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Nonstationary-Volatility Robust Panel Unit Root Tests and the

Great Moderation ∗

Christoph Hanck† Robert Czudaj‡

July 30, 2013

Abstract

This paper argues that typical applications of panel unit root tests should take possible nonsta-
tionarity in the volatility process of the innovations of the panel time series into account. Nonsta-
tionarity volatility arises for instance when there are structural breaks in the innovation variances.
A prominent example is the reduction in GDP growth variances enjoyed by many industrialized
countries, known as the ‘Great Moderation.’ It also proposes a new testing approach for panel
unit roots that is, unlike many previously suggested tests, robust to such volatility processes. The
panel test is based on Simes’ [Biometrika 1986, “An Improved Bonferroni Procedure for Multiple
Tests of Significance”] classical multiple test, which combines evidence from time series unit root
tests of the series in the panel. As time series unit root tests, we employ recently proposed tests
of Cavaliere and Taylor [Journal of Time Series Analysis 2008b, “Time-Transformed Unit Root
Tests for Models with Non-Stationary Volatility”]. The panel test is robust to general patterns of
cross-sectional dependence and yet is straightforward to implement, only requiring valid p-values of
time series unit root tests, and no resampling. Monte Carlo experiments show that other panel unit
root tests suffer from sometimes severe size distortions in the presence of nonstationary volatility,
and that this defect can be remedied using the test proposed here. We use the methods developed
here to test for unit roots in OECD panels of gross domestic products and inflation rates, yielding
inference robust to the ‘Great Moderation.’ We find little evidence of trend stationarity, and mixed
evidence regarding inflation stationarity.
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1 Introduction

Although the problem of testing for unit roots is not new, it still attracts considerable attention. Es-

pecially, the additional cross-sectional dimension provided by panel data is seen as a way to overcome

the low power of traditional time series unit root tests. However, a major drawback of so-called ‘first

generation’ panel unit root tests (PURTs) provided by Maddala and Wu [1999], Im, Pesaran and Shin

[2003], and Levin, Lin and Chu [2002] is that these rely on the assumption that the individual time

series in the panel are cross-sectionally independent. However, macroeconomic panel data sets usually

do not meet this assumption, since, for instance, common global shocks, that heterogeneously affect

different countries, lead to cross-sectional dependence among the test statistics [see, e.g., O’Connell,

1998].

Therefore, ‘second generation’ PURTs are designed to eliminate this caveat and to provide reliable

inference in the presence of cross-sectional dependence. Phillips and Sul [2003], Moon and Perron

[2004], and Bai and Ng [2004] assume the dependence to be driven by (multiple) factors in the error

terms. Suitably ‘de-factoring’ the observations, e.g. by the principal component method, asymptot-

ically removes the common factors, then allowing for the application of standard PURTs. Breitung

and Das [2005], in turn, propose a feasible generalized least-squares approach that can be applied

when T > n, where T denotes the number of time series observations on each of the n series. Pesaran

[2007] adds the cross-section averages of lagged levels and of first-differences of the individual series to

Augmented Dickey-Fuller [1979] (ADF) regressions. PURTs can then be based on the simple averages

of the individual cross-sectionally augmented ADF statistics. In case of a homogenous panel Herwartz

and Siedenburg [2008] suggest a test based on a generalized variance estimator, the application of

refined residuals in this framework and a wild bootstrap technique. The approach most closely related

to the one to be put forward here is by Demetrescu, Hassler and Tarcolea [2006] and Hanck [2013],

who draw on the meta-analytic literature to derive their p-value combination tests.

All of the above-cited tests are, in some way or another, suitable panel generalizations of traditional

Dickey and Fuller [1979] or other well-known time series unit root tests. As such, they also invoke

the traditional assumption in the unit root testing literature that the variance of the innovations

driving the time series stays constant over time. Hamori and Tokihisa [1997] and Kim, Leybourne

and Newbold [2002] show that traditional unit root tests perform poorly if this assumption is not

met, e.g. because there is abrupt change in the innovation variance at some point during the sample

period. We show that similarly negative results obtain for popular second generation panel unit root

tests, many of which overreject severely while others are overly conservative.1

The main objective of this study is to provide a novel panel unit root test that avoids this potential

shortcoming. The test is based on Simes’ [1986] classical intersection test of the ‘global’ null hy-

pothesis H0 that all individual null hypotheses Hi,0, i = 1, . . . , n, are true, i.e., that all n time series

1Therefore, Demetrescu and Hanck [2012] propose an instrumental variable (IV) Cauchy estimator which uses the sign
of the first lag as the instrument and thus accounts for time-varying volatility of the innovations as well as cross-sectional
dependence.
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are unit root processes. Simes’ [1986] test is widely applied in, among many other areas, genetical

micro-array experiments [e.g., Dudoit, Shaffer and Boldrick, 2003]. Our new panel test is straight-

forward to implement, only requiring valid p-values of time series unit root tests. As pointed out

by e.g. Maddala and Wu [1999] such easy-to-implement and intuitive p-value combination tests are

typically competitive in terms of size and power to conceptually and computationally much more

complicated procedures. The Simes-type approach of constructing p-value based panel unit root tests

was already successfully exploited to construct standard (i.e. Dickey-Fuller based) panel tests in a

companion paper [Hanck, 2013]. Suitable p-values for the present situation of nonstationary volatility

are obtained from recently proposed time series unit root tests by Cavaliere and Taylor [2008b] that

are robust to general patterns of nonstationary volatility. Moreover, the multiple testing approach of

Simes [1986] yields a panel test that is robust to cross-sectional dependence.

As an additional advantage, our Simes-type approach allows to identify the units in the panel for

which the alternative of stationarity appears to hold. Doing so, it still controls the ‘Familywise

Error Rate’ (FWER), i.e. the probability to falsely reject at least one true individual time series null

hypothesis, at some chosen level α. This would not be achieved by the widely applied strategy to

reject for all those time series unit root tests statistics that exceed some fixed level-α critical value,

as this latter approach ignores the multiple testing nature of the problem.

Our methodology is of great relevance in macroeconomic and financial applications where large panel

data sets with changing variances of the individual series appear. To illustrate this, we use the

methods developed here to discuss two longstanding questions in empirical macroeconomics. First,

we revisit the debate of whether output levels contain a unit root. Second, we study whether OECD

inflation rates are nonstationary. Nonstationary-volatility robust tests are particularly important in

this context in view of what has come to be known as the ‘Great Moderation’ [Stock and Watson,

2002], i.e. the reduction in the volatility of economic growth rates and other variables enjoyed by many

industrialized countries since the 1980s. This change in volatility implies that traditional (panel) unit

root tests of e.g. output level stationarity may be misspecified. The application of our new panel

test yields little evidence of trend stationarity in the investigated panel of OECD countries. We find

mixed evidence regarding inflation stationarity.

The next section motivates the need for nonstationary-volatility robust PURTs and develops the new

test. Section 3 reports results of a Monte Carlo study. Section 4 presents the empirical results and

the last section concludes.

2 The Panel Unit Root Test

As usual, we consider the following dynamic panel model:

yi,t = µi(1− φi) + φiyi,t−1 + εi,t (i ∈ Nn, t ∈ NT ), (1)

where j ∈ Na is shorthand for j = 1, . . . , a, φi ∈ (−1, 1], i ∈ Nn, and n denotes the number of series in

the panel. Equation (1) states that the time series {yi,0, . . . , yi,T } are generated by a simple first-order

2



autoregressive process for each cross-sectional unit i. The panel unit root null hypothesis indicates

that all time series are unit-root nonstationary [Breitung and Pesaran, 2008]. Formally,

H0 : φ1 = φ2 = . . . = φn = 1.

Put differently, H0 states that all single time series hypotheses Hi,0 : φi = 1 are true,

H0 =
⋂
i∈Nn

Hi,0, (2)

where
⋂
i∈Nn denotes the intersection over the n individual time series hypotheses.

2.1 The Need for Nonstationary-Volatility Robust PURTs

To complete the model in Eq. (1) one needs to specify the properties of εi,t. ‘First generation’ PURTs

assumed the εi,t to be independent across i, an assumption which is now widely agreed to be overly

restrictive and has therefore been relaxed in recent work [e.g., Breitung and Das, 2005; Demetrescu

et al., 2006; Moon and Perron, 2004; Pesaran, 2007]. We shall follow that route here. Second, whether

or not φi = 1, it is often expedient to allow for serial dependence in εi,t. A standard assumption in

the (panel) unit root literature [Pesaran, 2007] is

Assumption 1.

The errors are generated as εi,t =
∑∞

j=0 ci,jui,t−j =: Ci(L)ui,t, where Ci(z) 6= 0 for z 6 1 and∑∞
j=0 j|ci,j | <∞, and ui,t is i.i.d. with finite, constant variance σ2.2

While i.i.d.-ness could be relaxed to a martingale difference assumption on ui,t [Davidson, 1994,

Thm. 27.14], heterogeneity in the innovation variances that takes the form of ‘nonstationary volatility’,

e.g., structural breaks or trending variances is not covered by the assumptions made above [Hamori

and Tokihisa, 1997]. Thus, currently most popular PURTs are potentially misspecified in the presence

of nonstationary volatility.3

To verify whether nonstationary volatility matters for recent PURTs, we conduct a small scale sim-

ulation experiment. The simulated panel data sets exhibit intermediate degrees of cross-sectional

dependence and a relatively early moderately negative break in the innovation variance (see Section

3 for details on the Data-Generating Process, henceforth DGP). We compare the following cross-

sectional correlation, but not nonstationary-volatility-robust PURTs4: CIPS ∗ by Pesaran [2007], trob

from Breitung and Das [2005], the S test of Hanck [2013], tρ̂∗,κ from Demetrescu et al. [2006] and

t∗a by Moon and Perron [2004]. Table I reports the results. The right panel of Table I shows that

all tests perform quite well under homoscedasticity, at least for sufficiently large T . When there is

nonstationary volatility (left panel), all considered tests exhibit moderate to strong size distortions.

2Pesaran [2007] allows ui,t ∼ i.i.d.(0, σ2
i ), that is, heterogeneity in the innovation variance across i, not t.

3The deleterious effect on the properties of time series unit root tests has long been recognized in the literature. See,
e.g., Hamori and Tokihisa [1997] and Kim et al. [2002]. See also Sen [2007].

4We waive to include first generation tests such as those by Levin et al. [2002], which are not robust to cross-sectional
dependence, such that we cannot expect reasonable performance even under homoscedasticity.
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Table I—Empirical Size of Second Generation PURTs under Nonstationary
Volatility.

Heteroscedasticity Homoscedasticity

n T 30 50 100 200 30 50 100 200

S .306 .344 .355 .357 .053 .058 .058 .049
trob .073 .088 .083 .101 .047 .052 .051 .047

8 CIPS∗ .562 .563 .610 .567 .068 .049 .070 .059
tρ̂∗,κ .188 .233 .255 .284 .075 .081 .072 .074
t∗a .002 .005 .023 .029 .040 .066 .089 .091

S .370 .405 .440 .402 .052 .049 .047 .047
trob .082 .090 .102 .089 .042 .043 .041 .039

12 CIPS∗ .507 .598 .598 .584 .035 .033 .045 .036
tρ̂∗,κ .213 .262 .321 .308 .077 .080 .080 .064
t∗a .001 .003 .004 .021 .016 .045 .065 .090

S .477 .525 .573 .516 .048 .057 .044 .050
trob .109 .100 .093 .096 .044 .035 .045 .049

24 CIPS∗ .624 .664 .658 .607 .024 .037 .044 .035
tρ̂∗,κ .242 .287 .348 .387 .094 .081 .068 .088
t∗a .000 .000 .001 .006 .012 .023 .048 .084

Homoscedasticity corresponds to δ = 1, heteroscedasticity to δ = 5. ψ =
0, φ = ın, τ = 0.1. Equicorrelated disturbances with θ = 0.5. (See
Section 3 for a precise description of the DGP.) 2,500 replications.

In particular, while t∗a appears to be undersized, CIPS ∗, S and tρ̂∗,κ are severely oversized. The trob

test performs relatively best, though also noticeably worse than under homoscedasticity. Also, the

size distortions, not vanishing with either increasing n or T , show no sign of being a small sample

phenomenon. We therefore conclude that currently most popular PURTs should not be relied upon

when researchers suspect a break (or otherwise nonstationary behavior) in the innovation variances.

This is of course not to suggest any inherent shortcoming of these tests, as none was designed to cope

with nonstationary volatility.

2.2 A Nonstationary-Volatility Robust PURT

This subsection develops the new Nonstationary-Volatility Robust PURT. We draw on classical results

from the multiple testing literature that are well-suited for deriving tests in the present non-standard

situation. Simes [1986] provides a simple test for testing the ‘global’ or ‘intersection’ null hypothesis

given in Equation (2). Suppose for the moment that valid p-values pi, i ∈ Nn, of suitable test

statistics for the individual hypotheses Hi,0 are available. Denote by p(1), . . . , p(n) the ordered p-

values p(1) 6 . . . 6 p(n). Then, Simes’ Heteroscedasticity-Robust intersection test (henceforth SH)

rejects H0 at level α if and only if

p(j) 6 j · α/n for some j ∈ Nn. (3)

More precisely, the p-values are sorted from most to least significant and compared to gradually less

challenging critical points jα/n. If there exists at least one p-value sufficiently small so as to be smaller

than the corresponding critical point, the SH test rejects the panel unit root null. Reassuringly, Hanck
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[2013] finds Simes’ test to work well under constant volatility when employing standard Dickey and

Fuller [1979] t-statistics.5

To obtain p-values valid under nonstationary volatility we make use of the recently proposed time-

transformed unit root tests by Cavaliere and Taylor [2008b]. They generalize Assumption 1 to

Assumption 2.

The errors are generated as εi,t =
∑∞

j=0 ci,jui,t−j = Ci(L)ui,t, where Ci(z) 6= 0 for z 6 1 and∑∞
j=0 j|ci,j | < ∞. Further, ui,t = σi,tςi,t, ςi,t ∼ i.i.d.(0, 1). σi,t satisfies, for all s ∈ [0, 1], σi,bsT c ∈ D,

the set of cadlag functions on [0, 1].

This assumption covers the above-mentioned cases of structural breaks and trending variances, with

σbsT c = σ0 + σ1I(s > τ), τ ∈ (0, 1), and σbsT c = σ0 + σ1s, respectively. What is more, recent work by

Cavaliere and Taylor [2009] suggests that Assumption 2 is far from being a necessary one.

Defining the ‘variance profile’ ηi(s) =
(∫ 1

0 σ
2
i,brT c dr

)−1 ∫ s
0 σ

2
i,brT c dr, Cavaliere and Taylor [2007] show

that standard unit root test statistics converge to functionals of ‘time-transformed’ Brownian Motions

B(η(s)) [Davidson, 1994, Sec. 29.4] under nonstationary volatility, thus invalidating the standard

limiting distributions. (Under homoscedasticity, ηi(s) boils down to s.) They further demonstrate

that transforming yi,t with gi(s) := η−1
i (s), the (unique) inverse of the variance profile, via ỹi,t =

yi,bgi(t/T )T c, t = 0, . . . , T yields a series that satisfies the invariance principle [Cavaliere and Taylor,

2008b, Eq. 19]

T−1/2ỹi,bsT c ⇒

√∫ 1

0
σ2
i,brT c drCi(1)B(s). (4)

Numerically inverting the (uniformly consistent) estimator of ηi(s),

η̂i(s) =

∑bsT c
t=1 û2

i,t + (sT − bsT c)û2
i,bsT c+1∑T

t=1 û
2
i,t

(5)

to obtain ĝi(s), one can then transform the series via yi,bĝi(t/T )T c so as to converge to standard

Brownian Motions. Here, ûi,t denotes the residuals of a regression of yi,t on yi,t−1. Conveniently,

these transformations are ‘non-parametric’ in the sense that they require no knowledge of either

break type, number or date. Unit root statistics applied to the transformed data will then satisfy

their well-known homoscedastic limiting null distributions. More specifically, Cavaliere and Taylor

[2008b] consider the M tests by Ng and Perron [2001].6 Let s2
i,AR(ki) :=

σ̂2
i

1−
∑ki
j=1 β̂i,j

, where β̂i,j

and σ̂2
i can be estimated with an OLS regression of ûi,t on ki lagged values. The lag orders ki

can be chosen by one of the common selection criteria. The tests are then defined by the statistics

5Simes [1986, Thm. 1] proves that the SH test has type I error probability equal to α when the test statistics are
independent. As argued in the Introduction, the assumption of independence is unlikely to be met in most, if not
all, applications of panel unit root tests. Fortunately, Sarkar [1998] shows that the assumption of independence is not
necessary and can, in fact, be weakened substantially. Specifically, his Proposition 3.1 proves that Simes’ test is level α
if the test statistics are multivariate totally positive of order 2 (MTP2). See Hanck [2013] for further discussion of the
test’s properties.

6As given here, the statistics are for the no deterministics case µi = 0. See Cavaliere and Taylor [2008b, Sec. 5] for
the suitable modifications in the presence of deterministic trends.
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MZα,i := T−1y2
i,T − s2

i,AR(k)/(2T−2
∑T

t=1 y
2
i,bĝi(t/T )T c),MSBi :=

(
T−2

∑T
t=1 y

2
i,bĝi(t/T )T c/s

2
i,AR(k)

)1/2
andMZt,i :=MZα,i×MSBi, for which Cavaliere and Taylor [2008b] derive the associated limiting

distributions

MZα,i ⇒
B(1)2 − 1

2
∫ 1

0 B(s)2 ds
, MSBi ⇒

(∫ 1

0
B(s)2 ds

)1/2

,

MZt,i ⇒
B(1)2 − 1(

4
∫ 1

0 B(s)2 ds
)1/2 .

(6)

MZα,i and MZt,i reject for large negative values, whereas MSBi rejects for small values.

In addition, nonstationary-volatility robust versions of the well-known and more widely used Dickey

and Fuller [1979] tests are available, given by the t-statistic tφi of the augmented regression ∆yi,bĝi(t/T )T c =

(φi−1)yi,bĝi( t−1
T

)T c+
∑ki

j=1 δi,j∆yi,bĝi( t−jT )T c+ui,t, and the coefficient statistic T (φ̂i−1)/(1−
∑ki

j=1 δ̂i,j).

