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Abstract

We propose a novel semiparametric method to extract location values from

house prices. After splitting house prices into building and land components,

location values are estimated with adaptive weight smoothing. The adaptive

estimator requires neither strong smoothness assumptions nor local symmetry.

We apply the method to house transactions from Berlin, Germany. The es-

timated surface of location values is highly correlated with expert-based land

values and location ratings. The method can therefore be used for applications

where no other location value information exists or where this information is

not reliable.

Keywords: location value, adaptive weight smoothing, spatial modeling

JEL Classification: R31, C14
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1 Introduction

When asking a real estate professional about the three most important character-

istics of a house, the likely answer will be ‘location, location, location’.1 Naturally,

the characteristics of the building itself also play a role in its desirability, but the

phrase emphasizes the importance of the surrounding area. The finest villa in an

otherwise run-down neighborhood is much less desirable than the very same building

in a nice suburban area with shady forests, quiet lakes, and good schools. Based on

this reasoning, we expect that the house will fetch a higher price when located in

a nice area than when located in a run-down area. Seen differently, the difference

between the prices of the villa in the two different areas gives the location value of

the nice area relative to the run-down area. Once buildings differ with respect to

their characteristics, such a simple price comparison is no longer sufficient to learn

about the relative value of a location. But the general notion remains: house prices

contain information on the value of the location.

Location values are of interest for several reasons. They can be used for spatial

analysis with respect to the influence of amenities and externalities. They can be

used for studying the impact of regulation, such as zoning. They can be used to

measure the effects of policy interventions, such as regeneration and revitalization.

Location values can be estimated directly from transactions of undeveloped land

(Colwell and Munneke, 2003). However, particularly in densely populated urban

areas, few (if any) transactions of undeveloped land may occur. House sales are

typically more frequent.

In this paper, we propose a flexible method to estimate location values from

house prices. At the first stage, we use the semiparametric estimator of Yatchew

(1997) and Wang et al. (2011) to split the house price into components related to the

building and the location. At the second stage, we use adaptive weight smoothing

1The phrase is in use at least since the 1920ties, see William Safire’s ‘On language: location,

location, location’ in The New York Times, June 28, 2009.
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(AWS) as pioneered by Polzehl and Spokoiny (2000, 2006) to estimate the location

value surface. AWS is flexible regarding the shape of the surface and does not require

smoothness assumptions. AWS identifies areas with homogenous location values by

an adaptive iterative algorithm that is based on nonparametric smoothing. Unlike

standard smoothers such as kernel regression, the algorithm does not require that

the local areas have the same shape, say rectangular or radial, at different locations.

We illustrate the methodology in an empirical application to data of geo-coded

single-family house transactions from Germany’s capital Berlin. Our estimated lo-

cation surface provides a comprehensive characterization of the location values of

Berlin’s residential areas. The shape and size of areas with similar location values

are completely data-driven and need not adhere to administrative boundaries. Since

the true location values are not observed, we assess the adequacy of our estimates

by comparing them with expert-based land values and expert-based ordinal location

ratings. We find that our semiparametric method estimates location values that are

highly correlated with the expert-based land values and location ratings.

Only a few previous studies have modeled location values from house price infor-

mation. Cheshire and Sheppard (1995), Rosenthal (1999), and Rossi-Hansberg et al.

(2010) are examples; none of these studies compares the estimated location values

with benchmarks as we do.2 Anglin and Gençay (1996) and Clapp (2004), among

others, also fitted semiparametric models to house prices, but with more restrictive

and less flexible location value functions.

In summary, the novel method proposed in this paper allows us to estimate loca-

tion values from house prices. We find that the estimated location values are reliable

in the sense that they show agreement with expert assessments based on different

information. The method should prove useful for applications where location values

are needed and no expert-based information is available or where such information

should be complemented by data-driven flexible location value estimates.

2Lack of such a benchmark is the reason why location values have to be imputed in the first

place.
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2 Methodology and estimation

We start with the assumption that the price of a house can be split into the value

B of the building and the value L of land, so that P = B + L. Such a zero-profit

condition holds for new houses if they are produced by a competitive construction

industry using a constant returns to scale technology. In the case of old houses,

the condition should hold once the building value is adjusted for depreciation; the

condition corresponds then to the depreciated cost approach (Bourassa et al., 2011).

To make explicit that houses are heterogenous, we write

P = B(xB) + L(xL) , (1)

where the vectors xB and xL collect building and land characteristics. We specify the

building component as B(xB) = x′Bβ. Building characteristics include continuous

variables such as floor area and age and discrete variable such as cellar and building

type. The land component is specified as L(xL) = sa(l), where s measures lot size in

square meters. The location value a(l) depends on the Cartesian location coordinates

l = (l1, l2), but is otherwise unspecified and flexible. The coefficient vector β and

the location value function a(l) are not known and have to be estimated.

