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Darmstadt University of Technology

February 2013

Abstract

This study explores the reduction potential of greenhouse gases for major pollution emitting

countries of the world using nonparametric productivity measurement methods and directional

distance functions. In contrast to the existing literature we apply optimization methods to

endogenously determine optimal directions for the efficiency analysis. These directions represent

the compromise of output enhancement and emissions reduction. The results show that for

reasonable directions the adoption of best-practices would lead to sizable emission reductions in

a range of about 20 percent compared to current levels.
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1 Introduction

In the economic discussion of climate change the question by how much anthropogenic green-

house gas emissions need to be reduced to limit global warming is a key aspect. Aldy et al.

(2010) argue that stabilizing global warming over pre-industrial levels at 2.9◦C (2.1◦C) requires

a stabilization of CO2 equivalent greenhouse gas emissions concentration in the atmosphere at

550 ppm (450 ppm).1 According to Stern (2007) this amounts to a reduction of CO2 equivalent

greenhouse gas emissions of 25-30 percent (70 percent) until 2050 relative to 2005. Likewise,

the European Commission (2011) announces the commitment of member states to a reduction

of greenhouse gas emissions by 20 percent until 2020.

Given these targets the question arises how the reductions can be achieved. One strand of the

economic literature addresses this problem by discussing possibilities to spur new technologies

that allow for a less emission-intensive production of outputs (see e.g. Popp et al. (2010) for

an overview). In this paper we address this issue from a production-economic perspective by

analyzing whether the production structure of the major greenhouse gas emitting countries is

efficient given the currently available reference technology. In our analysis we identify reduction

potentials for greenhouse emissions due to inefficiencies of the countries, compare these potentials

with the targets presented above and thus show to which extend the exploitation of efficiency

enhancement possibilities can contribute to limit global warming.

Therefore we apply nonparametric methods to estimate the technology of the countries and

directional distance functions (DDF) to measure their efficiency. In contrast to parametric

models like the stochastic frontier analysis (see Kumbhakar and Lovell (2000)) nonparametric

approaches do not rely on a specific functional form of the production function and, moreover,

allow to include emissions as undesirable outputs. This modeling captures the production process

in a more realistic way than the inclusion of emissions as inputs as it is done in parametric

approaches (see e.g. Reinhard et al. (2000)). The main advantage of the DDF is the possibility

to define a different direction of measurement for each input or output. Thus, it is possible

to analyze efficiency by increasing good outputs while simultaneously decreasing bad outputs.

Examples of macroeconomic applications of the DDF accounting for undesirable outputs are,

among others, Arcelus and Arocena (2005), Färe et al. (2001), Lozano and Gutiérrez (2008)

and Picazo-Tadeo et al. (2005). However, the wide range of possible directions allows for a large

extend of subjectivity regarding the importance of the production of good and the abatement

of bad outputs. Färe et al. (2011) propose a method to endogenously determine the directions

for a slacks-based directional measure. In this paper we modify their approach to the analysis

using the environmental directional distance function by Chung et al. (1997) and propose an

alternative method to obtain optimal directions in a dynamic setting. In applying nonparametric

methods to assess emissions reduction targets our study is closely linked with Färe et al. (2012)

who present results of the optimal timing of greenhouse gas emission reductions.

This paper is structured as follows: section 2 presents the nonparametric approach to efficiency

1 CO2 equivalent greenhouse gas emissions are the sum of CO2 emissions and several greenhouse effective gases,
denominated in equivalent tons of CO2. See the data description below. The abbreviation ppm stands for
parts per million.
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measurement and the directional distance functions. Section 3 describes the approaches to

determine optimal directions. This is followed by the description of the data and the discussion

of the results in section 4. Finally, section 5 concludes the paper.

2 Nonparametric efficiency analysis

To model the environmental production technology we assume that the decision making units

(DMUs) which in our application are the major emitting countries are using m inputs x ∈ Rm+ to

produce s good outputs y ∈ Rs+. We further assume that as a result of this production process

r undesirable (or bad) outputs u ∈ Rr+ are produced. The technology set comprises all technical

feasible input-output combinations and hence reads as

T =
{

(x,y,u) ∈ Rm+s+r
+ : x can produce (y,u)

}
. (1)

On this technology we impose the standard axioms by Shephard (1970), e.g. convexity, strong

disposability of inputs and good outputs (see Färe and Primont (1995) for further discussions).

To include emissions we assume that they are weak disposable outputs, e.g. if (x,y,u) ∈ T

and θu 5 u with 0 5 θ 5 1 then (x, θy, θu) ∈ T (see Färe and Grosskopf (2004) for a detailed

discussion of environmental technologies). This assumption states that a reduction of emissions

is costly (in terms of a loss of good outputs). Moreover, we assume that good and bad outputs

are null-joint. Hence, if (x,y,u) ∈ T and u = 0 then y = 0. This indicates that good outputs

cannot be produced without producing bad outputs.

The nonparametric estimation of this technology (data envelopment analysis, DEA) given a

sample of (xi,yi,ui) for i = 1, . . . , n DMUs reads as2

T̂ =
{

(x,y,u) ∈ Rm+s+r
+ : x =Xλ,y 5 Y λ,u = Uλ,λ = 0

}
. (2)

In this formulation X represents the m× n matrix of inputs and Y represents the s× n matrix

of good outputs while U is the r × n matrix of undesirable outputs. The inequality constraints

indicate strong disposability of inputs and good outputs while the equality constraint for the

bad outputs indicates weak disposability. λ denotes a n × 1 vector of weight factors with λ

positive but otherwise unrestricted implying constant returns to scale (CRS) of the production

process. Assuming constant returns to scale allows to set the scaling factor θ to 1 (see Färe and

Grosskopf (2003)). This technology satisfies null-jointness of good and bad outputs if each of

the DMUs uses at least one bad output and each bad output is produced by at least one DMU

(see Färe (2010)).

To measure the efficiency of the DMUs given this technology we apply the directional distance

function (DDF) proposed by Chambers et al. (1996). This function has been introduced into the

nonparametric analysis of environmental efficiency by Chung et al. (1997) and is defined as

β(x,y,u; gy, gu) = sup
{
β : (x,y + βgy,u− βgu) ∈ T

}
(3)

2 See e.g. Färe et al. (1985) for a general overview of nonparametric efficiency measurement.
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where β is the efficiency measure stating by how much the desirable outputs can be increased

in the direction gy and simultaneously the undesirable outputs (emissions) can be decreased in

the direction gu, holding inputs constant, in order to reach the frontier function.

For a DMU i ∈ {1, ..., n} this efficiency measure can be computed by solving the following linear

program

max
β,λ

β

s.t. xi = Xλ

yi + βgy 5 Y λ

ui − βgu = Uλ

β,λ = 0.

(4)

A DMU is classified as efficient if β̂(xi,yi,ui; gy, gu) = 0 and as inefficient if β̂(xi,yi,ui; gy, gu) >

0.

The directional vectors gy and gu are not predetermined but have to be chosen by the researcher.