The asymptotic null distributions of tφi and T (φ̂i − 1)/(1−
∑ki

j=1 δ̂i,j) then are

(i)
T (φ̂i − 1)

1−
∑ki

j=1 δ̂i,j
⇒ B(1)2 − 1

2
∫ 1

0 B(s)2 ds
and (ii) tφi ⇒

B(1)2 − 1(
4
∫ 1

0 B(s)2 ds
)1/2 . (7)

To see this, let ωi =
√∫ 1

0 σ
2
i,brT c dr, y̆i,t = yi,bĝi(t/T )T c and ŭi,t = ∆y̆i,t. The result then follows

straightforwardly from (4), uniform consistency of the ĝi and the Continuous Mapping Theorem, anal-

ogously to Cavaliere and Taylor [2008b]: as in Hamilton [1994, Sec. 17.7], under the null we jointly have

T−1
∑T

t=1 y̆i,t−1ŭi,t ⇒ 1/2ω2
iCi(1)(B(1)2 − 1) and T−2

∑T
t=1 y̆

2
i,t−1 ⇒ ω2

iCi(1)2
∫ 1

0 B(s)2 ds. Asymp-

totically, the estimation error of the δi,j vanishes [Hamilton, 1994, Eq. 17.7.18] and

T (φ̂i − 1) = T−1
T∑
t=1

y̆i,t−1ŭi,t

/
T−2

T∑
t=1

y̆2
i,t−1 + op(1)

⇒ 0.5ω2
iCi(1)(B(1)2 − 1)

ω2Ci(1)2
∫ 1

0 B(s)2 ds
=

0.5(B(1)2 − 1)

Ci(1)
∫ 1

0 B(s)2 ds
.

Result (i) then follows by Hamilton [1994, Eq. 17.7.34], from which 1/(1−
∑ki

j=1 δ̂i,j)→p Ci(1). Result

(ii) follows analogously.

The p-values required for the SH test can thus be obtained by simulating the asymptotic distributions

(6) and (7).7

Remark 1. Simes’ test is likely to be most useful for small to moderate n and large T . This is because

(3) becomes more severe with n. Also, as T → ∞, the p-values corresponding to the false Hi,0 will

tend to 0 in probability. Hence (3) will be satisfied for any finite n. Put differently, SH is consistent

for T →∞ and n <∞ [Hanck, 2013]. We corroborate the above intuition in the Monte Carlo section.

What is more, unlike for most other panel unit root tests it is not necessary for consistency of the SH

7We also worked with MacKinnon’s [1996] response surface p-values. These did however not perform consistently
better than the ones relying on (6) and (7). This may be because the finite sample distribution of Cavaliere and Taylor-
type tests need not coincide with those of the Dickey-Fuller tests, even if the asymptotic ones agree. Detailed results
are available upon request.
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test that the fraction of stationary series is strictly positive. Intuitively, this is because SH rejects

the global null already if one sufficiently small p-value can be found.

Remark 2. Of course, other nonstationary-volatility robust time series unit root tests might also be

employed to construct panel tests using (3), cf. e.g. Beare [2008] or the bootstrap based tests of

Cavaliere and Taylor [2008a]. As such, our choice of the present Cavaliere and Taylor-type tests could

be extended in other directions (see however the remarks in the Monte Carlo section).

Remark 3. Existing panel unit root tests are silent about the size of the fraction or the identity of the

stationary units.8 As further discussed in Hanck [2013], one can easily determine the units for which

the alternative of stationarity can be said to hold, using the p-values from the SH test. Hommel

[1988, Sec. 2] proves that the following procedure controls the FWER, i.e. the probability to falsely

reject at least one true Hi,0, at multiple level α whenever the SH test is level-α for the hypothesis

(2).9

Hommel’s Procedure

(i) Compute

j = max{i ∈ Nn : p(n−i+k) > kα/i for k ∈ Ni}. (8)

(ii) If p(n) 6 α, reject all Hi,0. Else, reject all Hi,0 with pi 6 α/j.

Remark 4. This approach can easily be extended to the case of nonstationary-volatility robust panel

cointegration by using the p-values of a suitable cointegration test such as, for instance, the wild

bootstrap-based implementation of the classical Johansen [1988] rank test proposed by Cavaliere,

Rahbek and Taylor [2010].

3 Monte Carlo Simulations

This section investigates the size and power of SH . We use the following simple DGP:

yi,t = φiyi,t−1 + εi,t (i ∈ Nn, t ∈ NT )

To introduce nonstationary volatility, we generate a permanent break in the innovation variance

of normal variates ξi,t at bτT c, where Var(ξi,t) = 1 for t = 1, . . . , bτT c and Var(ξi,t) = 1/δ2 for

t = bτT c + 1, . . . , T . We consider τ ∈ {0.1, 0.5, 0.9}, corresponding to early, middle and late breaks,

and δ ∈ {1/5, 5} to generate positive and negative breaks, respectively. To gauge the effect of serial

correlation, we generate ξ̃i,t = ξi,t + ψξi,t−1, where ψ ∈ {0, 0.5}. Finally, we consider two schemes to

generate cross-sectional correlation among the εi,t.
10

8For instance, Shin, Park and Oh [2009] and Demetrescu and Hanck [2012] suggest a PURT that indeed allow for
heteroscedastic errors as well as cross-sectional dependence of the series, but is not designed to give the portion of units
that are responsible for the rejection of the ‘global’ unit-root null.

9Recently, Romano and Wolf [2005], Chortareas and Kapetanios [2009], Smeekes [2011] and Moon and Perron
[2012] have proposed alternative sequential testing procedures, which upon rejection of the ‘global’ null also allow
for the separation of stationary from non-stationary units in a panel. Although these could also be combined with
a nonstationary-volatility robust time series unit root test, our choice is motivated by the straightforwardness of the
implementation implied by our framework.

10We create 30 initial observations before using the yi,t to mitigate the effect of initial conditions under HA.
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Table II—Size of the SH Test Using Different Time Series Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

(i) δ = 1/5

MZt .070 .058 .064 .059 .051 .057 .048 .047 .050 .045 .158 .079 .040 .018 .032
T (φ̂− 1) .163 .103 .067 .040 .044 .092 .070 .056 .049 .044 .018 .026 .017 .022 .024

8 MZα .045 .042 .053 .055 .042 .051 .036 .039 .033 .036 .145 .071 .034 .014 .024
tφ .036 .041 .038 .033 .035 .036 .042 .047 .039 .040 .007 .013 .011 .012 .018
MSB .045 .038 .040 .040 .032 .040 .034 .033 .033 .032 .134 .059 .026 .011 .021

MZt .067 .056 .063 .056 .048 .064 .042 .042 .044 .044 .231 .083 .036 .020 .028
T (φ̂− 1) .198 .131 .072 .039 .048 .107 .067 .058 .046 .052 .018 .024 .014 .029 .025

12 MZα .054 .048 .044 .049 .030 .052 .036 .035 .032 .037 .212 .074 .028 .012 .022
tφ .031 .036 .040 .027 .038 .034 .029 .038 .034 .043 .012 .010 .011 .017 .013
MSB .043 .034 .042 .038 .030 .044 .027 .022 .028 .030 .197 .064 .022 .007 .017

MZt .056 .046 .060 .046 .048 .074 .040 .042 .034 .035 .330 .115 .033 .009 .022
T (φ̂− 1) .263 .193 .091 .049 .052 .123 .091 .070 .059 .052 .015 .021 .017 .018 .018

24 MZα .053 .032 .056 .035 .039 .060 .037 .029 .028 .033 .312 .106 .028 .008 .018
tφ .036 .051 .043 .032 .041 .028 .044 .045 .040 .040 .010 .010 .010 .009 .010
MSB .039 .030 .041 .030 .030 .053 .028 .027 .021 .020 .288 .091 .022 .006 .012

MZt .051 .052 .064 .060 .039 .085 .042 .031 .029 .031 .483 .186 .036 .007 .014
T (φ̂− 1) .420 .253 .106 .062 .052 .184 .117 .074 .065 .065 .016 .021 .019 .017 .024

48 MZα .051 .049 .048 .032 .031 .072 .028 .033 .025 .021 .460 .169 .031 .006 .010
tφ .032 .044 .046 .044 .039 .035 .042 .041 .043 .046 .009 .010 .010 .010 .015
MSB .031 .028 .042 .036 .019 .068 .027 .016 .017 .020 .437 .153 .024 .004 .007

(ii) δ = 5

MZt .018 .015 .012 .012 .017 .016 .013 .018 .022 .025 .016 .023 .024 .031 .031
T (φ̂− 1) .106 .111 .112 .098 .087 .090 .087 .057 .050 .052 .068 .056 .047 .048 .048

8 MZα .010 .011 .010 .010 .013 .009 .006 .018 .016 .018 .014 .014 .023 .024 .021
tφ .011 .018 .026 .027 .034 .013 .018 .021 .022 .026 .006 .012 .016 .025 .029
MSB .011 .009 .007 .008 .011 .008 .006 .012 .015 .015 .010 .011 .016 .014 .018

MZt .019 .013 .013 .014 .016 .014 .012 .017 .020 .019 .016 .017 .026 .027 .024
T (φ̂− 1) .120 .146 .132 .120 .094 .106 .082 .070 .054 .058 .070 .056 .052 .052 .051

12 MZα .011 .009 .010 .010 .013 .007 .009 .014 .016 .017 .011 .011 .012 .026 .023
tφ .008 .022 .029 .034 .033 .007 .010 .024 .021 .027 .006 .010 .022 .022 .025
MSB .008 .007 .008 .007 .009 .005 .007 .011 .010 .010 .008 .007 .014 .016 .013

MZt .020 .010 .012 .011 .011 .008 .012 .015 .016 .018 .011 .018 .023 .023 .025
T (φ̂− 1) .157 .185 .152 .137 .123 .136 .108 .069 .064 .063 .086 .078 .054 .056 .058

24 MZα .012 .006 .006 .009 .010 .012 .006 .010 .013 .018 .011 .011 .015 .022 .019
tφ .011 .020 .030 .034 .041 .010 .011 .017 .026 .028 .003 .009 .019 .026 .031
MSB .010 .005 .003 .006 .008 .004 .006 .009 .012 .013 .006 .010 .014 .015 .018

MZt .021 .010 .010 .008 .014 .011 .006 .019 .016 .014 .016 .013 .016 .020 .015
T (φ̂− 1) .217 .252 .220 .180 .160 .176 .138 .092 .078 .060 .115 .092 .072 .060 .048

48 MZα .011 .006 .007 .006 .012 .015 .008 .007 .014 .010 .012 .008 .017 .020 .017
tφ .010 .023 .044 .042 .044 .005 .016 .024 .026 .026 .004 .012 .020 .025 .020
MSB .009 .005 .005 .006 .010 .007 .002 .010 .007 .007 .008 .008 .008 .011 .011

Note: ψ = 0, φ = ın. Factor dependent Disturbances.

A. Equicorrelation: Let ξ̃t = (ξ̃1,t, . . . , ξ̃n,t)
′. Then, generate εt := (ε1,t, . . . , εn,t)

′ = Σ1/2ξ̃t, where

Σ = θını
′
n + (1− θ)In with ın = (1, . . . , 1)′, (n× 1), θ = 0.5 and In the (n×n) identity matrix.

B. Factor Structure: Let εi,t := λi · νt + ξ̃i,t, where νt are i.i.d. N (0, 1) and λi ∼ U(−1, 3), with U
denoting the uniform distribution.

Remark 5. Another relevant scenario would be that of I(1) common factors νt. Hanck [2013] finds

Simes’ test to work well when applied to Bai and Ng [2004]-type defactored idiosyncratic components.
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Table III—Power of the SH Test Using Different Time Series Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

(i) δ = 1/5

MZt .262 .551 .992 1.00 1.00 .218 .313 .752 .978 .999 .580 .514 .602 .610 .798
T (φ̂− 1) .289 .356 .860 .996 1.00 .160 .200 .516 .857 .981 .063 .150 .225 .306 .432

8 MZα .207 .429 .955 .999 1.00 .162 .232 .573 .888 .988 .546 .478 .562 .565 .765
tφ .091 .196 .784 .993 1.00 .081 .138 .447 .823 .977 .053 .120 .200 .294 .420
MSB .194 .429 .961 1.00 1.00 .160 .224 .612 .943 .995 .505 .426 .500 .486 .712

MZt .268 .542 .992 1.00 1.00 .218 .302 .774 .982 1.00 .457 .353 .375 .354 .580
T (φ̂− 1) .321 .419 .885 1.00 1.00 .159 .213 .522 .892 .996 .045 .084 .132 .188 .265

12 MZα .198 .370 .930 1.00 1.00 .172 .190 .513 .838 .980 .428 .309 .335 .304 .534
tφ .080 .208 .808 .999 1.00 .084 .136 .440 .847 .992 .030 .063 .101 .167 .241
MSB .179 .398 .970 1.00 1.00 .166 .204 .618 .944 .999 .394 .276 .289 .260 .478

MZt .275 .579 1.00 1.00 1.00 .180 .194 .502 .873 .990 .697 .501 .535 .470 .786
T (φ̂− 1) .442 .532 .964 1.00 1.00 .181 .204 .379 .697 .949 .052 .124 .188 .279 .424

24 MZα .228 .530 .998 1.00 1.00 .218 .235 .647 .963 1.00 .671 .461 .492 .428 .750
tφ .077 .223 .905 1.00 1.00 .075 .106 .290 .620 .925 .041 .071 .148 .242 .393
MSB .186 .417 .995 1.00 1.00 .143 .140 .351 .742 .962 .644 .414 .433 .364 .689

MZt .315 .699 1.00 1.00 1.00 .306 .287 .775 .999 1.00 .871 .690 .686 .593 .921
T (φ̂− 1) .600 .687 .996 1.00 1.00 .282 .294 .620 .967 1.00 .068 .139 .249 .360 .542

48 MZα .186 .356 .990 1.00 1.00 .279 .258 .718 .996 1.00 .855 .660 .642 .545 .895
tφ .088 .264 .979 1.00 1.00 .081 .151 .476 .927 1.00 .031 .084 .188 .305 .492
MSB .224 .506 1.00 1.00 1.00 .232 .196 .600 .986 1.00 .826 .604 .564 .456 .833

(ii) δ = 5

MZt .218 .456 .904 .977 .990 .120 .283 .887 .996 1.00 .161 .493 .991 1.00 1.00
T (φ̂− 1) .483 .694 .970 .997 .999 .338 .535 .956 .999 1.00 .295 .622 .994 1.00 1.00

8 MZα .182 .407 .886 .973 .988 .070 .186 .720 .949 .994 .079 .196 .780 .992 1.00
tφ .126 .395 .922 .991 .998 .097 .285 .894 .998 1.00 .082 .374 .979 1.00 1.00
MSB .150 .338 .861 .968 .987 .072 .186 .807 .990 .999 .103 .358 .979 1.00 1.00

MZt .092 .175 .560 .815 .928 .078 .176 .737 .964 .994 .067 .157 .692 .976 1.00
T (φ̂− 1) .369 .486 .780 .934 .978 .263 .423 .874 .991 1.00 .167 .294 .777 .981 .999

12 MZα .063 .143 .522 .794 .914 .038 .078 .388 .747 .913 .034 .066 .291 .669 .915
tφ .042 .161 .588 .857 .952 .047 .184 .728 .975 .999 .019 .108 .596 .958 .999
MSB .052 .115 .472 .765 .891 .046 .110 .626 .932 .987 .040 .101 .561 .939 .998

MZt .167 .283 .837 .985 .999 .066 .170 .737 .989 1.00 .142 .446 .999 1.00 1.00
T (φ̂− 1) .559 .695 .954 .998 1.00 .340 .492 .908 .999 1.00 .339 .708 .999 1.00 1.00

24 MZα .125 .236 .801 .980 .999 .088 .256 .946 1.00 1.00 .087 .275 .975 1.00 1.00
tφ .067 .281 .852 .991 1.00 .044 .180 .751 .994 1.00 .047 .349 .994 1.00 1.00
MSB .091 .196 .750 .970 .998 .042 .106 .602 .966 .999 .097 .293 .993 1.00 1.00

MZt .245 .316 .899 .999 1.00 .090 .221 .912 1.00 1.00 .142 .474 1.00 1.00 1.00
T (φ̂− 1) .702 .820 .988 1.00 1.00 .454 .656 .984 1.00 1.00 .435 .818 1.00 1.00 1.00

48 MZα .190 .271 .862 .997 1.00 .076 .175 .891 .999 1.00 .100 .262 .991 1.00 1.00
tφ .070 .336 .921 .998 1.00 .041 .242 .927 1.00 1.00 .050 .361 1.00 1.00 1.00
MSB .160 .219 .821 .994 1.00 .054 .136 .822 .998 1.00 .095 .315 .998 1.00 1.00

Note: ψ = 0, φ = (ı′n/2, φ̃
′
n/2)′ with (φ̃n/2)i ∼ U(.75, 1). Factor dependent Disturbances.

To keep the present designs manageable, we waive to analyze this scenario here. Also, one could study

the behavior of SH in the presence of deterministic trends or drifts. However, the distribution of the

single-unit M tests from (6) would then depend on the particular variance profile, see Cavaliere

and Taylor [2008b, Thm. 2]. This makes a large-scale simulation study somewhat inconvenient to

implement. A similar comment applies to allowing for broken deterministic trend functions. Some

unreported pilot simulations indicate that, as expected, the power of SH is somewhat lower in the
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presence of deterministic trends. See Section 4 for empirical results in the presence of (broken) trends.

When φ := (φ1, . . . , φn)′ = ın, H0 =
⋂
i∈Nn Hi,0 is true, allowing us to study the size of the tests.

Choosing φ such that mini |φ| < 1, we analyze power of the tests. More specifically, we let φ =

(ı′n/2, φ̃
′
n/2)′ and φ = φ̃n to investigate stationary alternatives. The components of φ̃ are distributed

as (φ̃)i ∼ U(3/4, 1) in the first power experiment and as (φ̃)i ∼ U(0.9, 1) in the second power

experiment. Based on 2, 500 replications, we calculate the rejection rates of the SH test based on the

statistics from (6) and (7). When ψ 6= 0, we select ki using the criterion of Ng and Perron [1995].