Dividing both sides of Eq. 1 by the lot size s and adding the term ε for unobserved

characteristics and idiosyncratic effects during the transaction, we obtain the partial-

linear regression model

p = z′β + a(l) + ε . (2)

Here, p and z denote the house price and the building characteristics per square

meter lot size.3 We assume that the noise term is mean independent from z and l,

which implies E(ε|z, l) = 0.

In order to estimate the nonparametric location value function, we first remove

the building value from the house price. Specifically, we obtain a consistent estimate

3The continuous building characteristics (per sqm) may be transformed further to capture non-

linearities in the hedonic price function.
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of the parametric component in Eq. 2 and compute the residual u = p− z′β, which

equals the sum of the location value plus the transaction noise term ε. We then

separate the residual into the latter two terms using AWS.

We note that our method does not allow the identification of separate constants

for the building and the location value component. We can therefore estimate the

relative location value surface, but additional information is required to convert the

surface into levels.4

2.1 Data description

Our main data is provided by Berlin’s Committee of Valuation Experts (GAA, Gut-

achterausschuss für Grundstückswerte).5 The data covers arms-length transactions

of single-family houses during the years 1996-2010. The data contains information

on the transaction price, geographic location coordinates, and numerous building

characteristics. Each transaction has also an expert-based land value and expert-

based location rating. These assessments will serve as benchmarks for our estimated

location values and are further described in Section 3 below.

Table 1 gives summary statistics for the 19,283 observations. House prices and

expert-based land values are converted into year 2000 Euros using constant-quality

price and land value indices, respectively.6 As indicated by the standard deviation,

house prices show substantial variation. This is in line with the substantial variation

of building characteristics, such as floor size, number of storeys, age of the building,

and building type. There is also substantial variation regarding the size of the lot.

Unusual features of the house in Table 1 include physical aspects such as structural

4Observing the price for undeveloped land at the location where a(l) reaches, say, its minimum

would be sufficient to calibrate the surface.
5The GAA is entitled by law to request and collect information on all real estate transactions

occurring in Berlin.
6The indices are estimated using the hedonic regression methodology described in Schulz and

Werwatz (2011).
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damage or flooding risk and legal aspects such as rights of way or use for pipes or

cables. Such easements are rather common.

[Table 1 about here]

Another important source of variation is the location of a house within the city, as

indicated by the map plotted in Figure 1.

[Figure 1 about here]

The area of Berlin is 891 km2, where the distance from west to east is 45 km (left

to right) and 38 km from south to north (bottom to top). The map shows that the

amount of lakes, rivers, parks, and forests differs between suburban areas. Modern

Berlin was created by incorporating many formerly independent smaller cities and

towns, some of which have kept their own distinctive character, which adds to the

variation of location characteristics.

2.2 Estimation of the building component

We use the estimator proposed by Yatchew (1997) and Wang et al. (2011) for the

estimation of β, the vector of coeffcients of the building characteristics. The basic

idea of the estimator is that the location value a(l) can be neglected when working

with the differences of the variables of close observations. This requires that the data

are ordered to be geographically close to each other. We follow Yatchew (1997) and

order the observations along a path created from the nearest-neighbor algorithm.7

Taking the differences of two nearby observations i and i− 1 yields

pi − pi−1 = (zi − zi−1)′β + a(li)− a(li−1) + εi − εi−1 . (3)

If the location value function is sufficiently smooth, a(li)−a(li−1) becomes negligible,

because li and li−1 are geographically close. The coefficient vector β can then be

7The Appendix explains the algorithm.
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estimated consistently with ordinary least squares.8 The simulations in Wang et

al. (2011) show that the estimator works well even if the unknown function a(•) is

bumpy or has sharp boundaries.

Whereas Eq. 3 is ideal for providing intuition, a version of this regression equa-

tion with weighted higher order differences will lead to a more efficient estimator.

Letting ∆myi ≡
∑m

s=0 dsyi−s, where yi can be a scalar or a vector, and denoting the

differencing weights with ds, the improved estimation equation is

∆mpi = (∆mzi)
′β + ∆ma(li) + ∆mεi . (4)

The weights fulfill the two restrictions
m∑
s=0

ds = 0 and

m∑
s=0

d2
s = 1 , (5)

where the first restriction ensures that the location value function vanishes as the

sample size increases and the locations become close. The second ensures that

Var[∆mε] = σ2
ε , i.e. the variance of the differenced error equals the variance of ε.

The ordinary least squares estimator β̂∆m
of Eq. 4 approaches asymptotic efficiency

when m is chosen sufficiently large. Optimal weights for different values of m are

tabulated in Hall et al. (1990, Table 1).

Table 2 presents the ordinary least squares estimates for the coefficients of Eq. 4,

with m set to 10.9 The standard errors are calculated with a heteroscedasticity-

robust sandwich estimator.

[Table 2 about here.]