In most application of the environmental distance function the used vectors are gy = yi and

gu = ui. Thus, the directional vectors are given by the observed amounts of good and bad

outputs. Therefore, all good and bad outputs are assigned the same weight for the efficiency

analysis and the reduction of bad outputs is regarded as an equally important target as the

increase of good outputs. In the following section we will present methods for determining

the directional vectors endogenously. Moreover, in the empirical analysis we will compare the

results given the optimized directions and a grid of directions assigning different weights to the

production of good and the abatement of bad outputs.

3 Deriving Optimal Directions

In this section we discuss different approaches for computing optimal directional vectors for the

environmental directional distance function. We start by applying the model by Färe et al.

(2011) to the analysis of environmental efficiency. We then propose a novel approach based on

an extension to a dynamic nonparametric analysis.

3.1 Static approaches to optimal directions

In recent literature the question of how to obtain optimal directional vectors for directional

distance functions has received some attention. Peyrache and Daraio (2012) present an empir-

ical approach to investigate this question which is merely a robustness assessment while Färe

et al. (2011) present a theoretical model to calculate the directions endogenously. Their model

estimates the optimal directions by maximizing the inefficiency of the DMU under evaluation

over the directional vector. We follow Färe et al. (2011) and apply their model to an environ-

mental efficiency analysis. The original paper presents the model for the case of two DMUs and

two outputs and applies the slacks-based directional measure by Färe and Grosskopf (2010).

Extending their analysis we consider the case of multiple DMUs using multiple in- and outputs
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in an environmental setting. We start the discussion by applying a distance function that scales

all outputs in weighted proportions. Then we will show how this approach is related to the

slacks-based measure applied by Färe et al. (2011).3

The first distance function has the advantage that it allows to connect the ideas of Färe et al.

(2011) with the literature of dynamic efficiency analysis as presented in the next section. It can

be calculated by solving the nonlinear programming problem

max
β,α,δ,λ

β

s.t. xi = Xλ

yi + βα� yi 5 Y λ

ui − βδ � ui = Uλ

1Tα+ 1Tδ = 1

β,α, δ,λ = 0.

(5)

The elements of the vectors α and δ represent the different weights of the good and bad out-

puts, while � denotes the Hadamard (or direct) product of two vectors. The fourth constraint

is a normalization constraint. The non-negativity assumption for α and δ implies that only

directions which do not increase bad outputs or decrease good outputs are selected. This model

maximizes the distance function and hence the inefficiency of a DMU by endogenously selecting

the optimal directional vector. This vector is optimal in the sense that it is directed to the

furthest feasible point on the frontier compared to the DMU under evaluation. The resulting

elements of the λ̂ vector identify the reference observations for the analyzed DMU. The resulting

efficiency measure of this program can be denoted as β̂ (xi,yi,ui). For notational simplification

we abbreviate this measure by β̂. The nonlinear programming problem can be transformed into

a linear one by dividing all constraints by β and introducing the new variables γ = 1/β and

µ = λ/β.4 The linear model then reads as

min
γ,α,δ,µ

γ

s.t. γxi = Xµ

γyi +α� yi 5 Y µ

γui − δ � ui = Uµ

1Tα+ 1Tδ = 1

γ,α, δ,µ = 0.

(6)

This program has no feasible solution if the DMU under evaluation lies on the strong efficient

part of the frontier because in this case β̂ = 0 and hence 1/β̂ is not defined. But this does not

lead to a problem for obtaining optimal vectors because Färe et al. (2011) argue that the vector

for efficient DMUs may be chosen arbitrarily. In this case they propose to use equal weights for

all outputs which in our application would imply that all elements of α and δ are set equal to

1/(s+ r).

3 In most applications slacks-based measures are compared to radial distance functions like the Shephard (1970)
output distance function. However, since we consider a weighted scaling as well as increasing good and
decreasing bad outputs the term “radial” is not appropriate in this analysis.

4 For a further discussion of linear and nonlinear environmental DEA models see Zhou et al. (2008).
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As mentioned above, the original approach by Färe et al. (2011) is based on a slacks-based

distance measure. In the present setting the program to obtain this measure can be stated as

max
βy ,βu,λ

1Tβy + 1Tβu

s.t. xi = Xλ

yi + βy � ey 5 Y λ

ui − βu � eu = Uλ

βy,βu,λ = 0

(7)

where ey (eu) denotes a vector containing one unit of each good (bad) output to render βy (βu)

a vector of dimensionless measures that can be summed up. Modifying this model by dividing

each restriction on the good (bad) outputs by the amount of the associated good (bad) output

of DMU i the problem reads as

max
βy ,βu,λ

1Tβy + 1Tβu

s.t. xi = Xλ
yi
yi

+
βy

yi
5 Y λ

yi
ui
ui
− βu

ui
= Uλ

ui

βy,βu,λ = 0.

(8)

In this presentation of the model we slightly abuse the matrix notation. The fraction of two

vectors refers to an element-wise division (similar to the Hadamard product) and the fraction

of a matrix and a vector refers to an element-wise division of each column of the matrix by the

vector. In the modified program the vectors ey and eu are replaced by 1
yi

and 1
ui

. Therefore,

βy and βu are again dimensionless. Denoting
βy

yi
= β̃y and βu

ui
= β̃u the model becomes

max
β̃y ,β̃u,λ

1T β̃y + 1T β̃u

s.t. xi = Xλ

1 + β̃y 5 Y λ
yi

1− β̃u = Uλ
ui

β̃y, β̃u,λ = 0.

(9)

This programming problem is linear, hence optimal values
̂̃
βy,

̂̃
βu and λ̂ can be calculated

without transformation using the conventional simplex algorithm. However, the optimal values

of (7) and (9) are not equal because (7) is not independent of the units in which the inputs

and outputs are measured and hence the transformation leading to (9) changes the results. In

contrast, the optimal values of the objective functions of programs (5) and (9) can be shown to

be equal. A proof of this equality can be found in the appendix. Therefore, β̂ = 1T
̂̃
βy + 1T

̂̃
βu

for a DMU under evaluation.

In the empirical part of this study we apply model (5) to an analysis of greenhouse gas emissions

and calculate potential reductions given the directional vectors obtained from it.

5



3.2 A dynamic approach to optimal directions

In the previous section we have presented an application of the static model by Färe et al. (2011).

Now we propose an extension of this model to a dynamic analysis. We propose that an optimal

vector can be derived as the direction in which innovating DMUs have shifted the frontier of a

technology between two periods. This dynamic approach can be summarized by three steps:

1. Calculate the direction of movement between periods t and t+ 1 for all DMUs.

2. Evaluate which of the DMUs is an innovator given the directions obtained in the first step.

3. Identify the reference innovator for each non-innovating DMU. Estimate the efficiency of

the DMUs by using the directional vector of the reference innovator.

Since this model is based on dynamic nonparametric productivity measures we start by briefly

summarizing the main ideas behind these measures.

In dynamic nonparametric analysis ratios of distance functions can be used to estimate the

productivity change of DMUs, e.g. by calculating the Malmquist index (Caves et al. (1982)).

