j 2 ff; w; eg denotes

the subgraph of the �rm that received the application if the worker would not have sent

the additional application. The private return is similarly denoted by P i!jk , where the

subscript k 2 ff; wg denotes whether �rms (f) or workers (w) receive the full surplus in

even subgraphs. Table 1 summarizes all possible cases.

Table 1: Social and private returns of an additional application

application from i to j subgraph social return private return (change in wages)

i! j Si!j P i!jf P i!jw

f ! f 0 0 0

f ! w 0 0 0

f ! e 0 0 0

w ! f 1 (0; 1) 1

w ! w 0 0 0

w ! e 0 0 0

e! f 0 1 0

e! w 0 0 0

e! e 0 0 0
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Note �rst that an additional match is only generated if i = w and j = f . The reason

is simply that in all other cases either the worker or the �rm would be matched anyway.

The private returns P i!jk depend on whether �rms (k = f) or workers (k = w) receive

the full surplus in even subgraphs. If k = f a worker only bene�ts, if i 2 fw; eg, and

j = f . If i = w, and j = f , the additional application will make the worker either part of

an even or �rm subgraph. This can simply be proven by contradiction. Suppose that the

worker remains part of the worker subgraph. This requires that a worker in the worker

subgraph would have to be linked to a �rm in a �rm subgraph. But this is ruled out by

the Decomposition Theorem of Corominas-Bosch (2004), i.e., weak nodes are only linked

to strong nodes. The expected private return Pw!ff depends on the probability that the

worker ends up in a �rm subgraph, i.e., Pw!ff 2 (0; 1). If the worker would be part of an

even subgraph without the additional application, i.e., i = e, and sends the application to

a �rm in a �rm subgraph, i.e., j = f , the application will always ensure that the worker

becomes part of the �rm subgraph. The reason is that the Decomposition Theorem of

Corominas-Bosch (2004) rules out that a �rm in a �rm subgraph is linked to a worker

that is not part of a �rm subgraph (compare section 4.1.1).

If k = w; a worker only bene�ts, if i = w, and if j 2 ff; eg. If i = w and j = f , the

additional application will make the worker either part of an even or �rm subgraph as

shown above. In both cases the worker�s wage will increase from zero to one. If i = w

and j = e, the �rm in the even subgraph will become part of the worker subgraph, i.e.,

the worker will stay in the worker subgraph and earn a wage of zero. The reason is

that the Decomposition Theorem of Corominas-Bosch (2004) rules out that a �rm in an

even subgraph is linked to a worker in a worker subgraph (compare section 4.1.1). Thus,

private and social returns are always aligned if workers receive the full surplus in an even

subgraph. �
Proposition 4 suggests that our wage game where �rms o¤er wages is generally not

socially e¢ cient. There are two counteracting forces. Search intensity could also be too

low because workers are not always rewarded for generating an additional match by linking

a previous worker subgraph with a previous �rm subgraph (see w ! f if k = f in Table
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1). At the same time search intensity could be too high because workers apply to too

many �rms in order to prevent ending up in an even subgraph (see e ! f if k = f in

Table 1). The optimal outcome can be decentralized by reversing the role of workers and

�rms in our wage game.

6.2 Entry e¢ ciency

Vacancy creation or worker participation need not be e¢ cient due to the fact that �rms

do not internalize that when they enter they also destroy pro�ts of other �rms by making

it more likely that these �rms end up in �rm subgraphs. Similarly, workers do not take

into account that when they enter they make it more likely that other workers end up in

a worker subgraph.

First consider vacancy creation. Denote the cost of creating a vacancy by h > 0. In

the decentralized market vacancies are created until the expected return is equal to the

cost of vacancy creation, i.e.,

M (v; u; a)

v
(1� E [w]) = h; (23)

where E [w] equals the expected wage paid to workers. The socially optimal number of

vacancies in the market is then given by equating the marginal output (matches) generated

by an additional vacancy to the cost of creating this vacancy, i.e.,

M 0
v (v; u; a) = h: (24)

Note, that the derivative of the matching function is equal to zero, if M (v; u; a) = u and

equal to,

M 0
v (v; u; a) = v

�
z (t�) e�z(t

�) � au
v

�
1� e�z(t�)

�a�1
e�z(t

�)
� dz (t�)

dv
(25)

+
�
1� e�z(t�) � z (t�) e�z(t�)

�
;

=
�
1� e�z(t�) � z (t�) e�z(t�)

�
;

if the matching function is given by equation (15).13 The cost of creating a vacancy

already implies the following bounds on the optimal number of vacancies.
13Note that the last equality in equation (25) follows from equation (16).
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Lemma 9 If the cost of creating a vacancy is positive, i.e., k > 0, the socially optimal

number of vacancies satis�es,

v < min

�
au

z1 (0)
;
au

z2 (0)

�
:

Proof: Since v � min [au=z1 (0) ; au=z2 (0)] implies M (v; u; a) = u, it follows that

M 0
v (v; u; a) = 0, which violates the social optimality condition (24). �

Lemma 9 implies that it is never e¢ cient to increase the number of vacancies such

that all unemployed workers are matched. Instead it is e¢ cient to leave some workers un-

matched and save on vacancy creation costs. Thus, the economy is only socially e¢ cient,

if the matching function is given by equation (15).

Combining equations (23) to (25) and using the socially e¢ cient matching function

given by equation (15) implies that free entry of vacancies is socially optimal if,

1� E [w] =
v
�
1� e�z(t�) � z (t�) e�z(t�)

�
u
�
1� (1� e�z(t�))a

�
+ v (1� e�z(t�) � z (t�) e�z(t�))

: (26)

Next, consider the participation condition of workers. Suppose that the economy is

populated by a mass, n, of workers who di¤er in their participation cost x. Rank workers

according to their cost of entry and let the cumulative distribution function H (x) be

continuous. The number of workers participating in the market, i.e., the number of

unemployed workers, is given by u = nH
�
xP
�
. The entry cost of the marginal worker

xP , who is indi¤erent between participating in the market or staying out, is given by,

M (v; u; a)

u
E [w] = xP : (27)

The social planner, however, trades o¤ the marginal output created by an additional

worker with his/her cost of entry, i.e.,

M 0
u (v; u; a) = x

S: (28)

The derivative of the (socially e¢ cient) matching function, given in equation (15), is equal
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to,

M 0
u (v; u; a) =

�
1�

�
1� e�z(t�)

�a�
(29)

+
�
vz (t�) e�z(t

�) � ua
�
1� e�z(t�)

�a�1
e�z(t

�)
� dz (t�)

du
;

=
�
1�

�
1� e�z(t�)

�a�
:

Combining equations (27) to (29) implies that the participation condition is e¢ cient, if

xP = xS, or

E [w] =
u
�
1�

�
1� e�z(t�)

�a�
u
�
1� (1� e�z(t�))a

�
+ v (1� e�z(t�) � z (t�) e�z(t�))

: (30)

Thus, the e¢ ciency conditions for vacancy and worker entry are identical.