The overall fit for Eq. 4 is remarkably good with an R2 = 0.830.10 Moreover, all of

the estimated coefficients have reasonably signs and most of them are statistically

8Wang et al. (2011) provide a technical discussion of what minimal smoothness assumptions are

required for consistency.
9A difference order of m = 10 produces coefficient estimates that achieve approximately 95

percent efficiency relative to an estimator with the optimal rate of convergence (Yatchew, 1997).
10R2 is computed with 1 − s2

m/s2
p, where s2

m = (N − m)−1 ∑N−m
i=1 (∆mpi − z′iβ̂∆m

)2, s2
p is the

variance of p, and N is the number of observations (Yatchew, 1997, Proposition 1).
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significant at the usual levels. The price for a house increases, for instance, with

both the floor size and the size and volume of all base areas in all storeys. The

significant coefficients on the corresponding squared terms imply that these effects

have diminishing rates. The age of the building, on the other hand, has a negative

impact on the house price. The significant coefficient for the squared age term

implies a decreasing depreciation rate, which stays positive over the whole range

of the age variable (when evaluated at the mean value of the size variables). The

magnitudes of the estimated effects of the binary indicator variables are reasonable

in sign and magnitude as well. For instance, relative to the price of a building with

a normal state of repair buildings with a poor (good) state of repair demand a price

rebate (premium).

The estimator β̂∆m
depends not only on m, but also on the ordering of obser-

vations regarding their geographical closeness. In the presented results the average

distance between observations is about 95 meters with a standard deviation of 394

meters. To assess the impact of the nearest-neighbor algorithm on the estimated

building values, we re-ran the regressions 50 times, each time with a different order-

ing. The within standard deviation of predicted building component for these runs

is approximately 3% of the (average) building value.11 Moreover, the coefficient of

correlation between predicted building values from any two different runs is always

well above 0.96. The results presented here are thus robust towards slightly different

orderings of the observations.

Given β̂∆m
, we can adjust the per-square meter house prices for the buildung

component and obtain the residuals ûi = pi − z′iβ̂∆m
. These first-stage residuals

contain the location values to be extracted by the second stage of our method.

Figure 2 shows box plots of these residuals for Berlin’s districts.12 For the plot, the

11We assume that the building value accounts for 50% of the house price. The mean house price

and floor size in Table 1 then imply an average building value per sqm of 935 Euros. The within

standard deviation of the predicted building component is 27 Euro.
12The inner-city district of Kreuzberg-Friedrichshain has no single-family house neighborhoods

and is not part of the plot.
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residuals are normalized to the unit interval and the districts are ordered according

to the median of the expert-based location ranking.

[Figure 2 about here.]

Within each district, the residuals show substantial variation. This suggests that

location values vary among areas within any given district.

2.3 Estimation of the location value surface

The second-stage of our method has two aims: (i) to separate the location values

contained in the first-stage residuals ûi from the transaction-specific noise and (ii)

to form areas with homogenous location values. To achieve these aims, we apply

adaptive weights smoothing (AWS), a regression method developed by Polzehl and

Spokoiny (2000, 2006). AWS allows to separate the underlying structure in the data

from the distorting noise. AWS does not impose a priori assumptions on the form

of this underlying structure (i.e. the regression function). Rather, AWS recovers

the unknown regression function contained in the noisy data by an iterative, locally

adaptive smoothing algorithm. In this algorithm, the local regression estimate is

successively improved by searching for the largest vicinity of a nearly constant level

of the regression function.

In our application, this amounts to finding the largest area around each location

li in which the expected location value a(li) can be approximated well by a constant

level. Similar to well-known smoothing methods such as kernel regression or nearest-

neighbor estimation, AWS estimates a(li) by weighted local averaging over ûjs at li.

However, to determine the weight of observation j in forming the estimate of a(li),

AWS does not only consider the distance between lj and li (like other standard

nonparametric smoothers do), but also adds a level penalty. Formally, the estimator

at location li in the k-th iteration is defined as

â(li)
(k)

=

∑N
j=1w

(k)
ij ûj∑N

j=1w
(k)
ij

, (6)
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where the weights are computed as

w
(k)
ij = Kdist

(
dist

(k)
ij

)
×Klev

(
lev

(k)
ij

)
. (7)

The weight of observation j in the average formed at i is thus determined by a

product of two kernel functions K. Both kernel functions are nonnegative and non-

increasing on the positive semi-axis. That is, they give maximum weight if their

respective argument is zero and declining weights as their arguments increase.13

The arguments of these kernel functions are the distance penalty distij and the level

penalty levij , respectively. The distance penalty in iteration k is given by dist
(k)
ij =

|ρ(li, lj)/h
(k)|2 where ρ(li, lj) is the Euclidean distance between the locations of

observations i and j and h(k) is the bandwidth in iteration k. Hence, as in standard

nonparametric regression, observation j will receive the more weight in the estimate

at i, the closer its location to that of i. The level penalty in iteration k is computed

as

lev
(k)
ij = λ−1A

(k−1)
i

{
â(li)