This productivity change can be decomposed into efficiency change and technical change (Färe

et al. (1992)). While efficiency change measures shifts of the DMUs relatively to a frontier,

technical change measures shifts of the frontier. The Malmquist-Luenberger index proposed

by Chung et al. (1997) allows to measure productivity changes in the presence of undesirable

outputs. With the environmental directional distance function it can be defined as

MLt,t+1 =

[
1 + βt (xt,yt,ut; gt)

1 + βt
(
xt+1,yt+1,ut+1; gt+1

) · 1 + βt+1 (xt,yt,ut; gt)

1 + βt+1
(
xt+1,yt+1,ut+1; gt+1

)]1/2 . (10)

Similar to the Malmquist index it can be decomposed into technical change

MLTecht,t+1 =

[
1 + βt+1 (xt,yt,ut; gt)

1 + βt (xt,yt,ut; gt)
·

1 + βt+1
(
xt+1,yt+1,ut+1; gt+1

)
1 + βt

(
xt+1,yt+1,ut+1; gt+1

) ]1/2 (11)

and efficiency change

MLEfft,t+1 =
1 + βt (xt,yt,ut; gt)

1 + βt+1
(
xt+1,yt+1,ut+1; gt+1

) . (12)

where time indices at the distance function β indicate the time period of the technology the

DMU is compared to and time indices of the arguments of the distance functions indicate the

time period of the DMU. Hence, expressions with different time indices represent mixed-period

distance functions, e.g. an input-output combination of a DMU in period t is evaluated to the

technology in t + 1 and vice versa. Chung et al. (1997) estimate this index by assuming that

the vector of the efficiency analysis is given by
(
yt,i,−ut,i

)
resp.

(
yt+1,i,−ut+1,i

)
which in our

model is the case α = δ = 1/(r + s).

Other studies like Jeon and Sickles (2004) or Kumar (2006) follow this approach and also treat

the reduction of bad outputs and the increase of good outputs as equally important. This
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is a very restrictive assumption and we propose to extend the above discussed approach of

endogenous directional vectors to a dynamic analysis. Our approach is based on the idea of

estimating the direction of shifts in the frontier. Färe et al. (2001) propose conditions to identify

observations that shift the frontier and hence can be regarded as “innovators” of the technology.

An innovating DMU can be identified by checking whether it fulfills the following conditions:

M̂LTech
t,t+1

i > 1 (13)

β̂t
(
xt+1,i,yt+1,i,ut+1,i

)
< 0 (14)

β̂t+1
(
xt+1,i,yt+1,i,ut+1,i

)
= 0. (15)

The first condition states that technical progress must have occurred between two periods.

The second states that the input-output combination of DMU i in t + 1 must lie outside the

technology in t and the third condition states that DMU i must be part of the frontier in t+ 1.

If all conditions are met simultaneously then i is identified as an innovator or frontier-shifting

DMU between the periods t and t+ 1. In the previous literature the above stated conditions are

evaluated using the directional vectors specified earlier which assign all good and bad outputs

the same weight. This direction of the analysis may not be the direction of the movement

of the innovating DMUs. Hence, the direction of the shift of the frontier and the direction

of the measurement of technical change as well as efficiency change may be different. For a

graphical illustration of this argument consider figure 1 that depicts two DMUs (A and B) and

the technological frontier for two periods t and t+ 1.

y

u

At

Bt

At+1

Bt+1

Figure 1: Example of a frontier shift

In this example DMUs A and B are supposed to use one unit of an input x in period t and

t + 1 to produce a single good output y and a single bad output u with the quantities of both

outputs being indicated by the filled circles in the graph. Technical progress occurs between the

two periods because DMU A is able to produce less bad output in period t+ 1 compared to the

quantity in t holding input and good output constant. Hence, the direction which captures this

movement and therefore would provide a plausible direction of the measurement of technical

progress is given by (α = 0, δ = 1) or using the notation without weights (0,−u) as indicated in
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figure 1 by the arrow associated with point At. However, in the standard Malmquist-Luenberger

index the direction is defined as (α = 0.5, δ = 0.5) or (y,−u) as indicated by the arrow for

observation Bt.

To overcome this problem we propose to first determine the directional vectors of the DMUs in

a dataset by measuring the direction of their movement between two periods. More precisely,

the optimal directions are obtained by calculating changes in the output structure of the DMUs.

A problem arises in this analysis because in contrast to the figure presented above where it is

assumed that xt = xt+1 it is likely that the DMUs change their output as well as their input

quantity between two periods. In the existing literature different approaches to this problem

have been proposed. Färe and Grosskopf (2012) address technical change in a nonparametric

setting by using the idea of a technical change matrix developed by Simon (1951). To calculate

this matrix the technology matrices in t and t+1 need to be constructed. The technology matrix

in t contains the input-output structure of all DMUs and can be written as:5

T t =



−xt,11 . . . −xt,1n
...

...
...

−xt,m1 . . . −xt,mn
yt,11 . . . yt,1n

...
...

...

yt,s1 . . . yt,sn

−ut,11 . . . −ut,1n
...

...
...

−ut,r1 . . . −ut,rn



(16)

with each column referring to one DMU. Analogously the technology matrix in t+ 1, T t+1, can

be constructed by collecting the input-outputs structure of all DMUs in t + 1. Assuming that

the analyzed DMUs are the same in each period (e.g. no DMU shuts down operations between

the periods), the technological change matrix ∆T t,t+1 can be calculated as

∆T t,t+1 = T t+1 − T t. (17)

Inputs and undesirable outputs are included with a negative sign in the technology matrices

so that the technological change matrix contains positive elements for inputs and bad outputs

if they are reduced and for good outputs if they are increased between two periods. Färe and

Grosskopf (2012) propose to use only those DMUs as reference observations which exhibit non-

negative elements in their respective column of ∆T t,t+1. This is a very restrictive assumption.

For example, consider an observation that has reduced its input use and increased all but

one output which it has decreased between the periods. Given the above stated assumption

this DMU is excluded although it may have increased its productivity and hence may be an

innovator. Moreover, this assumption may lead to situations where no DMU can be identified

as a reference observation because none exhibits only non-negative elements.

5 In the original works by Simon (1951) and Färe and Grosskopf (2012) undesirable outputs are not incorporated.
To show the similarity to our approach we include them.
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In a different approach Otsuki (2012) proposes to measure the effect of different directional

vectors on technical change by fixing the input vector over the analyzed periods. However, this

vector is arbitrarily chosen and hence may not be related to the actual data situation.

In our model we build upon these ideas by proposing a dynamic approach that conducts an

output-oriented analysis and obtains appropriate directional vectors by analyzing changes in

the output structure of the innovating DMUs. The first step consists of identifying the optimal

directions for each DMU. In contrast to Otsuki (2012) we analyze changes in the output structure

by fixing the input vector of each DMU to the quantities actually used in period t. Hence, we first

derive the hypothetical output quantities of the DMU under evaluation in period t+ 1 given the

input vector of period t. This can be done by solving the following linear programming problem:

max
λ,y,u

λ

s.t. xt,i = xt+1λ

y 5 yt+1λ

u = ut+1λ

λ,y,u = 0.