Note, that equation (30) simpli�es for a = 1, i.e.,

E [wja = 1] = z (0) e�z(0)

1� e�z(0) ; (31)

since equation (9) implies z (t�) = z (0) = u=v for a = 1. This is the wage in Burdett,

Shi and Wright (2001). Thus, worker participation and �rm entry is e¢ cient, if the

expected wage E [wja = 1] is equal to the ratio of vacancies with exactly one application,

i.e., vz (0) e�z(0), to all matched vacancies, i.e., v
�
1� e�z(0)

�
. Since all vacancies with one

application are by de�nition in even subgraphs and since all applications with at least two

applications are by de�nition in worker subgraphs, it follows that vacancy creation and

worker participation are only e¢ cient if workers receive the full surplus in even subgraphs.

This result is equivalent to the result by Kim and Kircher (2012), who show in a model

with a = 1 that entry is e¢ cient if workers are awarded the worker-maximizing point

in the core.14 The following Proposition shows that this e¢ ciency result holds for any

number of applications.

Proposition 5 (i) Worker participation and vacancy creation are socially optimal if

workers receive the full surplus in even subgraphs.

(ii) Worker participation is ine¢ ciently low and vacancy creation ine¢ ciently high if �rms

receive the full surplus in even subgraphs.
14Benoit, Kennes, and King (2006) show that it is equivalent to the Mortensen (1982) rule, if workers

receive the full surplus in case they are the only candidate.
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Proof: Consider �rst the social and private return of a new worker. We denote the

social return by Sy, where the superscript y denotes the set of subgraphs in which the �rms

that received one of the a applications of the new worker would have ended up if the new

worker did not enter. In other words, the new worker applies to a �rms and those �rms

would in the absence of the new worker belong to di¤erent (possibly the same) subgraphs.

The set of possible subgraphs is given by y 2 ff; w; e; ff; wg ; ff; eg ; fw; eg ; ff; w; egg.

The private return of the worker is denoted by P yk , where the subscript k 2 ff; wg denotes

whether �rms (f) or workers (w) receive the full surplus in even subgraphs. Table 2

summarizes all possible cases.

Table 2: Social and private returns of a new worker

applications of the entrant social return private return (wages)

are send to y subgraphs Sy P yf P yw

y = f 1 (0; 1) 1

y = w 0 0 0

y = e 0 0 0

y = ff; wg 1 (0; 1) 1

y = ff; eg 1 (0; 1) 1

y = fw; eg 0 0 0

y = ff; w; eg 1 (0; 1) 1

Note �rst that an additional match is only generated, if y 2 ff; ff; wg ; ff; eg ; ff; w; egg.

The reason is simply that the contacted �rms that in the absence of the worker would

be part of a worker or even subgraph, would have matched also if the worker would not

enter.

The private returns of a new worker, P yk ; depend on whether �rms (k = f) or workers

(k = w) receive the full surplus in even subgraphs. If k = f the new entrant only bene�ts if

she becomes part of a �rm subgraph. This is only possible, if y 2 ff; ff; wg ; ff; eg ; ff; w; egg

and if the contacted �rm remains in the �rm subgraph. This probability need not be one,

since there exists a positive probability that the new entrant turns (part of) the previous

�rm subgraph into an even subgraph (e.g. if the �rm subgraph has exactly one excess
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vacancy). This also implies that the private return P yk is only equal to one if an additional

match is created and workers receive the full surplus in even subgraphs, i.e., k = w.

If the entrant contacts only �rms in y = w subgraphs, the worker will become part of

a worker subgraph and receives a wage equal to zero. If the entrant contacts only �rms

in y = e subgraphs, the worker will turn at least part of the even subgraph into a worker

subgraph. The private and social returns of the new worker in both cases are equal to

zero. The same happens if the entrant contacts only �rms in y = fw; eg subgraphs. To

sum up, private and social returns are only aligned, if workers receive the full surplus in

even subgraphs. The social returns of the entering worker exceed the private returns if

�rms receive the full surplus in even subgraphs.

Consider now the social and private return of a new vacancy. Denote the social return

by Sx, where the superscript x denotes the set of possible subgraphs where workers that

redirected their applications to the new vacancy would have ended up in case the vacancy

did not enter. The set of subgraphs is given by x 2 ff; w; e; ff; wg ; ff; eg ; fw; eg ; ff; w; egg.

The private return is similarly denoted by P xk .

Table 3 summarizes all possible cases.

Table 3: Social and private returns of a new vacancy

new vacancy receives applications social return private return (wages)

from workers in x subgraphs Sx P xf P xw

x = f 0 0 0

x = w (0; 1) 1 (0; 1)

x = e 0 0 0

x = ff; wg (0; 1) 1 (0; 1)

x = ff; eg 0 0 0

x = fw; eg (0; 1) 1 (0; 1)

x = ff; w; eg (0; 1) 1 (0; 1)

Note �rst, that an additional match is only possible, if the new vacancy receives at

least one application from a worker who in the absence of the new vacancy would have

ended up in a worker subgraph, i.e., x 2 fw; ff; wg ; fw; eg ; ff; w; egg. The reason is

36



simply that in all other cases (i.e., if workers were only part of a �rm or even subgraph

in the absence of the new vacancy), the workers that redirect one of their applications

would have matched anyway. The social return Sx with x 2 fw; ff; wg ; fw; eg ; ff; w; egg

is smaller than one because of a business-stealing e¤ect, i.e., the new vacancy attracts

applications that would have otherwise gone to other �rms. Some of those other �rms do

not match now but would have matched in the absence of the new �rm. If this occurs,

the social return equals zero.

The private returns P xk again depend on whether �rms (k = f) or workers (k = w)

receive the full surplus in even subgraphs. If k = w the new vacancy only bene�ts if it

becomes part of a worker subgraph. This happens, if x 2 fw; ff; wg ; fw; eg ; ff; w; egg

and if at least one of the respective workers remains in a worker subgraph. The probability

that the worker remains in a worker subgraph need not be one, since there exists a

positive probability that the new vacancy turns (part of) the worker subgraph into an

even subgraph (e.g. if the worker subgraph has exactly one excess worker). This also

implies that the private return of the new vacancy, P xk ; is only equal to one if x 2

fw; ff; wg ; fw; eg ; ff; w; egg and if �rms receive the full surplus in even subgraphs, i.e.,

k = f .