(k−1)
− â(lj)

(k−1)
}2

︸ ︷︷ ︸
T

(k)
ij

. (8)

This penalty is based on the comparison of the regression estimates at lj and li in

the previous iteration (k − 1). Hence, observation j will receive the more weight in

iteration k, the closer its estimated level has been to that of observation i in the

previous step. The term

A
(k−1)
i =

n∑
j=1

w
(k)
ij (9)

equals the sum of the weights at i from the previous step and can be viewed as

the local sample size that rescales the squared distance â(li)
(k−1)

− â(lj)
(k−1)

. The

product of these two terms, T
(k)
ij , can be viewed as a test statistic of the hypothesis

a(li) = a(lj). The parameter λ acts as a critical value for this test statistic: if

T
(k)
ij > λ observation j does not receive weight in the estimate at i.14 Thus, the

13In our empirical application, we use the triangular kernel for, both, Kdist (•) and Klev (•).
14Klev (•) has bounded support [−1, 1].
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larger λ, the smaller the impact of a particular deviation of â(li) from â(lj) on the

level penalty.

By amending the distance penalty of standard nonparametric estimation with a

level penalty, AWS achieves both an extension of the scope of regression relations

it can successfully tackle as well as an an increase in estimation efficiency. Both

advantages will become clear when we complete our description of AWS by sketching

the steps of its iterative algorithm.15

In the initial step (k = 0), the AWS estimator at li behaves like a standard kernel

estimator by setting w
(0)
ij = Kdist

(
dist

(0)
ij

)
. That is, only the distance penalty is

considered for determining the weight of any observation j. In subsequent steps,

the distance penalty is relaxed by successively increasing the location bandwidth

according to the rule h(k) = ch(k−1). The iterative algorithm terminates if ch(k−1) >

h∗ where the parameter c controls the bandwidth growth.

Hence, successively more distant observations are considered for forming the

local average at li. The level penalty, which kicks in at iteration k = 1, ensures

that this is justified. More distant observations may belong to locations where the

the expected location value may be quite different from a(li), resulting in a biased

estimate. This, however, is prevented by a large level penalty which effectively leads

to the exclusion of such an observation from the computation of â(li)
(k)

. If, on the

other hand, the current assessment of the expected location value at observation

j, i.e. â(lj)
(k−1)

, is close to that at observation i, then observation j does receive

weight despite its potentially substantial distance in location from li.

By relaxing the distance penalty and at the same time enforcing the level penalty,

AWS identifies at any location the largest contiguous area of a nearly constant level

of the expected location value. Unlike standard nonparametric smoothers, it thus

allows more distant observations to be included in an estimate at any location as

15The Appendix summarizes the algorithm and gives details on the choice of smoothing param-

eters.
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long as this is justified by homogeneity in expected location values. This not only

increases the efficiency of the estimate (from the resulting increase in the local sam-

ple size), it also enables to identify shapes of regression relations that standard

smoothers can not pick up. This modeling advantage is most pronounced in sit-

uations where the underlying regression function allows a piecewise constant ap-

proximation with large homogenous regions that are allowed to sharply differ at the

boundaries.

The AWS procedure requires the choice of smoothing parameters for the distance

and level penality. Since the distance penalty is successively relaxed during the

algorithm, the choice of its bandwidth, h, is much less important than for standard

Kernel regression. The key smoothing parameter is λ, the factor that scales the level

penalty. Too small values of λ will result in an over-penalization of level differences

between neighboring observations. As a result, areas of homogeneous location values

may not be identified. Too large values of λ, on the other hand, will result in a loss

of sensitivity towards discontinuities in location values. Neighboring observations

may be joined in this case to form an area of a common level of location values

when this is not warranted. To resolve this trade-off, we consider the (hypothetical)

situation of a constant value surface. In this case, the final estimate of AWS should

coincide with high probability with the globally constant location value. We use the

minimal value of λ that ensures this ‘propagation condition’. This value of λ does

not depend on the particular globally constant location value and we obtain it from

Monte Carlo simulations.16

In our empirical application we use binning to reduce the computional burden of

AWS (Fan and Marron, 1994).17 We therefore generate a 300×300 grid with the two

dimensions ‘latitude’ and ‘longitude’ and allocate the observations to bins with the

grid points as centers. Each bin has an approximate size of 171× 114 meters. 7,704

16The Appendix explains the simulation.
17The computional burden of obtaining estimates of a(li) at every location i is not a specific

feature of AWS but common to all nonparametric smoothers.
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bins contain at least one observation, 3,354 bins contain exactly one, the average

count per bin is 2.5 observations, and the maximum is 49. We estimate location

values for each nonempty bin.

Figure 3 plots the estimated location values â(l) for the bins within a map of

Berlin. Estimates are normalized to the unit interval and shading is used to represent

their magnitudes.