(18)

The right hand side of the input output structure shows that the boundary of this technology is

given by the input-output combination of the DMU under evaluation in t+1 and all input-output

combinations that result from proportionally scaling the vectors by the scalar λ. This last part

follows because the technology is assumed to exhibit constant returns to scale. Maximizing λ

leads to ŷ and û values that are associated with at least one binding input constraint. Using

this result the above stated linear programming problem can be easily solved for a particular

DMU i by finding λ̂ such that

λ̂ = min
j

{
xt,ji
xt+1,ji

}
j = 1, . . . ,m. (19)

The quantities of good and bad outputs in period t + 1 given xt,i can then be calculated as

ŷ = yt+1,iλ̂ and û = ut+1,iλ̂. These output quantities are used to identify observations that

increased at least one good and/or decreased at least one bad output and hence are possible

innovators. This variant of choosing reference observations is less restrictive than Färe and

Grosskopf (2012) because it does not assume that all good and bad outputs have to change in

an appropriate direction. Moreover, since we are correcting for changes in the input structure

we may also consider observations which use more inputs in period t + 1 compared to t. The

optimal directional vectors α̂ and δ̂ can be obtained by first setting the α̂ and δ̂ values for

all good outputs which have been decreased and all bad outputs which have been increased to

zero. The directions for the remaining good and bad outputs are then calculated by solving the
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nonlinear programming problem

min
β,αe,δe,λ

β

s.t. yt,ie + βαe � yt,ie = ŷe

ut,ie − βδe � ut,ie = ûe

1Tαe + 1Tδe = 1

β,αe, δe = 0

(20)

which can be transformed into a linear programming problem similar to the model by Färe

et al. (2011). The subscript e indicates that this program calculates weights only for those good

and bad outputs which have changed between period t and t+ 1 with an appropriate direction.

The weights are optimal in the sense that they lead to a minimal distance between the values

of outputs obtained in t and those obtained in t + 1 using the input vector of period t. We

use these vectors to estimate the distance functions and the Malmquist-Luenberger index for

all observations which are included in the above discussed programming problem to identify

the innovators and hence the “innovating” directions which are the reference directions for all

non-innovating DMUs. To choose among this set of vectors we calculate the euclidean distance

between the innovating and the non-innovating DMUs. The closest innovator provides the

appropriate directional vector used to estimate the efficiency of a non-innovating DMU. Hence,

the chosen directional vector for a non-innovating DMU is the one for the closest innovating

DMU.

4 Analysis of major GHG emitting countries

4.1 Data of the analyzed countries

In this section we apply the methods described above to a sample of major emitting countries.

The data are obtained from two sources. World Bank (2011) provides data for total greenhouse

gas (GHG) emissions of the countries (measured in thousand metric tons) which are computed as

the sum of carbon dioxide (CO2) emissions and the CO2 equivalents of methane (CH4) emissions,

nitrous oxide (N2O) emissions and other greenhouse gas emissions (i.e. fluorinated gases like

hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride). We take the average of the data

for the years 2000 and 2005 which are available for most countries of the world.

Regarding the other data, we use the Penn World Table (PWT) (Heston et al. (2011)) which

provides national accounts data for the period 1950-2009 to compute real GDP as the desired

output, the number of workers as labor input and cumulated investment using the perpetual

inventory method as capital input. Actually used are the series real GDP per capita (rgdpl),

real GDP per worker (rgdpwok), population (pop) and the investment share (ki). From these

GDP is computed as rgdpl ·pop, labor input as rgdpl ·pop/rgdpwok and capital input from real

investment data (ki/100) · rgdpl · pop by the perpetual inventory method.6 Analogous to the

6 For the perpetual inventory method the initial capital stock is calculated by the formula K0 = I0 ·(1+g)/(g+δ)
(see Park (1995)) where g is the average growth rate of investment over the first ten years for which investment

10



GHG emissions we average the annual values over the period 2000-2005. Descriptive statistics

of the data can be found in table 1.

We restrict the sample to those countries which are the largest emitters and together represent

90 percent of total world GHG emissions (in the average of 2000 and 2005). This leaves us with

a sample of 62 countries. These countries are listed in the appendix in the order of emission

volume.

Table 1: Descriptive statics of the data (62 major emitting countries)

Min Median Mean Max SD

Labor (1000 workers) 1115.39 11948.86 40249.36 742462.65 106171.75
Capital stock (bio. $, 2005) 16.02 689.25 2200.93 28969.82 4560.95
GDP (bio. $, 2005) 7.27 246.04 785.36 11591.17 1678.75
GHG (mio. tons of CO2 eqv.) 64.79 181.99 548.36 7175.31 1210.00

To check whether our sample contains outliers we applied the method by Wilson (1995) to detect

influential observations. The results indicated that for directions associated with large weights

to the decrease of emissions Great Britain and Sweden are identified as influential observations.

To check whether these observations are outliers we estimated the value for the directional dis-

tance function using direction δ = 1 for the total sample and for the sample excluding these two

observations. Histograms of the results are presented in figure 2. We find that a non-negligible

share of countries exhibits only small inefficiencies (β̂ ≤ 0.1). Since this is observed irrespective

of whether the two observations are included or not, we do not consider Great Britain and Swe-

den to be outliers. Hence, we include them into the subsequent analysis.

Total sample

β̂

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Excluding GBR and SWE

β̂

de
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ity

0.0 0.2 0.4 0.6 0.8 1.0

0
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Figure 2: Effects of influential observations

data are available (or five years if (g+ δ) < 0) and δ is the depreciation rate fixed at 0.05. Subsequent capital
stocks are calculated by the recursion Kt = Kt−1 · (1 − δ) + It with t = 1, 2, ...
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4.2 Results of the analysis using fixed directions

In the following we present the results of our efficiency analysis for 62 major greenhouse gas

emitting countries. We start by discussing the results for an analysis using a fixed grid of

directional vectors. Afterwards we compare the results for the different optimization approaches

presented in the last section.

In this analysis we estimate the efficiency of the countries using a grid of 11 different weights

δ = 0, 0.1, . . . , 1 for the reduction of the bad output (GHG).7 The corresponding weights for the

enhancement of the single good output (GDP) are then α = 1 − δ. The reduction potentials

of GHG as well as the potentials to increase GDP associated with each weight obtained by an

analysis of the whole sample of countries can be found in columns two to five in the upper part

of table 2. The first column of the table shows the weight of GHG used for the analysis. The

second column represents the estimated absolute changes (in billions of international dollars of

the year 2005, the currency of the Penn World tables) of GDP given that all countries remove

their inefficiency, while column three shows the change relative to the current level of GDP.

Columns four and five present the absolute (measured in million tons of CO2 equivalents) and

relative reduction of greenhouse gas emissions associated with the chosen weight δ.

The polar cases of the efficiency analysis are given by the weights δ = 0 and δ = 1. In the

first case, efficiency is measured purely in terms of possible increases of GDP while the second

case measures efficiency only in terms of reductions of GHG. Given that efficiency is measured

with regard exclusively to increases of GDP the results show that the total GDP of the sample

countries could increase by about 12600 billions of international dollars. This is approximately

the GDP of the United States in the year 2005. In the opposite case, the GHG emissions could be

reduced by nearly 17 billion tons if the countries increase their efficiency by focusing exclusively

on the reduction of emissions. This amount of CO2 equivalents exceeds the combined production

of the two largest producers of carbon dioxide emissions, the United States and China. This

result shows that a significant reduction of greenhouse gas emissions can be achieved without the

invention of new technologies by just focusing on the reduction of inefficiencies in the abatement

of bad outputs oriented at the efficient peers and adopting their practice.