If the new vacancy receives applications only from workers in x = f subgraphs the

new vacancy will become part of the �rm subgraph and will have to pay a wage equal to

one. If the new vacancy receives applications only from x = e subgraphs, the new vacancy

will turn at least part of the even subgraph into a �rm subgraph. Both the private and

social return of the entrant equals zero in this case. The same happens if the new vacancy

receives applications from x = ff; eg subgraphs.

To sum up, the content of Table 3 implies that if �rms receive the full surplus in even

subgraphs, i.e., k = f , private returns exceed social returns, and private and social returns

are aligned if k = w and
P

x !
xSx =

P
x !

xP xw, where !
xdenotes the probability that a

new vacancy receives applications from workers that in the absence of this vacancy would

have ended up in q.

The fact that the e¢ ciency conditions for vacancy creation (26) and worker participa-
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tion (30) are identical implies that vacancy creation is e¢ cient, if worker participation is

e¢ cient. From the summary of Table 2 we know that worker participation is e¢ cient, if

workers receive the full surplus in even subgraphs, i.e.
P

x !
xSx =

P
x !

xP xw if k = w. �

Surprisingly, the negative business stealing externality and the positive externality

that a new vacancy creates if it turns a worker graph into an even graph exactly o¤set

each other if workers receive the full surplus in even subgraphs. This ensures that entry

is e¢ cient.

The proof of Proposition 5 implies as a Corollary that the expected wage in the

decentralized economy where workers receive the full surplus in even subgraphs is equal

to the expected wage that requires entry e¢ ciency.

Corollary 2 If workers receive the full surplus in even subgraphs, the expected wage in

the decentralized economy is equal to,

E [w] =
u
�
1�

�
1� e�z(t�)

�a�
u
�
1� (1� e�z(t�))a

�
+ v (1� e�z(t�) � z (t�) e�z(t�))

;

where z (t�) is given by equation (16).

7 Final remarks

When workers send applications to vacancies they create a bipartite network. Coordina-

tion frictions arise if workers and �rms only observe their own links. We show that those

frictions and the wage mechanism are in general not independent. Only wage mechanisms

that allow for ex post competition generate the maximum matching on a realized network.

We show that random search with ex post competition in wages leads to the maximum

number of matches. If �rms make o¤ers and counter o¤ers to the workers, the resulting

equilibrium is not socially e¢ cient in terms of entry and search intensity but it still is

e¢ cient in terms of network formation and clearing. If workers receive the worker-optimal

point in the core (this requires them to be able to make o¤ers to the �rm), the resulting

equilibrium is socially e¢ cient in terms of vacancy creation, worker participation and

search intensity.
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8 Appendix

A Proofs

A.1 Proof of Lemma 1

Consider part (i). We prove the engagement result of (i) by contradiction. Denote the
highest number of applicants that a �rm in a worker subgraph has by Nw � u. Note, that
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all applicants of �rms in a worker subgraph are in the same subgraph, since workers in a
worker subgraph cannot be linked to a �rm in an even or �rm subgraph. Suppose �rm
j is part of a worker subgraph and it is not engaged in t = Nw. In t = Nw, according
to strategy C2a, �rm j must have o¤ered the job to all its applicants and must have
been rejected by all its applicants. Thus, all workers that are linked to �rm j must be
engaged with some other �rm in the same worker subgraph, since workers always keep
their best o¤er wh according to strategy A2 and since workers in a worker subgraph are
only linked to �rms in the same worker subgraph. This leads to the desired contradiction,
since the number of engaged workers cannot exceed the number of engaged �rms in a
worker subgraph.
Now consider the wage result of (i). In round t = 1 all �rms start with the lowest

possible o¤er, i.e., w = 0. According to the engagement result of part (i) all �rms in a
worker subgraph are engaged in round t = u < T . The counter o¤er strategy B2 rules
out that an engaged �rm will o¤er a wage w � � if the wage o¤ered by the competing
�rm is no higher than w = 0. Thus, if we can rule out that a rejected �rm in a worker
subgraph o¤ers w � � at any t < T , we have proven that the engaged workers of �rms in
worker subgraphs hold an o¤er no higher than w = 0 in any round t < T . The strategy
C2b implies that a rejected �rm only o¤ers w � � in a round t < T if k = 0. Since there
are more workers than �rms in a worker subgraph and since all workers are collectively
linked to all �rms in the subgraph, there is always at least one applicant without an o¤er,
i.e., k > 0. Thus, the wage o¤ers in a worker subgraph implied by the above strategies
are no higher than w = 0 in any round t < T .
Consider now part (ii). We use a contradiction argument to rule out that �rms in

even subgraphs o¤er a wage w = 2�. According to strategy C2b, a rejected �rm only
o¤ers w = 2� if all its applicants are engaged and hold an o¤er w = �. If all applicants
of a rejected �rm in an even subgraph are engaged, it must be the case that at least
one of the applicants is engaged with a �rm outside the even subgraph, because a �rm
in an even subgraph cannot be rejected, if all workers in even subgraphs are engaged
with �rms in even subgraphs. The Decomposition Theorem of Corominas-Bosch (2004)
implies that workers in an even subgraph are either linked to �rms in an even or to �rms
in a worker subgraphs. Thus, the applicant that is engaged with a �rm outside the even
subgraph must be engaged with a �rm in a worker subgraph. This leads to the desired
contradiction, since part (i) of the Lemma implies that the wage o¤ers made by �rms in
worker subgraphs cannot be higher than w = 0. Thus, the rejected �rm will according to
strategy C2b never o¤er a wage w = 2� or higher. This implies that wages paid in even
subgraphs are no higher than w = �. According to strategy A2, since workers keep their
best o¤ers, it follows that any �rm that o¤ers w = � must be engaged. Since all �rms
start in round t = 1 with the lowest possible o¤er, i.e., w = 0, and since there are at most
u workers linked to �rms in even subgraphs, it takes at most t = 2u rounds of rejections
(where the wage o¤ers w = 0 are rejected) until a �rm o¤ers for the �rst time the wage
w = � and becomes engaged.
Now consider the engagement result of (iii). Denote the number of workers in a �rm

subgraph by uf � u. Note, that all vf �rms in the respective �rm subgraph are only
linked to their respective uf applicants in the same �rm subgraph. Thus, since there are
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more �rms than workers in a �rm subgraph, i.e., vf > uf , at least one �rm must always
be rejected in any round. Strategy C2a implies that the rejected �rms �rst choose one of
the k applicants without an o¤er (if present) and o¤er her a wage w = 0. Thus, it takes
at most t = uf rounds until all workers in a �rm subgraph are engaged.
Now consider the wage result of (iii). The engagement result of part (iii) implies that