[Figure 3 about here.]

The plot illustrates both the functioning and the advantages of AWS. Binning is

visible from the somewhat angular appearance of similar colored areas but otherwise

the colors, shapes and size of these areas are data-driven and locally adaptive. AWS

identified these areas by relaxing the distance penalty in successive iterations and

implicitly testing for local homogeneity of location values. As long as the location

values are sufficiently similar, relaxing the distance penalty is justified and adjacent

bins are subsumed into an area.

3 Comparison with expert-based location assessments

In order to evaluate the adequacy of the estimated location values we compare them

with two expert-based location assessments. Our first benchmark is an estimate of

the notional value of land as if it were undeveloped. The land values are computed

by GAA appraisers using the sales comparison approach based on information from

transactions of undeveloped land. The estimated location value and the expert-

based land value are both estimates of the true but unobserved location value. We

therefore expect to find a strong positive correlation between the two of them. Our

second benchmark is an expert-based location rating, which is provided by Berlin’s

Senate Department for Urban Development and the Environment. The ordinal

rating uses four levels to summarize the quality of a particular location.18 For this

18The geographic unit of a location corresponds to a street block.
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rating, the experts consider the amount of natural amenities such as lakes and forests,

the quality of existing buildings, and the access to public transport and shopping

facilities. We expect that the estimated location values, as well as the expert-based

land values agree in many cases with the expert-based location ratings regarding

their assessment of a location.

Summary statistics of the expert-based land value and expert-based location

rating are presented in the last part of Table 1. Both variables are not unrelated,

because GAA appraisers will use the location ratings for their land values and the

experts of the Senate department might use information on land values for their

location rating exercise. But the experts will also use different information differently

to derive an assessment of a particular location.

Figure 4 shows a sunflower scatter plot of the estimated location value, â(l),

and the expert-based land value. The plot represents the density of observations in

a region using stylized sunflowers. In a light sunflower, each petal represents one

observation. In a dark sunflower, each petal represents several observations.19 All

values are expressed in Euros per square meter. Since our semiparametric estimator

does not identify the level of location values, we normalize â(l) so that location and

land values have the same median. To work at the same level of geographical detail,

the plot uses the within-bin average of the expert-based land value.20

[Figure 4 about here.]

The expected positive correlation between both location assessments is visible and

strong, with a coefficient of correlation 0.845. The majority of paired observations

lie on the 45 degree line, although a few outliers with particulary large (small) values

of â(l) are apparent. The outliers are attributable to few first stage residuals that

are rather large or small. These residuals could be the result of mis-specifications

19A dark sunflower with p petals represents between p96 − 96/2 and p96 + 96/2 observations.
20Binning removes differences in the quality of locales within a bin that is still present in the

expert-based land values.
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of the first stage regression or could be the result of aberrant idiosyncratic effects

during the transaction.

The plot in Figure 4 shows that the expert-based land values and the estimated

location values, on average, conform to each other. We also expect that the land

value of a house located in a nice area is higher than if the house is located in

a dilapidated area. Figure 5 shows in its right panel box plots of the estimated

location value, â(l), for the four levels of the expert-based rating. Similar to the

expert-based land values (shown in the left panel of the figure), the medians of the

estimated location values increase in line with the expert-based location rating. The

quartiles of, both, the estimated location values and the expert-based land values

for locations with low and medium rating, however, overlap to a large extend. In

both cases, the separation for the top two levels of the expert-based rating is more

pronounced.

[Figure 5 about here.]

Notably, the variation of the estimated location values is higher than the variation

of the expert-based land values, except for locations with low rating. As discussed

above, this is attributable to outliers in the first-stage residuals.

To formally test if the estimated location values and expert-based land values

agree with the location ratings, we convert, both, the location and land values

into an ordinal rating. In this conversion, the 2% largest location and land values

receive the rating ‘excellent’, the next 20% values the rating ‘high’ and so forth.

Constructed this way, the ordinal ratings based on the land or location values have

the same marginal distribution as the expert-based location rating. Panel A and

B of Table 3 give the matching frequencies of the two constructed ratings and the

expert-based location rating. If one of the constructed ratings and the expert-based

location ratings were identical, then the respective contingency matrix would have

the marginal frequencies on the diagonal and zeros elsewhere.
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[Table 3 about here.]

For both constructed ratings, this is not the case. They are also not independent of

the expert-based rating, as a comparison with Panel C shows. The panel gives the

frequencies that we would expect if matching were random. In case of the rating

based on the estimated location values in Panel A the test statistic of the chi-square

test for statistical independence is 11, 025. This is a highly unlikely realization

under a χ2(9)-distribution and we reject the null of statistical independence. For

the rating based on the expert-based land values in Panel B, the null hypothesis of

the chi-square test for statistical independence is rejected as well.