Comparing the relative results for the cases δ = 0 and δ = 1 we find that the relative increase in

GDP (≈ 26%) is much lower than the relative decrease of emissions (≈ 50%). This indicates that

the inefficiency in the direction of the reduction of emissions is much higher than the inefficiency

in the direction of the production of good outputs. However, these values do not provide

information on whether this result holds likewise for all countries or whether it is driven by the

efficiency of the largest countries. Therefore, table 5 in the appendix contains the efficiency

results for each country for the analysis with weights δ = 0 and δ = 1. The columns show that

the inefficiency is larger for the majority of countries if the reduction of emissions is addressed

(δ = 1) compared to the case where efficiency is measured exclusively by potential increases

in GDP (δ = 0). Hence, we observe that the structure of the results for the larger countries

is quite similar to the results of the smaller countries and we find consistent evidence of larger

inefficiencies with regard to the abatement of bad outputs.

7 The results in the rows “static” and “dynamic” will be discussed later on.
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Supposing that the increase of good and the reduction of bad outputs are regarded as equally

important targets (δ = 0.5) we observe that GDP could be increased by more than 17% while

emissions are reduced by more than 23%. Note that the percentage changes are not the same

for GDP and GHG. This follows, because we present the aggregate changes and countries may

exhibit different values of inefficiency. Hence, while for each country the relative changes in good

and bad outputs are the same, on the aggregate level (which is also influenced by the size of the

countries) they do not have to be equal.

Admittedly, the above presented results have to be interpreted with caution because our focus

on the 62 major emitting countries leads to a very heterogeneous group of countries which is

compared using a constant returns to scale technology. Therefore we have tested for constant

returns to scale by the test procedure suggested by Simar and Wilson (2002). Regardless of

which weight we used in the test (optimized and non-optimized) we could not reject the null

hypothesis of constant returns to scale. The lowest p-value (0.163) was obtained by the test

using the weights obtained by applying the method by Färe et al. (2011). Another issue is that

the results may be driven by the heterogeneity of the countries. To examine the influence of

heterogeneity we repeat the analysis but divide the countries into three groups. In the efficiency

measurement a country in a specific group is only compared to peers out of this group. The

intention is that peers determined in this way are more similar and thus more relevant for the

country under evaluation.

To obtain groups of similar countries we separate them regarding to income per capita as well

as regarding to the level of development measured by the human development index (HDI).

The HDI is a composite index used for ranking countries and also reflects dimensions of human

well-being beyond just income per capita. It is published in the annual Human Development

Reports of the United Nations Development Programme (UNDP) and can be accessed by the

website http://hdr.undp.org/en/statistics/. For both indicators we divide the countries

in three groups pertaining to the lower, middle and upper terciles of the indicator. The results

for the analysis using income terciles as well as the results using terciles of the HDI can also be

found in table 2.

Comparing the results for the two methods to obtain the groups we observe that they do not

differ significantly. In both cases the maximum reduction of emissions is about 12 bio. tons and

the maximum increase in GDP is about 9 billions of international dollars. In contrast, comparing

the results to the overall sample analysis we find that the numbers differ. The absolute values of

reduction potentials of greenhouse gas emissions as well as potential increase in GDP are larger

in the overall analysis indicating that the heterogeneity of countries influences the results. Peers

are more similar to the countries in the respective groups analysis and this drives the smaller

inefficiencies. However, even if we account for the heterogeneity by using the group analysis,

the reduction potential for GHG emissions remains striking. Moreover, the difference between

the maximum increase of GDP and the maximum decrease of GHG is also visible in the group

analysis confirming larger inefficiencies with regard to the abatement of GHG.

To show in more detail how the choice of peers influences the results of the efficiency analysis

and the implications for politics the results of the efficiency analysis using a grid of weights for

13
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Germany (as an example of a highly developed country) are presented in table 3. For Peru, a

less developed country, the results are presented in table 4.8 For the analysis using the whole

sample of 62 countries we observe that the inefficiency of Germany increases with the weight

associated with the reduction of emissions. Therefore, Germany is less efficient with regard

to the abatement of bad output than it is with the production of good outputs. Regarding

the peers that are used to evaluate the efficiency of Germany we find that they change with

the direction of measurement. Given that the efficiency is measured only with regard to the

increase of GDP (δ = 0) we find that peers for Germany are the United States, Great Britain

and Austria.9 If the reduction of emissions is assigned a large weight the United States and

Great Britain are no longer peers for Germany and also the importance of Austria declines.

In contrast, Sweden becomes a peer and thus if Germany aims at reducing its inefficiency with

regard to the abatement of emissions it should focus on Sweden’s technology. Since the reference

countries for Germany are very similar in terms of per capita income and HDI the peers and the

results for Germany do not change if the analysis is restricted to groups of similar countries.

The opposite is the case for Peru. Given the analysis using the whole sample of countries we find

that the inefficiency of Peru is high regardless of which direction of the measurement is chosen.

The peers for Peru are the United States and Sweden. Both countries are neither in terms of

per capita income nor in terms of the HDI similar to Peru. Hence, the results of the efficiency

analysis change largely if the reference group is restricted to more similar countries. Comparing

Peru to countries which are similar with regard to the HDI we find that instead of the United

States and Sweden, Turkey and Portugal are reference observations and compared with these

more homogeneous peers Peru is found to be more efficient than in the analysis using the whole

sample of countries. Even more striking, we find that given a comparison with countries that

are similar in terms of per capita income Peru is classified as efficient and hence λ̂-PER (which

due to space limitations is not included in table 4) is equal to one for all directions.

To gain more insights in the structure of the inefficiencies the next section presents the results

for the analysis with directions computed with the different methods which have been explained

in the previous section.

4.3 Results of the analysis using optimal directions

We first look at the δ values calculated with the two approaches outlined above. Histograms

of the weights can be found in figure 3. For each of the reference groups (the total sample,

the income groups and the HDI groups) a histogram of the weights (referred to as “Static”)

obtained by an application of the method by Färe et al. (2011) is presented. The histogram

entitled “Dynamic” refers to the weights obtained by our novel dynamic approach. Note that the

histograms do not include the results for the DMUs classified as efficient because as explained

above the weights for these DMUs can not be uniquely determined and have been arbitrarily

set equal to 0.5.

8 Detailed results for each of the analyzed countries can be obtained from the authors upon request.
9 Note that since the size of the peers differ, the λ̂-values can not be compared in terms of more or less important

peers.
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The histograms for the static approach show that independent of which group is used as a

reference most countries are assigned a weight for the reduction of bad outputs (δ) that is larger

than 0.5 with an obvious peak for weights in the interval 0.9 to 1.10 This confirms our findings

from the analysis using a grid of weights. Given that we optimize the directions to maximize

the inefficiency of the countries we find that most countries are assigned a direction that gives

the reduction of greenhouse gas emissions a higher weight than the increase of GDP. Therefore,

most countries show significant larger inefficiencies with regard to the reduction of emissions.

However, for the analysis using the HDI groups we also find a smaller peak of weights lying

between 0 and 0.1. Hence, for a minority of countries we find that accounting for differences in

development may lower the inefficiency with regard to the abatement of emissions.