Selected results for scenario B (factor dependent disturbances) are reported in Tables II to III.11 The

entries after, e.g.,MSB denote the rejection rates for the SH test when the p-values (3) are calculated

from nMSBi test statistics, defined in (6). The main findings can be summarized as follows.

The SH test is a level-α test throughout, at least for moderate and large T . There are some excep-

tions to this finding for T (φ̂ − 1). When δ is large and τ is small, or vice-versa, SH is somewhat

conservative. This is not surprising as this is precisely the case when the time series tests of Cavaliere

and Taylor [2008b] underreject, too. Apparently, T = 30 is an insufficient time series length to achieve

satisfactorily accurate estimation of the variance profile. Indeed, for small T the profile estimation

may produce stretches of identical observations, that obviously poorly approximate the actual time

series. (Cavaliere and Taylor [2008b] only start their simulations at T = 100.) Some unreported

simulations suggest that there are indeed size distortions in the time series tests that then inevitably

carry over into the panel tests via erroneously small (the oversized case) or large (the undersized

case) p-values. We therefore also experimented with the wild bootstrap unit root tests of Cavaliere

and Taylor [2008a]. However, these exhibit similar small-T size distortion as theM tests, which feed

analogously into the panel tests.

In other cases, size is well-controlled. No clear pattern emerges as to which underlying time series

yields the best performance of the SH test. Thus, a case can be made to recommend the popular and

widely implemented Dickey and Fuller [1979] nonstationary-volatility robust tφ test developed here.

Concerning power (Table III), we again find no clear ranking of the different underlying tests, as

power quickly grows with T for all variants of the SH test. (In view of the size distortions of the

second-generation panel unit root tests found in Table I it does not seem useful to include these here.)

Similar to the findings for size, the tests perform better in the sense of having higher power when the

breaks in the innovation variance are either early positive (both δ and τ small) or late negative (both

δ and τ large), consistent with the time series evidence of Cavaliere and Taylor [2008b]. Also note

that power is higher in those panels where only half of the series are stationary (φ = (ı′n/2, φ̃
′
n/2)′)

11We do not report the qualitatively similar results for equicorrelation for brevity. The full set of results is available
upon request. In particular, we further do not report results for ψ 6= 0. As one would expect, these are worse than those
under no autocorrelation, with some severe upward size distortions for small T , which however vanish with increasing
T . These size distortions are caused by the well-known sensitivity of time series unit root tests to moving-average
disturbances, which then carry over into the panel test. It is also worth noting that in case of δ = 1 the Cavaliere
and Taylor [2008b, Tables I, IV and VIII] testing procedure does not suffer from noticeable size or power distortions.
Unreported simulations indicate that this also holds for the panel test.
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Size scales: Magenta > 0.06, 0.05 < Red < 0.06, 0.04 < Green < 0.05

Power scales: Blue < 0.35, 0.35 < Green < 0.6, 0.6 < Cyan < 0.75, 0.75 <Magenta < 0.9, 0.9 < Brown

Figure I—Rejection Rates for the MZt test

than in the entirely stationary panel (φ = φ̃n). This is because the cutoff criterion for the SH test,

(3), is more likely to be satisfied for some i when there are strongly stationary series in the panel, as

the corresponding p-values will then be closer to their probability limit of 0 for finite T than if φ ≈ ı.

Part of the information contained in the Tables is visualized in Figure I. We provide power results

(cf. the right panel) for a setting where size is well-controlled (cf. the left panel). It is seen that power

increases quickly in T , but much slower in n, which confirms the intuition offered in Remark 1.

4 Unit Roots in Panel Data and the ‘Great Moderation’

In order to demonstrate the relevance of our methodology for macroeconomic and financial problems,

we now apply the tests to two longstanding questions in empirical macroeconomics. Section 4.1

revisits the issue of whether per capita GDP series have a random walk with drift or are better

described as stationary around a linear trend. Section 4.2 tests for unit roots in a panel of inflation

rates.

4.1 GDP Stationarity

We now apply the SH test to investigate the null hypothesis that there is a unit root in the (logarithms

of) GDPs in a panel of OECD countries. At least since the seminal work of Nelson and Plosser

[1982], the possible nonstationarity of GDPs has been a cornerstone of empirical macroeconomics. As

emphasized for instance by Campbell and Perron [1991], the distinction between trend stationarity

and difference stationarity is potentially important in many contexts, such as forecasting, because

the trend- and difference stationary models may imply very different dynamics. If the series contain
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Figure II—Some historical growth rates

a unit root, shocks have persistent effects. As a result, the series do not return to their former path

following a random disturbance, and the level of the series shifts permanently. On the other hand, if

the series do not contain a unit root, the underlying trends are deterministic. In this case the series

return to their steady trend after the shock. Hence, the forecasts implied by the two models are vastly

different.

Some prominent papers in this literature are Cochrane [1988], who finds a small random walk compo-

nent in U.S. GDP, whereas Cogley [1990] and Kormendi and Meguire [1990] identify stronger random-

walk behavior in multi-country studies. Kwiatkowski, Phillips, Schmidt and Shin [1992] report weak

evidence against the null of trend stationarity for U.S. GNP. Relying on Bayesian techniques, DeJong

and Whiteman [1991] forcefully argue against the presence of a unit root in U.S. GDP. The debate

appears to be far from settled, with recent contributions both supporting [Vougas, 2007] and rejecting

[Murray and Nelson, 2000; Darné, 2009] stationarity.

Recently, panel methods have been used to investigate GDP stationarity in industrialized countries.

Using first generation tests, Strauss [2000] finds evidence of stationarity in a panel of U.S. states.

On the contrary, Rapach’s [2002] study using Levin et al.’s [2002] and Im et al.’s [2003] tests cannot

reject the null of nonstationarity for a panel of international output levels.

However, all of the above results are obtained within the paradigm of homoscedastic (panel) unit

root tests. We believe that these results may not be reliable in view of what is known as the ‘Great

12



Table IV—Sorted p-values of Nonstationary-Volatility Robust Unit Root Tests
on OECD Output Series.

MZt tφ MZα T (φ̂− 1) MSB Simes’ cutoff

p(1) .009 AUT .000 IRL .023 ISL .003 IRL .018 ISL .002

p(2) .009 IRL .026 AUT .119 DNK .107 FRA .112 DNK .003

p(3) .036 ISL .173 ISL .166 IRL .165 ISL .192 NOR .005

p(4) .090 FIN .201 FRA .182 GBR .224 NOR .197 LUX .007

p(5) .149 DNK .262 GER .193 NOR .246 POL .202 GBR .008

p(6) .199 GBR .271 POL .226 LUX .272 LUX .431 GER .010

p(7) .223 NOR .276 CAN .251 AUT .278 GER .615 POL .012

p(8) .280 CAN .296 LUX .412 GER .297 AUT .619 IRL .013

p(9) .283 LUX .322 NOR .472 POL .411 DNK .772 PRT .015

p(10) .343 POL .404 GBR .638 PRT .411 CZE .785 AUT .017

p(11) .422 GER .415 DNK .720 NZL .417 GBR .799 NLD .018

p(12) .529 PRT .566 NZL .746 CAN .665 NZL .846 NZL .020

p(13) .606 NZL .656 SWE .752 NLD .704 SWE .858 US .022

p(14) .708 NLD .682 AUS .762 FIN .705 FIN .860 FRA .023

p(15) .712 AUS .708 FIN .794 FRA .714 MEX .868 MEX .025

p(16) .742 FRA .728 TUR .802 AUS .727 CAN .907 SVK .027

p(17) .843 TUR .755 BEL .920 BEL .749 AUS .910 KOR .028

p(18) .861 SWE .759 PRT .920 MEX .789 TUR .943 AUS .030

p(19) .872 BEL .781 MEX .925 SWE .791 BEL .963 GRC .032

p(20) .920 MEX .809 NLD .928 US .802 CHE .976 JPN .033

p(21) .928 US .828 CHE .965 ESP .845 JPN .987 CHE .035

p(22) .947 ESP .852 ESP .967 CHE .854 GRC .988 BEL .037

p(23) .950 CHE .869 JPN .976 JPN .863 NLD .988 HUN .038

p(24) .970 JPN .887 GRC .981 GRC .872 US .991 CAN .040

p(25) .978 GRC .888 CZE .984 TUR .890 ESP .996 SWE .042

p(26) 1.000 ITA .890 US .999 CZE .906 PRT .998 FIN .043

p(27) 1.000 KOR .968 ITA .999 ITA .958 ITA 1.000 ITA .045

p(28) 1.000 HUN .994 HUN 1.000 KOR .964 SVK 1.000 TUR .047

p(29) 1.000 CZE .997 SVK 1.000 HUN .995 HUN 1.000 CZE .048

p(30) 1.000 SVK .998 KOR 1.000 SVK .998 KOR 1.000 ESP .050

The sorted p-values from the test statistics described in (6) and (7) applied to OECD output data.

Moderation.’ It is a well-established stylized fact that many countries enjoy a moderation of the

business cycle and, more generally, reduced volatility in the growth rates of GDPs. See, for instance,

Blanchard and Simon [2001] for some international evidence. The reasons for this decline are sur-

veyed in Stock and Watson [2002] and include structural changes in output from goods to services,

information-technology-led improvements in inventory management and innovations in financial mar-

kets.

See Figure II for some selected time series of historical growth rates of OECD countries (see below for

a description of the dataset). It is readily apparent that the volatility of GDP growth is smaller since,

in most cases, the 1980s. Concretely, the United States and Australia appear to experience reduced

GDP-growth variance since the mid-80s, whereas the reduction seems to have set in somewhat later

in Canada and the United Kingdom. As we saw in Section 2.1, traditional (panel) unit root tests

produce misleading results in the presence of such nonstationary volatility. Furthermore, the above-
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Figure III—First sorted p-values of different tests required for Simes’ test

mentioned panel studies disregard the unquestionable presence of cross-sectional dependence among

output levels—better known as ‘Globalization.’

We therefore compute the SH test to provide potentially more reliable inference in the presence of

nonstationary volatility. An attractive feature of constructing a panel test of GDP stationarity using

Cavaliere and Taylor’s approach is that we can easily sidestep the debate whether the reduction in

volatility is due to a break or a continuing downward trend in innovation variances. (The former view

is held by Kim and Nelson [1999] and McConnell and Perez-Quiros [2000] whereas the findings of

Blanchard and Simon [2001] support the latter.) As long as the innovation variances satisfy the mild

assumption (see ass. 2) that σi,bsT c ∈ D, the time-transformed time series unit root tests employed

here will automatically adjust to the variance patterns in the different countries.

Our dataset comprises the seasonally adjusted quarterly GDP levels from 30 OECD members, con-

structed from data made available on the OECD website (series LNBQRSA, at 2000 prices in most

cases). It runs until 2007Q4 and therefore does not cover the recent developments clouded by the

financial crisis and the euro debt crisis that may imply the end of the Great Moderation.12 The

series start at varying dates, ranging from 1955Q1 in the case of the United Kingdom and the United

States to 2000Q1 for Greece, Hungary and Ireland, yielding time series lengths ranging from T = 32

to T = 212. In view of the secular trend in Gross Domestic Products, we need to accommodate time

trends to construct the test statistics in the present application. We thus calculate the time series

test statistics from (6) and (7) employing the trend-corrected statistics as outlined in Cavaliere and

Taylor [2008b, Sec. 5]. The p-values are then computed from the corresponding limiting distributions

that are then functionals of detrended Brownian Motions. In the trend case, separate distributions

arise for each country, as these then depend on the variance profile. E.g.,

MZα,i ⇒
FBi|Z̆(1)2 − FBi|Z̆(0)2 − 1

2
∫ 1

0 FBi|Z̆(s)2 ds

where FBi|Z̆(s) := Bi(s) − Z̆i(s)′
(∫ 1

0 Z̆i(r)Z̆i(r)
′ dr
)−1 ∫ 1

0 Z̆i(r)Bi(r) dr and Z̆i(s) = Z(gi(s)), where

12To check for robustness of our findings, we have also included the recent period until 2012Q4 and found qualitatively
the same results regarding the question of GDP stationarity.
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Figure IV—Some quarterly inflation rates

Z̆i(s) is the suitably scaled limit of the trend function. We obtain these distributions from Cavaliere

and Taylor’s Theorem 2 from 50,000 draws from the functionals, approximating the Wiener processes

with suitably normalized Gaussian random walks of length T = 1, 000 and estimating the variance

profile as in (5). The lag orders ki required to account for autocorrelation in growth rates are chosen

with the automatic criterion of Ng and Perron [1995].

Results are reported in Table IV. It is apparent that there is rather little evidence of stationarity of

GDPs in the present OECD panel dataset. We only find a rejection based on the tφ test for Ireland.

We are, however, cautious about this finding as the Irish series only has T = 32, the shortest series

in the panel. This rejection may therefore well be caused by small-sample size distortions. Figure

III plots the first few sorted p-values of the different tests along with the cutoff values of Simes’ test.

It is seen that the sorted p-values all increase rather quickly, so as to move away from Simes’ cutoff

value. (As such, it is also not interesting to calculate Hommel’s procedure.) Only in the case of the

tφ-test is the first p-value sufficiently small so as to lead to a rejection of H0. Our results suggest that

previous rejections of the (panel) unit root null may have been driven by the upward size distortions

that result when ignoring nonstationary volatility in homoscedastic panel tests (cf. Table I).

Note also that the first one or two p-values of all tests are below the 5%-line. Specifically, these are

the p-values for Austria, Ireland and Iceland for MZt, Ireland and Austria for tφ, and Iceland for

MZα and MSB. That is, if one had conducted separate nonstationary volatility-robust unit root
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Figure V—Sorted p-values of countries’ inflation tests

tests on the series and rejected the single null for each series for which pi 6 0.05, one would have found

a certain amount of evidence in favor of GDP trend stationarity.13 Our multiple testing approach,

however, suggests that these rejections are to be seen as spurious (except, perhaps, for tφ), as that

approach does not control the FWER—by conducting a sufficient amount of hypotheses tests, one is

bound to eventually reject some null hypothesis even if all are correct.

4.2 Unit Roots in Inflation Panels

We now revisit another longstanding question in empirical macroeconomics, viz. that of testing for a

unit root in inflation. Whether or not inflation contains a unit root has important implications for the

plausibility of many sticky price [Taylor, 1979] and Phillips curve [Calvo, 1983] models [Culver and

Papell, 1997]. E.g., the latter assumes stationarity of inflation. Furthermore, upon accepting that the

nominal interest rate contains a unit root, stationarity of the real interest rate requires inflation to

have a unit root [Rose, 1988]. Indeed, it is often argued in the applied time series literature that price

levels are potentially integrated of order two, i.e. I(2) [Juselius and MacDonald, 2004]. This would

imply that inflation rates are I(1). On the other hand, finding that inflation rates contain a unit root

would call the credibility of the corresponding central banks into question at least in countries with

the explicit goal to achieve stable prices. Unsurprisingly, therefore, commensurately many empirical

studies have investigated the issue of inflation stationarity, using a variety of techniques. A selective

list of contributions includes the early work of Nelson and Schwert [1977], Rose [1988] and Johansen

[1992], who use univariate techniques and find mixed results. More recently, Culver and Papell [1997]

or Lee and Wu [2001] use panel methods, and are mostly in favor of inflation stationarity. The

interest in the issue continues unabated, as evidenced by e.g. Romero-Ávila and Usabiaga [2009]. At

the same time, the inflation rate is one of the prominent examples of a time series that enjoyed a

‘Great Moderation’. Among many others, Stock and Watson [2002] or Cogley and Sargent [2005] note

that there has been a downward trend in the innovation variances of inflation in recent decades, with

the standard deviation of U.S. inflation from 1981 to 2001 being roughly half as high as that from

13Our full sample results show that these rejections even disappear when including the recent crises into the sample
period.
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Figure VI—The variance transformed Finnish inflation rate

1960 to 1983. See Figure IV for a few examples of pronounced reductions in the innovation variances

of inflation. These appear to have set in the late 1970s, thus several years earlier than the variance

reductions for GDP.

However, to the best of our knowledge, just as with testing for GDP stationarity, these two strands

of literature are typically not connected. Concretely, the above (panel) unit root studies do not allow

for variance nonstationarity. Moreover, most panel tests again neglect possible cross-sectional depen-

dence. Here, we attempt to take these features of the data into account, employing the previously

developed techniques to conduct inference about inflation (non-)stationarity robust to variance non-

stationarity. We again use quarterly data from the same 30 OECD member countries. The earliest

starting date is 1955Q1, the latest is 1991Q1 (for some newly formed countries like the Slovak Repub-

lic). The time series end in 2013Q1. Since we also want to allow for trends not only in the variances

but also in the mean of inflation, we conduct all time series unit root tests with both constants and

trends.

The results are presented in Table V. All unit root tests produce a number of very small p-values.

Hence, (3) is easily satisfied and the panel unit root null is strongly rejected. Figure V plots sorted

p-values of the tests along with Simes’ cutoffs. The threeM tests as well as the two ADF tests appear

to correlate quite strongly with each other. We also conduct ‘standard’ homoscedastic unit root tests

(detailed results are available upon request) and find that these often produce rather different results.

For example, the tφ statistic for Finland has a p-value of 0.138, whereas the statistic applied to the

variance-transformed series has a p-value of 0.002. In view of Figure IV, this can be interpreted

intuitively. The rather volatile 50s to early 70s produce residuals from detrending that are almost

always below the trend line. This leads a standard unit root test to conclude that the persistence

in the series is such that it has a stochastic trend. Conversely, the variance transformed time series

will ‘spread’ highly volatile stretches of the data over the sample period (cf. Figure VI). This will

ensure that the series spend less consecutive time above or below trend, leading a unit root test to

lean in favor of stationarity (for the above period, there is an almost equal split between positive and

negative residuals).