The strength of the relationship between any two ratings can be measured with

Goodman and Kruskal’s γ, and Kendall’s τ , respectively. Both measures are rank

correlation coefficients that range from −1 (perfect inversion) to +1 (perfect agree-

ment). In Panel A, we estimate γ̂ = 0.662 and τ̂ = 0.459, indicating the expected

positive relationship between the estimated location values and expert-based loca-

tion rating. This is also true in Panel B, where the estimated rank correlation

coefficients are of very similar magnitude. Locations that are rated to have a higher

level of amenities have also a higher location value.

4 Conclusion

In this paper, we proposed a novel semiparametric method to extract location val-

ues out of house prices. Both stages of this method exploit the availability of the

location geo-codes in the data. The first stage of the method separates the price into

a building component and a land component by working with price differences of

nearby observations. Such properties will have similar location values. Their price

difference will thus primarily reflect differing building characteristics. The second

stage employs adaptive weights smoothing (AWS), a nonparametric method to sepa-

rate the residual from the first stage into the location value and a noise term. Using

17



AWS has several advantages over standard nonparametric regression. It allows the

size and shape of areas with a common location value to be completely determined

by the data. As illustrated by our application, these areas need not be symmetric

or adhere to a particular shape. Moreover, unlike kernel regression, AWS does not

require the location value surface to be smooth.

AWS identified these areas by relaxing the distance penalty in successive itera-

tions and implicitly testing for local homogeneity of location values. As long as the

location values are sufficiently similar, relaxing the distance penalty is justified and

adjacent areas are subsumed into one.

We apply the method to single-family house transactions from Berlin and obtain

reliable results in the sense that they show agreement with expert-based location

assessments. In particular, the estimated location values are highly correlated with,

both, land values and ordinal location ratings that are provided by real estate ex-

perts. In summary, the estimated surface provides a comprehensive characterization

of the relative location values of Berlin’s residential areas. The methodology should

thus prove useful for applications where location values are needed and no expert-

based information is available or where such information should be complemented

by data-driven flexible location value estimates.
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A Appendix

A.1 Nearest-neighbor algorithm

The nearest-neighbor algorithm used in the estimation of the building component

works as follows:

1. Initialization: Start with an arbitrary observation.

2. Iteration: Find its nearest neighbor with respect to the Euclidian distance and

mark the observation as visited.

3. Stopping: Go back to Step 2 until all observations have been visited.

The resulting sequence of the visited locations provides the ordered observations.

Depending on the initial observation, the nearest neighbor algorithm can lead to

slightly different ordering sequences and sometimes misses shorter routes. As a rule

of thumb, if the last few stages of the sequence are comparable in length to the first

stages, then the ordering is reasonable.

A.2 AWS algorithm

The AWS algorithm used to estimation the location value surface can be summarized

as follows:

1. Initialization: The parameters λ, h(0), c and h∗ are selected and the location

weights

wij = Kdist

(∣∣∣∣ρ (li, lj)

h(0)

∣∣∣∣2
)

and presmoothed estimates

â (li)
(0)

=

∑
j w

(0)
ij ûj∑

j w
(0)
ij

are calculated for all i, j.
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2. Iteration: In each iteration k the following steps are performed for every design

point, li, on the grid.

• Calculate the adaptive weights: For every point lj within the bandwidth

h(k) around point li the penalties

dist
(k)
ij =

∣∣∣∣ρ (li, lj)

h(k)

∣∣∣∣2 ,
lev

(k)
ij = λ−1A

(k−1)
i

(
â (li)

(k−1)
− â (li)

(k−1)
)2

, A
(k−1)
i =

n∑
j=1

w
(k−1)
ij

are computed and the weights are formed by wij = Kdist

(
dist

(k)
ij

)
×

Klev

(
lev

(k)
ij

)
.

• Estimation: For every design point li the updated estimate

â (li)
(k)

=

∑
j w

(k)
ij ûj∑

j w
(k)
ij

,

and the sum of weights A
(k)
i are calculated.

3. Stopping: If ch(k) ≥ h∗, the algorithm terminates. Otherwise the bandwidth

is set to h(k) = ch(k−1) and the algorithm continues with step 2.

We use the contributed package ‘aws’ of the R-Project for Statistical Computing

(Polzehl, 2011) to implement AWS. The choice of smoothing parameters is explained

in Appendix A.3.

A.3 Choice of smoothing parameters

Parameters for distance penality: h(0), h(1), h∗, c,

We set the maximal bandwidth h∗ to 75 bins which allows that quite far away points

lj are (potentially) used to form an estimate for point li. With every iteration k the

bandwith is incremented by the factor c = (1.25)
1
d where d = 2 is the dimension
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of the sample space. The algorithm terminates if ch(k−1) ≥ h∗. With respect to

the initial bandwidth h(0) and subsequent bandwiths h(1), we select h(0) = 9.49 and

h(1) = 1.06, respectively. Both bandwidths are small enough so that the former

contains a sufficient number of design points in the initial iteration and the latter

does not increase the bandwidth too much in every iteration.