The results obtained by our dynamic model are shown in the upper right graph of figure 3. Note

that the directions of the innovators have only been calculated for the analysis of the whole

sample of countries. This has been done because innovators are assumed to shift the overall

frontier. Shifts of the group frontier may not be due to the innovation of a country in this

group but to shifts of the overall frontier. The intervals with density larger than zero indicate

that the innovators have shifted the frontier in directions that lead to weights between 0 and

0.1 as well as 0.6 and 1. However, the graph shows that the vast majority of countries get

assigned weights that are either near to 0 or near to 1. This indicates that the innovators which

are more similar to the majority of non-innovating countries have predominantly focused on

technical progress for either the reduction of bad or the increase of good outputs. This follows

because in the dynamic approach the nearest innovator is chosen to calculate the direction of

the efficiency measurement. The small number of countries that are assigned a direction that

combines enhancement with regard to both the production of good and the abatement of bad

outputs indicate that the countries that innovated in this direction are rather different compared

to the remaining countries in the sample.

The aggregated potentials for reducing greenhouse gas emissions as well as increasing the pro-

duction of GDP associated with the optimized weights can be found in the lower two lines of

table 2. For visualizing the differences in the results of the efficiency measurement given the

different directions, figure 4 shows the potentials changes in GDP and emissions for each of

the chosen weights as well as for each type of reference groups. The effect of the optimization

by maximizing the inefficiency for the directional distance function (the “static” approach) is

clearly visible in figure 4 independent of the chosen reference group. Compared to the results

for the grid analysis with fixed values of δ which are the same for all countries, the combination

of GDP increase and decrease of GHG is located further to the right. This indicates that the

optimization finds larger potentials to enhance efficiency than the non-optimizing approaches.

Given the analysis of the whole sample of countries (depicted in the left graph of figure 4) we

observe the static approach leads to a far larger decrease of emissions compared to the increase

of GDP. This again confirms our previous findings that the largest inefficiencies are associated

with the abatement of emissions. However, the results change if we account for the heterogeneity

by restricting the reference groups. The results in table 2 show that the potentials to increase

10 Note that the mean for the weights obtained by the “static” approach using the overall sample is 0.683 and
the median is 0.714.
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GDP are very constant about 12% and not influenced by the choosen reference group of coun-

tries. This is also visible from the plots in figure 4.11 In contrast, we find large differences in the

potentials to reduce emissions. The analysis using the whole sample of countries find the largest

potentials of 39%, this number is lowered to 19% if countries are compared with regard to their

per capita income and to 23% in the HDI group analysis. This shows that the heterogeneity of

countries does not affect the efficiency measurement in terms of GDP enhancement but exerts

significant effects on the reduction potentials of GHG emissions. The finding that the emission

efficiency depends on the income group is in line with findings by Taskin and Zaim (2000). Note

that this result is not driven by significant changes in the weights for the directional vectors as

indicated by the relatively small differences in the histograms for the three groups. Combining

this finding with the result that changing the reference group has a large effect on the potential

decrease of emissions and nearly no effect on the potential decrease of emissions shows that the

group specific frontier differs largely from the overall frontier with regard to the abatement of

emissions. The maximal production of good output given inputs is not affected by the change

of the frontier.

The results for the dynamic analysis show that in contrast to the static approach no maximiza-

tion of the inefficiency is targeted. From figure 4 we find the combination of GDP increase and

GHG decrease is for all groups in line with the results of the grid analysis using δ = 0.7. Similar

to the results of the static approach we find (see the last row of table 2) that the potentials to

decrease emissions vary largely with the reference group used in the analysis. Moreover, for the

analysis using HDI groups we observe that the potential change is close to the result obtained

by the analysis of the overall sample. A difference can be found by comparing the results for the

income groups. In this case the potential to decrease emissions lowers to 19% like in the static

analysis but the potential to increase GDP also lowers to 7% which nearly half the potential

obtained from the analysis using the whole sample.

Combining the results of large inefficiencies with regard to the emissions and smaller inefficien-

cies with regard to the production of good outputs with the direction of the movement of the

innovators leads to an interesting conclusion. For most non-innovating countries the technical

progress of the most similar (in terms of input and outputs quantities) innovator was oriented

either only at the production of good outputs or at the abatement of bad outputs. Therefore

the large difference in the efficiency results for good and bad outputs may indicate that the

countries were more capable to follow technical progress with regard to the production of good

outputs than with regard to the abatement of bad outputs. This can be interpreted as support-

ing the importance for technology transfers between countries in order to reduce the generation

of emissions.

11 Note that the scaling of the axis of each graph differ.
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The above discussed findings show sizable potentials for emission reduction expressed in absolute

or in percentage terms. Permitting the selection of efficient peers from the whole sample these

are nearly 40% for the static approach to determine the optimal directions and about 32% for

the dynamic approach. When restricting the choice of efficient peers to the respective income

or HDI groups potential emission reductions amount to roughly 20%.

How can these numbers be put into perspective? According to the results summarized in Aldy

et al. (2010) a stabilization of the temperature increase of pre-industrial levels at about 2◦C

(resp. 3◦C) requires a stabilization of CO2 equivalents at a concentration of 450 ppm (resp. 550

ppm). According to the Stern (2007) review it would require emission reductions of about 70%

of global emissions of the year 2005 until 2050 to reach the 2◦C target and emission reductions of

25− 30% to reach the 3◦C target (see Stern (2007, table 8.2)). The latter target is thus not too

far away from the reduction potentials we have calculated in this study. It is also a compromise

since part of the inefficiency may be simultaneously realized in the form of increasing output by

more than 10%.

The central question is how these numbers are to be assessed. They are, of course, rough esti-

mates that are associated with measurement error. Furthermore, they are also biased estimates,

although it is not a priori clear in which direction. On the one hand, the numbers are an

underestimation of the reduction potentials since the distances measured with the directional

distance function are downward biased estimates of the true but unknown values. Moreover, it

is assumed that no emission reduction is possible for the frontier countries which are defining

the best-practices (e.g. the US or Russia for most choices of δ). It is of course unrealistic that

no emission reduction at all is feasible in these countries. As a consequence we are also faced

with an underestimation for all other countries which are compared with these best practices.

On the other hand, the numbers can be viewed as an overestimation of the reduction potentials

since it is debatable whether the indicated best-practices can be adopted in reality. This is

surely not reachable in the short run, but may also not be easily achieved in the longer run.

One particular problem is that the amount of emissions of a country is highly dependent on

its industry structure (i.e. the relative weights of manufacturing or service industries) which is

historically determined as a part of the specialization in international trade.

Nevertheless, the current analysis offers some quantitative orientation about potential emission

reductions which could be realized by adopting best-practices and varying degrees of foregoing

possible output enhancements.

5 Conclusion

In this paper we have conducted a nonparametric efficiency analysis of 62 major greenhouse gas

emitting countries. Accounting for the difficulties in choosing the directions of the efficiency

measurement when directional distance functions are applied we have proposed two methods

for determining the directions endogenously. Adapting the approach by Färe et al. (2011) we

demonstrated how optimal directions can be obtained in a static analysis of environmental

efficiency. Moreover, we have proposed a new method to derive the directions in a dynamic
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setting. The directions obtained by this model estimate the movement of the frontier, hence the

direction of technical change. With these methods we provide a solution to the practical issue

that efficiency results depend on the directions chosen by the researcher. Therefore, endogenizing

the directions eliminates this source of subjectivity.