We can then use Hommel’s procedure to classify the series into stationary and non-stationary ones.
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Figure VII—Individual Rejections from Hommel’s j for MZt

The MZt, tφ, MZα, T (φ̂ − 1) and MSB tests produce Hommel’s j’s (8) of 7, 20, 8, 14 and 8 at

α = 0.05. Hence, p-values smaller than e.g. α/7 lead to individual rejections. Figure VII illustrates

this for MZt. Table V can then be used to read off detailed country results corresponding to

these estimates. The MZt test would for instance classify the inflation rates of the countries with

the 23 smallest p-values as stationary. Again, some p-values are in the interval [α/j, α] for each

underlying time series unit root test. (For instance, those of the Czech Republic and Korea for

MZα.) The multiple testing approach used here suggests that the corresponding hypotheses would

only be spuriously declared false if one rejected whenever a p-value satisfies pi 6 α.

To keep the presentation focussed, the previous analysis has allowed for permanent breaks in the

innovation variance while assuming the trend function to be constant over time. Clearly, there could

simultaneously occur structural breaks in the latter. We therefore now redo the analysis allowing

for a broken intercept and trend model; see Perron [1989]. Cavaliere and Taylor [2008b, Sec. 5]

show that valid null limiting distributions of the test statistics can be obtained in terms of Hilbert

projections of Bi(s) onto the space orthogonal to Z̆i(s), where Z̆i(s) = Zi(gi(s)) is the suitably scaled

limit of the trend function. Hence, Z̆i(s) is the limit of the broken intercept and trend model here.

The series of five countries, the Czech Republic, Mexico, Poland, Slovakia and Turkey, are either

too short to reliably fit a pre-and post break regime or exhibit little variation in this case and are

therefore discarded. This yields n = 25 now. We somewhat heuristically identify the break dates

through inspection. Figure VIII shows that the results for the broken intercept and trend model

are qualitatively similar to those of the trend model. (Detailed country level results are available

upon request.) Specifically, all versions of SH reject the global panel null of inflation nonstationarity,

although the M-versions do so more clearly than the ADF-based tests.

5 Conclusion

This paper proposes a new test for a panel unit root against the alternative of a partially stationary

panel, making use of Simes’ [1986] classical test of the intersection null hypothesis. Unlike most

previously proposed panel tests, the one put forward here, extending the idea of Hanck [2013], is
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Table V—Sorted p-values of Nonstationary-Volatility Robust Unit Root Tests
on Inflation Series.

MZt tφ MZα T (φ̂− 1) MSB Simes’ cutoff

p(1) .000 AUS .000 DNK .000 AUS .000 GER .000 AUS .002

p(2) .000 AUT .000 NOR .000 AUT .000 NOR .000 AUT .003

p(3) .000 BEL .000 AUT .000 BEL .000 AUT .000 BEL .005

p(4) .000 CAN .000 PRT .000 CAN .000 PRT .000 CAN .007

p(5) .000 GBR .000 NLD .000 GBR .000 DNK .000 GBR .008

p(6) .000 DNK .001 GER .000 DNK .000 SWE .000 DNK .010

p(7) .000 FIN .001 SWE .000 FIN .000 GRC .000 FIN .012

p(8) .000 CHE .002 KOR .000 CHE .000 NLD .000 CHE .013

p(9) .000 GER .002 FIN .000 GER .000 AUS .000 GER .015

p(10) .000 GRC .002 AUS .000 GRC .001 TUR .000 GRC .017

p(11) .000 HUN .004 IRL .000 HUN .001 CAN .000 HUN .018

p(12) .000 SWE .005 GRC .000 SWE .001 FIN .000 SWE .020

p(13) .000 IRL .007 MEX .000 IRL .001 CHE .000 IRL .022

p(14) .000 ITA .009 TUR .000 ITA .002 KOR .000 ITA .023

p(15) .000 JPN .009 CAN .000 JPN .002 IRL .000 JPN .025

p(16) .000 NOR .011 CHE .000 NOR .003 HUN .000 NOR .027

p(17) .000 LUX .024 BEL .000 LUX .004 LUX .000 LUX .028

p(18) .000 ESP .026 LUX .000 ESP .007 ESP .000 ESP .030

p(19) .000 NLD .029 ISL .000 NLD .010 BEL .000 NLD .032

p(20) .000 PRT .038 HUN .000 PRT .012 ITA .000 PRT .033

p(21) .000 NZL .043 ESP .000 NZL .031 MEX .000 NZL .035

p(22) .001 US .069 ITA .000 US .039 ISL .000 US .037

p(23) .005 CZE .173 US .015 CZE .072 SVK .045 KOR .038

p(24) .023 SVK .209 JPN .045 KOR .085 US .048 CZE .040

p(25) .056 KOR .226 SVK .051 SVK .146 JPN .113 ISL .042

p(26) .096 ISL .272 GBR .096 ISL .167 NZL .117 SVK .043

p(27) .130 MEX .318 FRA .346 FRA .183 GBR .320 TUR .045

p(28) .335 FRA .326 NZL .349 TUR .188 CZE .388 FRA .047

p(29) .405 TUR .393 CZE .533 MEX .282 FRA .907 MEX .048

p(30) .919 POL .674 POL .992 POL .717 POL 1.000 POL .050

The sorted p-values from the test statistics described in (6) and (7) applied to OECD inflation data.

robust to the presence of nonstationary volatility. Moreover, the test is intuitive, straightforward

to implement and yet robust to general patterns of cross-sectional dependence. Importantly, unlike

other tests, Simes’ [1986] approach allows to shed light on the important question for how many and

also which of the units in the panel the alternative can be said to hold when the null hypothesis

is rejected. Hence, the test suggested here allows to decide, for instance, for each unit individually,

whether to forecast the respective time series using a deterministic or stochastic trend specification.

Monte Carlo simulations investigate the performance of the new SH test based on several different

underlying nonstationary-volatility robust time series unit root tests, two of which are derived specif-

ically for this paper. The results show that the SH test controls size and is powerful for different

patterns of cross-sectional dependence, nonstationary volatility and serial correlation.

We use the new tests to revisit the question of nonstationarity of output levels and inflation rates.

Unlike in previous panel studies, the test results are not contaminated by the ‘Great Moderation’,
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Figure VIII—Sorted p-values of countries’ inflation tests, broken intercept and
trend model

i.e. the reduction in e.g. the volatility of GDP growth rates experienced by many industrialized

countries. We find only very weak evidence of stationarity in the investigated panel of OECD output

levels, thus contributing to the view that output levels are well described by a stochastic trend. On

the other hand, we find that several OECD countries appear to have a stationary inflation rate.

Obviously, the framework used here is quite flexible and could hence be adopted to other topics in

macroeconometrics and finance. Essentially, one only requires valid time series p-values that can then

be conveniently combined into a panel test statistic. As such, the present approach could possibly

be used to straightforwardly derive, say, panel unit root tests that allow for nonlinearity or panel

cointegration tests, the development of which has often proved tedious using other approaches.
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Additional Monte Carlo results—Not for Publication

These tables also contain rows with test results for the SH test using p-values obtained from MacKinnon-

type response surface regressions. The respective time series tests underlying the SH test are then

indexed by an M . Dependence scheme 1 corresponds to the benchmark case of cross-sectional inde-

pendence, scheme 2 to equicorrelation and scheme 3 to factor dependence.
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Table A-1—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .065 .058 .064 .054 .054 .064 .055 .049 .050 .054 .207 .082 .032 .019 .027
T (φ̂− 1) .154 .108 .067 .036 .043 .094 .071 .054 .052 .047 .013 .024 .019 .023 .022
MZα .046 .042 .043 .035 .034 .044 .034 .028 .036 .034 .196 .075 .026 .014 .021
tφ .028 .036 .035 .026 .034 .034 .041 .039 .041 .039 .010 .012 .014 .013 .014

8 MSB .046 .042 .043 .035 .034 .044 .034 .028 .036 .034 .175 .066 .020 .008 .015
MZt,M .050 .051 .063 .054 .056 .049 .046 .047 .050 .055 .188 .077 .032 .019 .027
tφ,M .132 .101 .066 .036 .044 .077 .067 .053 .052 .048 .010 .021 .019 .023 .023
T (φ̂− 1)M .059 .055 .048 .032 .042 .067 .063 .050 .050 .046 .020 .023 .019 .018 .018
MZα,M .117 .088 .076 .058 .056 .103 .078 .055 .052 .055 .250 .101 .038 .020 .027

MZt .063 .065 .060 .064 .051 .075 .044 .045 .042 .046 .275 .110 .040 .010 .028
T (φ̂− 1) .168 .131 .079 .050 .045 .108 .079 .052 .050 .048 .013 .016 .017 .018 .027
MZα .041 .039 .043 .042 .033 .052 .026 .028 .024 .024 .255 .102 .032 .008 .023
tφ .030 .040 .037 .038 .035 .034 .036 .036 .037 .034 .009 .008 .010 .010 .015

12 MSB .041 .039 .043 .042 .033 .052 .026 .028 .024 .024 .241 .090 .026 .006 .015
MZt,M .042 .050 .057 .061 .049 .054 .034 .041 .041 .045 .248 .100 .036 .010 .027
tφ,M .144 .119 .074 .049 .044 .085 .069 .049 .047 .046 .006 .013 .016 .017 .024
T (φ̂− 1)M .061 .057 .050 .046 .041 .078 .063 .046 .044 .047 .020 .019 .014 .014 .021
MZα,M .123 .090 .068 .067 .051 .126 .072 .050 .044 .046 .332 .130 .044 .011 .027

MZt .068 .054 .059 .060 .044 .076 .049 .036 .037 .036 .386 .129 .039 .011 .028
T (φ̂− 1) .251 .166 .094 .057 .042 .146 .098 .068 .050 .053 .014 .022 .021 .018 .024
MZα .048 .034 .040 .037 .030 .062 .028 .023 .023 .021 .366 .118 .035 .010 .024
tφ .026 .037 .040 .037 .030 .040 .045 .043 .038 .044 .010 .015 .010 .014 .019

24 MSB .048 .034 .040 .037 .030 .062 .028 .023 .023 .021 .351 .109 .028 .008 .016
MZt,M .038 .035 .050 .054 .043 .053 .030 .032 .035 .032 .331 .108 .032 .010 .026
tφ,M .208 .142 .086 .052 .040 .111 .085 .059 .046 .050 .007 .014 .016 .018 .022
T (φ̂− 1)M .076 .061 .052 .045 .036 .096 .075 .058 .048 .049 .029 .025 .012 .016 .022
MZα,M .150 .097 .072 .063 .045 .137 .078 .043 .040 .038 .468 .163 .047 .013 .028

MZt .064 .046 .054 .051 .050 .102 .052 .033 .024 .034 .564 .198 .042 .008 .012
T (φ̂− 1) .381 .250 .118 .052 .059 .195 .113 .080 .058 .067 .015 .020 .020 .016 .024
MZα .046 .028 .033 .027 .031 .078 .031 .017 .013 .022 .542 .182 .036 .007 .011
tφ .027 .040 .041 .033 .042 .041 .038 .048 .034 .048 .011 .009 .010 .008 .012

48 MSB .046 .028 .033 .027 .031 .078 .031 .017 .013 .022 .519 .160 .030 .004 .009
MZt,M .034 .027 .040 .034 .041 .062 .029 .022 .017 .031 .494 .160 .033 .007 .010
tφ,M .296 .202 .104 .045 .054 .126 .079 .062 .052 .061 .008 .008 .014 .013 .020
T (φ̂− 1)M .094 .075 .057 .038 .047 .112 .075 .063 .044 .057 .033 .023 .014 .010 .016
MZα,M .168 .087 .064 .053 .050 .184 .085 .042 .027 .034 .657 .242 .050 .009 .012

Note: Case ψ = 0, φ = ın, δ = 0.2. Dependence scheme 1.
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Table A-2—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .059 .058 .062 .056 .050 .068 .042 .048 .049 .046 .201 .100 .037 .020 .034
T (φ̂− 1) .142 .120 .067 .036 .047 .090 .068 .049 .047 .045 .014 .024 .016 .018 .027
MZα .052 .059 .054 .046 .049 .053 .048 .041 .035 .037 .183 .086 .033 .015 .029
tφ .026 .039 .038 .033 .037 .035 .032 .032 .036 .036 .011 .011 .007 .012 .017

8 MSB .036 .040 .043 .038 .031 .052 .028 .026 .030 .025 .173 .075 .028 .009 .018
MZt,M .045 .050 .059 .056 .050 .055 .038 .046 .050 .048 .182 .090 .036 .020 .034
tφ,M .127 .112 .066 .036 .047 .071 .059 .048 .047 .046 .010 .021 .016 .017 .027
T (φ̂− 1)M .049 .058 .050 .038 .042 .068 .056 .044 .048 .043 .018 .021 .012 .015 .026
MZα,M .102 .083 .072 .060 .050 .107 .063 .055 .051 .048 .242 .114 .041 .020 .034

MZt .067 .061 .068 .056 .050 .062 .048 .051 .049 .044 .242 .110 .035 .016 .030
T (φ̂− 1) .170 .128 .083 .043 .046 .108 .078 .056 .054 .045 .010 .023 .015 .019 .023
MZα .057 .046 .053 .048 .046 .057 .034 .038 .041 .035 .226 .101 .030 .012 .024
tφ .024 .040 .037 .028 .034 .033 .035 .038 .043 .034 .008 .016 .009 .010 .016

12 MSB .043 .038 .042 .034 .034 .046 .032 .029 .028 .023 .214 .090 .023 .010 .016
MZt,M .046 .046 .063 .052 .049 .049 .041 .046 .047 .042 .216 .102 .034 .015 .028
tφ,M .148 .115 .078 .041 .045 .088 .068 .052 .052 .044 .007 .019 .013 .018 .022
T (φ̂− 1)M .058 .061 .050 .035 .039 .077 .062 .050 .051 .042 .020 .025 .011 .015 .018
MZα,M .120 .087 .074 .058 .049 .110 .072 .056 .052 .044 .300 .130 .039 .016 .030

MZt .056 .059 .056 .057 .046 .082 .044 .037 .033 .036 .358 .143 .035 .008 .018
T (φ̂− 1) .241 .171 .093 .052 .046 .126 .096 .066 .052 .052 .012 .021 .011 .012 .018
MZα .052 .050 .052 .042 .039 .063 .033 .030 .023 .030 .343 .138 .028 .006 .014
tφ .032 .045 .045 .034 .033 .034 .040 .043 .038 .041 .011 .013 .006 .006 .011

24 MSB .039 .037 .034 .039 .030 .062 .030 .024 .018 .020 .327 .122 .023 .004 .009
MZt,M .036 .040 .046 .051 .042 .056 .031 .032 .029 .033 .318 .127 .032 .007 .017
tφ,M .198 .147 .088 .048 .044 .098 .076 .058 .047 .050 .008 .015 .010 .011 .016
T (φ̂− 1)M .076 .073 .056 .044 .039 .083 .072 .055 .046 .048 .028 .022 .008 .009 .014
MZα,M .120 .095 .068 .062 .047 .138 .071 .044 .037 .036 .420 .174 .042 .009 .020

MZt .068 .050 .049 .042 .046 .100 .043 .029 .028 .028 .502 .181 .042 .009 .016
T (φ̂− 1) .324 .229 .103 .059 .064 .173 .114 .076 .060 .055 .017 .022 .020 .015 .018
MZα .054 .046 .046 .048 .035 .075 .036 .024 .024 .021 .483 .169 .036 .007 .012
tφ .028 .050 .042 .037 .042 .039 .040 .046 .037 .044 .013 .010 .010 .007 .010

48 MSB .049 .027 .029 .025 .032 .079 .028 .019 .015 .016 .461 .154 .028 .004 .009
MZt,M .030 .027 .036 .035 .041 .066 .027 .022 .020 .023 .444 .150 .033 .007 .014
tφ,M .262 .192 .088 .050 .054 .127 .083 .062 .048 .051 .008 .011 .013 .013 .015
T (φ̂− 1)M .095 .080 .054 .045 .047 .111 .078 .060 .048 .050 .033 .019 .014 .009 .013
MZα,M .161 .096 .061 .047 .046 .171 .076 .043 .031 .028 .584 .220 .047 .009 .016

Note: Case ψ = 0, φ = ın, δ = 0.2. Dependence scheme 2.
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Table A-3—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .070 .058 .064 .059 .051 .057 .048 .047 .050 .045 .158 .079 .040 .018 .032
T (φ̂− 1) .163 .103 .067 .040 .044 .092 .070 .056 .049 .044 .018 .026 .017 .022 .024
MZα .045 .042 .053 .055 .042 .051 .036 .039 .033 .036 .145 .071 .034 .014 .024
tφ .036 .041 .038 .033 .035 .036 .042 .047 .039 .040 .007 .013 .011 .012 .018

8 MSB .045 .038 .040 .040 .032 .040 .034 .033 .033 .032 .134 .059 .026 .011 .021
MZt,M .054 .049 .062 .059 .052 .043 .044 .045 .049 .046 .138 .073 .040 .018 .032
tφ,M .147 .099 .064 .040 .044 .074 .064 .056 .049 .044 .013 .022 .017 .022 .025
T (φ̂− 1)M .074 .061 .051 .040 .042 .066 .060 .056 .045 .045 .018 .022 .016 .018 .022
MZα,M .122 .084 .075 .062 .051 .092 .070 .052 .051 .046 .199 .093 .045 .018 .031

MZt .067 .056 .063 .056 .048 .064 .042 .042 .044 .044 .231 .083 .036 .020 .028
T (φ̂− 1) .198 .131 .072 .039 .048 .107 .067 .058 .046 .052 .018 .024 .014 .029 .025
MZα .054 .048 .044 .049 .030 .052 .036 .035 .032 .037 .212 .074 .028 .012 .022
tφ .031 .036 .040 .027 .038 .034 .029 .038 .034 .043 .012 .010 .011 .017 .013

12 MSB .043 .034 .042 .038 .030 .044 .027 .022 .028 .030 .197 .064 .022 .007 .017
MZt,M .045 .044 .058 .053 .047 .047 .035 .038 .042 .043 .204 .074 .033 .019 .026
tφ,M .172 .113 .069 .037 .047 .086 .058 .052 .044 .052 .010 .016 .014 .028 .024
T (φ̂− 1)M .084 .060 .055 .036 .043 .072 .050 .050 .045 .050 .022 .020 .014 .022 .020
MZα,M .113 .078 .072 .058 .050 .106 .073 .048 .045 .044 .291 .102 .040 .021 .028