Parameter for level penality: λ

We choose λ as the smallest value satisfying a propagation condition. This condition

requires that for a model with a globally constant parameter value, a (li) = a, the

AWS estimator aproximately behaves like its nonadaptive counterpart. Since the

value λ provided by the propagation condition does not depend on a, λ can be

approximately found by simulations. Formally, we search for the smallest λ which

fulfills the following inequality at every location

E

[(
â (li)− a

)2
]
≤ (1 + α) E

[(
ã (li)− a

)2
]
, with α = 0.05 , (A1)

where â (li) is the AWS estimate and ã (li) uses λ =∞ which leads to a nonadaptive

kernel estimate. Both estimators employ the same bandwidth h∗. The intuition of

this approach is to choose the minimal λ that recovers the global constant parameter

value while using the most adaptive bandwidth choice. A theoretical justification is

given in Polzehl and Spokoiny (2006, Theorem 5.1). We obtain λ∗ = 24.18 by the

Monte Carlo simulation explained in Appendix A.4.

A.4 Monte Carlo simulation

The Monte Carlo simulation used to obtain the smoothing parameter λ can be

summarized as follows:

• Generate S (S = 500) data sets with N (N = 20, 000) observations from the

globally constant model

y
(s)
i = a (li)

(s) + ν
(s)
i , (A2)
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where the superscript s indicates the data set. We set a (li)
(s) = 0 for all

locations li and ν
(s)
i ∼ N(0, σ2

ν). The variance of the error term is σ2
ν = σ2

û|li =

126.572, where σ2
û|l denotes the conditional variance of the first-stage residuals

û. We estimate σ2
û|l by regressing û on a full set of location (i.e. bin) dummies.

For each data set, the N observations are randomly distributed on the (x, y)-

plane by drawing cartesian coordinates (x, y) from two independent uniform

distributions Ux[0, 1] and Uy[0, 1].

• Choose some initial value λ(j) < λ∗, where λ∗ denotes the minimal λ that

fulfills Eq. A1.

• Perform the following search algorithm:

1. For each data set, obtain the estimates â (li)
(s)

and ã (li)
(s)

, where the

former sets λ = λ(j) and the latter λ = 1e10. Both estimators use binning

on a 300× 300 grid and set the maximal bandwitdh to h∗ = 75 bins.

2. Compute

r̄(j) =
1

S

S∑
s=1


∑N

i=1

(
â (li)

(s)
− 0

)2

∑N
i=1

(
ã (li)

(s)
− 0

)2 − 1

 , (A3)

which is a global estimate of Eq. A1 given the parameter value λ(j).

3. Update λ(j) as follows:

– As long as λ has not reached its upper bound, i.e. r̄(j) > α, set

λ(j+1) = λ(j) + c , (A4)

where c is some arbitrary constant and go back to step 1

– Once λ has reached its upper bound, i.e. r̄(j) ≤ α, set

λ(j+1,) =


λ(j) −

∣∣∣λ(j−1)−λ(j)

2

∣∣∣ , if r̄(j) ≤ α

λ(j) +
∣∣∣λ(j−1)−λ(j)

2

∣∣∣ , if r̄(j) > α

(A5)

and go back to step 1.
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4. Terminate the algorithm if λ(j) − λ(j−1) < ε, where the threshold ε is a

sufficiently small number.
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Table 1: Summary statistics for transacted single-family houses. Number of ob-

servations is 19,283. Prices and land values are in year 2000 Euros. Floor size, gross base,

and lot size are in square meters. Gross volume is in cubic meters. Gross area is the sum

of all base areas in all storeys, gross volume is the corresponding volume. 8,259 objects

have information on the gross volume and 15,325 on the gross base. Age of the building

in years at the transaction date. Attic storey means that the attic is upgraded for living.

Expert-based land value per square meter is the appraised value as if land were undeveloped.

The value assumes that land is not contaminated or burdened with unusual legal covenants.

Expert-based location rating is an ordinal ranking of the neighborhood of the house.

Mean Median Std. Dev.

House price 273,168 231,176 177,337

Building characteristics

Floor size 145.99 135.00 56.23

Gross area 244.24 228.00 95.69

Gross volume 666.83 612.00 262.78

Storeys 1.5 1.0 0.6

Age 42 42 29

Type

Detached 0.55

Semi-detached 0.22

Row-house 0.23

Attic storey 0.55

Flat roof 0.12

No cellar 0.13

Part cellar 0.12

State of repair

Poor 0.08

Normal 0.61

Good 0.31

Land characteristics

Lot size 578.56 525.00 313.33

Unusual features of the house

Physical 0.03

Legal 0.18

Expert-based land values and location ratings

Land value 284.97 256.46 148.41

Location rating

Low 0.29

Medium 0.49

High 0.20

Excellent 0.02
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Table 2: Effect of building characteristics on house price. Table reports ordinary

least squares estimates of Eq. 4. Continuous explanatory variables—floor size, gross area,

gross volume, and age—are per sqm lot size. The gross volume of a building is used whenever

the gross area was missing. Standard errors are calculated with heteroscedasticity robust

sandwich estimator. *** significant at 1%-level ** significant at 5%-level * significant at

10%-level.