all workers are engaged in round t = uf , i.e., k = 0, and at least one �rm is rejected. The
rejected �rm will according to strategy C2b choose one of the applicants with the lowest
best o¤er, i.e., wh = minWN , and o¤er this applicant one cent more, i.e., w = wh +� if
wh < 1. If the o¤er w = wh + � does not attract a worker, i.e., the rejected �rm does
not become engaged (which can happen, if the already engaged �rm matches the o¤er
according to strategy B2), the �rm can o¤er w = wh +� to other (potential) applicants
that hold an o¤er wh. After at most uf rounds all applicants will hold an o¤er wh + �
and the �rm will either be engaged or still remain rejected. Since there is at least one
rejected �rm each round, wages will always increase by � after at most uf rounds, i.e.,
after all workers experienced wage increases by �. By induction �rms will increase their
o¤ers according to strategy C2b up to w = 1. Thus, there exists a round t � u=�, in
which all workers in a �rm subgraph hold an o¤er wh = 1, which they accept. �

A.2 Proof of Lemma 2

The fact that wages di¤er across subgraphs enables �rms to update their belief on whether
they are in a �rm subgraph or not. If �rms have no applicant, i.e., N = 0, they are part
of a �rm subgraph by de�nition, i.e., bj;0 (0; :) = 1. Firms with at least one applicant, i.e.,
N > 0, start with a belief bj;0

�
N;WN

�
2 (0; 1) that is equal to the ex-ante probability to

be in a �rm subgraph given N .
Consider part (i): Lemma 1 implies that only �rms in �rm and even subgraphs ob-

serve wage o¤ers wh � � in rounds t � 2u. Furthermore, at least one �rm in each
�rm subgraph that observes wh � � is rejected. These rejected �rms form the belief
bj;t
�
N;
�
WN�m�n; �m; 1n

	�
= 1 in any round t � 2u, because parts (i) and (ii) of

Lemma 1 imply that they would not have been rejected if they were in an worker- or even
subgraph.
Consider part (ii): In round t = u=� all workers in �rm subgraphs will have accepted

a wage o¤er w = 1. Thus, at t = u=� all �rms that are not in �rm subgraphs, i.e., observe

WN =
n
Øk; 0N�k�m;�m

o
, can infer that they are either in a worker- or even subgraph,

i.e., bj;T
�
N;
n
Øk; 0N�k�m;�m

o�
= 0. �

For other values of WNf�g beliefs can be between 0 and 1. However, actions only
depend on beliefs in the �nal round so we do not care about them.

A.3 Proof of Proposition 1

Consider �rst the strategies in round T .
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Clearly, the workers� strategy A1 to accept the best o¤er in t = T maximizes the
workers�payo¤.
Also, the engaged �rms�strategy B1 of matching the outside o¤er in round t = T is

pro�t maximizing, since engaged �rms that do not match outside o¤ers would remain idle
and earn a pro�t of zero.
Let us now turn to the strategies C1a and C1b of rejected �rms. If there are some

applicants without an o¤er, i.e., k > 0, and if the belief that there are other competing
�rms is equal to zero, i.e., bj;T

�
N;
n
Øk; 0N�k�m;�m

o�
= 0 at t = T , then the action

implied by strategy C1a, i.e., the �rm should o¤er a wage w = 0 to one of the applicants
without an o¤er, is pro�t maximizing. This follows from bj;T

�
N;
n
Øk; 0N�k�m;�m

o�
=

0, i.e., from the fact that the rejected �rm believes that all other �rms in the same
worker or even subgraph are according to Lemma 1 engaged with other workers and will
therefore not make an o¤er to one of the k applicants that does not hold an o¤er. If the
�rm observes a set of wage o¤ers that di¤ers from the ones stated in Lemma 1 and has a
belief bj;t

�
N;WN

�
2 (0; 1) it is optimal to follow the action implied by the second part

of strategy C1a as characterized in Gautier and Moraga-Gonzalez (2004). Finally, if a
rejected �rm observes that all its applicants hold an o¤er in round T , the action implied
by strategy C1b, i.e., o¤ering w = 1 to one of the candidates, is equally pro�table as any
other action, since the engaged �rms will match outside o¤ers (as implied by strategy
B1). Thus, the rejected �rm cannot do better by deviating from strategy C1b.
Consider now the strategies in any round t < T .
The workers�strategy, A2 to keep the best o¤er wh is a dominant strategy, because

the rejected �rms�strategies C2a and C2b imply that keeping a lower o¤er can lead to
a lower payo¤ for the worker without increasing the chances of receiving better o¤ers in
the future.
Consider now strategy B2 for engaged �rms. Obviously, a �rm can only be engaged,

if it o¤ered a wage wh � 0 in the past. Due to the tie-breaking rule, which implies
that workers prefer their engaged �rm over an outside �rm in case both �rms o¤er the
same wage, matching an outside o¤er wh = 0 is optimal since it ensures that the �rm
stays engaged at zero cost. Now consider the di¤erent cases if the outside o¤er satis�es
wh � �. Denote the highest wage o¤er that the engaged worker (A) holds by wh and the
highest o¤er that another applicant holds by ewh. If all other applicants hold the same
or a higher o¤er, i.e., ewh � wh, it is a dominant strategy to match the outside o¤er of
worker A, since it is the least costly way for the �rm to stay engaged. It is also optimal
to match the outside o¤er of worker A if one of the other applicants (B) holds an o¤erewh = wh��, because otherwise the engaged �rm must o¤er applicant B ewh+� = wh to
have the chance to become engaged. Note, that in the later case the �rm cannot be sure
that it will become engaged (since other �rms might also compete for the same worker).
If one of the other applicants (B) holds no o¤er, matching the outside o¤er of worker A
wh � � cannot be optimal. To see this consider the di¤erent subgraphs a �rm can be
in. If the �rm is in a worker subgraph, o¤ering the job to applicant B generates pro�t
1 while matching the outside o¤er of worker A generates 1 � � or less. If the �rm is
part of an even subgraph, o¤ering the job to applicant B leads to the expected pro�t
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 + (1� 
) (1��), where 
 > 0 equals the probability that the �rm will pay the wage
w = 0, while matching the outside o¤er of worker A generates 1 � � for sure. If the
�rm is part of a �rm subgraph, pro�ts are driven down to zero and the �rm may as well
not match the outside o¤er of applicant A and o¤er the job to applicant B. Thus, not
matching an outside o¤er wh � �, if one of the other applicants holds no o¤er is weakly
dominating. The same is true, if applicant B holds an o¤er ewh < wh ��, where ewh � 0.
To see this, note �rst that ewh � 0 and ewh < wh�� imply wh > �. According to strategy
C2b a �rm (1) o¤ers wh > � only ifWN =