MZt .056 .046 .060 .046 .048 .074 .040 .042 .034 .035 .330 .115 .033 .009 .022
T (φ̂− 1) .263 .193 .091 .049 .052 .123 .091 .070 .059 .052 .015 .021 .017 .018 .018
MZα .053 .032 .056 .035 .039 .060 .037 .029 .028 .033 .312 .106 .028 .008 .018
tφ .036 .051 .043 .032 .041 .028 .044 .045 .040 .040 .010 .010 .010 .009 .010

24 MSB .039 .030 .041 .030 .030 .053 .028 .027 .021 .020 .288 .091 .022 .006 .012
MZt,M .030 .031 .052 .040 .042 .048 .029 .035 .032 .032 .283 .098 .028 .008 .020
tφ,M .221 .164 .081 .044 .049 .087 .076 .062 .054 .048 .009 .015 .014 .016 .017
T (φ̂− 1)M .089 .084 .057 .040 .046 .077 .075 .062 .051 .047 .028 .021 .013 .011 .012
MZα,M .135 .082 .070 .050 .048 .129 .071 .052 .037 .036 .405 .148 .039 .011 .022

MZt .051 .052 .064 .060 .039 .085 .042 .031 .029 .031 .483 .186 .036 .007 .014
T (φ̂− 1) .420 .253 .106 .062 .052 .184 .117 .074 .065 .065 .016 .021 .019 .017 .024
MZα .051 .049 .048 .032 .031 .072 .028 .033 .025 .021 .460 .169 .031 .006 .010
tφ .032 .044 .046 .044 .039 .035 .042 .041 .043 .046 .009 .010 .010 .010 .015

48 MSB .031 .028 .042 .036 .019 .068 .027 .016 .017 .020 .437 .153 .024 .004 .007
MZt,M .020 .026 .049 .048 .030 .053 .027 .020 .022 .026 .406 .153 .028 .005 .010
tφ,M .337 .198 .090 .054 .044 .126 .086 .057 .053 .055 .007 .013 .014 .014 .022
T (φ̂− 1)M .108 .084 .060 .049 .043 .109 .076 .059 .053 .054 .027 .022 .012 .013 .016
MZα,M .146 .088 .076 .065 .038 .165 .070 .038 .032 .031 .573 .222 .041 .008 .014

Note: Case ψ = 0, φ = ın, δ = 0.2. Dependence scheme 3.
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Table A-4—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .026 .009 .005 .003 .006 .011 .013 .016 .020 .016 .013 .014 .033 .021 .032
T (φ̂− 1) .162 .229 .216 .186 .172 .119 .095 .066 .060 .055 .067 .050 .056 .047 .054
MZα .011 .003 .003 .002 .002 .004 .006 .010 .010 .011 .006 .007 .020 .013 .023
tφ .020 .037 .050 .058 .051 .012 .018 .022 .025 .028 .006 .014 .023 .018 .034

8 MSB .007 .002 .002 .001 .002 .004 .006 .010 .010 .011 .006 .007 .020 .013 .023
MZt,M .020 .008 .004 .003 .006 .008 .011 .016 .020 .017 .010 .013 .032 .021 .032
tφ,M .148 .220 .213 .186 .174 .103 .088 .065 .060 .056 .053 .044 .054 .047 .055
T (φ̂− 1)M .035 .051 .061 .069 .060 .027 .030 .028 .030 .032 .016 .021 .033 .026 .035
MZα,M .022 .006 .003 .003 .004 .015 .015 .015 .020 .017 .025 .024 .035 .022 .030

MZt .035 .012 .002 .003 .008 .010 .010 .013 .015 .017 .016 .018 .018 .026 .026
T (φ̂− 1) .214 .277 .261 .228 .201 .140 .110 .084 .069 .064 .066 .064 .056 .052 .058
MZα .020 .006 .002 .002 .006 .003 .003 .007 .010 .010 .007 .007 .012 .017 .015
tφ .020 .044 .063 .066 .062 .008 .020 .024 .030 .027 .006 .012 .018 .021 .030

12 MSB .014 .004 .001 .002 .005 .003 .003 .007 .010 .010 .007 .007 .012 .017 .015
MZt,M .029 .007 .002 .002 .008 .006 .008 .011 .014 .016 .008 .014 .016 .024 .026
tφ,M .182 .254 .252 .226 .200 .113 .096 .080 .065 .062 .054 .057 .052 .050 .056
T (φ̂− 1)M .037 .066 .078 .078 .072 .028 .033 .031 .038 .034 .022 .023 .024 .030 .034
MZα,M .033 .010 .003 .003 .006 .016 .014 .014 .015 .017 .030 .026 .020 .027 .027

MZt .040 .009 .003 .002 .004 .013 .005 .011 .015 .012 .018 .014 .021 .023 .025
T (φ̂− 1) .312 .382 .353 .306 .248 .182 .144 .090 .088 .070 .089 .072 .061 .053 .053
MZα .020 .004 .002 .001 .004 .007 .002 .006 .010 .007 .009 .009 .012 .013 .014
tφ .028 .048 .071 .074 .072 .011 .018 .025 .034 .029 .005 .008 .016 .023 .028

24 MSB .014 .002 .002 .001 .002 .007 .002 .006 .010 .007 .009 .009 .012 .013 .014
MZt,M .031 .008 .003 .002 .004 .010 .004 .009 .013 .011 .010 .012 .017 .020 .024
tφ,M .268 .344 .334 .296 .242 .138 .115 .078 .082 .066 .061 .057 .057 .049 .049
T (φ̂− 1)M .056 .083 .084 .090 .080 .028 .034 .033 .039 .033 .020 .018 .025 .028 .031
MZα,M .039 .008 .002 .001 .004 .020 .012 .014 .015 .011 .040 .024 .025 .024 .025

MZt .049 .011 .002 .001 .002 .015 .006 .009 .010 .009 .014 .012 .020 .018 .015
T (φ̂− 1) .435 .516 .488 .416 .335 .262 .197 .112 .099 .087 .119 .090 .062 .058 .055
MZα .024 .006 .001 .000 .002 .008 .002 .006 .007 .003 .006 .005 .014 .010 .010
tφ .032 .065 .082 .095 .084 .010 .019 .024 .026 .036 .004 .010 .016 .018 .026

48 MSB .018 .003 .000 .000 .001 .008 .002 .006 .007 .003 .006 .005 .014 .010 .010
MZt,M .032 .007 .002 .001 .001 .007 .002 .006 .008 .006 .005 .006 .016 .014 .013
tφ,M .353 .453 .457 .387 .311 .181 .146 .092 .084 .075 .072 .065 .048 .049 .050
T (φ̂− 1)M .072 .100 .099 .108 .092 .031 .037 .034 .031 .042 .018 .026 .024 .023 .031
MZα,M .050 .012 .002 .001 .002 .025 .008 .012 .011 .007 .030 .024 .024 .018 .015

Note: Case ψ = 0, φ = ın, δ = 5. Dependence scheme 1.

27



Table A-5—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .028 .007 .003 .004 .006 .014 .010 .019 .016 .016 .018 .020 .025 .032 .029
T (φ̂− 1) .164 .198 .194 .188 .160 .118 .092 .071 .059 .058 .068 .054 .051 .054 .048
MZα .015 .004 .002 .004 .002 .007 .008 .014 .013 .010 .012 .014 .020 .025 .026
tφ .019 .036 .056 .057 .050 .010 .016 .021 .022 .025 .007 .010 .021 .027 .027

8 MSB .012 .002 .002 .003 .002 .005 .004 .008 .008 .011 .010 .009 .015 .018 .019
MZt,M .024 .006 .003 .004 .006 .010 .008 .018 .016 .017 .015 .017 .025 .032 .030
tφ,M .151 .189 .190 .188 .162 .103 .086 .069 .059 .058 .054 .048 .049 .054 .050
T (φ̂− 1)M .036 .054 .066 .067 .060 .026 .024 .028 .030 .030 .020 .017 .027 .034 .034
MZα,M .026 .006 .003 .004 .005 .018 .013 .021 .018 .016 .030 .025 .028 .032 .028

MZt .028 .008 .006 .002 .004 .011 .011 .011 .017 .013 .020 .016 .020 .031 .026
T (φ̂− 1) .205 .256 .227 .185 .180 .126 .107 .070 .070 .071 .074 .058 .053 .060 .055
MZα .012 .005 .004 .001 .003 .006 .010 .011 .014 .010 .012 .010 .021 .024 .020
tφ .020 .042 .063 .052 .055 .008 .014 .025 .024 .033 .005 .010 .020 .032 .028

12 MSB .010 .004 .002 .001 .002 .004 .004 .004 .009 .006 .007 .007 .014 .018 .017
MZt,M .020 .006 .006 .002 .004 .006 .008 .009 .017 .013 .011 .012 .019 .029 .026
tφ,M .177 .234 .218 .183 .179 .106 .094 .065 .069 .068 .052 .050 .050 .058 .053
T (φ̂− 1)M .041 .058 .075 .063 .061 .025 .026 .030 .030 .040 .021 .020 .030 .038 .031
MZα,M .025 .008 .005 .002 .003 .017 .015 .012 .017 .012 .034 .020 .023 .030 .027

MZt .040 .011 .003 .002 .003 .011 .006 .014 .011 .013 .016 .017 .024 .017 .023
T (φ̂− 1) .295 .336 .304 .254 .222 .164 .126 .080 .072 .071 .081 .076 .057 .044 .052
MZα .020 .008 .002 .001 .002 .009 .003 .010 .011 .012 .015 .010 .017 .021 .016
tφ .028 .058 .072 .065 .068 .012 .014 .019 .024 .032 .004 .010 .019 .019 .024

24 MSB .018 .004 .001 .001 .001 .004 .003 .006 .007 .006 .010 .008 .016 .012 .012
MZt,M .028 .008 .003 .002 .003 .007 .006 .011 .010 .012 .007 .012 .021 .015 .023
tφ,M .257 .308 .290 .246 .216 .127 .106 .071 .068 .068 .056 .057 .050 .041 .049
T (φ̂− 1)M .057 .087 .089 .076 .080 .031 .030 .026 .031 .038 .018 .022 .024 .024 .030
MZα,M .037 .011 .002 .001 .002 .019 .012 .014 .013 .014 .033 .028 .026 .020 .024

MZt .055 .008 .003 .002 .004 .010 .010 .008 .012 .011 .016 .016 .015 .018 .020
T (φ̂− 1) .372 .441 .401 .352 .308 .216 .159 .097 .084 .079 .087 .087 .063 .058 .053
MZα .029 .005 .002 .001 .003 .008 .004 .008 .008 .010 .009 .008 .017 .016 .018
tφ .029 .060 .084 .093 .099 .010 .016 .022 .022 .030 .003 .010 .017 .016 .027

48 MSB .018 .005 .001 .001 .001 .006 .006 .005 .006 .007 .006 .008 .006 .008 .010
MZt,M .033 .005 .002 .002 .002 .006 .006 .006 .009 .009 .006 .007 .008 .012 .015
tφ,M .308 .394 .368 .328 .290 .151 .118 .079 .070 .071 .051 .068 .050 .051 .046
T (φ̂− 1)M .063 .092 .104 .106 .110 .030 .031 .029 .028 .037 .014 .022 .025 .023 .032
MZα,M .050 .008 .002 .002 .003 .019 .014 .008 .012 .011 .035 .024 .019 .020 .018

Note: Case ψ = 0, φ = ın, δ = 5. Dependence scheme 2.
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Table A-6—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .018 .015 .012 .012 .017 .016 .013 .018 .022 .025 .016 .023 .024 .031 .031
T (φ̂− 1) .106 .111 .112 .098 .087 .090 .087 .057 .050 .052 .068 .056 .047 .048 .048
MZα .010 .011 .010 .010 .013 .009 .006 .018 .016 .018 .014 .014 .023 .024 .021
tφ .011 .018 .026 .027 .034 .013 .018 .021 .022 .026 .006 .012 .016 .025 .029

8 MSB .011 .009 .007 .008 .011 .008 .006 .012 .015 .015 .010 .011 .016 .014 .018
MZt,M .014 .013 .012 .012 .018 .012 .010 .018 .022 .025 .011 .018 .023 .031 .031
tφ,M .091 .108 .110 .098 .089 .076 .080 .056 .050 .053 .056 .052 .046 .048 .049
T (φ̂− 1)M .025 .031 .033 .032 .041 .022 .029 .029 .028 .032 .017 .022 .022 .032 .033
MZα,M .021 .018 .013 .012 .017 .024 .018 .022 .022 .024 .028 .031 .025 .032 .032

MZt .019 .013 .013 .014 .016 .014 .012 .017 .020 .019 .016 .017 .026 .027 .024
T (φ̂− 1) .120 .146 .132 .120 .094 .106 .082 .070 .054 .058 .070 .056 .052 .052 .051
MZα .011 .009 .010 .010 .013 .007 .009 .014 .016 .017 .011 .011 .012 .026 .023
tφ .008 .022 .029 .034 .033 .007 .010 .024 .021 .027 .006 .010 .022 .022 .025

12 MSB .008 .007 .008 .007 .009 .005 .007 .011 .010 .010 .008 .007 .014 .016 .013
MZt,M .014 .011 .010 .014 .016 .009 .009 .016 .020 .019 .012 .013 .022 .025 .024
tφ,M .098 .129 .124 .118 .092 .080 .071 .067 .053 .056 .052 .050 .048 .050 .050
T (φ̂− 1)M .022 .037 .038 .038 .038 .019 .021 .030 .029 .033 .016 .020 .027 .030 .030
MZα,M .025 .019 .015 .015 .016 .023 .016 .020 .020 .018 .030 .024 .030 .026 .024

MZt .020 .010 .012 .011 .011 .008 .012 .015 .016 .018 .011 .018 .023 .023 .025
T (φ̂− 1) .157 .185 .152 .137 .123 .136 .108 .069 .064 .063 .086 .078 .054 .056 .058
MZα .012 .006 .006 .009 .010 .012 .006 .010 .013 .018 .011 .011 .015 .022 .019
tφ .011 .020 .030 .034 .041 .010 .011 .017 .026 .028 .003 .009 .019 .026 .031

24 MSB .010 .005 .003 .006 .008 .004 .006 .009 .012 .013 .006 .010 .014 .015 .018
MZt,M .013 .006 .008 .010 .011 .004 .007 .012 .015 .018 .006 .013 .021 .021 .022
tφ,M .124 .158 .140 .131 .118 .099 .084 .063 .061 .060 .060 .060 .048 .052 .055
T (φ̂− 1)M .027 .036 .038 .039 .045 .022 .024 .023 .029 .031 .012 .021 .027 .033 .036
MZα,M .028 .015 .011 .012 .012 .023 .021 .018 .016 .019 .032 .030 .030 .026 .026

MZt .021 .010 .010 .008 .014 .011 .006 .019 .016 .014 .016 .013 .016 .020 .015
T (φ̂− 1) .217 .252 .220 .180 .160 .176 .138 .092 .078 .060 .115 .092 .072 .060 .048
MZα .011 .006 .007 .006 .012 .015 .008 .007 .014 .010 .012 .008 .017 .020 .017
tφ .010 .023 .044 .042 .044 .005 .016 .024 .026 .026 .004 .012 .020 .025 .020

48 MSB .009 .005 .005 .006 .010 .007 .002 .010 .007 .007 .008 .008 .008 .011 .011
MZt,M .013 .005 .008 .006 .012 .006 .002 .015 .011 .010 .007 .007 .011 .016 .014
tφ,M .155 .208 .194 .162 .146 .115 .102 .075 .067 .053 .069 .065 .056 .053 .038
T (φ̂− 1)M .026 .043 .050 .051 .048 .019 .034 .033 .032 .030 .020 .026 .028 .031 .022
MZα,M .031 .014 .010 .008 .016 .020 .011 .021 .018 .014 .038 .021 .020 .022 .015

Note: Case ψ = 0, φ = ın, δ = 5. Dependence scheme 3.
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Table A-7—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .171 .338 .856 .992 1.00 .188 .255 .603 .896 .990 .534 .410 .399 .354 .561
T (φ̂− 1) .211 .244 .599 .915 .996 .142 .148 .366 .692 .922 .035 .092 .118 .162 .230
MZα .121 .253 .778 .979 1.00 .138 .177 .466 .802 .961 .502 .370 .359 .306 .518
tφ .042 .112 .501 .887 .992 .075 .104 .305 .638 .907 .040 .073 .098 .150 .212

8 MSB .121 .253 .778 .979 1.00 .138 .177 .466 .802 .961 .471 .331 .315 .261 .457
MZt,M .134 .309 .850 .992 1.00 .152 .229 .592 .895 .990 .496 .386 .389 .352 .562
tφ,M .188 .225 .592 .915 .996 .125 .136 .360 .692 .924 .026 .082 .114 .162 .230
T (φ̂− 1)M .100 .169 .568 .914 .997 .131 .152 .374 .694 .926 .078 .119 .132 .171 .243
MZα,M .286 .416 .874 .992 1.00 .282 .323 .626 .899 .987 .617 .462 .419 .361 .561

MZt .300 .617 .998 1.00 1.00 .188 .227 .579 .909 .994 .620 .455 .445 .356 .629
T (φ̂− 1) .316 .447 .923 1.00 1.00 .158 .172 .377 .735 .950 .035 .094 .115 .178 .262
MZα .211 .464 .991 1.00 1.00 .143 .151 .436 .813 .980 .588 .421 .398 .311 .583
tφ .072 .199 .851 .999 1.00 .073 .114 .294 .674 .934 .040 .072 .107 .150 .231

12 MSB .211 .464 .991 1.00 1.00 .143 .151 .436 .813 .980 .562 .376 .345 .263 .516
MZt,M .225 .566 .998 1.00 1.00 .148 .192 .558 .904 .994 .574 .420 .425 .346 .625
tφ,M .271 .410 .914 1.00 1.00 .126 .150 .353 .726 .949 .025 .079 .106 .170 .258
T (φ̂− 1)M .156 .314 .902 1.00 1.00 .134 .165 .366 .730 .950 .088 .113 .132 .177 .270
MZα,M .480 .726 .998 1.00 1.00 .293 .298 .620 .912 .994 .708 .515 .468 .368 .626