Applying these methods to a macroeconomic analysis of environmental efficiency we have shown

that different directions have indeed a significant influence on the efficiency estimates. Using

a grid of directions we found that the efficiency increases if the reduction of emissions is as-

signed a large weight. Moreover, applying the optimization approaches to calculate directions

we found that large potentials to reduce greenhouse gases exist. While these potentials de-

crease if we account for the heterogeneity among the countries in our sample, they nonetheless

provide an important possibility to limit climate change. We have shown that the reduction

targets mentioned in the literature are very similar to the magnitudes of reduction potentials

due to inefficiencies. Therefore, eliminating these inefficiencies could contribute significantly to

a reduction of greenhouse gas emissions and therefore to limit global warming.

Perspectives for future research arising from this assessment are twofold. First, we have recog-

nized the problem that industry structure is important and needs to be accounted for in the

analysis. Here we face serious data problems for less developed and also for newly industrializing

countries. So a first step in this direction would be concerned with an analysis for countries

of the European Union where the EU KLEMS database (see Jorgenson and Timmer (2011))

provides a valuable data source. As a second and more technical line of research we see the need

to calculate measures for the precision of the estimates. This is most conveniently done in the

form of confidence intervals where appropriate bootstrap based methods have been proposed

recently (see Simar et al. (2012)).
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Färe, R. (2010). “Directional Distance Functions and Public Transportation: A Comment”. In:

Transportation Research Part D 15, pp. 108–109.

Färe, R. and S. Grosskopf (2003). “Nonparametric Productivity Analysis with Undesirable Out-

puts: Comment”. In: American Journal of Agricultural Economics 85, pp. 1070–1074.

— (2004). New Directions: Efficiency and Productivity. Boston/London/Dordrecht: Kluwer

Academic Publishers.

— (2010). “Directional Distance Functions and Slacks-Based Measures of Efficiency”. In: Eu-

ropean Journal of Operational Research 200, pp. 320–322.

— (2012). “DEA and Technical Change: A New Look”. In: Proceedings of DEA Symposium

2012, pp. 1–7.
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Färe, R., S. Grosskopf, and G. Whittaker (2011). “Directional Distance Functions: With En-

dogenous Directions”. Paper presented at the XII European Workshop on Efficiency and

Productivity Analysis, Verona.
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Appendix

Sample countries (in order of emisson volume (ISO three-letter country codes in parentheses)):

United States (USA), China (CHN), India (IND), Russia (RUS), Japan (JPN), Brazil (BRA),

Germany (GER), Canada (CAN), United Kingdom (GBR), Mexico (MEX), Indonesia (IDN),

Australia (AUS), Italy (ITA), Iran (IRN), France (FRA), South Korea (KOR), South Africa

(ZAF), Spain (ESP), Saudi Arabia (SAU), Poland (POL), Thailand (THA), Argentina (ARG),

Pakistan (PAK), Turkey (TUR), Venezuela (VEN), Egypt (EGY), Nigeria (NGA), Nether-

lands (NLD), Malaysia (MYS), Kazakhstan (KAZ), Vietnam (VNM), Uzbekistan (UZB), Alge-

ria (DZA), Bangladesh (BGD), United Arab Emirates (ARE), Czech Republic (CZE), Colombia

(COL), Philippines (PHL), Belgium (BEL), Sudan (SDN), Greece (GRC), Ethiopia (ETH), Chile

(CHL), Republic of Congo (COG), New Zealand (NZL), Syria (SYR), Austria (AUT), Hun-

gary (HUN), Portugal (PRT), Angola (AGO), Peru (PER), Tanzania (TZA), Morocco (MAR),

Finland (FIN), Singapore (SGP), Sweden (SWE), Bolivia (BOL), Israel (ISR), Turkmenistan

(TKM), Libya (LBY), Norway (NOR), Denmark (DNK), Ireland (IRL)

Proof of β̂ = 1T
̂̃
βy + 1T

̂̃
βu

In the following we will proof the equality of optimal values of the objective functions of programs

(5) and (9).

To start, consider the slack-based approach of program (9) in its general formulation with m

inputs, s good outputs and r bad outputs

max
β̃y ,β̃u,λ

1T β̃y + 1T β̃u

s.t. xi = Xλ

1 + β̃y 5 Y λ
yi

1− β̃u = Uλ
ui

β̃y, β̃u,λ = 0.

(9)

In the optimum the restrictions on both the good and bad outputs hold with equality. To see

this, consider the case that for a DMU i under evaluation the obtained values are given by

β̃
∗
y, β̃

∗
u and λ∗. Moreover, assume that the constraint for the jth output of i is non-binding,

hence it reads 1 + β̃∗y,j <
Y j.

yji
λ∗ with Y j. denoting the jth row of Y . In this case there exists

a β̃∗∗y,j > β̃∗y,j for which the constraint holds with equality and thus the vector β̃
∗
y cannot be an

optimal solution to (9).

Therefore, we can rearrange the constraints as

β̃y =
Y λ

yi
− 1 (A.1)

β̃u =
Uλ

ui
− 1. (A.2)
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Substituting these conditions into the objective function of (9) leads to the transformed linear

program

max
λ

1T
(
Y λ
yi
− 1
)

+ 1T
(
Uλ
ui
− 1
)

s.t. xi = Xλ

λ = 0.

(A.3)

Analogously, consider program (5) which finds the maximal value of the measure β by optimizing

the weights assigned to the increase of good and the reduction of bad outputs.

max
β,α,δ,λ

β

s.t. xi = Xλ

yi + βα� yi 5 Y λ

ui − βδ � ui = Uλ

1Tα+ 1Tδ = 1

β,α, δ,λ = 0.

(5)

This model can be rearranged analogous to (9) as

max
β,α,δ,λ

β

s.t. xi = Xλ

1 + βα 5 Y λ
yi

1− βδ = Uλ
ui

1Tα+ 1Tδ = 1

β,α, δ,λ = 0.

(A.4)

In the optimum the restrictions for the good outputs hold with equality. To see this, consider the

general case and suppose an initial solution (β∗,α∗, δ∗,λ∗) with all outputs exhibiting slacks.12

Hence, initial the solution to (A.4) reads as

xi = Xλ∗

1 + β∗α∗ < Y λ∗

yi

1− β∗δ∗ = Uλ∗

ui

1Tα∗ + 1Tδ∗ = 1

β∗,α∗, δ∗,λ∗ = 0.

(A.5)

Now assume that c̃ = [c̃1, . . . , c̃s]
T serves as a vector that eliminates the slacks of the good

outputs.

12 Note that the following derivation can be analogously demonstrated assuming that the constraints for some
good outputs hold with equality.
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Therefore, we have

xi = Xλ∗

1 + c̃� β∗α∗ = Y λ∗

yi

1− β∗δ∗ = Uλ∗

ui

1Tα∗ + 1Tδ∗ = 1

β∗,α∗, δ∗,λ∗ = 0.