Dependent variable: Price per sqm lot size

Coef. Std. Err.

Floor size 500.710 64.624∗∗∗

Floor size squared -0.784 0.446∗∗∗

Gross area 688.681 36.731∗∗∗

Gross area squared -0.630 0.101∗∗∗

Gross volume 248.891 18.367∗∗∗

Gross volume squared -0.060 0.020∗∗∗

Floor size × age -0.884 0.806∗∗∗

Gross area × age -4.421 0.507∗∗∗

Gross volume × age -1.604 0.201∗∗∗

Floor size × gross area 1.287 0.388∗∗∗

Floor size × gross volume 0.315 0.210∗∗∗

Age -198.249 106.371∗∗∗

Age squared 9.235 1.144∗∗∗

Semi-detached 2.497 3.492∗∗∗

Row house -1.075 5.563∗∗∗

Good state of repair 86.035 3.672∗∗∗

Poor state of repair -73.713 3.977∗∗∗

2 storeys 4.425 3.973∗∗∗

3 storeys 73.323 16.431∗∗∗

Attic storey 10.301 3.241∗∗∗

Flat roof 10.664 4.215∗∗∗

No cellar 23.197 4.311∗∗∗

Part cellar -2.990 3.620∗∗∗

Unusual legal circumstances -7.848 3.472∗∗∗

Unusual physical circumstances -24.015 6.204∗∗∗

Obs. 19,273 R2 0.830∗∗∗
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Table 3: Contingency tables for ordinal assessments. Panel A gives the relative

frequencies of the matches of the expert-based ratings and the converted ordinal expert-

based land values. Panel B gives the relative frequencies of the matches of the expert-based

ratings and the converted ordinal location values â(l). The Panel C gives the expected

relative frequencies if expert-based ratings were randomly allocated onto itself. Pearson’s

χ2-statistic is for the null that rows and columns are statistically independent. P-value is

for a χ2(9)-distribution. Goodman and Kruskal’s γ̂ is calculated as Ns−Nd

Ns+Nd
where Ns is the

number of pairs of cases ranked in the same order and Nd is the number of pairs ranked

differently. Kendall’s τ̂ is calculated as Ns−Nd√
(N2−

∑
N2

c )(N
2−

∑
N2

r )
where N2

c and N2
r are the

squared column and row marginals, respectively.

Panel A: Estimated location values

Expert-based rating

Low Medium High Excellent Total

Low 0.132 0.154 0.007 0.000 0.293

Medium 0.149 0.289 0.054 0.000 0.486

High 0.019 0.043 0.130 0.011 0.202

Excellent 0.000 0.000 0.011 0.008 0.019

Total 0.293 0.486 0.202 0.019 1.000

χ2-stat. 1.1e+04 γ̂ 0.662

P-value 0.000 τ̂ 0.459

Panel B : Expert-based land values

Expert-based rating

Low Medium High Excellent Total

Low 0.131 0.151 0.011 0.000 0.293

Medium 0.140 0.287 0.058 0.000 0.486

High 0.022 0.048 0.131 0.002 0.202

Excellent 0.000 0.000 0.003 0.016 0.019

Total 0.293 0.486 0.202 0.019 1.000

χ2-stat. 2.1e+04 γ̂ 0.634

P-value 0.000 τ̂ 0.438

Panel C : Random allocation, expected frequencies

Expert-based rating

Low Medium High Excellent Total

Low 0.086 0.142 0.059 0.006 0.293

Medium 0.142 0.236 0.098 0.009 0.486

High 0.059 0.098 0.041 0.004 0.202

Excellent 0.006 0.009 0.004 0.001 0.019

Total 0.293 0.486 0.202 0.019 1.000

χ2-stat. 0.018 γ̂ 0.000

P-value 1.000 τ̂ 0.000
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Figure 2: First-stage residuals by district. Figure shows box plots for the normalized

first-stage residuals for Berlin’s administrative districts. Number of observations is 19,283.

Districts are sorted in descending order with respect to the median of the expert-based

location rating. Line that separates the box is the median. Lower (upper) hinge of box

represents 25th (75th) percentile. Length of whiskers is 1.5 times the IQR below (above)

the 25th (75th) percentile.
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Figure 4: Sunflower plot of expert-based land values and estimated location

value. Shows sunflower plot of the bin average of expert-based land value and estimated

location value, â(l). Both figures are in real (year 2000) Euros. Number of observations

is 7,704. Each petal of a light sunflower represents 1 observation. Each petal of a dark

sunflower represents several observations. Circles represent individual observation in low

density region.
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