MZt .197 .414 .985 1.00 1.00 .198 .192 .484 .862 .992 .824 .629 .578 .448 .798
T (φ̂− 1) .358 .393 .866 .997 1.00 .183 .165 .342 .690 .939 .048 .114 .159 .226 .346
MZα .140 .296 .949 1.00 1.00 .157 .139 .345 .724 .962 .798 .596 .533 .393 .750
tφ .060 .134 .732 .993 1.00 .066 .094 .260 .604 .919 .047 .089 .129 .194 .309

24 MSB .140 .296 .949 1.00 1.00 .157 .139 .345 .724 .962 .768 .554 .468 .333 .691
MZt,M .122 .330 .982 1.00 1.00 .144 .150 .441 .849 .991 .770 .576 .546 .428 .792
tφ,M .297 .351 .844 .997 1.00 .138 .138 .312 .674 .938 .031 .082 .142 .213 .335
T (φ̂− 1)M .142 .236 .813 .996 1.00 .156 .153 .329 .681 .940 .117 .162 .170 .232 .348
MZα,M .408 .574 .990 1.00 1.00 .331 .290 .541 .876 .992 .896 .711 .620 .464 .799

MZt .256 .492 .999 1.00 1.00 .270 .246 .656 .985 1.00 .921 .730 .607 .396 .786
T (φ̂− 1) .526 .574 .953 1.00 1.00 .257 .241 .505 .906 .998 .045 .109 .148 .234 .347
MZα .187 .350 .991 1.00 1.00 .209 .172 .465 .929 1.00 .908 .698 .548 .352 .742
tφ .062 .179 .846 1.00 1.00 .078 .114 .378 .834 .996 .051 .081 .122 .191 .303

48 MSB .187 .350 .991 1.00 1.00 .209 .172 .465 .929 1.00 .894 .656 .479 .281 .666
MZt,M .127 .349 .999 1.00 1.00 .176 .163 .578 .982 1.00 .874 .655 .543 .354 .767
tφ,M .420 .493 .940 1.00 1.00 .180 .177 .450 .885 .998 .026 .069 .124 .210 .314
T (φ̂− 1)M .193 .308 .912 1.00 1.00 .200 .204 .472 .893 .999 .122 .153 .166 .230 .340
MZα,M .537 .701 1.00 1.00 1.00 .449 .366 .722 .990 1.00 .966 .803 .650 .415 .791

Note: Case ψ = 0, φ = (ı′n/2, φ̃
′
n/2)′ with (φ̃n/2)i ∼ U(.75, 1), δ = 0.2. Dependence scheme 1.
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Table A-8—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .170 .332 .798 .982 1.00 .166 .206 .451 .740 .927 .446 .312 .322 .256 .437
T (φ̂− 1) .225 .265 .562 .865 .995 .120 .134 .263 .534 .799 .035 .066 .086 .120 .184
MZα .251 .478 .960 1.00 1.00 .150 .142 .295 .540 .785 .423 .284 .288 .218 .399
tφ .057 .122 .450 .827 .991 .062 .089 .221 .491 .770 .032 .055 .076 .106 .174

8 MSB .115 .236 .696 .952 .999 .120 .143 .327 .622 .865 .394 .253 .245 .182 .344
MZt,M .137 .302 .791 .982 1.00 .135 .182 .445 .739 .928 .415 .294 .315 .255 .442
tφ,M .203 .248 .556 .864 .995 .104 .122 .257 .533 .802 .028 .059 .083 .120 .184
T (φ̂− 1)M .118 .176 .514 .864 .994 .114 .136 .261 .540 .798 .058 .090 .094 .127 .194
MZα,M .280 .406 .818 .984 1.00 .242 .259 .475 .744 .925 .528 .362 .338 .259 .438

MZt .239 .442 .947 .999 1.00 .192 .227 .565 .860 .985 .644 .501 .489 .410 .675
T (φ̂− 1) .296 .335 .768 .976 .999 .151 .154 .362 .675 .918 .050 .113 .151 .194 .312
MZα .217 .462 .962 1.00 1.00 .190 .275 .694 .952 .997 .619 .467 .453 .362 .635
tφ .072 .157 .663 .964 .999 .063 .094 .306 .624 .894 .054 .090 .137 .175 .290

12 MSB .166 .320 .892 .998 1.00 .147 .155 .426 .774 .958 .589 .434 .405 .305 .578
MZt,M .180 .389 .944 .999 1.00 .157 .201 .544 .854 .986 .599 .467 .474 .402 .673
tφ,M .258 .309 .760 .974 .999 .122 .134 .346 .671 .918 .039 .094 .143 .190 .310
T (φ̂− 1)M .150 .223 .734 .977 .999 .132 .148 .361 .677 .916 .114 .150 .165 .209 .319
MZα,M .394 .543 .952 .999 1.00 .293 .298 .594 .864 .986 .729 .564 .512 .418 .669

MZt .223 .443 .957 1.00 1.00 .230 .226 .548 .861 .986 .728 .529 .463 .329 .626
T (φ̂− 1) .360 .414 .813 .986 1.00 .186 .189 .386 .715 .934 .040 .095 .132 .168 .276
MZα .174 .358 .902 .999 1.00 .220 .230 .546 .881 .983 .712 .508 .429 .293 .582
tφ .054 .157 .704 .978 .999 .068 .106 .316 .658 .918 .038 .074 .110 .142 .248

24 MSB .158 .320 .912 .999 1.00 .177 .157 .426 .774 .960 .688 .469 .380 .243 .520
MZt,M .138 .360 .948 1.00 1.00 .163 .178 .522 .856 .986 .682 .488 .439 .317 .619
tφ,M .296 .367 .793 .985 1.00 .144 .156 .363 .702 .932 .024 .075 .122 .157 .267
T (φ̂− 1)M .141 .253 .770 .985 1.00 .163 .172 .384 .707 .933 .093 .126 .143 .174 .280
MZα,M .413 .567 .966 1.00 1.00 .362 .314 .595 .871 .987 .807 .604 .502 .342 .628

MZt .265 .535 .990 1.00 1.00 .263 .227 .554 .898 .987 .832 .603 .491 .310 .615
T (φ̂− 1) .478 .538 .908 .996 1.00 .239 .226 .439 .774 .962 .039 .096 .118 .154 .272
MZα .212 .412 .956 1.00 1.00 .215 .182 .427 .821 .974 .816 .575 .455 .275 .577
tφ .063 .196 .827 .995 1.00 .068 .113 .334 .712 .947 .045 .067 .092 .126 .236

48 MSB .185 .404 .971 1.00 1.00 .214 .158 .398 .794 .963 .791 .535 .400 .220 .507
MZt,M .142 .421 .987 1.00 1.00 .179 .152 .494 .881 .986 .766 .530 .439 .276 .591
tφ,M .385 .463 .890 .996 1.00 .158 .182 .395 .756 .958 .018 .065 .096 .132 .250
T (φ̂− 1)M .172 .325 .876 .997 1.00 .186 .196 .416 .762 .958 .108 .129 .120 .152 .262
MZα,M .507 .692 .994 1.00 1.00 .416 .332 .620 .910 .988 .897 .676 .524 .322 .620

Note: Case ψ = 0, φ = (ı′n/2, φ̃
′
n/2)′ with (φ̃n/2)i ∼ U(.75, 1), δ = 0.2. Dependence scheme 2.
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Table A-9—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .262 .551 .992 1.00 1.00 .218 .313 .752 .978 .999 .580 .514 .602 .610 .798
T (φ̂− 1) .289 .356 .860 .996 1.00 .160 .200 .516 .857 .981 .063 .150 .225 .306 .432
MZα .207 .429 .955 .999 1.00 .162 .232 .573 .888 .988 .546 .478 .562 .565 .765
tφ .091 .196 .784 .993 1.00 .081 .138 .447 .823 .977 .053 .120 .200 .294 .420

8 MSB .194 .429 .961 1.00 1.00 .160 .224 .612 .943 .995 .505 .426 .500 .486 .712
MZt,M .219 .515 .989 1.00 1.00 .182 .286 .742 .977 .999 .540 .486 .594 .608 .800
tφ,M .260 .334 .851 .996 1.00 .136 .187 .504 .856 .982 .049 .139 .219 .306 .435
T (φ̂− 1)M .170 .274 .836 .996 1.00 .152 .198 .524 .869 .981 .103 .177 .243 .329 .458
MZα,M .405 .644 .994 1.00 1.00 .326 .377 .772 .977 .999 .658 .575 .619 .614 .793

MZt .268 .542 .992 1.00 1.00 .218 .302 .774 .982 1.00 .457 .353 .375 .354 .580
T (φ̂− 1) .321 .419 .885 1.00 1.00 .159 .213 .522 .892 .996 .045 .084 .132 .188 .265
MZα .198 .370 .930 1.00 1.00 .172 .190 .513 .838 .980 .428 .309 .335 .304 .534
tφ .080 .208 .808 .999 1.00 .084 .136 .440 .847 .992 .030 .063 .101 .167 .241

12 MSB .179 .398 .970 1.00 1.00 .166 .204 .618 .944 .999 .394 .276 .289 .260 .478
MZt,M .196 .482 .990 1.00 1.00 .170 .258 .758 .981 1.00 .406 .314 .360 .340 .575
tφ,M .276 .381 .878 1.00 1.00 .133 .191 .510 .888 .996 .032 .072 .120 .183 .263
T (φ̂− 1)M .176 .312 .864 1.00 1.00 .157 .209 .525 .888 .994 .068 .099 .134 .190 .269
MZα,M .450 .644 .993 1.00 1.00 .342 .401 .803 .985 1.00 .540 .416 .403 .360 .580

MZt .275 .579 1.00 1.00 1.00 .180 .194 .502 .873 .990 .697 .501 .535 .470 .786
T (φ̂− 1) .442 .532 .964 1.00 1.00 .181 .204 .379 .697 .949 .052 .124 .188 .279 .424
MZα .228 .530 .998 1.00 1.00 .218 .235 .647 .963 1.00 .671 .461 .492 .428 .750
tφ .077 .223 .905 1.00 1.00 .075 .106 .290 .620 .925 .041 .071 .148 .242 .393

24 MSB .186 .417 .995 1.00 1.00 .143 .140 .351 .742 .962 .644 .414 .433 .364 .689
MZt,M .172 .481 1.00 1.00 1.00 .128 .151 .460 .864 .990 .634 .444 .506 .448 .781
tφ,M .366 .468 .952 1.00 1.00 .142 .166 .353 .681 .947 .029 .091 .168 .265 .413
T (φ̂− 1)M .207 .352 .948 1.00 1.00 .161 .183 .363 .684 .947 .098 .134 .195 .276 .426
MZα,M .520 .738 1.00 1.00 1.00 .319 .290 .554 .882 .992 .794 .594 .570 .489 .790

MZt .315 .699 1.00 1.00 1.00 .306 .287 .775 .999 1.00 .871 .690 .686 .593 .921
T (φ̂− 1) .600 .687 .996 1.00 1.00 .282 .294 .620 .967 1.00 .068 .139 .249 .360 .542
MZα .186 .356 .990 1.00 1.00 .279 .258 .718 .996 1.00 .855 .660 .642 .545 .895
tφ .088 .264 .979 1.00 1.00 .081 .151 .476 .927 1.00 .031 .084 .188 .305 .492

48 MSB .224 .506 1.00 1.00 1.00 .232 .196 .600 .986 1.00 .826 .604 .564 .456 .833
MZt,M .169 .542 1.00 1.00 1.00 .192 .194 .722 .998 1.00 .804 .612 .631 .552 .908
tφ,M .477 .588 .994 1.00 1.00 .192 .224 .561 .958 1.00 .036 .092 .206 .326 .512
T (φ̂− 1)M .244 .452 .993 1.00 1.00 .220 .250 .585 .960 1.00 .113 .158 .241 .357 .541
MZα,M .633 .868 1.00 1.00 1.00 .494 .440 .843 .999 1.00 .940 .775 .735 .617 .923

Note: Case ψ = 0, φ = (ı′n/2, φ̃
′
n/2)′ with (φ̃n/2)i ∼ U(.75, 1), δ = 0.2. Dependence scheme 3.
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Table A-10—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .136 .111 .142 .230 .352 .042 .079 .406 .776 .954 .158 .422 .984 1.00 1.00
T (φ̂− 1) .573 .616 .721 .790 .847 .272 .393 .735 .951 .996 .292 .583 .992 1.00 1.00
MZα .102 .084 .124 .192 .315 .028 .048 .301 .644 .890 .105 .302 .955 1.00 1.00
tφ .081 .204 .435 .604 .693 .054 .167 .562 .882 .985 .072 .325 .966 1.00 1.00

8 MSB .081 .074 .105 .159 .271 .028 .048 .301 .644 .890 .105 .302 .955 1.00 1.00
MZt,M .120 .104 .140 .230 .355 .031 .071 .396 .774 .955 .122 .384 .983 1.00 1.00
tφ,M .540 .599 .717 .790 .848 .240 .370 .728 .950 .996 .246 .554 .991 1.00 1.00
T (φ̂− 1)M .141 .265 .492 .639 .725 .118 .241 .634 .917 .990 .166 .460 .983 1.00 1.00
MZα,M .156 .123 .153 .235 .347 .074 .112 .434 .778 .952 .262 .514 .986 1.00 1.00

MZt .134 .092 .113 .161 .290 .056 .110 .610 .958 .999 .151 .428 .992 1.00 1.00
T (φ̂− 1) .660 .685 .750 .787 .848 .357 .563 .906 .998 1.00 .323 .639 .996 1.00 1.00
MZα .104 .068 .086 .137 .253 .032 .057 .448 .871 .992 .096 .294 .972 1.00 1.00
tφ .072 .190 .420 .565 .672 .074 .234 .770 .989 1.00 .074 .330 .979 1.00 1.00

12 MSB .090 .055 .067 .110 .208 .032 .057 .448 .871 .992 .096 .294 .972 1.00 1.00
MZt,M .110 .079 .103 .156 .289 .038 .084 .588 .954 .998 .108 .375 .990 1.00 1.00
tφ,M .608 .660 .738 .784 .846 .302 .512 .898 .998 1.00 .267 .596 .994 1.00 1.00
T (φ̂− 1)M .136 .258 .478 .617 .708 .172 .357 .825 .992 1.00 .192 .498 .989 1.00 1.00
MZα,M .161 .100 .121 .165 .293 .099 .164 .642 .958 .999 .272 .540 .995 1.00 1.00

MZt .238 .149 .186 .258 .411 .054 .073 .534 .939 .998 .128 .395 .997 1.00 1.00
T (φ̂− 1) .849 .873 .928 .956 .974 .437 .568 .924 .998 1.00 .339 .659 1.00 1.00 1.00
MZα .191 .119 .163 .229 .374 .040 .049 .387 .851 .988 .084 .266 .987 1.00 1.00
tφ .107 .313 .637 .802 .896 .060 .207 .749 .987 1.00 .058 .292 .994 1.00 1.00

24 MSB .161 .098 .128 .184 .321 .040 .049 .387 .851 .988 .084 .266 .987 1.00 1.00
MZt,M .184 .123 .169 .244 .399 .037 .055 .494 .934 .998 .071 .309 .996 1.00 1.00
tφ,M .794 .849 .922 .954 .974 .340 .502 .911 .998 1.00 .259 .591 1.00 1.00 1.00
T (φ̂− 1)M .212 .420 .702 .841 .916 .161 .324 .827 .993 1.00 .172 .484 1.00 1.00 1.00
MZα,M .281 .178 .205 .269 .420 .095 .122 .590 .947 .998 .261 .540 .998 1.00 1.00

MZt .245 .138 .122 .159 .311 .070 .072 .590 .980 1.00 .108 .304 .997 1.00 1.00
T (φ̂− 1) .909 .936 .962 .975 .986 .564 .697 .984 1.00 1.00 .372 .687 1.00 1.00 1.00
MZα .184 .113 .104 .135 .276 .049 .036 .416 .919 1.00 .068 .187 .987 1.00 1.00
tφ .110 .292 .636 .808 .898 .056 .238 .866 .998 1.00 .025 .263 .995 1.00 1.00

48 MSB .153 .090 .078 .101 .220 .049 .036 .416 .919 1.00 .068 .187 .987 1.00 1.00
MZt,M .180 .101 .097 .136 .278 .040 .037 .512 .973 1.00 .049 .194 .997 1.00 1.00
tφ,M .843 .906 .948 .971 .982 .400 .601 .977 1.00 1.00 .237 .574 1.00 1.00 1.00
T (φ̂− 1)M .227 .424 .708 .838 .916 .194 .411 .931 .999 1.00 .135 .452 1.00 1.00 1.00
MZα,M .282 .162 .130 .166 .307 .124 .134 .660 .986 1.00 .279 .490 .999 1.00 1.00

Note: Case ψ = 0, φ = (ı′n/2, φ̃
′
n/2)′ with (φ̃n/2)i ∼ U(.75, 1), δ = 5. Dependence scheme 1.