n
WN�k�l�m�n;Øk; 0l;�m; 1n

o
with k = l = 0

and m > 0. Lemmas 1 and 2 then imply that �rm 1 that o¤ered wh to worker worker
A is part of a �rm subgraph. Since a �rm in a �rm subgraph will eventually pay a wage
w = 1, it is optimal for the engaged �rm not to compete with �rm 1 in the �rm subgraph,
i.e., not to match wh, but to o¤er the job to applicant B at the wage ewh +� < wh, since
applicant B could be part of an even subgraph.
The strategies C2a and C2b of rejected �rms to pick (one of) the applicant(s) with the

lowest o¤er and to o¤er this applicant the job at the lowest possible wage are also optimal.
Any deviation would lead to lower pro�ts. To see this consider deviations depending on
the set of wage o¤ers WN and the type of subgraph the �rm is in. Suppose at least one
applicant holds no o¤er, i.e., WN =

n
WN�k�l�m�q;Øk; 0l;�m; 1q

o
with k > 0, and �rm

(1) chooses in contrast to strategy C2a to o¤er the job to some engaged worker (A) that
holds an o¤er wh � 0. The pro�t of this deviating strategy will be 1 � � in case the
worker is part of a worker subgraph, since �rm 1 has to o¤er a wage w = � in order
to become engaged. However, playing strategy C2a and o¤ering the job to an applicant
without an o¤er ensures according to Lemma 1 a pro�t of 1. A similar argument implies
that a deviation leads to an expected pro�t of 
 + (1� 
) (1��) in case �rm 1 is part
of an even subgraph. If �rm 1 is part of a �rm subgraph deviating is equally pro�table
as playing strategy C2a. Thus, for a �rm with belief bj;t

�
N;WN

�
2 (0; 1) action C2a

maximizes expected pro�ts. Next, suppose that all applicants hold an o¤er and at least
one applicant holds an o¤er wh = 0, i.e.,WN =

n
WN�k�l�m�q;Øk; 0l;�m; 1q

o
with k = 0

and l > 0, and the deviating �rm chooses in contrast to strategy C2b to o¤er the job
to some engaged worker (A) that holds an o¤er wh � �. Note that Lemma 1 implies
that wage o¤ers wh = � are only observed, if the worker is part of an even or �rm
subgraph. The pro�t of this deviation will be 1�2� in case the worker is part of an even
subgraph, since the deviating �rm has to o¤er a wage w = 2� in order to become engaged.
Following strategy C2b and o¤ering the job to an applicant with an o¤er wh = 0 ensures
a pro�t 1 � � since wages in an even subgraph are no higher than � (see Lemma 1).
If the deviating �rm is part of a �rm subgraph deviating is equally pro�table as playing
strategy C2b, since pro�ts are equal to zero anyway. Thus, without knowing the subgraph
deviating is never pro�table. Finally, suppose all applicants hold an o¤er wh � �, i.e.,
WN =

n
WN�k�l�m�q;Øk; 0l;�m; 1q

o
with k = l = 0 and m � 0, and the deviating �rm

chooses in contrast to strategy C2b to o¤er the job to some engaged worker that holds
an o¤er wh > wh = minWN . Note that Lemmas 1 and 2 imply that wage o¤ers wh � �
are only observed by rejected �rms, if they are part of a �rm subgraph. Thus, o¤ering
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the wage w = wh + � (as implied by strategy C2b) or any other wage w 2
�
wh +�; 1

�
generates the same pro�t, as the wage in a �rm subgraph will eventually increase up to
w = 1. To sum up, deviating from strategy C2b without knowing the subgraph yields a
strictly lower expected payo¤. �

A.4 Proof of Lemma 5

Di¤erentiating the RHS of equation (8) �dropping the time index for simplicity �implies,

d

dt

�
au� v1
v

�
=
1

v

��
�a� dv

1

dt

�
� dv
dt

�
au� v1
v

��
;

=
1

v

�
�a+ 1 + a� 1

au
v1 � a� 1

au

z2e�z

1� e�z � ze�z v
�

+
a� 1
au

z2e�z

1� e�z � ze�z
z (1� e�z)

1� e�z � ze�z ;

= �
�
a� 1
au

z (1� e�z)
1� e�z � ze�z +

a� 1
au

z2e�z

1� e�z � ze�z

�
+
a� 1
au

z2e�z

1� e�z � ze�z
z (1� e�z)

1� e�z � ze�z ;

= �a� 1
au

z (1� e�z + ze�z) (1� e�z � ze�z)� z3e�z (1� e�z)
(1� e�z � ze�z)2

;

= �a� 1
au

z
(1� e�z)2 � z2e�z

(1� e�z � ze�z)2
:

Di¤erentiating the LHS of equation (8) implies

d

dt

�
z (1� e�z)

1� e�z � ze�z

�
=
(1� e�z + ze�z) (1� e�z � ze�z)� z2e�z (1� e�z)

(1� e�z � ze�z)2
dz

dt
;

=
(1� e�z)2 � z2e�z

(1� e�z � ze�z)2
dz

dt
:

Equating RHS and LHS implies,

1

z

dz

dt
= �a� 1

au

Integrating implies
za

ua�1
= C;

Using the starting conditions z (0) and u (0) = u and the function u (t) = u � t implies
equations (4) and (5).
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Going back to dv=dt = (dv=dz)(dz=dt), implies,

�a� 1
au

z2e�z

(1� e�z � ze�z)2
v = �a� 1

au
z
dv

dz
;

or
dv

dz
=

ze�z

(1� e�z � ze�z)2
v:

Integrating gives equation (6) given that v (0) = v
�
1� e�z(0) � z (0) e�z(0)

�
.

We now solve for v1 by substituting v and u into equation (8). Rearranging then
implies equation (7). �

A.5 Proof of Lemma 8

The respective di¤erential equations characterize the evolution of vacancies with one and
with at least two applications in subgroup c 2 C, i.e.,

dv1c (t)

dt
= ��c (t)�

pca� �c (t)
pcau (t)

v1c (t) +
pca� �c (t)
pcau (t)

zc (t)
2 e�zc(t)

1� e�zc(t) � zc (t) e�zc(t)
vc (t) ;

dvc (t)

dt
= �pca� �c (t)

pcau (t)

zc (t)
2 e�zc(t)

1� e�zc(t) � zc (t) e�zc(t)
vc (t) :

and u (t) = U � t and where zc (t) satisfy,

pcau (t)� v1c (t)
vc (t)

=
zc (t) (1� e�zc)

1� e�zc(t) � zc (t) e�zc(t)
: (32)

The Boundary conditions are given by u (0) = u, v1c (0) = vczc (0) e
�zc(0), vc (0) =

vc
�
1� e�zc(0) � zc (0) e�zc(0)

�
, and zc (0) = pcaz=vc with

P
c2C vc = v and

P
c2C pc = 1.