(A.6)

Suppose that the smallest slack occurs for the jth output. Thus, c̃j = min {c̃}. In the following

we show that it is possible to increase β∗ to eliminate the slack in the jth output by assigning

new weights to the jth output as well as to the bad outputs while holding λ∗ and the weights

for the remaining good outputs (α∗
−j) constant. Therefore, consider the following programming

problem

max
cj ,αj

cj

s.t. 1 + cjβ
∗αj =

Y j.λ
∗

yji

1− cjβ∗ δ
∗

cj
= Uλ∗

ui

1Tα∗
−j + 1T δ∗

cj
+ αj = 1

cj , αj = 0.

(A.7)

In this program we eliminate the slack by finding a c∗j such that the restrictions for the bad

outputs still hold while rearranging the weights between the jth good output and the bad

outputs and moreover increasing the distance function from β∗ to c∗jβ
∗. Since the restrictions

for the bad outputs are satisfied for each feasible cj they can be excluded from the program.

Rearranging the last equation and inserting it into the constraint for the jth good output leads

to a single equation to find c∗j . It is given by

1 + cjβ
∗
(

1− 1Tα∗
−j −

1Tδ∗

cj

)
=
Y j.λ

∗

yji
. (A.8)

Rearranging this equation leads to the optimal cj :

c∗j =

Y jλ
∗

yji
− 1 + 1Tδ∗β∗

β∗
(

1− 1Tα∗
−j

) . (A.9)

Since we assume that the jth output exhibits a slack in the initial solution, we observe that
Y j.λ

∗

yji
− 1 > β∗α∗

j . Therefore, we find

c∗j >
β∗α∗

j + 1Tδ∗β∗

β∗
(

1− 1Tα∗
−j

) =
α∗
j + 1Tδ∗(

1− 1Tα∗
−j

) = 1 (A.10)

where the last equality holds because the normalization constraint of the initial solution can be

written as 1Tα∗
−j + α∗

j + 1Tδ∗ = 1.

Since c∗j is larger than one we can conclude that β∗∗ = c∗jβ
∗ > β∗. Thus, holding the weights

for all but the jth output constant and calculating new weights for the jth good and all bad

outputs we can find a larger optimal value for β than in the initial solution.
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Note that increasing β∗ to β∗∗ does not violate the restrictions on the remaining good outputs.

This follows because c̃j ≤ c̃−j was calculated for a given α∗
j and β∗. Since c∗j > 1 we find

δ∗

c∗j
= δ∗∗ < δ∗. Moreover, from the normalization constraint in (A.7) it follows 1Tα∗

−j +

1Tδ∗∗ + α∗∗
j = 1. Since δ∗∗ < δ∗ and α∗

−j remains unchanged, we find that α∗∗
j > α∗

j . c̃j was

calculated to remove the slack in the jth output given α∗
j . Since β∗ remains unchanged and

α∗∗
j > α∗

j , c
∗
j < c̃j must hold to fulfill the restriction on the jth good output in program (A.7).

Because c̃j = min {c̃} we can conclude that c̃−j > c∗j and the restrictions for the remaining good

outputs are not violated.

Given these new optimal values we can further increase β∗∗ by removing the slack for the kth

output with c̃k = min {c̃−j}. This can be done analogously to the jth output by solving the

programming problem

max
ck,αk

ck

s.t. 1 + ckβ
∗∗αk = Y k.λ

∗

yki

1 + ckβ
∗∗ α

∗∗
j

ck
=

Y j.λ
∗

yji

1− ckβ∗∗ δ
∗∗

ck
= Uλ∗

ui

1Tα∗
−j,−k +

α∗∗j
ck

+ 1T δ∗∗

ck
+ αk = 1

ck, αk = 0.

(A.11)

Similar to the case of the jth output we find

c∗k =

Y k.λ
∗

yki
− 1 + α∗∗

j β
∗∗ + 1Tδ∗∗β∗∗

β∗∗
(

1− 1Tα∗
−j,−k

) (A.12)

which is again larger than 1 and hence we can calculate β∗∗∗ = c∗kβ
∗∗ > β∗∗.

Continuing this procedure for all outputs exhibiting slacks we find that β can be successively

increased until no slacks are present anymore. Thus, the initial solution to (A.4) leading to slacks

in the good outputs can not be optimal and hence in the optimum all good output constraints

hold with equality.

These constraints on the good and bad outputs can therefore can be rearranged to

α =
Y λ

yiβ
− 1

β
(A.13)

δ =
1

β
− Uλ
uiβ

. (A.14)

Inserting these equalities into the normalization constraint leads to

1T
(
Y λ

yiβ
− 1

β

)
+ 1T

(
1

β
− Uλ
uiβ

)
= 1. (A.15)

Multiplying both sides with β we obtain

1T
(
Y λ

yi
− 1

)
+ 1T

(
1− Uλ

ui

)
= β. (A.16)
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Replacing β in the objective function of (5) with this expression we find

max
λ

1T
(
Y λ
yi
− 1
)

+ 1T
(
Uλ
ui
− 1
)

s.t. xi = Xλ

λ = 0.

(A.17)

Comparing (A.3) to (A.17) shows that both programs are equal and hence the optimal β from

(5) is equal to maximal sum of slacks-based measures of program (9).
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Table 5: Country results of the efficiency analysis

Country δ = 0 δ = 1 Country δ = 0 δ = 1

AGO 1.0809 0.9189 ITA 0.0262 0.1348
ARE 0.0000 0.6299 JPN 0.2364 0.3758
ARG 0.5160 0.7584 KAZ 0.7376 0.8733
AUS 0.0660 0.5725 KOR 0.5469 0.5604
AUT 0.0000 0.0000 KWT 0.0000 0.0000
BEL 0.0000 0.0000 MAR 1.0200 0.7376
BGD 0.5831 0.7081 MEX 0.2704 0.5735
BLR 0.0077 0.5715 MYS 0.6172 0.7088
BOL 0.2092 0.7761 NGA 0.0000 0.0000
BRA 0.6056 0.7183 NLD 0.0196 0.1529
CAN 0.0375 0.5438 NZL 0.1117 0.7389
CHL 0.2123 0.5365 PAK 0.6081 0.7481
CHN 0.7799 0.8089 PER 0.5036 0.5570
COG 0.0000 0.9752 PHL 0.4488 0.6803
COL 0.3020 0.5650 POL 0.1863 0.6693
CZE 0.6065 0.7238 PRT 0.4504 0.4167
DZA 1.1244 0.7648 RUS 0.0683 0.7464
EGY 0.0506 0.3135 SAU 0.3652 0.7767
ESP 0.1625 0.3916 SDN 0.0000 0.0000
ETH 2.3036 0.9046 SGP 0.0160 0.1052
FIN 0.1706 0.4650 SWE 0.0000 0.0000
FRA 0.0215 0.1589 SYR 0.0611 0.6088
GBR 0.0000 0.0000 THA 1.0519 0.7329
GER 0.1101 0.4044 TKM 5.7316 0.9280
GRC 0.2307 0.5117 TUR 0.0395 0.1813
HUN 0.3287 0.5707 TZA 1.6338 0.8703
IDN 0.8159 0.7338 USA 0.0000 0.0000
IND 0.5762 0.7081 UZB 1.7146 0.9480
IRN 0.6050 0.7576 VEN 0.4851 0.8228
IRQ 0.8417 0.7994 VNM 0.7034 0.7643
ISR 0.2203 0.4942 ZAF 0.4269 0.8621
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