33



Table A-11—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .170 .131 .194 .260 .428 .042 .071 .381 .776 .933 .144 .367 .941 .999 1.00
T (φ̂− 1) .593 .648 .754 .809 .864 .264 .339 .672 .910 .988 .250 .513 .962 1.00 1.00
MZα .131 .111 .168 .220 .386 .020 .035 .174 .346 .547 .114 .298 .912 .999 1.00
tφ .094 .250 .505 .643 .755 .053 .144 .528 .845 .976 .069 .280 .912 .998 1.00

8 MSB .110 .101 .140 .190 .344 .022 .041 .288 .682 .881 .087 .266 .881 .998 1.00
MZt,M .153 .122 .188 .260 .431 .032 .058 .376 .775 .936 .113 .331 .934 .999 1.00
tφ,M .560 .633 .752 .808 .864 .230 .318 .666 .910 .988 .209 .487 .959 1.00 1.00
T (φ̂− 1)M .160 .317 .557 .674 .779 .110 .212 .595 .876 .983 .153 .400 .938 1.00 1.00
MZα,M .191 .151 .214 .263 .426 .068 .095 .413 .788 .935 .228 .451 .948 .999 1.00

MZt .188 .144 .189 .266 .402 .062 .124 .593 .927 .991 .115 .287 .898 .998 1.00
T (φ̂− 1) .674 .710 .797 .844 .878 .370 .536 .878 .990 1.00 .235 .476 .936 .999 1.00
MZα .152 .108 .164 .234 .356 .041 .066 .421 .773 .948 .055 .143 .700 .975 1.00
tφ .104 .256 .543 .679 .765 .082 .252 .752 .972 1.00 .042 .218 .856 .996 1.00

12 MSB .132 .088 .143 .190 .307 .042 .074 .460 .854 .977 .071 .196 .826 .994 1.00
MZt,M .165 .125 .180 .259 .399 .046 .097 .571 .926 .991 .080 .244 .890 .998 1.00
tφ,M .631 .686 .786 .842 .877 .310 .500 .868 .990 1.00 .188 .437 .931 .999 1.00
T (φ̂− 1)M .198 .348 .596 .710 .787 .178 .358 .814 .980 1.00 .119 .345 .898 .998 1.00
MZα,M .222 .161 .208 .271 .399 .103 .168 .628 .930 .990 .200 .377 .911 .999 1.00

MZt .191 .113 .154 .184 .320 .045 .080 .420 .794 .948 .160 .470 .989 1.00 1.00
T (φ̂− 1) .720 .760 .800 .848 .880 .384 .482 .822 .957 .995 .390 .712 .998 1.00 1.00
MZα .146 .090 .132 .160 .285 .039 .074 .471 .856 .979 .088 .248 .920 1.00 1.00
tφ .092 .239 .495 .656 .753 .058 .167 .628 .903 .988 .074 .381 .989 1.00 1.00

24 MSB .126 .079 .098 .126 .243 .029 .053 .312 .687 .886 .095 .349 .974 1.00 1.00
MZt,M .148 .097 .141 .175 .309 .030 .058 .390 .785 .947 .088 .398 .988 1.00 1.00
tφ,M .660 .728 .788 .842 .876 .310 .424 .804 .954 .995 .297 .649 .997 1.00 1.00
T (φ̂− 1)M .176 .320 .554 .696 .778 .156 .278 .702 .924 .992 .210 .560 .994 1.00 1.00
MZα,M .227 .126 .163 .198 .323 .090 .121 .475 .810 .950 .320 .603 .992 1.00 1.00

MZt .293 .188 .191 .256 .424 .049 .052 .386 .785 .950 .142 .376 .984 1.00 1.00
T (φ̂− 1) .856 .882 .915 .934 .953 .437 .523 .829 .980 .998 .413 .681 .994 1.00 1.00
MZα .230 .155 .164 .224 .386 .054 .081 .520 .898 .983 .088 .264 .959 1.00 1.00
tφ .119 .334 .659 .804 .876 .044 .165 .618 .931 .994 .046 .305 .966 1.00 1.00

48 MSB .200 .131 .134 .184 .325 .036 .038 .257 .670 .880 .085 .245 .959 1.00 1.00
MZt,M .223 .142 .154 .228 .403 .028 .037 .317 .760 .944 .064 .261 .978 1.00 1.00
tφ,M .780 .836 .899 .929 .950 .327 .438 .798 .972 .998 .271 .592 .992 1.00 1.00
T (φ̂− 1)M .243 .459 .713 .826 .897 .146 .278 .697 .949 .996 .183 .489 .983 1.00 1.00
MZα,M .341 .216 .211 .267 .429 .098 .095 .443 .801 .952 .300 .542 .987 1.00 1.00

Note: Case ψ = 0, φ = (ı′n/2, φ̃
′
n/2)′ with (φ̃n/2)i ∼ U(.75, 1), δ = 5. Dependence scheme 2.
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Table A-12—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .218 .456 .904 .977 .990 .120 .283 .887 .996 1.00 .161 .493 .991 1.00 1.00
T (φ̂− 1) .483 .694 .970 .997 .999 .338 .535 .956 .999 1.00 .295 .622 .994 1.00 1.00
MZα .182 .407 .886 .973 .988 .070 .186 .720 .949 .994 .079 .196 .780 .992 1.00
tφ .126 .395 .922 .991 .998 .097 .285 .894 .998 1.00 .082 .374 .979 1.00 1.00

8 MSB .150 .338 .861 .968 .987 .072 .186 .807 .990 .999 .103 .358 .979 1.00 1.00
MZt,M .188 .428 .902 .977 .990 .089 .247 .881 .997 1.00 .128 .454 .990 1.00 1.00
tφ,M .442 .674 .970 .997 .999 .292 .508 .952 .999 1.00 .253 .591 .994 1.00 1.00
T (φ̂− 1)M .226 .502 .944 .992 .998 .190 .402 .930 .999 1.00 .182 .516 .989 1.00 1.00
MZα,M .289 .518 .910 .978 .990 .193 .358 .898 .997 1.00 .270 .586 .992 1.00 1.00

MZt .092 .175 .560 .815 .928 .078 .176 .737 .964 .994 .067 .157 .692 .976 1.00
T (φ̂− 1) .369 .486 .780 .934 .978 .263 .423 .874 .991 1.00 .167 .294 .777 .981 .999
MZα .063 .143 .522 .794 .914 .038 .078 .388 .747 .913 .034 .066 .291 .669 .915
tφ .042 .161 .588 .857 .952 .047 .184 .728 .975 .999 .019 .108 .596 .958 .999

12 MSB .052 .115 .472 .765 .891 .046 .110 .626 .932 .987 .040 .101 .561 .939 .998
MZt,M .069 .147 .545 .810 .927 .051 .146 .715 .962 .994 .044 .130 .674 .975 1.00
tφ,M .316 .455 .772 .931 .978 .213 .392 .862 .991 1.00 .133 .260 .764 .979 .999
T (φ̂− 1)M .092 .248 .652 .882 .962 .126 .273 .801 .984 1.00 .068 .185 .680 .969 .999
MZα,M .130 .214 .582 .822 .928 .127 .241 .765 .966 .994 .120 .207 .720 .978 1.00

MZt .167 .283 .837 .985 .999 .066 .170 .737 .989 1.00 .142 .446 .999 1.00 1.00
T (φ̂− 1) .559 .695 .954 .998 1.00 .340 .492 .908 .999 1.00 .339 .708 .999 1.00 1.00
MZα .125 .236 .801 .980 .999 .088 .256 .946 1.00 1.00 .087 .275 .975 1.00 1.00
tφ .067 .281 .852 .991 1.00 .044 .180 .751 .994 1.00 .047 .349 .994 1.00 1.00

24 MSB .091 .196 .750 .970 .998 .042 .106 .602 .966 .999 .097 .293 .993 1.00 1.00
MZt,M .114 .233 .820 .985 .999 .042 .122 .705 .989 1.00 .084 .340 .998 1.00 1.00
tφ,M .493 .639 .948 .998 1.00 .255 .422 .897 .998 1.00 .246 .640 .999 1.00 1.00
T (φ̂− 1)M .169 .406 .894 .994 1.00 .132 .301 .835 .996 1.00 .176 .545 .998 1.00 1.00
MZα,M .241 .354 .861 .985 .999 .130 .257 .781 .990 1.00 .284 .602 1.00 1.00 1.00

MZt .245 .316 .899 .999 1.00 .090 .221 .912 1.00 1.00 .142 .474 1.00 1.00 1.00
T (φ̂− 1) .702 .820 .988 1.00 1.00 .454 .656 .984 1.00 1.00 .435 .818 1.00 1.00 1.00
MZα .190 .271 .862 .997 1.00 .076 .175 .891 .999 1.00 .100 .262 .991 1.00 1.00
tφ .070 .336 .921 .998 1.00 .041 .242 .927 1.00 1.00 .050 .361 1.00 1.00 1.00

48 MSB .160 .219 .821 .994 1.00 .054 .136 .822 .998 1.00 .095 .315 .998 1.00 1.00
MZt,M .157 .241 .874 .998 1.00 .041 .134 .880 1.00 1.00 .071 .331 1.00 1.00 1.00
tφ,M .591 .763 .984 1.00 1.00 .320 .562 .976 1.00 1.00 .286 .724 1.00 1.00 1.00
T (φ̂− 1)M .210 .488 .954 .999 1.00 .164 .423 .958 1.00 1.00 .201 .609 1.00 1.00 1.00
MZα,M .340 .397 .917 .999 1.00 .182 .338 .938 1.00 1.00 .334 .677 1.00 1.00 1.00

Note: Case ψ = 0, φ = (ı′n/2, φ̃
′
n/2)′ with (φ̃n/2)i ∼ U(.75, 1), δ = 5. Dependence scheme 3.
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Table A-13—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .134 .165 .392 .685 .911 .169 .186 .333 .551 .778 .370 .222 .150 .137 .278
T (φ̂− 1) .201 .189 .290 .454 .774 .107 .130 .206 .350 .588 .022 .050 .049 .083 .125
MZα .089 .117 .292 .551 .824 .126 .127 .226 .390 .611 .346 .196 .126 .107 .236
tφ .046 .075 .191 .388 .725 .056 .087 .170 .310 .546 .022 .033 .039 .064 .107

8 MSB .089 .117 .292 .551 .824 .126 .127 .226 .390 .611 .325 .175 .106 .077 .188
MZt,M .101 .149 .384 .684 .911 .138 .167 .324 .550 .780 .338 .201 .146 .137 .281
tφ,M .177 .179 .284 .454 .775 .091 .116 .204 .349 .593 .017 .046 .047 .083 .126
T (φ̂− 1)M .082 .114 .237 .447 .767 .104 .130 .218 .360 .594 .044 .051 .051 .082 .130
MZα,M .220 .214 .420 .689 .904 .264 .248 .356 .548 .762 .440 .258 .160 .140 .272

MZt .154 .213 .547 .871 .991 .156 .158 .280 .436 .670 .578 .366 .313 .246 .460
T (φ̂− 1) .254 .276 .413 .630 .923 .123 .120 .194 .304 .511 .026 .060 .096 .145 .209
MZα .099 .142 .385 .726 .948 .113 .104 .180 .298 .503 .547 .330 .272 .197 .410
tφ .052 .092 .258 .533 .886 .060 .077 .147 .258 .458 .029 .052 .073 .110 .183

12 MSB .099 .142 .385 .726 .948 .113 .104 .180 .298 .503 .512 .293 .219 .147 .346
MZt,M .102 .179 .526 .866 .990 .117 .127 .260 .425 .669 .534 .336 .297 .239 .457
tφ,M .224 .251 .397 .620 .922 .102 .104 .186 .296 .507 .018 .052 .087 .138 .207
T (φ̂− 1)M .116 .147 .324 .600 .917 .119 .117 .193 .299 .510 .066 .079 .098 .148 .216
MZα,M .268 .288 .580 .870 .987 .255 .217 .304 .445 .662 .668 .412 .334 .249 .458

MZt .178 .270 .754 .993 1.00 .181 .143 .242 .379 .589 .701 .426 .254 .161 .411
T (φ̂− 1) .395 .396 .622 .879 .998 .166 .140 .202 .304 .502 .030 .054 .077 .126 .201
MZα .126 .182 .578 .958 1.00 .141 .104 .156 .249 .412 .675 .399 .225 .134 .362
tφ .058 .114 .401 .791 .996 .055 .076 .149 .246 .438 .031 .035 .058 .093 .176

24 MSB .126 .182 .578 .958 1.00 .141 .104 .156 .249 .412 .646 .371 .180 .094 .292
MZt,M .108 .207 .729 .992 1.00 .129 .107 .210 .362 .583 .642 .377 .229 .150 .396
tφ,M .335 .347 .591 .870 .998 .122 .119 .185 .286 .494 .018 .039 .069 .114 .191
T (φ̂− 1)M .150 .193 .492 .860 .998 .141 .132 .192 .294 .497 .068 .072 .080 .116 .205
MZα,M .364 .410 .795 .994 1.00 .294 .218 .283 .402 .590 .795 .504 .286 .177 .412

MZt .145 .202 .536 .945 .998 .219 .152 .232 .376 .648 .887 .544 .298 .143 .443
T (φ̂− 1) .510 .444 .548 .727 .988 .213 .178 .244 .360 .602 .029 .061 .084 .130 .226
MZα .098 .126 .370 .800 .989 .178 .104 .139 .236 .440 .869 .515 .265 .112 .384
tφ .044 .104 .277 .576 .960 .064 .087 .170 .278 .529 .034 .041 .057 .092 .192

48 MSB .098 .126 .370 .800 .989 .178 .104 .139 .236 .440 .838 .470 .212 .080 .300
MZt,M .068 .118 .461 .931 .998 .141 .093 .177 .329 .614 .824 .473 .252 .109 .410
tφ,M .398 .360 .495 .689 .985 .142 .130 .208 .323 .576 .013 .035 .064 .106 .204
T (φ̂− 1)M .142 .174 .371 .664 .982 .171 .150 .222 .335 .582 .084 .081 .083 .112 .212
MZα,M .343 .329 .608 .951 .998 .393 .238 .281 .412 .650 .939 .625 .338 .153 .447

Note: Case ψ = 0, φ = φ̃n with (φ̃n)i ∼ U(.9, 1), δ = 0.2. Dependence scheme 1.
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Table A-14—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .180 .248 .587 .860 .973 .141 .140 .225 .361 .486 .425 .311 .271 .245 .398
T (φ̂− 1) .222 .236 .420 .641 .896 .097 .106 .145 .248 .360 .026 .061 .086 .130 .178
MZα .130 .169 .363 .641 .834 .099 .098 .123 .175 .233 .397 .281 .237 .206 .352
tφ .050 .103 .312 .581 .868 .044 .070 .117 .215 .328 .024 .042 .071 .110 .162

8 MSB .124 .172 .453 .752 .931 .102 .090 .150 .259 .355 .370 .249 .197 .156 .298
MZt,M .146 .224 .578 .860 .974 .115 .121 .215 .360 .488 .392 .292 .266 .244 .401
tφ,M .198 .222 .416 .640 .897 .076 .096 .141 .247 .362 .021 .051 .084 .130 .180
T (φ̂− 1)M .108 .140 .363 .631 .892 .091 .106 .148 .246 .362 .055 .082 .098 .134 .187
MZα,M .297 .312 .604 .856 .968 .214 .187 .240 .363 .478 .504 .355 .288 .245 .391

MZt .127 .187 .416 .670 .880 .166 .170 .308 .461 .634 .518 .341 .279 .227 .404
T (φ̂− 1) .244 .235 .316 .453 .748 .118 .123 .206 .313 .502 .031 .055 .092 .122 .199
MZα .169 .236 .568 .855 .968 .146 .153 .249 .442 .633 .490 .316 .237 .186 .360
tφ .051 .079 .196 .376 .693 .056 .084 .160 .270 .455 .025 .043 .066 .097 .171

12 MSB .084 .122 .307 .535 .777 .120 .113 .213 .333 .485 .461 .280 .196 .148 .296
MZt,M .094 .157 .400 .666 .878 .129 .142 .297 .455 .633 .468 .314 .267 .220 .402
tφ,M .213 .216 .303 .449 .747 .095 .108 .199 .307 .501 .022 .044 .085 .119 .197
T (φ̂− 1)M .098 .127 .249 .437 .732 .112 .126 .206 .309 .500 .055 .078 .091 .126 .200
MZα,M .229 .253 .447 .674 .876 .276 .225 .333 .463 .620 .599 .388 .298 .231 .398

MZt .163 .211 .530 .819 .961 .171 .149 .254 .434 .592 .668 .431 .319 .220 .444
T (φ̂− 1) .346 .316 .433 .642 .900 .163 .139 .206 .334 .505 .030 .068 .094 .142 .214
MZα .128 .162 .434 .721 .905 .160 .139 .219 .378 .530 .645 .400 .279 .184 .399
tφ .051 .098 .279 .558 .862 .057 .080 .146 .276 .453 .032 .046 .072 .114 .189

24 MSB .114 .144 .398 .720 .912 .132 .103 .178 .308 .448 .626 .369 .230 .134 .341
MZt,M .102 .161 .500 .810 .961 .126 .116 .230 .420 .586 .614 .386 .288 .204 .436
tφ,M .289 .281 .412 .633 .897 .122 .114 .182 .320 .501 .017 .050 .085 .134 .209
T (φ̂− 1)M .138 .161 .347 .610 .890 .140 .135 .191 .324 .502 .070 .092 .100 .139 .218
MZα,M .310 .304 .564 .821 .960 .296 .223 .294 .451 .588 .757 .507 .358 .233 .449

MZt .164 .188 .475 .776 .932 .214 .150 .205 .356 .508 .768 .465 .253 .140 .379
T (φ̂− 1) .430 .406 .474 .603 .874 .196 .183 .222 .320 .473 .024 .056 .076 .120 .196
MZα .150 .211 .546 .814 .956 .176 .114 .146 .248 .346 .755 .442 .228 .112 .338
tφ .053 .105 .278 .501 .834 .055 .087 .161 .257 .424 .028 .039 .054 .076 .150

48 MSB .115 .129 .343 .650 .860 .170 .105 .132 .229 .362 .732 .403 .192 .076 .272
MZt,M .086 .127 .420 .753 .929 .138 .100 .165 .320 .491 .706 .404 .218 .119 .356
tφ,M .350 .347 .436 .574 .866 .135 .134 .192 .290 .452 .012 .036 .058 .101 .172
T (φ̂− 1)M .150 .184 .356 .561 .857 .160 .149 .204 .300 .465 .074 .077 .079 .101 .170
MZα,M .326 .294 .520 .790 .931 .352 .229 .247 .376 .513 .847 .546 .282 .150 .381

Note: Case ψ = 0, φ = φ̃n with (φ̃n)i ∼ U(.9, 1), δ = 0.2. Dependence scheme 2.
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Table A-15—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .140 .191 .474 .805 .965 .148 .166 .323 .524 .756 .419 .316 .364 .368 .557
T (φ̂− 1) .229 .221 .336 .547 .865 .120 .138 .217 .357 .588 .038 .085 .138 .204 .298
MZα .131 .237 .600 .919 .997 .139 .148 .264 .450 .664 .402 .286 .320 .320 .510
tφ .050 .084 .240 .478 .826 .061 .099 .172 .316 .553 .028 .060 .109 .180 .278