Di¤erentiating the RHS of equation (32) implies (following the steps in the Proof of
Lemma 5),

d

dt

�
pcau (t)� v1c (t)

vc (t)

�
= �pca� �c (t)

pcau (t)
zc (t)

�
1� e�zc(t)

�2 � zc (t)2 e�zc(t)
(1� e�zc(t) � zc (t) e�zc(t))2

Di¤erentiating the LHS of equation (32) implies

d

dt

�
zc (t) (1� e�zc)

1� e�zc(t) � zc (t) e�zc(t)

�
=

�
1� e�zc(t)

�2 � zc (t)2 e�zc(t)
(1� e�zc(t) � zc (t) e�zc(t))2

dzc (t)

dt
:

Equating RHS and LHS gives,

pc
zc (t)

dzc (t)

dt
= �pca� �c (t)

au (t)
:
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Taking the sum over all subgroups c 2 C yields,X
c2C

pc
zc (t)

dzc (t)

dt
= � a� 1

au (t)
;

since
P

c2C �c (t) =
P

c2C pc = 1.
Integrating gives15 Q

c2C zc (t)
apc

u (t)a�1
= C;

Using the starting conditions zc (0) and u (0) = u and the function u (t) = u � t implies
equations (18) and (19).
Going back to dvc (t) =dt = (dvc (t) =dzc (t))(dzc (t) =dt), implies,

�pca� �c (t)
pcau (t)

zc (t)
2 e�zc(t)

1� e�zc(t) � zc (t) e�zc(t)
vc (t) = �

pca� �c (t)
au (t)

zc (t)

pc

dvc (t)

dzc (t)

or
dvc (t)

dzc (t)
=

zc (t) e
�zc(t)

1� e�zc(t) � zc (t) e�zc(t)
vc (t) :

Integrating gives equation (20) given that vc (0) = vc
�
1� e�zc(0) � zc (0) e�zc(0)

�
.

We can now solve for v1c (t) by substituting vc (t) and u (t) into equation (32). Rear-
ranging then implies equation (21). �

A.6 Proof of Proposition 3

We start by showing that random search is optimal in case of two subgroup of va-
cancies r and b. The general result then follows by induction. Denote � (G) = t� +

min
h
u (t�) ;

P
c2fr;bg vc (t

�)
i
. Using the results of Lemma 8 we get

� (G) = u� u
��

zr (t
�)

zr (0)

�pr �zb (t�)
zb (0)

�pb� a
a�1

(33)

+
X
c2fr;bg

vc
�
1� e�zc(t�) � zc (t�) e�zc(t

�)
�
;

where vr = v � vb and pr = 1� pb.
15The solution can be veri�ed using the Implicit Function Theorem (on 0 =

Q
c2C zc (t)

pc �Cu (t)a�1),

dzc (t)

dt
= �

P
c=2C

�
apc
zc(t)

Q
c2C zc (t)

apc
�
dzc(t)
dt � C (a� 1)u (t)a�2 du(t)dt

apc
zc(t)

Q
c2C zc (t)

apc :
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The FOC�s with respect to vb is given by,

@� (G)

@vb
= 0 (34)

= �u a

a� 1	
�
pb
vb
� pr
vr

�
� u a

a� 1	
�

pb
zb (t�)

�
dzb
dvb

� dzb
dvr

�
� pr
zr (t�)

�
dzr
dvr

� dzr
dvb

��
+
�
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�

+ vbzb (t
�) e�zb(t

�)

�
dzb
dvb

� dzb
dvr

�
� vrzr (t�) e�zr(t

�)

�
dzr
dvr

� dzr
dvb

�
= �u a

a� 1	
�
pb
vb
� pr
vr

�
+ zb (0) vb

�
zb (t

�) e�zb(t
�)

zb (0)
� 1

a� 1
1� e�zb(t�)
zb (0)

��
dzb
dvb

� dzb
dvr

�
� zr (0) vr

�
zr (t

�) e�zr(t
�)

zr (0)
� 1

a� 1
1� e�zr(t�)
zr (0)

��
dzr
dvr

� dzr
dvb

�
+
�
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�
;

with

	 =

��
zr (t

�)

zr (0)

�pr �zb (t�)
zb (0)

�pb� a
a�1

and,

dzc
dvk

=
dzc (t

�)

dvk
with c; k 2 fr; bg :

According to equation (21) the following two functions determine zr (t�) and zb (t�)
simultaneously, i.e.,

R =

��
zr (t

�)

zr (0)

�pr �zb (t�)
zb (0)

�pb� a
a�1

�
zr (t

�)
�
1� e�zr(t�)

�
zr (0)

= 0; (35)

B =

��
zr (t

�)

zr (0)

�pr �zb (t�)
zb (0)

�pb� a
a�1

�
zb (t

�)
�
1� e�zb(t�)

�
zb (0)

= 0: (36)

Using the implicit function theorem allows us to determine the derivatives of zr (t�) and
zb (t

�) with respect to vb, vr and pb, pr, i.e.,

dzr
dvb

=
B0vbR

0
zb
�B0zbR

0
vb

B0zbR
0
zr �B0zrR0zb

; and
dzb
dvr

=
B0zrR

0
vr �B0vrR0zr

B0zbR
0
zr �B0zrR0zb

; (37)

dzb
dvb

=
B0zrR

0
vb
�B0vbR

0
zr

B0zbR
0
zr �B0zrR0zb

; and
dzr
dvr

=
B0vrR

0
zb
�B0zbR

0
vr

B0zbR
0
zr �B0zrR0zb

; (38)
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Using equations (37) to (38) we get,

dzb
dvb

� dzb
dvr

=
B0zrR

0
vb
�B0vbR

0
zr �B0zrR0vr +B0vrR0zr

B0zbR
0
zr �B0zrR0zb

; (39)

dzr
dvr

� dzr
dvb

=
B0vrR

0
zb
�B0zbR

0
vr �B0vbR

0
zb
+B0zbR

0
vb

B0zbR
0
zr �B0zrR0zb

: (40)

Using equations (35) and (36) we can obtain the following expressions for the deriva-
tives of R and B, i.e.,

R0vb = pb
a
a�1

1
vb
	; R0vr = pr

a
a�1

1
vr
	� 1

vr

zr(t�)
�
1�e�zr(t

�)
�

zr(0)
;