8 MSB .094 .127 .353 .656 .895 .104 .110 .222 .380 .609 .382 .252 .266 .258 .442
MZt,M .106 .171 .467 .805 .966 .122 .140 .312 .523 .758 .396 .293 .353 .367 .562
tφ,M .208 .204 .326 .546 .868 .100 .130 .211 .357 .590 .029 .077 .134 .203 .302
T (φ̂− 1)M .105 .136 .292 .538 .860 .121 .143 .217 .360 .594 .060 .099 .140 .213 .306
MZα,M .239 .248 .503 .802 .962 .229 .220 .349 .530 .742 .498 .371 .388 .377 .554

MZt .108 .126 .306 .510 .756 .128 .121 .181 .280 .393 .535 .358 .368 .357 .620
T (φ̂− 1) .262 .204 .244 .326 .605 .130 .117 .146 .206 .310 .041 .095 .140 .224 .344
MZα .121 .169 .411 .718 .940 .125 .124 .210 .367 .543 .504 .322 .324 .297 .560
tφ .053 .076 .150 .266 .540 .050 .067 .108 .166 .268 .029 .050 .104 .173 .304

12 MSB .066 .078 .209 .376 .594 .095 .079 .108 .177 .272 .469 .280 .269 .230 .478
MZt,M .071 .102 .290 .501 .753 .099 .096 .162 .268 .392 .484 .327 .358 .349 .618
tφ,M .224 .187 .233 .320 .600 .102 .101 .135 .203 .311 .031 .079 .130 .218 .339
T (φ̂− 1)M .112 .117 .184 .316 .594 .113 .106 .144 .204 .308 .068 .100 .140 .215 .352
MZα,M .201 .194 .340 .519 .746 .206 .176 .203 .290 .390 .631 .414 .398 .366 .615

MZt .143 .218 .612 .950 .999 .205 .184 .352 .610 .878 .648 .411 .325 .308 .580
T (φ̂− 1) .408 .367 .491 .752 .986 .189 .191 .299 .468 .742 .039 .084 .120 .210 .336
MZα .119 .174 .525 .882 .995 .144 .121 .207 .331 .539 .616 .383 .282 .252 .526
tφ .063 .127 .300 .651 .971 .075 .114 .230 .404 .684 .024 .043 .083 .156 .280

24 MSB .098 .149 .441 .846 .990 .150 .125 .238 .435 .697 .590 .349 .227 .194 .438
MZt,M .086 .164 .580 .946 .999 .136 .137 .314 .592 .878 .588 .361 .293 .286 .571
tφ,M .338 .314 .458 .737 .986 .138 .160 .274 .452 .736 .022 .063 .103 .193 .322
T (φ̂− 1)M .153 .208 .396 .732 .983 .167 .175 .295 .471 .738 .067 .080 .120 .197 .325
MZα,M .313 .324 .675 .956 .999 .344 .274 .418 .633 .869 .754 .481 .371 .323 .588

MZt .143 .200 .544 .934 .998 .213 .166 .264 .496 .762 .824 .528 .388 .281 .694
T (φ̂− 1) .513 .459 .544 .744 .984 .240 .229 .301 .452 .695 .045 .085 .143 .223 .395
MZα .141 .166 .536 .930 1.00 .184 .133 .194 .328 .564 .803 .487 .342 .226 .619
tφ .062 .113 .330 .615 .967 .073 .112 .209 .358 .604 .020 .041 .088 .163 .329

48 MSB .095 .120 .374 .789 .984 .161 .114 .168 .314 .536 .777 .440 .278 .166 .516
MZt,M .061 .113 .466 .922 .998 .130 .106 .206 .443 .742 .757 .442 .327 .234 .662
tφ,M .414 .380 .489 .706 .983 .159 .169 .250 .412 .670 .021 .059 .112 .190 .362
T (φ̂− 1)M .169 .200 .417 .701 .983 .188 .187 .266 .419 .666 .067 .089 .125 .193 .374
MZα,M .329 .328 .620 .944 .998 .382 .262 .316 .524 .769 .896 .621 .437 .308 .698

Note: Case ψ = 0, φ = φ̃n with (φ̃n)i ∼ U(.9, 1), δ = 0.2. Dependence scheme 3.
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Table A-16—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .122 .094 .121 .189 .308 .024 .032 .106 .185 .281 .082 .167 .640 .974 1.00
T (φ̂− 1) .731 .740 .783 .830 .870 .210 .251 .321 .460 .628 .203 .350 .783 .990 1.00
MZα .094 .071 .098 .159 .264 .012 .016 .068 .118 .181 .050 .100 .469 .905 .996
tφ .086 .202 .412 .576 .664 .023 .057 .138 .262 .431 .039 .126 .567 .953 1.00

8 MSB .085 .055 .080 .122 .222 .012 .016 .068 .118 .181 .050 .100 .469 .905 .996
MZt,M .108 .085 .119 .189 .311 .018 .029 .101 .185 .283 .064 .143 .627 .974 1.00
tφ,M .682 .718 .779 .830 .872 .181 .230 .314 .458 .631 .171 .322 .775 .990 1.00
T (φ̂− 1)M .151 .264 .468 .613 .698 .049 .093 .171 .299 .476 .105 .198 .645 .969 1.00
MZα,M .146 .105 .125 .193 .299 .040 .044 .116 .195 .277 .142 .229 .659 .971 .999

MZt .093 .057 .066 .087 .169 .036 .037 .148 .300 .471 .060 .092 .306 .720 .954
T (φ̂− 1) .690 .723 .732 .746 .780 .289 .288 .463 .657 .844 .164 .216 .507 .849 .987
MZα .062 .041 .050 .070 .133 .022 .019 .092 .199 .324 .032 .059 .200 .543 .860
tφ .066 .146 .305 .416 .523 .031 .070 .213 .427 .665 .019 .058 .266 .684 .947

12 MSB .048 .034 .038 .055 .104 .022 .019 .092 .199 .324 .032 .059 .200 .543 .860
MZt,M .074 .049 .059 .082 .166 .026 .029 .136 .292 .468 .035 .078 .281 .710 .954
tφ,M .637 .694 .723 .740 .778 .235 .260 .446 .649 .844 .124 .187 .492 .844 .987
T (φ̂− 1)M .120 .210 .361 .454 .554 .082 .118 .276 .483 .719 .058 .108 .351 .750 .963
MZα,M .102 .058 .066 .088 .169 .055 .058 .165 .308 .464 .104 .130 .340 .719 .948

MZt .118 .054 .046 .072 .127 .032 .029 .147 .280 .474 .046 .083 .381 .866 .997
T (φ̂− 1) .802 .833 .823 .842 .873 .357 .372 .552 .760 .934 .210 .286 .642 .964 1.00
MZα .072 .038 .035 .056 .108 .021 .016 .096 .191 .318 .027 .047 .252 .695 .963
tφ .063 .173 .353 .466 .594 .030 .071 .268 .491 .787 .018 .064 .357 .848 .996

24 MSB .058 .028 .027 .043 .084 .021 .016 .096 .191 .318 .027 .047 .252 .695 .963
MZt,M .086 .042 .040 .064 .121 .022 .019 .126 .263 .457 .024 .056 .338 .858 .997
tφ,M .720 .800 .808 .829 .867 .285 .315 .524 .748 .930 .146 .230 .608 .960 1.00
T (φ̂− 1)M .125 .238 .416 .523 .632 .088 .134 .342 .556 .837 .066 .122 .460 .902 .998
MZα,M .132 .061 .049 .072 .122 .056 .051 .171 .300 .476 .108 .140 .440 .881 .997

MZt .209 .076 .059 .083 .169 .036 .025 .123 .244 .387 .064 .084 .529 .982 1.00
T (φ̂− 1) .946 .962 .958 .970 .980 .454 .444 .586 .796 .952 .273 .366 .844 1.00 1.00
MZα .149 .057 .045 .063 .136 .022 .016 .074 .150 .235 .035 .043 .351 .893 1.00
tφ .081 .241 .530 .687 .801 .027 .073 .226 .476 .783 .016 .065 .489 .975 1.00

48 MSB .125 .044 .035 .043 .097 .022 .016 .074 .150 .235 .035 .043 .351 .893 1.00
MZt,M .143 .051 .045 .067 .141 .018 .016 .091 .203 .354 .026 .040 .452 .977 1.00
tφ,M .892 .942 .947 .964 .977 .325 .350 .526 .768 .944 .167 .273 .802 1.00 1.00
T (φ̂− 1)M .198 .354 .600 .739 .836 .086 .145 .306 .550 .834 .066 .152 .623 .988 1.00
MZα,M .248 .084 .060 .083 .166 .071 .041 .142 .264 .395 .149 .157 .602 .985 1.00

Note: Case ψ = 0, φ = φ̃n with (φ̃n)i ∼ U(.9, 1), δ = 5. Dependence scheme 1.
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Table A-17—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .094 .053 .066 .106 .165 .029 .043 .174 .326 .492 .052 .073 .228 .490 .716
T (φ̂− 1) .560 .585 .592 .611 .666 .258 .278 .434 .583 .776 .128 .173 .337 .627 .815
MZα .059 .038 .051 .088 .141 .025 .036 .156 .300 .458 .052 .084 .325 .672 .900
tφ .060 .137 .262 .352 .438 .040 .089 .230 .418 .635 .016 .055 .200 .481 .719

8 MSB .050 .030 .040 .068 .112 .015 .026 .106 .226 .353 .031 .044 .158 .375 .585
MZt,M .080 .045 .062 .106 .166 .023 .038 .166 .325 .493 .041 .062 .221 .488 .718
tφ,M .516 .570 .587 .610 .666 .230 .263 .427 .584 .778 .109 .161 .330 .623 .816
T (φ̂− 1)M .104 .187 .293 .387 .469 .085 .128 .290 .462 .672 .050 .092 .248 .535 .754
MZα,M .101 .060 .066 .108 .163 .054 .070 .184 .330 .479 .089 .100 .240 .497 .705

MZt .096 .047 .055 .078 .142 .030 .039 .132 .277 .407 .066 .121 .425 .786 .944
T (φ̂− 1) .569 .604 .622 .646 .676 .237 .266 .407 .559 .733 .174 .266 .581 .866 .972
MZα .064 .031 .040 .060 .118 .026 .038 .166 .340 .503 .041 .076 .246 .544 .756
tφ .055 .132 .252 .365 .437 .024 .060 .197 .384 .592 .025 .082 .382 .763 .940

12 MSB .052 .028 .028 .046 .093 .016 .020 .087 .186 .291 .036 .078 .299 .672 .889
MZt,M .080 .040 .050 .074 .140 .022 .029 .123 .269 .403 .045 .100 .406 .781 .944
tφ,M .523 .582 .614 .640 .674 .194 .233 .395 .552 .732 .144 .240 .568 .861 .973
T (φ̂− 1)M .110 .184 .296 .397 .470 .071 .103 .255 .436 .633 .070 .149 .458 .799 .950
MZα,M .103 .051 .057 .076 .141 .052 .059 .145 .282 .401 .116 .163 .450 .784 .941

MZt .144 .064 .065 .090 .178 .034 .036 .150 .342 .516 .055 .098 .376 .738 .925
T (φ̂− 1) .721 .761 .748 .778 .810 .334 .367 .514 .711 .860 .192 .278 .586 .856 .966
MZα .100 .045 .048 .072 .148 .022 .027 .117 .209 .326 .044 .064 .296 .664 .886
tφ .071 .194 .378 .507 .584 .039 .087 .260 .510 .734 .016 .063 .369 .721 .932

24 MSB .076 .035 .035 .058 .114 .019 .022 .095 .238 .362 .029 .058 .271 .616 .858
MZt,M .114 .054 .054 .084 .168 .020 .022 .128 .328 .515 .032 .068 .354 .728 .924
tφ,M .650 .729 .733 .773 .803 .266 .317 .485 .701 .857 .138 .231 .564 .850 .966
T (φ̂− 1)M .137 .263 .429 .548 .614 .099 .159 .334 .571 .778 .061 .128 .450 .778 .946
MZα,M .164 .077 .072 .092 .177 .064 .061 .173 .362 .513 .114 .156 .415 .749 .922

MZt .178 .070 .058 .068 .144 .033 .031 .099 .220 .324 .058 .085 .405 .774 .955
T (φ̂− 1) .796 .834 .828 .834 .858 .389 .358 .453 .622 .767 .244 .307 .639 .900 .984
MZα .123 .052 .044 .051 .118 .032 .026 .108 .257 .390 .040 .061 .347 .706 .917
tφ .084 .216 .426 .569 .653 .025 .068 .188 .379 .598 .018 .062 .380 .777 .960

48 MSB .103 .040 .028 .039 .086 .020 .018 .058 .148 .210 .032 .044 .281 .658 .894
MZt,M .120 .048 .042 .051 .123 .018 .018 .072 .197 .300 .022 .048 .359 .758 .952
tφ,M .716 .795 .804 .820 .850 .287 .281 .404 .590 .750 .158 .231 .594 .888 .983
T (φ̂− 1)M .176 .302 .483 .606 .682 .088 .132 .247 .434 .644 .069 .138 .476 .828 .968
MZα,M .203 .085 .060 .067 .141 .068 .052 .117 .234 .327 .126 .142 .455 .786 .954

Note: Case ψ = 0, φ = φ̃n with (φ̃n)i ∼ U(.9, 1), δ = 5. Dependence scheme 2.
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Table A-18—Rejection Rates of the Tests.

τ = 0.1 τ = 0.5 τ = 0.9

n T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

MZt .080 .106 .312 .580 .842 .047 .079 .317 .644 .855 .074 .130 .473 .860 .989
T (φ̂− 1) .364 .438 .630 .809 .946 .217 .267 .516 .788 .943 .154 .240 .599 .904 .993
MZα .059 .081 .272 .528 .804 .030 .072 .245 .553 .777 .054 .125 .518 .915 .997
tφ .042 .118 .379 .640 .868 .033 .076 .308 .638 .884 .028 .090 .398 .808 .981

8 MSB .042 .065 .222 .460 .748 .027 .049 .221 .498 .755 .040 .083 .342 .742 .964
MZt,M .065 .093 .303 .578 .844 .035 .068 .311 .644 .856 .059 .115 .458 .860 .989
tφ,M .333 .422 .622 .809 .946 .184 .243 .505 .788 .944 .132 .222 .591 .904 .994
T (φ̂− 1)M .082 .173 .438 .682 .891 .077 .133 .375 .682 .909 .068 .142 .481 .850 .984
MZα,M .100 .132 .329 .583 .834 .083 .107 .340 .646 .848 .126 .177 .496 .863 .988

MZt .058 .071 .191 .416 .656 .040 .069 .295 .592 .843 .066 .124 .486 .893 .994
T (φ̂− 1) .364 .405 .550 .730 .854 .233 .288 .539 .791 .951 .187 .256 .642 .936 .997
MZα .034 .052 .156 .353 .603 .047 .075 .347 .749 .939 .043 .094 .359 .795 .976
tφ .026 .080 .264 .481 .723 .027 .078 .296 .609 .874 .026 .076 .390 .831 .988

12 MSB .025 .043 .122 .297 .537 .022 .039 .194 .436 .711 .040 .076 .339 .769 .969
MZt,M .038 .060 .180 .409 .653 .025 .056 .282 .586 .840 .044 .098 .465 .888 .994
tφ,M .308 .375 .536 .726 .854 .196 .258 .521 .787 .952 .148 .225 .629 .935 .996
T (φ̂− 1)M .066 .126 .322 .529 .752 .076 .128 .371 .672 .903 .072 .142 .492 .886 .991
MZα,M .086 .087 .206 .412 .649 .081 .102 .320 .597 .832 .128 .167 .516 .889 .994

MZt .069 .059 .152 .357 .619 .050 .074 .356 .746 .943 .056 .107 .470 .894 .997
T (φ̂− 1) .448 .482 .605 .757 .878 .312 .378 .670 .918 .990 .192 .291 .662 .954 1.00
MZα .049 .041 .125 .312 .563 .039 .064 .350 .728 .947 .043 .078 .344 .776 .978
tφ .030 .078 .266 .503 .721 .028 .092 .391 .778 .963 .021 .070 .394 .857 .995

24 MSB .038 .032 .102 .254 .499 .033 .048 .250 .606 .855 .036 .062 .322 .765 .978
MZt,M .049 .044 .138 .346 .615 .028 .052 .328 .736 .942 .033 .072 .426 .888 .997
tφ,M .372 .436 .584 .749 .876 .237 .325 .648 .915 .989 .131 .244 .632 .952 1.00
T (φ̂− 1)M .075 .129 .321 .563 .756 .098 .163 .492 .836 .977 .058 .144 .502 .901 .998
MZα,M .095 .080 .177 .370 .622 .102 .119 .407 .759 .943 .119 .176 .526 .900 .997

MZt .074 .060 .153 .378 .636 .046 .070 .340 .754 .958 .048 .078 .334 .814 .986
T (φ̂− 1) .562 .641 .721 .850 .928 .379 .457 .708 .941 .996 .241 .294 .623 .934 .998
MZα .050 .044 .125 .336 .580 .033 .037 .205 .520 .807 .043 .093 .482 .934 1.00
tφ .024 .096 .300 .564 .785 .025 .095 .383 .792 .986 .011 .047 .303 .777 .988

48 MSB .037 .032 .097 .278 .509 .028 .038 .230 .593 .880 .026 .042 .211 .630 .946
MZt,M .044 .037 .127 .353 .612 .022 .040 .294 .726 .955 .023 .043 .272 .783 .985
tφ,M .451 .576 .680 .830 .918 .267 .364 .664 .932 .996 .153 .214 .558 .924 .998
T (φ̂− 1)M .087 .158 .359 .618 .818 .098 .185 .483 .854 .989 .058 .113 .406 .846 .992
MZα,M .111 .082 .170 .390 .632 .098 .115 .396 .774 .959 .115 .141 .396 .834 .985

Note: Case ψ = 0, φ = φ̃n with (φ̃n)i ∼ U(.9, 1), δ = 5. Dependence scheme 3.
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