B0vr = pr
a
a�1

1
vr
	; B0vb = pb

a
a�1

1
vb
	� 1

vb

zb(t
�)
�
1�e�zb(t

�)
�

zb(0)
;

R0zb = pb
a
a�1

1
zb(t�)

	; R0zr = pr
a
a�1

1
zr(t�)

	� 1�e�zr(t
�)+zr(t�)e

�zr(t�)

zr(0)
;

B0zr = pr
a
a�1

1
zr(t�)

	; B0zb = pb
a
a�1

1
zb(t�)

	� 1�e�zb(t
�)+zb(t�)e

�zb(t
�)

zb(0)
:

We therefore get the following expressions for,

B0zrR
0
vb
�B0vbR

0
zr �B

0
zrR

0
vr +B

0
vrR

0
zr

= pr
a

a� 1
1

zr (t�)
	

 
1

vr

zr (t
�)
�
1� e�zr(t�)

�
zr (0)

+
1

vb

zb (t
�)
�
1� e�zb(t�)

�
zb (0)

!

+

�
pb
vb
� pr
vr

�
a

a� 1	
1� e�zr(t�) + zr (t�) e�zr(t

�)

zr (0)

� 1

vb

zb (t
�)
�
1� e�zb(t�)

�
zb (0)

1� e�zr(t�) + zr (t�) e�zr(t
�)

zr (0)
;

B0vrR
0
zb
�B0zbR

0
vr �B

0
vb
R0zb +B

0
zb
R0vb

= pb
a

a� 1
1

zb (t�)
	

 
1

vr

zr (t
�)
�
1� e�zr(t�)

�
zr (0)

+
1

vb

zb (t
�)
�
1� e�zb(t�)

�
zb (0)

!

+

�
pr
vr
� pb
vb

�
a

a� 1	
1� e�zb(t�) + zb (t�) e�zb(t

�)

zb (0)

� 1

vr

zr (t
�)
�
1� e�zr(t�)

�
zr (0)

1� e�zb(t�) + zb (t�) e�zb(t
�)

zb (0)
;

B0zbR
0
zr �B

0
zrR

0
zb

= pr
1� e�zb(t�) + zb (t�) e�zb(t

�)

zb (0)

�
zr (t

�) e�zr(t
�)

zr (0)
� 1

a� 1
1� e�zr(t�)
zr (0)

�
+ pb

1� e�zr(t�) + zr (t�) e�zr(t
�)

zr (0)

�
zb (t

�) e�zb(t
�)

zb (0)
� 1

a� 1
1� e�zb(t�)
zb (0)

�
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Multiplying the FOCwith
�
B0zbR

0
zr �B0zrR0zb

�
and substituting

�
dzb
dvb
� dzb

dvr

�
and

�
dzr
dvr
� dzr

dvb

�
using the equalities (35) and (36) gives,

0 = �u a

a� 1	
�
pb
vb
� pr
vr

�
pr
1�e�zb(t

�)+zb(t�)e
�zb(t

�)

zb(0)

�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�
� u a

a� 1	
�
pb
vb
� pr
vr

�
pb
1�e�zr(t

�)+zr(t�)e
�zr(t�)

zr(0)

�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

�
+ zb (0) vb

�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

�
pr

a

a� 1

�
1�e�zr(t

�)
�

zr(0)
	

�
1

vr
+
1

vb

�
+ zb (0) vb

�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

��pb
vb
� pr
vr

�
a

a� 1	
1�e�zr(t

�)+zr(t�)e
�zr(t�)

zr(0)

� zb (0) vb
�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

� 1
vb

zb(t
�)
�
1�e�zb(t

�)
�

zb(0)
1�e�zr(t

�)+zr(t�)e
�zr(t�)

zr(0)

� zr (0) vr
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�
pb

a

a� 1

�
1�e�zb(t

�)
�

zb(0)
	

�
1

vr
+
1

vb

�
� zr (0) vr

�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

��pr
vr
� pb
vb

�
a

a� 1	
1�e�zb(t

�)+zb(t�)e
�zb(t

�)

zb(0)

+ zr (0) vr

�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

� 1
vr

zr(t�)
�
1�e�zr(t

�)
�

zr(0)
1�e�zb(t

�)+zb(t�)e
�zb(t

�)

zb(0)

+
��
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�� �
B0zbR

0
zr �B

0
zrR

0
zb

�
;

Rearranging implies,

0 = �prau
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

� 1

a� 1	
�
pb
vb
� pr
vr

�
1�e�zb(t

�)+zb(t�)e
�zb(t

�)

zb(0)

� prau
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�
pb

a

a� 1

�
1�e�zb(t

�)
�

zb(0)
	

�
1

vr
+
1

vb

�
� prau

�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

��pr
vr
� pb
vb

�
a

a� 1	
1�e�zb(t

�)+zb(t�)e
�zb(t

�)

zb(0)

+ prau
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

� 1
vr
	1�e�zb(t

�)+zb(t�)e
�zb(t

�)

zb(0)

� pbua
�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

� 1

a� 1	
�
pb
vb
� pr
vr

�
1�e�zr(t

�)+zr(t�)e
�zr(t�)

zr(0)

+ pbau
�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

�
pr

a

a� 1

�
1�e�zr(t

�)
�

zr(0)
	

�
1

vr
+
1

vb

�
+ pbau

�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

��pb
vb
� pr
vr

�
a

a� 1	
1�e�zr(t

�)+zr(t�)e
�zr(t�)

zr(0)

� pbau
�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

� 1
vb
	1�e�zr(t

�)+zr(t�)e
�zr(t�)

zr(0)

+
��
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�� �
B0zbR

0
zr �B

0
zrR

0
zb

�
:
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Simplifying implies,

0 = prau
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�� 1
vr
+
pb
vb
� pr
vr

�
	1�e�zb(t

�)+zb(t�)e
�zb(t

�)

zb(0)

� prau
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�
pb

a

a� 1

�
1�e�zb(t

�)
�

zb(0)
	

�
1

vr
+
1

vb

�
+ pbua

�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

��
� 1
vb
+
pb
vb
� pr
vr

�
	1�e�zr(t

�)+zr(t�)e
�zr(t�)

zr(0)

+ pbau
�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

�
pr

a

a� 1

�
1�e�zr(t

�)
�

zr(0)
	

�
1

vr
+
1

vb

�
+
��
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�� �
B0zbR

0
zr �B

0
zrR

0
zb

�
:

Using the fact that 1 = pb + pr gives,

0 = prau
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�
pb

�
1

vr
+
1

vb

�
	1�e�zb(t

�)+zb(t�)e
�zb(t

�)

zb(0)

� prau
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�
pb

a

a� 1

�
1�e�zb(t

�)
�

zb(0)
	

�
1

vr
+
1

vb

�
� pbua

�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

�
pr

�
1

vb
+
1

vr

�
	1�e�zr(t

�)+zr(t�)e
�zr(t�)

zr(0)

+ pbau
�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

�
pr

a

a� 1

�
1�e�zr(t

�)
�

zr(0)
	

�
1

vr
+
1

vb

�
+
��
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�� �
B0zbR

0
zr �B

0
zrR

0
zb

�
:

Simplifying gives,

0 = prau
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�
pb

�
1

vr
+
1

vb

�
	
�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

�
� pbua

�
zb(t

�)e�zb(t
�)

zb(0)
� 1

a�1
1�e�zb(t

�)

zb(0)

�
pr

�
1

vb
+
1

vr

�
	
�
zr(t�)e

�zr(t�)

zr(0)
� 1

a�1
1�e�zr(t

�)

zr(0)

�
+
��
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�� �

B0zbR
0
zr �B

0
zrR

0
zb

�
;

=
��
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�� �
B0zbR

0
zr �B

0
zrR

0
zb

�
:

Thus, the FOC is satis�ed if and only if zb (t�) = zr (t�). According to equations (35) and
(36),

zb (t
�) = zr (t

�)() zb (0) = zr (0)()
pb
vb
=
pr
vr
:

To determine the second derivative, we di¤erentiate the �rst derivative, i.e.,

@� (G)

@vb
=
�
1� e�zb(t�) � zb (t�) e�zb(t

�)
�
�
�
1� e�zr(t�) � zr (t�) e�zr(t

�)
�
;

@2� (G)

@ (vb)
2 = zb (t

�) e�zb(t
�)

�
dzb
dvb

� dzb
dvr

�
+ zr (t

�) e�zr(t
�)

�
dzr
dvr

� dzr
dvb

�
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Substituting
�
dzb
dvb
� dzb

dvr

�
and

�
dzr
dvr
� dzr

dvb

�
implies,

@2� (G)

@ (vb)
2 =

zb (t
�) e�zb(t

�)

B0zbR
0
zr �B0zrR0zb

pr
a

a� 1
1� e�zr(t�)
zr (0)

	

�
1

vr
+
1

vb

�
+

zb (t
�) e�zb(t

�)

B0zbR
0
zr �B0zrR0zb

�
pb
vb
� pr
vr

�
a

a� 1	
1� e�zr(t�) + zr (t�) e�zr(t

�)

zr (0)

� zb (t
�) e�zb(t

�)

B0zbR
0
zr �B0zrR0zb

1

vb

zb (t
�)
�
1� e�zb(t�)

�
zb (0)

1� e�zr(t�) + zr (t�) e�zr(t
�)

zr (0)

+
zr (t

�) e�zr(t
�)

B0zbR
0
zr �B0zrR0zb

pb
a

a� 1
1� e�zb(t�)
zb (0)

	

�
1

vr
+
1

vb

�
+

zr (t
�) e�zr(t

�)

B0zbR
0
zr �B0zrR0zb

�
pr
vr
� pb
vb

�
a

a� 1	
1� e�zb(t�) + zb (t�) e�zb(t

�)

zb (0)

� zr (t
�) e�zr(t

�)

B0zbR
0
zr �B0zrR0zb

1

vr

zr (t
�)
�
1� e�zr(t�)

�
zr (0)

1� e�zb(t�) + zb (t�) e�zb(t
�)

zb (0)
:

Rearranging implies

@2� (G)

@ (vb)
2 = �

zb (t
�) e�zb(t

�)

B0zbR
0
zr �B0zrR0zb

pr

�
1

vr
+
1

vb

�
	

�
zr (t

�) e�zr(t
�)

zr (0)
� 1

a� 1
1� e�zr(t�)
zr (0)

�
+

zb (t
�) e�zb(t

�)

B0zbR
0
zr �B0zrR0zb

�
pb
vb
� pr
vr

�
1

a� 1	
1� e�zr(t�) + zr (t�) e�zr(t

�)

zr (0)

� zr (t
�) e�zr(t

�)

B0zbR
0
zr �B0zrR0zb

pb

�
1

vr
+
1

vb

�
	

�
zb (t

�) e�zb(t
�)

zb (0)
� 1

a� 1
1� e�zb(t�)
zb (0)

�
+

zr (t
�) e�zr(t

�)

B0zbR
0
zr �B0zrR0zb

�
pr
vr
� pb
vb

�
1

a� 1	
1� e�zb(t�) + zb (t�) e�zb(t

�)

zb (0)

Imposing the FOC, i.e., pb
vb
= pr

vr
, implies that the second derivative is negative, i.e.,

@2� (G)

@ (vb)
2 = �

zb (t
�) e�zb(t

�)

B0zbR
0
zr �B0zrR0zb

�
1

vr
+
1

vb

�
	

�
zr (t

�) e�zr(t
�)

zr (0)
� 1

a� 1
1� e�zr(t�)
zr (0)

�
= �zb (0)

zb (t
�) e�zb(t

�)

1� e�zb(t�) + zb (t�) e�zb(t�)

�
1

vr
+
1

vb

�
	 < 0:

B Decomposition theorem and algorithm

Decomposition Theorem (Corominas-Bosch, 2004):

(1) Every graph G can be decomposed into a number of �rm subgraphs (Gf1 ,..., G
f
nf
),

worker subgraphs (Gw1 ,..., G
w
nw) and even subgraphs (G

e
1,..., G

e
ne) in such a way that each

node (�rm or worker) belongs to one and only one subgraph and any �rm (worker) in
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a �rm-(worker-) subgraph Gfi;(G
w
i; ) is only linked to workers (�rms) in a �rm-(worker-

)subgraph Gfj (G
w
j ).

(2) Moreover, a given node (�rm or worker) always belongs to the same type of subgraph
for any such decomposition. We will write G = Gf1[...[Gfnf [G

w
1 [...[Gwnw [Ge1[...[Gene,

with the union being disjoint.

The decomposition algorithm of Corominas-Bosch (2004) works as follows:
Step a: Eliminate all vacancies that did not receive any applicants.
Step b: For k = 2; :::; v, identify the groups of k vacancies that are jointly linked to less

than k workers. Remove and collect them. We refer to those subgraphs as �rm subgraphs.
Step c: Repeat step b but now reverse the role of workers and vacancies. The resulting

subgraphs are called worker subgraphs.
Step d: When all worker subgraphs are removed, the remaining ones are balanced (or

even) subgraphs (with an equal number of workers and �rms).
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